mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Since base and new_base are of the same type now, we can save one 'if' branch and simplify the code a bit. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			1557 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1557 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/kernel/timer.c
 | 
						|
 *
 | 
						|
 *  Kernel internal timers, kernel timekeeping, basic process system calls
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1991, 1992  Linus Torvalds
 | 
						|
 *
 | 
						|
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 | 
						|
 *
 | 
						|
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 | 
						|
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 | 
						|
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 | 
						|
 *              serialize accesses to xtime/lost_ticks).
 | 
						|
 *                              Copyright (C) 1998  Andrea Arcangeli
 | 
						|
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 | 
						|
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 | 
						|
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 | 
						|
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 | 
						|
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/thread_info.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/jiffies.h>
 | 
						|
#include <linux/posix-timers.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/unistd.h>
 | 
						|
#include <asm/div64.h>
 | 
						|
#include <asm/timex.h>
 | 
						|
#include <asm/io.h>
 | 
						|
 | 
						|
#ifdef CONFIG_TIME_INTERPOLATION
 | 
						|
static void time_interpolator_update(long delta_nsec);
 | 
						|
#else
 | 
						|
#define time_interpolator_update(x)
 | 
						|
#endif
 | 
						|
 | 
						|
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
 | 
						|
 | 
						|
EXPORT_SYMBOL(jiffies_64);
 | 
						|
 | 
						|
/*
 | 
						|
 * per-CPU timer vector definitions:
 | 
						|
 */
 | 
						|
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
 | 
						|
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
 | 
						|
#define TVN_SIZE (1 << TVN_BITS)
 | 
						|
#define TVR_SIZE (1 << TVR_BITS)
 | 
						|
#define TVN_MASK (TVN_SIZE - 1)
 | 
						|
#define TVR_MASK (TVR_SIZE - 1)
 | 
						|
 | 
						|
typedef struct tvec_s {
 | 
						|
	struct list_head vec[TVN_SIZE];
 | 
						|
} tvec_t;
 | 
						|
 | 
						|
typedef struct tvec_root_s {
 | 
						|
	struct list_head vec[TVR_SIZE];
 | 
						|
} tvec_root_t;
 | 
						|
 | 
						|
struct tvec_t_base_s {
 | 
						|
	spinlock_t lock;
 | 
						|
	struct timer_list *running_timer;
 | 
						|
	unsigned long timer_jiffies;
 | 
						|
	tvec_root_t tv1;
 | 
						|
	tvec_t tv2;
 | 
						|
	tvec_t tv3;
 | 
						|
	tvec_t tv4;
 | 
						|
	tvec_t tv5;
 | 
						|
} ____cacheline_aligned_in_smp;
 | 
						|
 | 
						|
typedef struct tvec_t_base_s tvec_base_t;
 | 
						|
static DEFINE_PER_CPU(tvec_base_t *, tvec_bases);
 | 
						|
tvec_base_t boot_tvec_bases;
 | 
						|
EXPORT_SYMBOL(boot_tvec_bases);
 | 
						|
 | 
						|
static inline void set_running_timer(tvec_base_t *base,
 | 
						|
					struct timer_list *timer)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	base->running_timer = timer;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
 | 
						|
{
 | 
						|
	unsigned long expires = timer->expires;
 | 
						|
	unsigned long idx = expires - base->timer_jiffies;
 | 
						|
	struct list_head *vec;
 | 
						|
 | 
						|
	if (idx < TVR_SIZE) {
 | 
						|
		int i = expires & TVR_MASK;
 | 
						|
		vec = base->tv1.vec + i;
 | 
						|
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
 | 
						|
		int i = (expires >> TVR_BITS) & TVN_MASK;
 | 
						|
		vec = base->tv2.vec + i;
 | 
						|
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
 | 
						|
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
 | 
						|
		vec = base->tv3.vec + i;
 | 
						|
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
 | 
						|
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
 | 
						|
		vec = base->tv4.vec + i;
 | 
						|
	} else if ((signed long) idx < 0) {
 | 
						|
		/*
 | 
						|
		 * Can happen if you add a timer with expires == jiffies,
 | 
						|
		 * or you set a timer to go off in the past
 | 
						|
		 */
 | 
						|
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
 | 
						|
	} else {
 | 
						|
		int i;
 | 
						|
		/* If the timeout is larger than 0xffffffff on 64-bit
 | 
						|
		 * architectures then we use the maximum timeout:
 | 
						|
		 */
 | 
						|
		if (idx > 0xffffffffUL) {
 | 
						|
			idx = 0xffffffffUL;
 | 
						|
			expires = idx + base->timer_jiffies;
 | 
						|
		}
 | 
						|
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
 | 
						|
		vec = base->tv5.vec + i;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Timers are FIFO:
 | 
						|
	 */
 | 
						|
	list_add_tail(&timer->entry, vec);
 | 
						|
}
 | 
						|
 | 
						|
/***
 | 
						|
 * init_timer - initialize a timer.
