mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	sched_clock_irqtime may be disabled due to the clock source. When disabled, irq_time_read() won't change over time, so there is nothing to account. We can save iterating the whole hierarchy on every tick and context switch. Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Michal Koutný <mkoutny@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20250103022409.2544-4-laoar.shao@gmail.com
		
			
				
	
	
		
			1671 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1671 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Pressure stall information for CPU, memory and IO
 | 
						|
 *
 | 
						|
 * Copyright (c) 2018 Facebook, Inc.
 | 
						|
 * Author: Johannes Weiner <hannes@cmpxchg.org>
 | 
						|
 *
 | 
						|
 * Polling support by Suren Baghdasaryan <surenb@google.com>
 | 
						|
 * Copyright (c) 2018 Google, Inc.
 | 
						|
 *
 | 
						|
 * When CPU, memory and IO are contended, tasks experience delays that
 | 
						|
 * reduce throughput and introduce latencies into the workload. Memory
 | 
						|
 * and IO contention, in addition, can cause a full loss of forward
 | 
						|
 * progress in which the CPU goes idle.
 | 
						|
 *
 | 
						|
 * This code aggregates individual task delays into resource pressure
 | 
						|
 * metrics that indicate problems with both workload health and
 | 
						|
 * resource utilization.
 | 
						|
 *
 | 
						|
 *			Model
 | 
						|
 *
 | 
						|
 * The time in which a task can execute on a CPU is our baseline for
 | 
						|
 * productivity. Pressure expresses the amount of time in which this
 | 
						|
 * potential cannot be realized due to resource contention.
 | 
						|
 *
 | 
						|
 * This concept of productivity has two components: the workload and
 | 
						|
 * the CPU. To measure the impact of pressure on both, we define two
 | 
						|
 * contention states for a resource: SOME and FULL.
 | 
						|
 *
 | 
						|
 * In the SOME state of a given resource, one or more tasks are
 | 
						|
 * delayed on that resource. This affects the workload's ability to
 | 
						|
 * perform work, but the CPU may still be executing other tasks.
 | 
						|
 *
 | 
						|
 * In the FULL state of a given resource, all non-idle tasks are
 | 
						|
 * delayed on that resource such that nobody is advancing and the CPU
 | 
						|
 * goes idle. This leaves both workload and CPU unproductive.
 | 
						|
 *
 | 
						|
 *	SOME = nr_delayed_tasks != 0
 | 
						|
 *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
 | 
						|
 *
 | 
						|
 * What it means for a task to be productive is defined differently
 | 
						|
 * for each resource. For IO, productive means a running task. For
 | 
						|
 * memory, productive means a running task that isn't a reclaimer. For
 | 
						|
 * CPU, productive means an on-CPU task.
 | 
						|
 *
 | 
						|
 * Naturally, the FULL state doesn't exist for the CPU resource at the
 | 
						|
 * system level, but exist at the cgroup level. At the cgroup level,
 | 
						|
 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
 | 
						|
 * resource which is being used by others outside of the cgroup or
 | 
						|
 * throttled by the cgroup cpu.max configuration.
 | 
						|
 *
 | 
						|
 * The percentage of wall clock time spent in those compound stall
 | 
						|
 * states gives pressure numbers between 0 and 100 for each resource,
 | 
						|
 * where the SOME percentage indicates workload slowdowns and the FULL
 | 
						|
 * percentage indicates reduced CPU utilization:
 | 
						|
 *
 | 
						|
 *	%SOME = time(SOME) / period
 | 
						|
 *	%FULL = time(FULL) / period
 | 
						|
 *
 | 
						|
 *			Multiple CPUs
 | 
						|
 *
 | 
						|
 * The more tasks and available CPUs there are, the more work can be
 | 
						|
 * performed concurrently. This means that the potential that can go
 | 
						|
 * unrealized due to resource contention *also* scales with non-idle
 | 
						|
 * tasks and CPUs.
 | 
						|
 *
 | 
						|
 * Consider a scenario where 257 number crunching tasks are trying to
 | 
						|
 * run concurrently on 256 CPUs. If we simply aggregated the task
 | 
						|
 * states, we would have to conclude a CPU SOME pressure number of
 | 
						|
 * 100%, since *somebody* is waiting on a runqueue at all
 | 
						|
 * times. However, that is clearly not the amount of contention the
 | 
						|
 * workload is experiencing: only one out of 256 possible execution
 | 
						|
 * threads will be contended at any given time, or about 0.4%.
 | 
						|
 *
 | 
						|
 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
 | 
						|
 * given time *one* of the tasks is delayed due to a lack of memory.
 | 
						|
 * Again, looking purely at the task state would yield a memory FULL
 | 
						|
 * pressure number of 0%, since *somebody* is always making forward
 | 
						|
 * progress. But again this wouldn't capture the amount of execution
 | 
						|
 * potential lost, which is 1 out of 4 CPUs, or 25%.
 | 
						|
 *
 | 
						|
 * To calculate wasted potential (pressure) with multiple processors,
 | 
						|
 * we have to base our calculation on the number of non-idle tasks in
 | 
						|
 * conjunction with the number of available CPUs, which is the number
 | 
						|
 * of potential execution threads. SOME becomes then the proportion of
 | 
						|
 * delayed tasks to possible threads, and FULL is the share of possible
 | 
						|
 * threads that are unproductive due to delays:
 | 
						|
 *
 | 
						|
 *	threads = min(nr_nonidle_tasks, nr_cpus)
 | 
						|
 *	   SOME = min(nr_delayed_tasks / threads, 1)
 | 
						|
 *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads
 | 
						|
 *
 | 
						|
 * For the 257 number crunchers on 256 CPUs, this yields:
 | 
						|
 *
 | 
						|
 *	threads = min(257, 256)
 | 
						|
 *	   SOME = min(1 / 256, 1)             = 0.4%
 | 
						|
 *	   FULL = (256 - min(256, 256)) / 256 = 0%
 | 
						|
 *
 | 
						|
 * For the 1 out of 4 memory-delayed tasks, this yields:
 | 
						|
 *
 | 
						|
 *	threads = min(4, 4)
 | 
						|
 *	   SOME = min(1 / 4, 1)               = 25%
 | 
						|
 *	   FULL = (4 - min(3, 4)) / 4         = 25%
 | 
						|
 *
 | 
						|
 * [ Substitute nr_cpus with 1, and you can see that it's a natural
 | 
						|
 *   extension of the single-CPU model. ]
 | 
						|
 *
 | 
						|
 *			Implementation
 | 
						|
 *
 | 
						|
 * To assess the precise time spent in each such state, we would have
 | 
						|
 * to freeze the system on task changes and start/stop the state
 | 
						|
 * clocks accordingly. Obviously that doesn't scale in practice.
 | 
						|
 *
 | 
						|
 * Because the scheduler aims to distribute the compute load evenly
 | 
						|
 * among the available CPUs, we can track task state locally to each
 | 
						|
 * CPU and, at much lower frequency, extrapolate the global state for
 | 
						|
 * the cumulative stall times and the running averages.
 | 
						|
 *
 | 
						|
 * For each runqueue, we track:
 | 
						|
 *
 | 
						|
 *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
 | 
						|
 *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
 | 
						|
 *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
 | 
						|
 *
 | 
						|
 * and then periodically aggregate:
 | 
						|
 *
 | 
						|
 *	tNONIDLE = sum(tNONIDLE[i])
 | 
						|
 *
 | 
						|
 *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
 | 
						|
 *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
 | 
						|
 *
 | 
						|
 *	   %SOME = tSOME / period
 | 
						|
 *	   %FULL = tFULL / period
 | 
						|
 *
 | 
						|
 * This gives us an approximation of pressure that is practical
 | 
						|
 * cost-wise, yet way more sensitive and accurate than periodic
 | 
						|
 * sampling of the aggregate task states would be.