 | 
						|
 * @timer: the timer to be initialized
 | 
						|
 *
 | 
						|
 * init_timer() must be done to a timer prior calling *any* of the
 | 
						|
 * other timer functions.
 | 
						|
 */
 | 
						|
void fastcall init_timer(struct timer_list *timer)
 | 
						|
{
 | 
						|
	timer->entry.next = NULL;
 | 
						|
	timer->base = per_cpu(tvec_bases, raw_smp_processor_id());
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(init_timer);
 | 
						|
 | 
						|
static inline void detach_timer(struct timer_list *timer,
 | 
						|
					int clear_pending)
 | 
						|
{
 | 
						|
	struct list_head *entry = &timer->entry;
 | 
						|
 | 
						|
	__list_del(entry->prev, entry->next);
 | 
						|
	if (clear_pending)
 | 
						|
		entry->next = NULL;
 | 
						|
	entry->prev = LIST_POISON2;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
 | 
						|
 * means that all timers which are tied to this base via timer->base are
 | 
						|
 * locked, and the base itself is locked too.
 | 
						|
 *
 | 
						|
 * So __run_timers/migrate_timers can safely modify all timers which could
 | 
						|
 * be found on ->tvX lists.
 | 
						|
 *
 | 
						|
 * When the timer's base is locked, and the timer removed from list, it is
 | 
						|
 * possible to set timer->base = NULL and drop the lock: the timer remains
 | 
						|
 * locked.
 | 
						|
 */
 | 
						|
static tvec_base_t *lock_timer_base(struct timer_list *timer,
 | 
						|
					unsigned long *flags)
 | 
						|
{
 | 
						|
	tvec_base_t *base;
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		base = timer->base;
 | 
						|
		if (likely(base != NULL)) {
 | 
						|
			spin_lock_irqsave(&base->lock, *flags);
 | 
						|
			if (likely(base == timer->base))
 | 
						|
				return base;
 | 
						|
			/* The timer has migrated to another CPU */
 | 
						|
			spin_unlock_irqrestore(&base->lock, *flags);
 | 
						|
		}
 | 
						|
		cpu_relax();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int __mod_timer(struct timer_list *timer, unsigned long expires)
 | 
						|
{
 | 
						|
	tvec_base_t *base, *new_base;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	BUG_ON(!timer->function);
 | 
						|
 | 
						|
	base = lock_timer_base(timer, &flags);
 | 
						|
 | 
						|
	if (timer_pending(timer)) {
 | 
						|
		detach_timer(timer, 0);
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	new_base = __get_cpu_var(tvec_bases);
 | 
						|
 | 
						|
	if (base != new_base) {
 | 
						|
		/*
 | 
						|
		 * We are trying to schedule the timer on the local CPU.
 | 
						|
		 * However we can't change timer's base while it is running,
 | 
						|
		 * otherwise del_timer_sync() can't detect that the timer's
 | 
						|
		 * handler yet has not finished. This also guarantees that
 | 
						|
		 * the timer is serialized wrt itself.
 | 
						|
		 */
 | 
						|
		if (likely(base->running_timer != timer)) {
 | 
						|
			/* See the comment in lock_timer_base() */
 | 
						|
			timer->base = NULL;
 | 
						|
			spin_unlock(&base->lock);
 | 
						|
			base = new_base;
 | 
						|
			spin_lock(&base->lock);
 | 
						|
			timer->base = base;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	timer->expires = expires;
 | 
						|
	internal_add_timer(base, timer);
 | 
						|
	spin_unlock_irqrestore(&base->lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(__mod_timer);
 | 
						|
 | 
						|
/***
 | 
						|
 * add_timer_on - start a timer on a particular CPU
 | 
						|
 * @timer: the timer to be added
 | 
						|
 * @cpu: the CPU to start it on
 | 
						|
 *
 | 
						|
 * This is not very scalable on SMP. Double adds are not possible.
 | 
						|
 */
 | 
						|
void add_timer_on(struct timer_list *timer, int cpu)
 | 
						|
{
 | 
						|
	tvec_base_t *base = per_cpu(tvec_bases, cpu);
 | 
						|
  	unsigned long flags;
 | 
						|
 | 
						|
  	BUG_ON(timer_pending(timer) || !timer->function);
 | 
						|
	spin_lock_irqsave(&base->lock, flags);
 | 
						|
	timer->base = base;
 | 
						|
	internal_add_timer(base, timer);
 | 
						|
	spin_unlock_irqrestore(&base->lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/***
 | 
						|
 * mod_timer - modify a timer's timeout
 | 
						|
 * @timer: the timer to be modified
 | 
						|
 *
 | 
						|
 * mod_timer is a more efficient way to update the expire field of an
 | 
						|
 * active timer (if the timer is inactive it will be activated)
 | 
						|
 *
 | 
						|
 * mod_timer(timer, expires) is equivalent to:
 | 
						|
 *
 | 
						|
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 | 
						|
 *
 | 
						|
 * Note that if there are multiple unserialized concurrent users of the
 | 
						|
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 | 
						|
 * since add_timer() cannot modify an already running timer.
 | 
						|
 *
 | 
						|
 * The function returns whether it has modified a pending timer or not.
 | 
						|
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 | 
						|
 * active timer returns 1.)
 | 
						|
 */
 | 
						|
int mod_timer(struct timer_list *timer, unsigned long expires)
 | 
						|
{
 | 
						|
	BUG_ON(!timer->function);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is a common optimization triggered by the
 | 
						|
	 * networking code - if the timer is re-modified
 | 
						|
	 * to be the same thing then just return:
 | 
						|
	 */
 | 
						|
	if (timer->expires == expires && timer_pending(timer))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return __mod_timer(timer, expires);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(mod_timer);
 | 
						|
 | 
						|
/***
 | 
						|
 * del_timer - deactive a timer.
 | 
						|
 * @timer: the timer to be deactivated
 | 
						|
 *
 | 
						|
 * del_timer() deactivates a timer - this works on both active and inactive
 | 
						|
 * timers.
 | 
						|
 *
 | 
						|
 * The function returns whether it has deactivated a pending timer or not.
 | 
						|
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 | 
						|
 * active timer returns 1.)
 | 
						|
 */
 | 
						|
int del_timer(struct timer_list *timer)
 | 
						|
{
 | 
						|
	tvec_base_t *base;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (timer_pending(timer)) {
 | 
						|
		base = lock_timer_base(timer, &flags);
 | 
						|
		if (timer_pending(timer)) {
 | 
						|
			detach_timer(timer, 1);
 | 
						|
			ret = 1;
 | 
						|
		}
 | 
						|
		spin_unlock_irqrestore(&base->lock, flags);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(del_timer);
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
/*
 | 
						|
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 | 
						|
 * exit the timer is not queued and the handler is not running on any CPU.
 | 
						|
 *
 | 
						|
 * It must not be called from interrupt contexts.
 | 
						|
 */
 | 
						|
int try_to_del_timer_sync(struct timer_list *timer)
 | 
						|
{
 | 
						|
	tvec_base_t *base;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = -1;
 | 
						|
 | 
						|
	base = lock_timer_base(timer, &flags);
 | 
						|
 | 
						|
	if (base->running_timer == timer)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	if (timer_pending(timer)) {
 | 
						|
		detach_timer(timer, 1);
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	spin_unlock_irqrestore(&base->lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/***
 | 
						|
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 | 
						|
 * @timer: the timer to be deactivated
 | 
						|
 *
 | 
						|
 * This function only differs from del_timer() on SMP: besides deactivating
 | 
						|
 * the timer it also makes sure the handler has finished executing on other
 | 
						|
 * CPUs.