 | 
						|
 */
 | 
						|
 | 
						|
static int psi_bug __read_mostly;
 | 
						|
 | 
						|
DEFINE_STATIC_KEY_FALSE(psi_disabled);
 | 
						|
static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
 | 
						|
 | 
						|
#ifdef CONFIG_PSI_DEFAULT_DISABLED
 | 
						|
static bool psi_enable;
 | 
						|
#else
 | 
						|
static bool psi_enable = true;
 | 
						|
#endif
 | 
						|
static int __init setup_psi(char *str)
 | 
						|
{
 | 
						|
	return kstrtobool(str, &psi_enable) == 0;
 | 
						|
}
 | 
						|
__setup("psi=", setup_psi);
 | 
						|
 | 
						|
/* Running averages - we need to be higher-res than loadavg */
 | 
						|
#define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
 | 
						|
#define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
 | 
						|
#define EXP_60s		1981		/* 1/exp(2s/60s) */
 | 
						|
#define EXP_300s	2034		/* 1/exp(2s/300s) */
 | 
						|
 | 
						|
/* PSI trigger definitions */
 | 
						|
#define WINDOW_MAX_US 10000000	/* Max window size is 10s */
 | 
						|
#define UPDATES_PER_WINDOW 10	/* 10 updates per window */
 | 
						|
 | 
						|
/* Sampling frequency in nanoseconds */
 | 
						|
static u64 psi_period __read_mostly;
 | 
						|
 | 
						|
/* System-level pressure and stall tracking */
 | 
						|
static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
 | 
						|
struct psi_group psi_system = {
 | 
						|
	.pcpu = &system_group_pcpu,
 | 
						|
};
 | 
						|
 | 
						|
static void psi_avgs_work(struct work_struct *work);
 | 
						|
 | 
						|
static void poll_timer_fn(struct timer_list *t);
 | 
						|
 | 
						|
static void group_init(struct psi_group *group)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	group->enabled = true;
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
 | 
						|
	group->avg_last_update = sched_clock();
 | 
						|
	group->avg_next_update = group->avg_last_update + psi_period;
 | 
						|
	mutex_init(&group->avgs_lock);
 | 
						|
 | 
						|
	/* Init avg trigger-related members */
 | 
						|
	INIT_LIST_HEAD(&group->avg_triggers);
 | 
						|
	memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
 | 
						|
	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
 | 
						|
 | 
						|
	/* Init rtpoll trigger-related members */
 | 
						|
	atomic_set(&group->rtpoll_scheduled, 0);
 | 
						|
	mutex_init(&group->rtpoll_trigger_lock);
 | 
						|
	INIT_LIST_HEAD(&group->rtpoll_triggers);
 | 
						|
	group->rtpoll_min_period = U32_MAX;
 | 
						|
	group->rtpoll_next_update = ULLONG_MAX;
 | 
						|
	init_waitqueue_head(&group->rtpoll_wait);
 | 
						|
	timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
 | 
						|
	rcu_assign_pointer(group->rtpoll_task, NULL);
 | 
						|
}
 | 
						|
 | 
						|
void __init psi_init(void)
 | 
						|
{
 | 
						|
	if (!psi_enable) {
 | 
						|
		static_branch_enable(&psi_disabled);
 | 
						|
		static_branch_disable(&psi_cgroups_enabled);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!cgroup_psi_enabled())
 | 
						|
		static_branch_disable(&psi_cgroups_enabled);
 | 
						|
 | 
						|
	psi_period = jiffies_to_nsecs(PSI_FREQ);
 | 
						|
	group_init(&psi_system);
 | 
						|
}
 | 
						|
 | 
						|
static u32 test_states(unsigned int *tasks, u32 state_mask)
 | 
						|
{
 | 
						|
	const bool oncpu = state_mask & PSI_ONCPU;
 | 
						|
 | 
						|
	if (tasks[NR_IOWAIT]) {
 | 
						|
		state_mask |= BIT(PSI_IO_SOME);
 | 
						|
		if (!tasks[NR_RUNNING])
 | 
						|
			state_mask |= BIT(PSI_IO_FULL);
 | 
						|
	}
 | 
						|
 | 
						|
	if (tasks[NR_MEMSTALL]) {
 | 
						|
		state_mask |= BIT(PSI_MEM_SOME);
 | 
						|
		if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING])
 | 
						|
			state_mask |= BIT(PSI_MEM_FULL);
 | 
						|
	}
 | 
						|
 | 
						|
	if (tasks[NR_RUNNING] > oncpu)
 | 
						|
		state_mask |= BIT(PSI_CPU_SOME);
 | 
						|
 | 
						|
	if (tasks[NR_RUNNING] && !oncpu)
 | 
						|
		state_mask |= BIT(PSI_CPU_FULL);
 | 
						|
 | 
						|
	if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING])
 | 
						|
		state_mask |= BIT(PSI_NONIDLE);
 | 
						|
 | 
						|
	return state_mask;
 | 
						|
}
 | 
						|
 | 
						|
static void get_recent_times(struct psi_group *group, int cpu,
 | 
						|
			     enum psi_aggregators aggregator, u32 *times,
 | 
						|
			     u32 *pchanged_states)
 | 
						|
{
 | 
						|
	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
 | 
						|
	int current_cpu = raw_smp_processor_id();
 | 
						|
	unsigned int tasks[NR_PSI_TASK_COUNTS];
 | 
						|
	u64 now, state_start;
 | 
						|
	enum psi_states s;
 | 
						|
	unsigned int seq;
 | 
						|
	u32 state_mask;
 | 
						|
 | 
						|
	*pchanged_states = 0;
 | 
						|
 | 
						|
	/* Snapshot a coherent view of the CPU state */
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&groupc->seq);
 | 
						|
		now = cpu_clock(cpu);
 | 
						|
		memcpy(times, groupc->times, sizeof(groupc->times));
 | 
						|
		state_mask = groupc->state_mask;
 | 
						|
		state_start = groupc->state_start;
 | 
						|
		if (cpu == current_cpu)
 | 
						|
			memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
 | 
						|
	} while (read_seqcount_retry(&groupc->seq, seq));
 | 
						|
 | 
						|
	/* Calculate state time deltas against the previous snapshot */
 | 
						|
	for (s = 0; s < NR_PSI_STATES; s++) {
 | 
						|
		u32 delta;
 | 
						|
		/*
 | 
						|
		 * In addition to already concluded states, we also
 | 
						|
		 * incorporate currently active states on the CPU,
 | 
						|
		 * since states may last for many sampling periods.
 | 
						|
		 *
 | 
						|
		 * This way we keep our delta sampling buckets small
 | 
						|
		 * (u32) and our reported pressure close to what's
 | 
						|
		 * actually happening.
 | 
						|
		 */
 | 
						|
		if (state_mask & (1 << s))
 | 
						|
			times[s] += now - state_start;
 | 
						|
 | 
						|
		delta = times[s] - groupc->times_prev[aggregator][s];
 | 
						|
		groupc->times_prev[aggregator][s] = times[s];
 | 
						|
 | 
						|
		times[s] = delta;
 | 
						|
		if (delta)
 | 
						|
			*pchanged_states |= (1 << s);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When collect_percpu_times() from the avgs_work, we don't want to
 | 
						|
	 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
 | 
						|
	 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
 | 
						|
	 * So for the current CPU, we need to re-arm avgs_work only when
 | 
						|
	 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
 | 
						|
	 * we can just check PSI_NONIDLE delta.
 | 
						|
	 */
 | 
						|
	if (current_work() == &group->avgs_work.work) {
 | 
						|
		bool reschedule;
 | 
						|
 | 
						|
		if (cpu == current_cpu)
 | 
						|
			reschedule = tasks[NR_RUNNING] +
 | 
						|
				     tasks[NR_IOWAIT] +
 | 
						|
				     tasks[NR_MEMSTALL] > 1;
 | 
						|
		else
 | 
						|
			reschedule = *pchanged_states & (1 << PSI_NONIDLE);
 | 
						|
 | 
						|
		if (reschedule)
 | 
						|
			*pchanged_states |= PSI_STATE_RESCHEDULE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void calc_avgs(unsigned long avg[3], int missed_periods,
 | 
						|
		      u64 time, u64 period)
 | 
						|
{
 | 
						|
	unsigned long pct;
 | 
						|
 | 
						|
	/* Fill in zeroes for periods of no activity */
 | 
						|
	if (missed_periods) {
 | 
						|
		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
 | 
						|
		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
 | 
						|
		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Sample the most recent active period */
 | 
						|
	pct = div_u64(time * 100, period);
 | 
						|
	pct *= FIXED_1;
 | 
						|
	avg[0] = calc_load(avg[0], EXP_10s, pct);
 | 
						|
	avg[1] = calc_load(avg[1], EXP_60s, pct);
 | 
						|
	avg[2] = calc_load(avg[2], EXP_300s, pct);
 | 
						|
}
 | 
						|
 | 
						|
static void collect_percpu_times(struct psi_group *group,
 | 
						|
				 enum psi_aggregators aggregator,
 | 
						|
				 u32 *pchanged_states)
 | 
						|
{
 | 
						|
	u64 deltas[NR_PSI_STATES - 1] = { 0, };
 | 
						|
	unsigned long nonidle_total = 0;
 | 
						|
	u32 changed_states = 0;
 | 
						|
	int cpu;
 | 
						|
	int s;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Collect the per-cpu time buckets and average them into a
 | 
						|
	 * single time sample that is normalized to wall clock time.
 | 
						|
	 *
 | 
						|
	 * For averaging, each CPU is weighted by its non-idle time in
 | 
						|
	 * the sampling period. This eliminates artifacts from uneven
 | 
						|
	 * loading, or even entirely idle CPUs.
 | 
						|
	 */
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		u32 times[NR_PSI_STATES];
 | 
						|
		u32 nonidle;
 | 
						|
		u32 cpu_changed_states;
 | 
						|
 | 
						|
		get_recent_times(group, cpu, aggregator, times,
 | 
						|
				&cpu_changed_states);
 | 
						|
		changed_states |= cpu_changed_states;
 | 
						|
 | 
						|
		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
 | 
						|
		nonidle_total += nonidle;
 | 
						|
 | 
						|
		for (s = 0; s < PSI_NONIDLE; s++)
 | 
						|
			deltas[s] += (u64)times[s] * nonidle;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Integrate the sample into the running statistics that are
 | 
						|
	 * reported to userspace: the cumulative stall times and the
 | 
						|
	 * decaying averages.
 | 
						|
	 *
 | 
						|
	 * Pressure percentages are sampled at PSI_FREQ. We might be
 | 
						|
	 * called more often when the user polls more frequently than
 | 
						|
	 * that; we might be called less often when there is no task
 | 
						|
	 * activity, thus no data, and clock ticks are sporadic. The
 | 
						|
	 * below handles both.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* total= */
 | 
						|
	for (s = 0; s < NR_PSI_STATES - 1; s++)
 | 
						|
		group->total[aggregator][s] +=
 | 
						|
				div_u64(deltas[s], max(nonidle_total, 1UL));
 | 
						|
 | 
						|
	if (pchanged_states)
 | 
						|
		*pchanged_states = changed_states;
 | 
						|
}
 | 
						|
 | 
						|
/* Trigger tracking window manipulations */
 | 
						|
static void window_reset(struct psi_window *win, u64 now, u64 value,
 | 
						|
			 u64 prev_growth)
 | 
						|
{
 | 
						|
	win->start_time = now;
 | 
						|
	win->start_value = value;
 | 
						|
	win->prev_growth = prev_growth;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * PSI growth tracking window update and growth calculation routine.
 | 
						|
 *
 | 
						|
 * This approximates a sliding tracking window by interpolating
 | 
						|
 * partially elapsed windows using historical growth data from the
 | 
						|
 * previous intervals. This minimizes memory requirements (by not storing
 | 
						|
 * all the intermediate values in the previous window) and simplifies
 | 
						|
 * the calculations. It works well because PSI signal changes only in
 | 
						|
 * positive direction and over relatively small window sizes the growth
 | 
						|
 * is close to linear.
 | 
						|
 */
 | 
						|
static u64 window_update(struct psi_window *win, u64 now, u64 value)
 | 
						|
{
 | 
						|
	u64 elapsed;
 | 
						|
	u64 growth;
 | 
						|
 | 
						|
	elapsed = now - win->start_time;
 | 
						|
	growth = value - win->start_value;
 | 
						|
	/*
 | 
						|
	 * After each tracking window passes win->start_value and
 | 
						|
	 * win->start_time get reset and win->prev_growth stores
 | 
						|
	 * the average per-window growth of the previous window.
 | 
						|
	 * win->prev_growth is then used to interpolate additional
 | 
						|
	 * growth from the previous window assuming it was linear.
 | 
						|
	 */
 | 
						|
	if (elapsed > win->size)
 | 
						|
		window_reset(win, now, value, growth);
 | 
						|
	else {
 | 
						|
		u32 remaining;
 | 
						|
 | 
						|
		remaining = win->size - elapsed;
 | 
						|
		growth += div64_u64(win->prev_growth * remaining, win->size);
 | 
						|
	}
 | 
						|
 | 
						|
	return growth;
 | 
						|
}
 | 
						|
 | 
						|
static void update_triggers(struct psi_group *group, u64 now,
 | 
						|
						   enum psi_aggregators aggregator)
 | 
						|
{
 | 
						|
	struct psi_trigger *t;
 | 
						|
	u64 *total = group->total[aggregator];
 | 
						|
	struct list_head *triggers;
 | 
						|
	u64 *aggregator_total;
 | 
						|
 | 
						|
	if (aggregator == PSI_AVGS) {
 | 
						|
		triggers = &group->avg_triggers;
 | 
						|
		aggregator_total = group->avg_total;
 | 
						|
	} else {
 | 
						|
		triggers = &group->rtpoll_triggers;
 | 
						|
		aggregator_total = group->rtpoll_total;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On subsequent updates, calculate growth deltas and let
 | 
						|
	 * watchers know when their specified thresholds are exceeded.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(t, triggers, node) {
 | 
						|
		u64 growth;
 | 
						|
		bool new_stall;
 | 
						|
 | 
						|
		new_stall = aggregator_total[t->state] != total[t->state];
 | 
						|
 | 
						|
		/* Check for stall activity or a previous threshold breach */
 | 
						|
		if (!new_stall && !t->pending_event)
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * Check for new stall activity, as well as deferred
 | 
						|
		 * events that occurred in the last window after the
 | 
						|
		 * trigger had already fired (we want to ratelimit
 | 
						|
		 * events without dropping any).
 | 
						|
		 */
 | 
						|
		if (new_stall) {
 | 
						|
			/* Calculate growth since last update */
 | 
						|
			growth = window_update(&t->win, now, total[t->state]);
 | 
						|
			if (!t->pending_event) {
 | 
						|
				if (growth < t->threshold)
 | 
						|
					continue;
 | 
						|
 | 
						|
				t->pending_event = true;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* Limit event signaling to once per window */
 | 
						|
		if (now < t->last_event_time + t->win.size)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Generate an event */
 | 
						|
		if (cmpxchg(&t->event, 0, 1) == 0) {
 | 
						|
			if (t->of)
 | 
						|
				kernfs_notify(t->of->kn);
 | 
						|
			else
 | 
						|
				wake_up_interruptible(&t->event_wait);
 | 
						|
		}
 | 
						|
		t->last_event_time = now;
 | 
						|
		/* Reset threshold breach flag once event got generated */
 | 
						|
		t->pending_event = false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static u64 update_averages(struct psi_group *group, u64 now)
 | 
						|
{
 | 
						|
	unsigned long missed_periods = 0;
 | 
						|
	u64 expires, period;
 | 
						|
	u64 avg_next_update;
 | 
						|
	int s;
 | 
						|
 | 
						|
	/* avgX= */
 | 
						|
	expires = group->avg_next_update;
 | 
						|
	if (now - expires >= psi_period)
 | 
						|
		missed_periods = div_u64(now - expires, psi_period);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The periodic clock tick can get delayed for various
 | 
						|
	 * reasons, especially on loaded systems. To avoid clock
 | 
						|
	 * drift, we schedule the clock in fixed psi_period intervals.
 | 
						|
	 * But the deltas we sample out of the per-cpu buckets above
 | 
						|
	 * are based on the actual time elapsing between clock ticks.
 | 
						|
	 */
 | 
						|
	avg_next_update = expires + ((1 + missed_periods) * psi_period);
 | 
						|
	period = now - (group->avg_last_update + (missed_periods * psi_period));
 | 
						|
	group->avg_last_update = now;
 | 
						|
 | 
						|
	for (s = 0; s < NR_PSI_STATES - 1; s++) {
 | 
						|
		u32 sample;
 | 
						|
 | 
						|
		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
 | 
						|
		/*
 | 
						|
		 * Due to the lockless sampling of the time buckets,
 | 
						|
		 * recorded time deltas can slip into the next period,
 | 
						|
		 * which under full pressure can result in samples in
 | 
						|
		 * excess of the period length.
 | 
						|
		 *
 | 
						|
		 * We don't want to report non-sensical pressures in
 | 
						|
		 * excess of 100%, nor do we want to drop such events
 | 
						|
		 * on the floor. Instead we punt any overage into the
 | 
						|
		 * future until pressure subsides. By doing this we
 | 
						|
		 * don't underreport the occurring pressure curve, we
 | 
						|
		 * just report it delayed by one period length.
 | 
						|
		 *
 | 
						|
		 * The error isn't cumulative. As soon as another
 | 
						|
		 * delta slips from a period P to P+1, by definition
 | 
						|
		 * it frees up its time T in P.
 | 
						|
		 */
 | 
						|
		if (sample > period)
 | 
						|
			sample = period;
 | 
						|
		group->avg_total[s] += sample;
 | 
						|
		calc_avgs(group->avg[s], missed_periods, sample, period);
 | 
						|
	}
 | 
						|
 | 
						|
	return avg_next_update;
 | 
						|
}
 | 
						|
 | 
						|
static void psi_avgs_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct delayed_work *dwork;
 | 
						|
	struct psi_group *group;
 | 
						|
	u32 changed_states;
 | 
						|
	u64 now;
 | 
						|
 | 
						|
	dwork = to_delayed_work(work);
 | 
						|
	group = container_of(dwork, struct psi_group, avgs_work);
 | 
						|
 | 
						|
	mutex_lock(&group->avgs_lock);
 | 
						|
 | 
						|
	now = sched_clock();
 | 
						|
 | 
						|
	collect_percpu_times(group, PSI_AVGS, &changed_states);
 | 
						|
	/*
 | 
						|
	 * If there is task activity, periodically fold the per-cpu
 | 
						|
	 * times and feed samples into the running averages. If things
 | 
						|
	 * are idle and there is no data to process, stop the clock.