 | 
						|
 *
 | 
						|
 * Synchronization rules: callers must prevent restarting of the timer,
 | 
						|
 * otherwise this function is meaningless. It must not be called from
 | 
						|
 * interrupt contexts. The caller must not hold locks which would prevent
 | 
						|
 * completion of the timer's handler. The timer's handler must not call
 | 
						|
 * add_timer_on(). Upon exit the timer is not queued and the handler is
 | 
						|
 * not running on any CPU.
 | 
						|
 *
 | 
						|
 * The function returns whether it has deactivated a pending timer or not.
 | 
						|
 */
 | 
						|
int del_timer_sync(struct timer_list *timer)
 | 
						|
{
 | 
						|
	for (;;) {
 | 
						|
		int ret = try_to_del_timer_sync(timer);
 | 
						|
		if (ret >= 0)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(del_timer_sync);
 | 
						|
#endif
 | 
						|
 | 
						|
static int cascade(tvec_base_t *base, tvec_t *tv, int index)
 | 
						|
{
 | 
						|
	/* cascade all the timers from tv up one level */
 | 
						|
	struct list_head *head, *curr;
 | 
						|
 | 
						|
	head = tv->vec + index;
 | 
						|
	curr = head->next;
 | 
						|
	/*
 | 
						|
	 * We are removing _all_ timers from the list, so we don't  have to
 | 
						|
	 * detach them individually, just clear the list afterwards.
 | 
						|
	 */
 | 
						|
	while (curr != head) {
 | 
						|
		struct timer_list *tmp;
 | 
						|
 | 
						|
		tmp = list_entry(curr, struct timer_list, entry);
 | 
						|
		BUG_ON(tmp->base != base);
 | 
						|
		curr = curr->next;
 | 
						|
		internal_add_timer(base, tmp);
 | 
						|
	}
 | 
						|
	INIT_LIST_HEAD(head);
 | 
						|
 | 
						|
	return index;
 | 
						|
}
 | 
						|
 | 
						|
/***
 | 
						|
 * __run_timers - run all expired timers (if any) on this CPU.
 | 
						|
 * @base: the timer vector to be processed.
 | 
						|
 *
 | 
						|
 * This function cascades all vectors and executes all expired timer
 | 
						|
 * vectors.
 | 
						|
 */
 | 
						|
#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
 | 
						|
 | 
						|
static inline void __run_timers(tvec_base_t *base)
 | 
						|
{
 | 
						|
	struct timer_list *timer;
 | 
						|
 | 
						|
	spin_lock_irq(&base->lock);
 | 
						|
	while (time_after_eq(jiffies, base->timer_jiffies)) {
 | 
						|
		struct list_head work_list = LIST_HEAD_INIT(work_list);
 | 
						|
		struct list_head *head = &work_list;
 | 
						|
 		int index = base->timer_jiffies & TVR_MASK;
 | 
						|
 
 | 
						|
		/*
 | 
						|
		 * Cascade timers:
 | 
						|
		 */
 | 
						|
		if (!index &&
 | 
						|
			(!cascade(base, &base->tv2, INDEX(0))) &&
 | 
						|
				(!cascade(base, &base->tv3, INDEX(1))) &&
 | 
						|
					!cascade(base, &base->tv4, INDEX(2)))
 | 
						|
			cascade(base, &base->tv5, INDEX(3));
 | 
						|
		++base->timer_jiffies; 
 | 
						|
		list_splice_init(base->tv1.vec + index, &work_list);
 | 
						|
		while (!list_empty(head)) {
 | 
						|
			void (*fn)(unsigned long);
 | 
						|
			unsigned long data;
 | 
						|
 | 
						|
			timer = list_entry(head->next,struct timer_list,entry);
 | 
						|
 			fn = timer->function;
 | 
						|
 			data = timer->data;
 | 
						|
 | 
						|
			set_running_timer(base, timer);
 | 
						|
			detach_timer(timer, 1);
 | 
						|
			spin_unlock_irq(&base->lock);
 | 
						|
			{
 | 
						|
				int preempt_count = preempt_count();
 | 
						|
				fn(data);
 | 
						|
				if (preempt_count != preempt_count()) {
 | 
						|
					printk(KERN_WARNING "huh, entered %p "
 | 
						|
					       "with preempt_count %08x, exited"
 | 
						|
					       " with %08x?\n",
 | 
						|
					       fn, preempt_count,
 | 
						|
					       preempt_count());
 | 
						|
					BUG();
 | 
						|
				}
 | 
						|
			}
 | 
						|
			spin_lock_irq(&base->lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	set_running_timer(base, NULL);
 | 
						|
	spin_unlock_irq(&base->lock);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NO_IDLE_HZ
 | 
						|
/*
 | 
						|
 * Find out when the next timer event is due to happen. This
 | 
						|
 * is used on S/390 to stop all activity when a cpus is idle.