 | 
						|
	 * Once restarted, we'll catch up the running averages in one
 | 
						|
	 * go - see calc_avgs() and missed_periods.
 | 
						|
	 */
 | 
						|
	if (now >= group->avg_next_update) {
 | 
						|
		update_triggers(group, now, PSI_AVGS);
 | 
						|
		group->avg_next_update = update_averages(group, now);
 | 
						|
	}
 | 
						|
 | 
						|
	if (changed_states & PSI_STATE_RESCHEDULE) {
 | 
						|
		schedule_delayed_work(dwork, nsecs_to_jiffies(
 | 
						|
				group->avg_next_update - now) + 1);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_unlock(&group->avgs_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void init_rtpoll_triggers(struct psi_group *group, u64 now)
 | 
						|
{
 | 
						|
	struct psi_trigger *t;
 | 
						|
 | 
						|
	list_for_each_entry(t, &group->rtpoll_triggers, node)
 | 
						|
		window_reset(&t->win, now,
 | 
						|
				group->total[PSI_POLL][t->state], 0);
 | 
						|
	memcpy(group->rtpoll_total, group->total[PSI_POLL],
 | 
						|
		   sizeof(group->rtpoll_total));
 | 
						|
	group->rtpoll_next_update = now + group->rtpoll_min_period;
 | 
						|
}
 | 
						|
 | 
						|
/* Schedule rtpolling if it's not already scheduled or forced. */
 | 
						|
static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
 | 
						|
				   bool force)
 | 
						|
{
 | 
						|
	struct task_struct *task;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * atomic_xchg should be called even when !force to provide a
 | 
						|
	 * full memory barrier (see the comment inside psi_rtpoll_work).
 | 
						|
	 */
 | 
						|
	if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
 | 
						|
		return;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
 | 
						|
	task = rcu_dereference(group->rtpoll_task);
 | 
						|
	/*
 | 
						|
	 * kworker might be NULL in case psi_trigger_destroy races with
 | 
						|
	 * psi_task_change (hotpath) which can't use locks
 | 
						|
	 */
 | 
						|
	if (likely(task))
 | 
						|
		mod_timer(&group->rtpoll_timer, jiffies + delay);
 | 
						|
	else
 | 
						|
		atomic_set(&group->rtpoll_scheduled, 0);
 | 
						|
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
static void psi_rtpoll_work(struct psi_group *group)
 | 
						|
{
 | 
						|
	bool force_reschedule = false;
 | 
						|
	u32 changed_states;
 | 
						|
	u64 now;
 | 
						|
 | 
						|
	mutex_lock(&group->rtpoll_trigger_lock);
 | 
						|
 | 
						|
	now = sched_clock();
 | 
						|
 | 
						|
	if (now > group->rtpoll_until) {
 | 
						|
		/*
 | 
						|
		 * We are either about to start or might stop rtpolling if no
 | 
						|
		 * state change was recorded. Resetting rtpoll_scheduled leaves
 | 
						|
		 * a small window for psi_group_change to sneak in and schedule
 | 
						|
		 * an immediate rtpoll_work before we get to rescheduling. One
 | 
						|
		 * potential extra wakeup at the end of the rtpolling window
 | 
						|
		 * should be negligible and rtpoll_next_update still keeps
 | 
						|
		 * updates correctly on schedule.
 | 
						|
		 */
 | 
						|
		atomic_set(&group->rtpoll_scheduled, 0);
 | 
						|
		/*
 | 
						|
		 * A task change can race with the rtpoll worker that is supposed to
 | 
						|
		 * report on it. To avoid missing events, ensure ordering between
 | 
						|
		 * rtpoll_scheduled and the task state accesses, such that if the
 | 
						|
		 * rtpoll worker misses the state update, the task change is
 | 
						|
		 * guaranteed to reschedule the rtpoll worker:
 | 
						|
		 *
 | 
						|
		 * rtpoll worker:
 | 
						|
		 *   atomic_set(rtpoll_scheduled, 0)
 | 
						|
		 *   smp_mb()
 | 
						|
		 *   LOAD states
 | 
						|
		 *
 | 
						|
		 * task change:
 | 
						|
		 *   STORE states
 | 
						|
		 *   if atomic_xchg(rtpoll_scheduled, 1) == 0:
 | 
						|
		 *     schedule rtpoll worker
 | 
						|
		 *
 | 
						|
		 * The atomic_xchg() implies a full barrier.
 | 
						|
		 */
 | 
						|
		smp_mb();
 | 
						|
	} else {
 | 
						|
		/* The rtpolling window is not over, keep rescheduling */
 | 
						|
		force_reschedule = true;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	collect_percpu_times(group, PSI_POLL, &changed_states);
 | 
						|
 | 
						|
	if (changed_states & group->rtpoll_states) {
 | 
						|
		/* Initialize trigger windows when entering rtpolling mode */
 | 
						|
		if (now > group->rtpoll_until)
 | 
						|
			init_rtpoll_triggers(group, now);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Keep the monitor active for at least the duration of the
 | 
						|
		 * minimum tracking window as long as monitor states are
 | 
						|
		 * changing.
 | 
						|
		 */
 | 
						|
		group->rtpoll_until = now +
 | 
						|
			group->rtpoll_min_period * UPDATES_PER_WINDOW;
 | 
						|
	}
 | 
						|
 | 
						|
	if (now > group->rtpoll_until) {
 | 
						|
		group->rtpoll_next_update = ULLONG_MAX;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (now >= group->rtpoll_next_update) {
 | 
						|
		if (changed_states & group->rtpoll_states) {
 | 
						|
			update_triggers(group, now, PSI_POLL);
 | 
						|
			memcpy(group->rtpoll_total, group->total[PSI_POLL],
 | 
						|
				   sizeof(group->rtpoll_total));
 | 
						|
		}
 | 
						|
		group->rtpoll_next_update = now + group->rtpoll_min_period;
 | 
						|
	}
 | 
						|
 | 
						|
	psi_schedule_rtpoll_work(group,
 | 
						|
		nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
 | 
						|
		force_reschedule);
 | 
						|
 | 
						|
out:
 | 
						|
	mutex_unlock(&group->rtpoll_trigger_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int psi_rtpoll_worker(void *data)
 | 
						|
{
 | 
						|
	struct psi_group *group = (struct psi_group *)data;
 | 
						|
 | 
						|
	sched_set_fifo_low(current);
 | 
						|
 | 
						|
	while (true) {
 | 
						|
		wait_event_interruptible(group->rtpoll_wait,
 | 
						|
				atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
 | 
						|
				kthread_should_stop());
 | 
						|
		if (kthread_should_stop())
 | 
						|
			break;
 | 
						|
 | 
						|
		psi_rtpoll_work(group);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void poll_timer_fn(struct timer_list *t)
 | 
						|
{
 | 
						|
	struct psi_group *group = from_timer(group, t, rtpoll_timer);
 | 
						|
 | 
						|
	atomic_set(&group->rtpoll_wakeup, 1);
 | 
						|
	wake_up_interruptible(&group->rtpoll_wait);
 | 
						|
}
 | 
						|
 | 
						|
static void record_times(struct psi_group_cpu *groupc, u64 now)
 | 
						|
{
 | 
						|
	u32 delta;
 | 
						|
 | 
						|
	delta = now - groupc->state_start;
 | 
						|
	groupc->state_start = now;
 | 
						|
 | 
						|
	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
 | 
						|
		groupc->times[PSI_IO_SOME] += delta;
 | 
						|
		if (groupc->state_mask & (1 << PSI_IO_FULL))
 | 
						|
			groupc->times[PSI_IO_FULL] += delta;
 | 
						|
	}
 | 
						|
 | 
						|
	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
 | 
						|
		groupc->times[PSI_MEM_SOME] += delta;
 | 
						|
		if (groupc->state_mask & (1 << PSI_MEM_FULL))
 | 
						|
			groupc->times[PSI_MEM_FULL] += delta;
 | 
						|
	}
 | 
						|
 | 
						|
	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
 | 
						|
		groupc->times[PSI_CPU_SOME] += delta;
 | 
						|
		if (groupc->state_mask & (1 << PSI_CPU_FULL))
 | 
						|
			groupc->times[PSI_CPU_FULL] += delta;
 | 
						|
	}
 | 
						|
 | 
						|
	if (groupc->state_mask & (1 << PSI_NONIDLE))
 | 
						|
		groupc->times[PSI_NONIDLE] += delta;
 | 
						|
}
 | 
						|
 | 
						|
static void psi_group_change(struct psi_group *group, int cpu,
 | 
						|
			     unsigned int clear, unsigned int set,
 | 
						|
			     bool wake_clock)
 | 
						|
{
 | 
						|
	struct psi_group_cpu *groupc;
 | 
						|
	unsigned int t, m;
 | 
						|
	u32 state_mask;
 | 
						|
	u64 now;
 | 
						|
 | 
						|
	lockdep_assert_rq_held(cpu_rq(cpu));
 | 
						|
	groupc = per_cpu_ptr(group->pcpu, cpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First we update the task counts according to the state
 | 
						|
	 * change requested through the @clear and @set bits.
 | 
						|
	 *
 | 
						|
	 * Then if the cgroup PSI stats accounting enabled, we
 | 
						|
	 * assess the aggregate resource states this CPU's tasks
 | 
						|
	 * have been in since the last change, and account any
 | 
						|
	 * SOME and FULL time these may have resulted in.
 | 
						|
	 */
 | 
						|
	write_seqcount_begin(&groupc->seq);
 | 
						|
	now = cpu_clock(cpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Start with TSK_ONCPU, which doesn't have a corresponding
 | 
						|
	 * task count - it's just a boolean flag directly encoded in
 | 
						|
	 * the state mask. Clear, set, or carry the current state if
 | 
						|
	 * no changes are requested.
 | 
						|
	 */
 | 
						|
	if (unlikely(clear & TSK_ONCPU)) {
 | 
						|
		state_mask = 0;
 | 
						|
		clear &= ~TSK_ONCPU;
 | 
						|
	} else if (unlikely(set & TSK_ONCPU)) {
 | 
						|
		state_mask = PSI_ONCPU;
 | 
						|
		set &= ~TSK_ONCPU;
 | 
						|
	} else {
 | 
						|
		state_mask = groupc->state_mask & PSI_ONCPU;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The rest of the state mask is calculated based on the task
 | 
						|
	 * counts. Update those first, then construct the mask.
 | 
						|
	 */
 | 
						|
	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
 | 
						|
		if (!(m & (1 << t)))
 | 
						|
			continue;
 | 
						|
		if (groupc->tasks[t]) {
 | 
						|
			groupc->tasks[t]--;
 | 
						|
		} else if (!psi_bug) {
 | 
						|
			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
 | 
						|
					cpu, t, groupc->tasks[0],
 | 
						|
					groupc->tasks[1], groupc->tasks[2],
 | 
						|
					groupc->tasks[3], clear, set);
 | 
						|
			psi_bug = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (t = 0; set; set &= ~(1 << t), t++)
 | 
						|
		if (set & (1 << t))
 | 
						|
			groupc->tasks[t]++;
 | 
						|
 | 
						|
	if (!group->enabled) {
 | 
						|
		/*
 | 
						|
		 * On the first group change after disabling PSI, conclude
 | 
						|
		 * the current state and flush its time. This is unlikely
 | 
						|
		 * to matter to the user, but aggregation (get_recent_times)
 | 
						|
		 * may have already incorporated the live state into times_prev;
 | 
						|
		 * avoid a delta sample underflow when PSI is later re-enabled.
 | 
						|
		 */
 | 
						|
		if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
 | 
						|
			record_times(groupc, now);
 | 
						|
 | 
						|
		groupc->state_mask = state_mask;
 | 
						|
 | 
						|
		write_seqcount_end(&groupc->seq);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	state_mask = test_states(groupc->tasks, state_mask);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we care about lost potential, a memstall is FULL
 | 
						|
	 * when there are no other working tasks, but also when
 | 
						|
	 * the CPU is actively reclaiming and nothing productive
 | 
						|
	 * could run even if it were runnable. So when the current
 | 
						|
	 * task in a cgroup is in_memstall, the corresponding groupc
 | 
						|
	 * on that cpu is in PSI_MEM_FULL state.
 | 
						|
	 */
 | 
						|
	if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
 | 
						|
		state_mask |= (1 << PSI_MEM_FULL);
 | 
						|
 | 
						|
	record_times(groupc, now);
 | 
						|
 | 
						|
	groupc->state_mask = state_mask;
 | 
						|
 | 
						|
	write_seqcount_end(&groupc->seq);
 | 
						|
 | 
						|
	if (state_mask & group->rtpoll_states)
 | 
						|
		psi_schedule_rtpoll_work(group, 1, false);
 | 
						|
 | 
						|
	if (wake_clock && !delayed_work_pending(&group->avgs_work))
 | 
						|
		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct psi_group *task_psi_group(struct task_struct *task)
 | 
						|
{
 | 
						|
#ifdef CONFIG_CGROUPS
 | 
						|
	if (static_branch_likely(&psi_cgroups_enabled))
 | 
						|
		return cgroup_psi(task_dfl_cgroup(task));
 | 
						|
#endif
 | 
						|
	return &psi_system;
 | 
						|
}
 | 
						|
 | 
						|
static void psi_flags_change(struct task_struct *task, int clear, int set)
 | 
						|
{
 | 
						|
	if (((task->psi_flags & set) ||
 | 
						|
	     (task->psi_flags & clear) != clear) &&
 | 
						|
	    !psi_bug) {
 | 
						|
		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
 | 
						|
				task->pid, task->comm, task_cpu(task),
 | 
						|
				task->psi_flags, clear, set);
 | 
						|
		psi_bug = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	task->psi_flags &= ~clear;
 | 
						|
	task->psi_flags |= set;
 | 
						|
}
 | 
						|
 | 
						|
void psi_task_change(struct task_struct *task, int clear, int set)
 | 
						|
{
 | 
						|
	int cpu = task_cpu(task);
 | 
						|
	struct psi_group *group;
 | 
						|
 | 
						|
	if (!task->pid)
 | 
						|
		return;
 | 
						|
 | 
						|
	psi_flags_change(task, clear, set);
 | 
						|
 | 
						|
	group = task_psi_group(task);
 | 
						|
	do {
 | 
						|
		psi_group_change(group, cpu, clear, set, true);
 | 
						|
	} while ((group = group->parent));
 | 
						|
}
 | 
						|
 | 
						|
void psi_task_switch(struct task_struct *prev, struct task_struct *next,
 | 
						|
		     bool sleep)
 | 
						|
{
 | 
						|
	struct psi_group *group, *common = NULL;
 | 
						|
	int cpu = task_cpu(prev);
 | 
						|
 | 
						|
	if (next->pid) {
 | 
						|
		psi_flags_change(next, 0, TSK_ONCPU);
 | 
						|
		/*
 | 
						|
		 * Set TSK_ONCPU on @next's cgroups. If @next shares any
 | 
						|
		 * ancestors with @prev, those will already have @prev's
 | 
						|
		 * TSK_ONCPU bit set, and we can stop the iteration there.
 | 
						|
		 */
 | 
						|
		group = task_psi_group(next);
 | 
						|
		do {
 | 
						|
			if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
 | 
						|
			    PSI_ONCPU) {
 | 
						|
				common = group;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			psi_group_change(group, cpu, 0, TSK_ONCPU, true);
 | 
						|
		} while ((group = group->parent));
 | 
						|
	}
 | 
						|
 | 
						|
	if (prev->pid) {
 | 
						|
		int clear = TSK_ONCPU, set = 0;
 | 
						|
		bool wake_clock = true;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * When we're going to sleep, psi_dequeue() lets us
 | 
						|
		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
 | 
						|
		 * TSK_IOWAIT here, where we can combine it with
 | 
						|
		 * TSK_ONCPU and save walking common ancestors twice.
 | 
						|
		 */
 | 
						|
		if (sleep) {
 | 
						|
			clear |= TSK_RUNNING;
 | 
						|
			if (prev->in_memstall)
 | 
						|
				clear |= TSK_MEMSTALL_RUNNING;
 | 
						|
			if (prev->in_iowait)
 | 
						|
				set |= TSK_IOWAIT;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Periodic aggregation shuts off if there is a period of no
 | 
						|
			 * task changes, so we wake it back up if necessary. However,
 | 
						|
			 * don't do this if the task change is the aggregation worker
 | 
						|
			 * itself going to sleep, or we'll ping-pong forever.
 | 
						|
			 */
 | 
						|
			if (unlikely((prev->flags & PF_WQ_WORKER) &&
 | 
						|
				     wq_worker_last_func(prev) == psi_avgs_work))
 | 
						|
				wake_clock = false;
 | 
						|
		}
 | 
						|
 | 
						|
		psi_flags_change(prev, clear, set);
 | 
						|
 | 
						|
		group = task_psi_group(prev);
 | 
						|
		do {
 | 
						|
			if (group == common)
 | 
						|
				break;
 | 
						|
			psi_group_change(group, cpu, clear, set, wake_clock);
 | 
						|
		} while ((group = group->parent));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * TSK_ONCPU is handled up to the common ancestor. If there are
 | 
						|
		 * any other differences between the two tasks (e.g. prev goes
 | 
						|
		 * to sleep, or only one task is memstall), finish propagating
 | 
						|
		 * those differences all the way up to the root.