 | 
						|
 * This functions needs to be called disabled.
 | 
						|
 */
 | 
						|
unsigned long next_timer_interrupt(void)
 | 
						|
{
 | 
						|
	tvec_base_t *base;
 | 
						|
	struct list_head *list;
 | 
						|
	struct timer_list *nte;
 | 
						|
	unsigned long expires;
 | 
						|
	unsigned long hr_expires = MAX_JIFFY_OFFSET;
 | 
						|
	ktime_t hr_delta;
 | 
						|
	tvec_t *varray[4];
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	hr_delta = hrtimer_get_next_event();
 | 
						|
	if (hr_delta.tv64 != KTIME_MAX) {
 | 
						|
		struct timespec tsdelta;
 | 
						|
		tsdelta = ktime_to_timespec(hr_delta);
 | 
						|
		hr_expires = timespec_to_jiffies(&tsdelta);
 | 
						|
		if (hr_expires < 3)
 | 
						|
			return hr_expires + jiffies;
 | 
						|
	}
 | 
						|
	hr_expires += jiffies;
 | 
						|
 | 
						|
	base = __get_cpu_var(tvec_bases);
 | 
						|
	spin_lock(&base->lock);
 | 
						|
	expires = base->timer_jiffies + (LONG_MAX >> 1);
 | 
						|
	list = NULL;
 | 
						|
 | 
						|
	/* Look for timer events in tv1. */
 | 
						|
	j = base->timer_jiffies & TVR_MASK;
 | 
						|
	do {
 | 
						|
		list_for_each_entry(nte, base->tv1.vec + j, entry) {
 | 
						|
			expires = nte->expires;
 | 
						|
			if (j < (base->timer_jiffies & TVR_MASK))
 | 
						|
				list = base->tv2.vec + (INDEX(0));
 | 
						|
			goto found;
 | 
						|
		}
 | 
						|
		j = (j + 1) & TVR_MASK;
 | 
						|
	} while (j != (base->timer_jiffies & TVR_MASK));
 | 
						|
 | 
						|
	/* Check tv2-tv5. */
 | 
						|
	varray[0] = &base->tv2;
 | 
						|
	varray[1] = &base->tv3;
 | 
						|
	varray[2] = &base->tv4;
 | 
						|
	varray[3] = &base->tv5;
 | 
						|
	for (i = 0; i < 4; i++) {
 | 
						|
		j = INDEX(i);
 | 
						|
		do {
 | 
						|
			if (list_empty(varray[i]->vec + j)) {
 | 
						|
				j = (j + 1) & TVN_MASK;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			list_for_each_entry(nte, varray[i]->vec + j, entry)
 | 
						|
				if (time_before(nte->expires, expires))
 | 
						|
					expires = nte->expires;
 | 
						|
			if (j < (INDEX(i)) && i < 3)
 | 
						|
				list = varray[i + 1]->vec + (INDEX(i + 1));
 | 
						|
			goto found;
 | 
						|
		} while (j != (INDEX(i)));
 | 
						|
	}
 | 
						|
found:
 | 
						|
	if (list) {
 | 
						|
		/*
 | 
						|
		 * The search wrapped. We need to look at the next list
 | 
						|
		 * from next tv element that would cascade into tv element
 | 
						|
		 * where we found the timer element.
 | 
						|
		 */
 | 
						|
		list_for_each_entry(nte, list, entry) {
 | 
						|
			if (time_before(nte->expires, expires))
 | 
						|
				expires = nte->expires;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock(&base->lock);
 | 
						|
 | 
						|
	if (time_before(hr_expires, expires))
 | 
						|
		return hr_expires;
 | 
						|
 | 
						|
	return expires;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/******************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
 * Timekeeping variables
 | 
						|
 */
 | 
						|
unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */
 | 
						|
unsigned long tick_nsec = TICK_NSEC;		/* ACTHZ period (nsec) */
 | 
						|
 | 
						|
/* 
 | 
						|
 * The current time 
 | 
						|
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 
 | 
						|
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 | 
						|
 * at zero at system boot time, so wall_to_monotonic will be negative,
 | 
						|
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 | 
						|
 * the usual normalization.