 | 
						|
		 */
 | 
						|
		if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
 | 
						|
			clear &= ~TSK_ONCPU;
 | 
						|
			for (; group; group = group->parent)
 | 
						|
				psi_group_change(group, cpu, clear, set, wake_clock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | 
						|
void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev)
 | 
						|
{
 | 
						|
	int cpu = task_cpu(curr);
 | 
						|
	struct psi_group *group;
 | 
						|
	struct psi_group_cpu *groupc;
 | 
						|
	s64 delta;
 | 
						|
	u64 irq;
 | 
						|
 | 
						|
	if (static_branch_likely(&psi_disabled) || !irqtime_enabled())
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!curr->pid)
 | 
						|
		return;
 | 
						|
 | 
						|
	lockdep_assert_rq_held(rq);
 | 
						|
	group = task_psi_group(curr);
 | 
						|
	if (prev && task_psi_group(prev) == group)
 | 
						|
		return;
 | 
						|
 | 
						|
	irq = irq_time_read(cpu);
 | 
						|
	delta = (s64)(irq - rq->psi_irq_time);
 | 
						|
	if (delta < 0)
 | 
						|
		return;
 | 
						|
	rq->psi_irq_time = irq;
 | 
						|
 | 
						|
	do {
 | 
						|
		u64 now;
 | 
						|
 | 
						|
		if (!group->enabled)
 | 
						|
			continue;
 | 
						|
 | 
						|
		groupc = per_cpu_ptr(group->pcpu, cpu);
 | 
						|
 | 
						|
		write_seqcount_begin(&groupc->seq);
 | 
						|
		now = cpu_clock(cpu);
 | 
						|
 | 
						|
		record_times(groupc, now);
 | 
						|
		groupc->times[PSI_IRQ_FULL] += delta;
 | 
						|
 | 
						|
		write_seqcount_end(&groupc->seq);
 | 
						|
 | 
						|
		if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
 | 
						|
			psi_schedule_rtpoll_work(group, 1, false);
 | 
						|
	} while ((group = group->parent));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * psi_memstall_enter - mark the beginning of a memory stall section
 | 
						|
 * @flags: flags to handle nested sections
 | 
						|
 *
 | 
						|
 * Marks the calling task as being stalled due to a lack of memory,
 | 
						|
 * such as waiting for a refault or performing reclaim.
 | 
						|
 */
 | 
						|
void psi_memstall_enter(unsigned long *flags)
 | 
						|
{
 | 
						|
	struct rq_flags rf;
 | 
						|
	struct rq *rq;
 | 
						|
 | 
						|
	if (static_branch_likely(&psi_disabled))
 | 
						|
		return;
 | 
						|
 | 
						|
	*flags = current->in_memstall;
 | 
						|
	if (*flags)
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * in_memstall setting & accounting needs to be atomic wrt
 | 
						|
	 * changes to the task's scheduling state, otherwise we can
 | 
						|
	 * race with CPU migration.
 | 
						|
	 */
 | 
						|
	rq = this_rq_lock_irq(&rf);
 | 
						|
 | 
						|
	current->in_memstall = 1;
 | 
						|
	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
 | 
						|
 | 
						|
	rq_unlock_irq(rq, &rf);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(psi_memstall_enter);
 | 
						|
 | 
						|
/**
 | 
						|
 * psi_memstall_leave - mark the end of an memory stall section
 | 
						|
 * @flags: flags to handle nested memdelay sections
 | 
						|
 *
 | 
						|
 * Marks the calling task as no longer stalled due to lack of memory.
 | 
						|
 */
 | 
						|
void psi_memstall_leave(unsigned long *flags)
 | 
						|
{
 | 
						|
	struct rq_flags rf;
 | 
						|
	struct rq *rq;
 | 
						|
 | 
						|
	if (static_branch_likely(&psi_disabled))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (*flags)
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * in_memstall clearing & accounting needs to be atomic wrt
 | 
						|
	 * changes to the task's scheduling state, otherwise we could
 | 
						|
	 * race with CPU migration.
 | 
						|
	 */
 | 
						|
	rq = this_rq_lock_irq(&rf);
 | 
						|
 | 
						|
	current->in_memstall = 0;
 | 
						|
	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
 | 
						|
 | 
						|
	rq_unlock_irq(rq, &rf);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(psi_memstall_leave);
 | 
						|
 | 
						|
#ifdef CONFIG_CGROUPS
 | 
						|
int psi_cgroup_alloc(struct cgroup *cgroup)
 | 
						|
{
 | 
						|
	if (!static_branch_likely(&psi_cgroups_enabled))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
 | 
						|
	if (!cgroup->psi)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
 | 
						|
	if (!cgroup->psi->pcpu) {
 | 
						|
		kfree(cgroup->psi);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
	group_init(cgroup->psi);
 | 
						|
	cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void psi_cgroup_free(struct cgroup *cgroup)
 | 
						|
{
 | 
						|
	if (!static_branch_likely(&psi_cgroups_enabled))
 | 
						|
		return;
 | 
						|
 | 
						|
	cancel_delayed_work_sync(&cgroup->psi->avgs_work);
 | 
						|
	free_percpu(cgroup->psi->pcpu);
 | 
						|
	/* All triggers must be removed by now */
 | 
						|
	WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
 | 
						|
	kfree(cgroup->psi);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * cgroup_move_task - move task to a different cgroup
 | 
						|
 * @task: the task
 | 
						|
 * @to: the target css_set
 | 
						|
 *
 | 
						|
 * Move task to a new cgroup and safely migrate its associated stall
 | 
						|
 * state between the different groups.
 | 
						|
 *
 | 
						|
 * This function acquires the task's rq lock to lock out concurrent
 | 
						|
 * changes to the task's scheduling state and - in case the task is
 | 
						|
 * running - concurrent changes to its stall state.
 | 
						|
 */
 | 
						|
void cgroup_move_task(struct task_struct *task, struct css_set *to)
 | 
						|
{
 | 
						|
	unsigned int task_flags;
 | 
						|
	struct rq_flags rf;
 | 
						|
	struct rq *rq;
 | 
						|
 | 
						|
	if (!static_branch_likely(&psi_cgroups_enabled)) {
 | 
						|
		/*
 | 
						|
		 * Lame to do this here, but the scheduler cannot be locked
 | 
						|
		 * from the outside, so we move cgroups from inside sched/.
 | 
						|
		 */
 | 
						|
		rcu_assign_pointer(task->cgroups, to);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	rq = task_rq_lock(task, &rf);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We may race with schedule() dropping the rq lock between
 | 
						|
	 * deactivating prev and switching to next. Because the psi
 | 
						|
	 * updates from the deactivation are deferred to the switch
 | 
						|
	 * callback to save cgroup tree updates, the task's scheduling
 | 
						|
	 * state here is not coherent with its psi state:
 | 
						|
	 *
 | 
						|
	 * schedule()                   cgroup_move_task()
 | 
						|
	 *   rq_lock()
 | 
						|
	 *   deactivate_task()
 | 
						|
	 *     p->on_rq = 0
 | 
						|
	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
 | 
						|
	 *   pick_next_task()
 | 
						|
	 *     rq_unlock()
 | 
						|
	 *                                rq_lock()
 | 
						|
	 *                                psi_task_change() // old cgroup
 | 
						|
	 *                                task->cgroups = to
 | 
						|
	 *                                psi_task_change() // new cgroup
 | 
						|
	 *                                rq_unlock()
 | 
						|
	 *     rq_lock()
 | 
						|
	 *   psi_sched_switch() // does deferred updates in new cgroup
 | 
						|
	 *
 | 
						|
	 * Don't rely on the scheduling state. Use psi_flags instead.
 | 
						|
	 */
 | 
						|
	task_flags = task->psi_flags;
 | 
						|
 | 
						|
	if (task_flags)
 | 
						|
		psi_task_change(task, task_flags, 0);
 | 
						|
 | 
						|
	/* See comment above */
 | 
						|
	rcu_assign_pointer(task->cgroups, to);
 | 
						|
 | 
						|
	if (task_flags)
 | 
						|
		psi_task_change(task, 0, task_flags);
 | 
						|
 | 
						|
	task_rq_unlock(rq, task, &rf);
 | 
						|
}
 | 
						|
 | 
						|
void psi_cgroup_restart(struct psi_group *group)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * After we disable psi_group->enabled, we don't actually
 | 
						|
	 * stop percpu tasks accounting in each psi_group_cpu,
 | 
						|
	 * instead only stop test_states() loop, record_times()
 | 
						|
	 * and averaging worker, see psi_group_change() for details.
 | 
						|
	 *
 | 
						|
	 * When disable cgroup PSI, this function has nothing to sync
 | 
						|
	 * since cgroup pressure files are hidden and percpu psi_group_cpu
 | 
						|
	 * would see !psi_group->enabled and only do task accounting.
 | 
						|
	 *
 | 
						|
	 * When re-enable cgroup PSI, this function use psi_group_change()
 | 
						|
	 * to get correct state mask from test_states() loop on tasks[],
 | 
						|
	 * and restart groupc->state_start from now, use .clear = .set = 0
 | 
						|
	 * here since no task status really changed.
 | 
						|
	 */
 | 
						|
	if (!group->enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct rq *rq = cpu_rq(cpu);
 | 
						|
		struct rq_flags rf;
 | 
						|
 | 
						|
		rq_lock_irq(rq, &rf);
 | 
						|
		psi_group_change(group, cpu, 0, 0, true);
 | 
						|
		rq_unlock_irq(rq, &rf);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* CONFIG_CGROUPS */
 | 
						|
 | 
						|
int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
 | 
						|
{
 | 
						|
	bool only_full = false;
 | 
						|
	int full;
 | 
						|
	u64 now;
 | 
						|
 | 
						|
	if (static_branch_likely(&psi_disabled))
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | 
						|
	if (!irqtime_enabled() && res == PSI_IRQ)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Update averages before reporting them */
 | 
						|
	mutex_lock(&group->avgs_lock);
 | 
						|
	now = sched_clock();
 | 
						|
	collect_percpu_times(group, PSI_AVGS, NULL);
 | 
						|
	if (now >= group->avg_next_update)
 | 
						|
		group->avg_next_update = update_averages(group, now);
 | 
						|
	mutex_unlock(&group->avgs_lock);
 | 
						|
 | 
						|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | 
						|
	only_full = res == PSI_IRQ;
 | 
						|
#endif
 | 
						|
 | 
						|
	for (full = 0; full < 2 - only_full; full++) {
 | 
						|
		unsigned long avg[3] = { 0, };
 | 
						|
		u64 total = 0;
 | 
						|
		int w;
 | 
						|
 | 
						|
		/* CPU FULL is undefined at the system level */
 | 
						|
		if (!(group == &psi_system && res == PSI_CPU && full)) {
 | 
						|
			for (w = 0; w < 3; w++)
 | 
						|
				avg[w] = group->avg[res * 2 + full][w];
 | 
						|
			total = div_u64(group->total[PSI_AVGS][res * 2 + full],
 | 
						|
					NSEC_PER_USEC);
 | 
						|
		}
 | 
						|
 | 
						|
		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
 | 
						|
			   full || only_full ? "full" : "some",
 | 
						|
			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
 | 
						|
			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
 | 
						|
			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
 | 
						|
			   total);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
 | 
						|
				       enum psi_res res, struct file *file,
 | 
						|
				       struct kernfs_open_file *of)
 | 
						|
{
 | 
						|
	struct psi_trigger *t;
 | 
						|
	enum psi_states state;
 | 
						|
	u32 threshold_us;
 | 
						|
	bool privileged;
 | 
						|
	u32 window_us;
 | 
						|
 | 
						|
	if (static_branch_likely(&psi_disabled))
 | 
						|
		return ERR_PTR(-EOPNOTSUPP);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Checking the privilege here on file->f_cred implies that a privileged user
 | 
						|
	 * could open the file and delegate the write to an unprivileged one.
 | 
						|
	 */
 | 
						|
	privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
 | 
						|
 | 
						|
	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
 | 
						|
		state = PSI_IO_SOME + res * 2;
 | 
						|
	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
 | 
						|
		state = PSI_IO_FULL + res * 2;
 | 
						|
	else
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | 
						|
	if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
#endif
 | 
						|
 | 
						|
	if (state >= PSI_NONIDLE)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	if (window_us == 0 || window_us > WINDOW_MAX_US)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unprivileged users can only use 2s windows so that averages aggregation
 | 
						|
	 * work is used, and no RT threads need to be spawned.
 | 
						|
	 */
 | 
						|
	if (!privileged && window_us % 2000000)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	/* Check threshold */
 | 
						|
	if (threshold_us == 0 || threshold_us > window_us)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	t = kmalloc(sizeof(*t), GFP_KERNEL);
 | 
						|
	if (!t)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	t->group = group;
 | 
						|
	t->state = state;
 | 
						|
	t->threshold = threshold_us * NSEC_PER_USEC;
 | 
						|
	t->win.size = window_us * NSEC_PER_USEC;
 | 
						|
	window_reset(&t->win, sched_clock(),
 | 
						|
			group->total[PSI_POLL][t->state], 0);
 | 
						|
 | 
						|
	t->event = 0;
 | 
						|
	t->last_event_time = 0;
 | 
						|
	t->of = of;
 | 
						|
	if (!of)
 | 
						|
		init_waitqueue_head(&t->event_wait);
 | 
						|
	t->pending_event = false;
 | 
						|
	t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
 | 
						|
 | 
						|
	if (privileged) {
 | 
						|
		mutex_lock(&group->rtpoll_trigger_lock);
 | 
						|
 | 
						|
		if (!rcu_access_pointer(group->rtpoll_task)) {
 | 
						|
			struct task_struct *task;
 | 
						|
 | 
						|
			task = kthread_create(psi_rtpoll_worker, group, "psimon");
 | 
						|
			if (IS_ERR(task)) {
 | 
						|
				kfree(t);
 | 
						|
				mutex_unlock(&group->rtpoll_trigger_lock);
 | 
						|
				return ERR_CAST(task);
 | 
						|
			}
 | 
						|
			atomic_set(&group->rtpoll_wakeup, 0);
 | 
						|
			wake_up_process(task);
 | 
						|
			rcu_assign_pointer(group->rtpoll_task, task);
 | 
						|
		}
 | 
						|
 | 
						|
		list_add(&t->node, &group->rtpoll_triggers);
 | 
						|
		group->rtpoll_min_period = min(group->rtpoll_min_period,
 | 
						|
			div_u64(t->win.size, UPDATES_PER_WINDOW));
 | 
						|
		group->rtpoll_nr_triggers[t->state]++;
 | 
						|
		group->rtpoll_states |= (1 << t->state);
 | 
						|
 | 
						|
		mutex_unlock(&group->rtpoll_trigger_lock);
 | 
						|
	} else {
 | 
						|
		mutex_lock(&group->avgs_lock);
 | 
						|
 | 
						|
		list_add(&t->node, &group->avg_triggers);
 | 
						|
		group->avg_nr_triggers[t->state]++;
 | 
						|
 | 
						|
		mutex_unlock(&group->avgs_lock);
 | 
						|
	}
 | 
						|
	return t;
 | 
						|
}
 | 
						|
 | 
						|
void psi_trigger_destroy(struct psi_trigger *t)
 | 
						|
{
 | 
						|
	struct psi_group *group;
 | 
						|
	struct task_struct *task_to_destroy = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We do not check psi_disabled since it might have been disabled after
 | 
						|
	 * the trigger got created.
 | 
						|
	 */
 | 
						|
	if (!t)
 | 
						|
		return;
 | 
						|
 | 
						|
	group = t->group;
 | 
						|
	/*
 | 
						|
	 * Wakeup waiters to stop polling and clear the queue to prevent it from
 | 
						|
	 * being accessed later. Can happen if cgroup is deleted from under a
 | 
						|
	 * polling process.
 | 
						|
	 */
 | 
						|
	if (t->of)
 | 
						|
		kernfs_notify(t->of->kn);
 | 
						|
	else
 | 
						|
		wake_up_interruptible(&t->event_wait);
 | 
						|
 | 
						|
	if (t->aggregator == PSI_AVGS) {
 | 
						|
		mutex_lock(&group->avgs_lock);
 | 
						|
		if (!list_empty(&t->node)) {
 | 
						|
			list_del(&t->node);
 | 
						|
			group->avg_nr_triggers[t->state]--;
 | 
						|
		}
 | 
						|
		mutex_unlock(&group->avgs_lock);
 | 
						|
	} else {
 | 
						|
		mutex_lock(&group->rtpoll_trigger_lock);
 | 
						|
		if (!list_empty(&t->node)) {
 | 
						|
			struct psi_trigger *tmp;
 | 
						|
			u64 period = ULLONG_MAX;
 | 
						|
 | 
						|
			list_del(&t->node);
 | 
						|
			group->rtpoll_nr_triggers[t->state]--;
 | 
						|
			if (!group->rtpoll_nr_triggers[t->state])
 | 
						|
				group->rtpoll_states &= ~(1 << t->state);
 | 
						|
			/*
 | 
						|
			 * Reset min update period for the remaining triggers
 | 
						|
			 * iff the destroying trigger had the min window size.