 | 
						|
 */
 | 
						|
struct timespec xtime __attribute__ ((aligned (16)));
 | 
						|
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
 | 
						|
 | 
						|
EXPORT_SYMBOL(xtime);
 | 
						|
 | 
						|
/* Don't completely fail for HZ > 500.  */
 | 
						|
int tickadj = 500/HZ ? : 1;		/* microsecs */
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * phase-lock loop variables
 | 
						|
 */
 | 
						|
/* TIME_ERROR prevents overwriting the CMOS clock */
 | 
						|
int time_state = TIME_OK;		/* clock synchronization status	*/
 | 
						|
int time_status = STA_UNSYNC;		/* clock status bits		*/
 | 
						|
long time_offset;			/* time adjustment (us)		*/
 | 
						|
long time_constant = 2;			/* pll time constant		*/
 | 
						|
long time_tolerance = MAXFREQ;		/* frequency tolerance (ppm)	*/
 | 
						|
long time_precision = 1;		/* clock precision (us)		*/
 | 
						|
long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/
 | 
						|
long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/
 | 
						|
static long time_phase;			/* phase offset (scaled us)	*/
 | 
						|
long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
 | 
						|
					/* frequency offset (scaled ppm)*/
 | 
						|
static long time_adj;			/* tick adjust (scaled 1 / HZ)	*/
 | 
						|
long time_reftime;			/* time at last adjustment (s)	*/
 | 
						|
long time_adjust;
 | 
						|
long time_next_adjust;
 | 
						|
 | 
						|
/*
 | 
						|
 * this routine handles the overflow of the microsecond field
 | 
						|
 *
 | 
						|
 * The tricky bits of code to handle the accurate clock support
 | 
						|
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 | 
						|
 * They were originally developed for SUN and DEC kernels.
 | 
						|
 * All the kudos should go to Dave for this stuff.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void second_overflow(void)
 | 
						|
{
 | 
						|
	long ltemp;
 | 
						|
 | 
						|
	/* Bump the maxerror field */
 | 
						|
	time_maxerror += time_tolerance >> SHIFT_USEC;
 | 
						|
	if (time_maxerror > NTP_PHASE_LIMIT) {
 | 
						|
		time_maxerror = NTP_PHASE_LIMIT;
 | 
						|
		time_status |= STA_UNSYNC;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Leap second processing. If in leap-insert state at the end of the
 | 
						|
	 * day, the system clock is set back one second; if in leap-delete
 | 
						|
	 * state, the system clock is set ahead one second. The microtime()
 | 
						|
	 * routine or external clock driver will insure that reported time is
 | 
						|
	 * always monotonic. The ugly divides should be replaced.
 | 
						|
	 */
 | 
						|
	switch (time_state) {
 | 
						|
	case TIME_OK:
 | 
						|
		if (time_status & STA_INS)
 | 
						|
			time_state = TIME_INS;
 | 
						|
		else if (time_status & STA_DEL)
 | 
						|
			time_state = TIME_DEL;
 | 
						|
		break;
 | 
						|
	case TIME_INS:
 | 
						|
		if (xtime.tv_sec % 86400 == 0) {
 | 
						|
			xtime.tv_sec--;
 | 
						|
			wall_to_monotonic.tv_sec++;
 | 
						|
			/*
 | 
						|
			 * The timer interpolator will make time change
 | 
						|
			 * gradually instead of an immediate jump by one second
 | 
						|
			 */
 | 
						|
			time_interpolator_update(-NSEC_PER_SEC);
 | 
						|
			time_state = TIME_OOP;
 | 
						|
			clock_was_set();
 | 
						|
			printk(KERN_NOTICE "Clock: inserting leap second "
 | 
						|
					"23:59:60 UTC\n");
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case TIME_DEL:
 | 
						|
		if ((xtime.tv_sec + 1) % 86400 == 0) {
 | 
						|
			xtime.tv_sec++;
 | 
						|
			wall_to_monotonic.tv_sec--;
 | 
						|
			/*
 | 
						|
			 * Use of time interpolator for a gradual change of
 | 
						|
			 * time
 | 
						|
			 */
 | 
						|
			time_interpolator_update(NSEC_PER_SEC);
 | 
						|
			time_state = TIME_WAIT;
 | 
						|
			clock_was_set();
 | 
						|
			printk(KERN_NOTICE "Clock: deleting leap second "
 | 
						|
					"23:59:59 UTC\n");
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case TIME_OOP:
 | 
						|
		time_state = TIME_WAIT;
 | 
						|
		break;
 | 
						|
	case TIME_WAIT:
 | 
						|
		if (!(time_status & (STA_INS | STA_DEL)))
 | 
						|
		time_state = TIME_OK;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compute the phase adjustment for the next second. In PLL mode, the
 | 
						|
	 * offset is reduced by a fixed factor times the time constant. In FLL
 | 
						|
	 * mode the offset is used directly. In either mode, the maximum phase
 | 
						|
	 * adjustment for each second is clamped so as to spread the adjustment
 | 
						|
	 * over not more than the number of seconds between updates.