 | 
						|
			 */
 | 
						|
			if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
 | 
						|
				list_for_each_entry(tmp, &group->rtpoll_triggers, node)
 | 
						|
					period = min(period, div_u64(tmp->win.size,
 | 
						|
							UPDATES_PER_WINDOW));
 | 
						|
				group->rtpoll_min_period = period;
 | 
						|
			}
 | 
						|
			/* Destroy rtpoll_task when the last trigger is destroyed */
 | 
						|
			if (group->rtpoll_states == 0) {
 | 
						|
				group->rtpoll_until = 0;
 | 
						|
				task_to_destroy = rcu_dereference_protected(
 | 
						|
						group->rtpoll_task,
 | 
						|
						lockdep_is_held(&group->rtpoll_trigger_lock));
 | 
						|
				rcu_assign_pointer(group->rtpoll_task, NULL);
 | 
						|
				del_timer(&group->rtpoll_timer);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		mutex_unlock(&group->rtpoll_trigger_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
 | 
						|
	 * critical section before destroying the trigger and optionally the
 | 
						|
	 * rtpoll_task.
 | 
						|
	 */
 | 
						|
	synchronize_rcu();
 | 
						|
	/*
 | 
						|
	 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
 | 
						|
	 * a deadlock while waiting for psi_rtpoll_work to acquire
 | 
						|
	 * rtpoll_trigger_lock
 | 
						|
	 */
 | 
						|
	if (task_to_destroy) {
 | 
						|
		/*
 | 
						|
		 * After the RCU grace period has expired, the worker
 | 
						|
		 * can no longer be found through group->rtpoll_task.
 | 
						|
		 */
 | 
						|
		kthread_stop(task_to_destroy);
 | 
						|
		atomic_set(&group->rtpoll_scheduled, 0);
 | 
						|
	}
 | 
						|
	kfree(t);
 | 
						|
}
 | 
						|
 | 
						|
__poll_t psi_trigger_poll(void **trigger_ptr,
 | 
						|
				struct file *file, poll_table *wait)
 | 
						|
{
 | 
						|
	__poll_t ret = DEFAULT_POLLMASK;
 | 
						|
	struct psi_trigger *t;
 | 
						|
 | 
						|
	if (static_branch_likely(&psi_disabled))
 | 
						|
		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
 | 
						|
 | 
						|
	t = smp_load_acquire(trigger_ptr);
 | 
						|
	if (!t)
 | 
						|
		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
 | 
						|
 | 
						|
	if (t->of)
 | 
						|
		kernfs_generic_poll(t->of, wait);
 | 
						|
	else
 | 
						|
		poll_wait(file, &t->event_wait, wait);
 | 
						|
 | 
						|
	if (cmpxchg(&t->event, 1, 0) == 1)
 | 
						|
		ret |= EPOLLPRI;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PROC_FS
 | 
						|
static int psi_io_show(struct seq_file *m, void *v)
 | 
						|
{
 | 
						|
	return psi_show(m, &psi_system, PSI_IO);
 | 
						|
}
 | 
						|
 | 
						|
static int psi_memory_show(struct seq_file *m, void *v)
 | 
						|
{
 | 
						|
	return psi_show(m, &psi_system, PSI_MEM);
 | 
						|
}
 | 
						|
 | 
						|
static int psi_cpu_show(struct seq_file *m, void *v)
 | 
						|
{
 | 
						|
	return psi_show(m, &psi_system, PSI_CPU);
 | 
						|
}
 | 
						|
 | 
						|
static int psi_io_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	return single_open(file, psi_io_show, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int psi_memory_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	return single_open(file, psi_memory_show, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int psi_cpu_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	return single_open(file, psi_cpu_show, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t psi_write(struct file *file, const char __user *user_buf,
 | 
						|
			 size_t nbytes, enum psi_res res)
 | 
						|
{
 | 
						|
	char buf[32];
 | 
						|
	size_t buf_size;
 | 
						|
	struct seq_file *seq;
 | 
						|
	struct psi_trigger *new;
 | 
						|
 | 
						|
	if (static_branch_likely(&psi_disabled))
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	if (!nbytes)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	buf_size = min(nbytes, sizeof(buf));
 | 
						|
	if (copy_from_user(buf, user_buf, buf_size))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	buf[buf_size - 1] = '\0';
 | 
						|
 | 
						|
	seq = file->private_data;
 | 
						|
 | 
						|
	/* Take seq->lock to protect seq->private from concurrent writes */
 | 
						|
	mutex_lock(&seq->lock);
 | 
						|
 | 
						|
	/* Allow only one trigger per file descriptor */
 | 
						|
	if (seq->private) {
 | 
						|
		mutex_unlock(&seq->lock);
 | 
						|
		return -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
	new = psi_trigger_create(&psi_system, buf, res, file, NULL);
 | 
						|
	if (IS_ERR(new)) {
 | 
						|
		mutex_unlock(&seq->lock);
 | 
						|
		return PTR_ERR(new);
 | 
						|
	}
 | 
						|
 | 
						|
	smp_store_release(&seq->private, new);
 | 
						|
	mutex_unlock(&seq->lock);
 | 
						|
 | 
						|
	return nbytes;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
 | 
						|
			    size_t nbytes, loff_t *ppos)
 | 
						|
{
 | 
						|
	return psi_write(file, user_buf, nbytes, PSI_IO);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
 | 
						|
				size_t nbytes, loff_t *ppos)
 | 
						|
{
 | 
						|
	return psi_write(file, user_buf, nbytes, PSI_MEM);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
 | 
						|
			     size_t nbytes, loff_t *ppos)
 | 
						|
{
 | 
						|
	return psi_write(file, user_buf, nbytes, PSI_CPU);
 | 
						|
}
 | 
						|
 | 
						|
static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
 | 
						|
{
 | 
						|
	struct seq_file *seq = file->private_data;
 | 
						|
 | 
						|
	return psi_trigger_poll(&seq->private, file, wait);
 | 
						|
}
 | 
						|
 | 
						|
static int psi_fop_release(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	struct seq_file *seq = file->private_data;
 | 
						|
 | 
						|
	psi_trigger_destroy(seq->private);
 | 
						|
	return single_release(inode, file);
 | 
						|
}
 | 
						|
 | 
						|
static const struct proc_ops psi_io_proc_ops = {
 | 
						|
	.proc_open	= psi_io_open,
 | 
						|
	.proc_read	= seq_read,
 | 
						|
	.proc_lseek	= seq_lseek,
 | 
						|
	.proc_write	= psi_io_write,
 | 
						|
	.proc_poll	= psi_fop_poll,
 | 
						|
	.proc_release	= psi_fop_release,
 | 
						|
};
 | 
						|
 | 
						|
static const struct proc_ops psi_memory_proc_ops = {
 | 
						|
	.proc_open	= psi_memory_open,
 | 
						|
	.proc_read	= seq_read,
 | 
						|
	.proc_lseek	= seq_lseek,
 | 
						|
	.proc_write	= psi_memory_write,
 | 
						|
	.proc_poll	= psi_fop_poll,
 | 
						|
	.proc_release	= psi_fop_release,
 | 
						|
};
 | 
						|
 | 
						|
static const struct proc_ops psi_cpu_proc_ops = {
 | 
						|
	.proc_open	= psi_cpu_open,
 | 
						|
	.proc_read	= seq_read,
 | 
						|
	.proc_lseek	= seq_lseek,
 | 
						|
	.proc_write	= psi_cpu_write,
 | 
						|
	.proc_poll	= psi_fop_poll,
 | 
						|
	.proc_release	= psi_fop_release,
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | 
						|
static int psi_irq_show(struct seq_file *m, void *v)
 | 
						|
{
 | 
						|
	return psi_show(m, &psi_system, PSI_IRQ);
 | 
						|
}
 | 
						|
 | 
						|
static int psi_irq_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	return single_open(file, psi_irq_show, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
 | 
						|
			     size_t nbytes, loff_t *ppos)
 | 
						|
{
 | 
						|
	return psi_write(file, user_buf, nbytes, PSI_IRQ);
 | 
						|
}
 | 
						|
 | 
						|
static const struct proc_ops psi_irq_proc_ops = {
 | 
						|
	.proc_open	= psi_irq_open,
 | 
						|
	.proc_read	= seq_read,
 | 
						|
	.proc_lseek	= seq_lseek,
 | 
						|
	.proc_write	= psi_irq_write,
 | 
						|
	.proc_poll	= psi_fop_poll,
 | 
						|
	.proc_release	= psi_fop_release,
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
static int __init psi_proc_init(void)
 | 
						|
{
 | 
						|
	if (psi_enable) {
 | 
						|
		proc_mkdir("pressure", NULL);
 | 
						|
		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
 | 
						|
		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
 | 
						|
		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
 | 
						|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | 
						|
		proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
module_init(psi_proc_init);
 | 
						|
 | 
						|
#endif /* CONFIG_PROC_FS */
 |