 | 
						|
	 */
 | 
						|
	ltemp = time_offset;
 | 
						|
	if (!(time_status & STA_FLL))
 | 
						|
		ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
 | 
						|
	ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
 | 
						|
	ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
 | 
						|
	time_offset -= ltemp;
 | 
						|
	time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Compute the frequency estimate and additional phase adjustment due
 | 
						|
	 * to frequency error for the next second.
 | 
						|
	 */
 | 
						|
	ltemp = time_freq;
 | 
						|
	time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
 | 
						|
 | 
						|
#if HZ == 100
 | 
						|
	/*
 | 
						|
	 * Compensate for (HZ==100) != (1 << SHIFT_HZ).  Add 25% and 3.125% to
 | 
						|
	 * get 128.125; => only 0.125% error (p. 14)
 | 
						|
	 */
 | 
						|
	time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
 | 
						|
#endif
 | 
						|
#if HZ == 250
 | 
						|
	/*
 | 
						|
	 * Compensate for (HZ==250) != (1 << SHIFT_HZ).  Add 1.5625% and
 | 
						|
	 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
 | 
						|
	 */
 | 
						|
	time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
 | 
						|
#endif
 | 
						|
#if HZ == 1000
 | 
						|
	/*
 | 
						|
	 * Compensate for (HZ==1000) != (1 << SHIFT_HZ).  Add 1.5625% and
 | 
						|
	 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
 | 
						|
	 */
 | 
						|
	time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns how many microseconds we need to add to xtime this tick
 | 
						|
 * in doing an adjustment requested with adjtime.
 | 
						|
 */
 | 
						|
static long adjtime_adjustment(void)
 | 
						|
{
 | 
						|
	long time_adjust_step;
 | 
						|
 | 
						|
	time_adjust_step = time_adjust;
 | 
						|
	if (time_adjust_step) {
 | 
						|
		/*
 | 
						|
		 * We are doing an adjtime thing.  Prepare time_adjust_step to
 | 
						|
		 * be within bounds.  Note that a positive time_adjust means we
 | 
						|
		 * want the clock to run faster.
 | 
						|
		 *
 | 
						|
		 * Limit the amount of the step to be in the range
 | 
						|
		 * -tickadj .. +tickadj
 | 
						|
		 */
 | 
						|
		time_adjust_step = min(time_adjust_step, (long)tickadj);
 | 
						|
		time_adjust_step = max(time_adjust_step, (long)-tickadj);
 | 
						|
	}
 | 
						|
	return time_adjust_step;
 | 
						|
}
 | 
						|
 | 
						|
/* in the NTP reference this is called "hardclock()" */
 | 
						|
static void update_wall_time_one_tick(void)
 | 
						|
{
 | 
						|
	long time_adjust_step, delta_nsec;
 | 
						|
 | 
						|
	time_adjust_step = adjtime_adjustment();
 | 
						|
	if (time_adjust_step)
 | 
						|
		/* Reduce by this step the amount of time left  */
 | 
						|
		time_adjust -= time_adjust_step;
 | 
						|
	delta_nsec = tick_nsec + time_adjust_step * 1000;
 | 
						|
	/*
 | 
						|
	 * Advance the phase, once it gets to one microsecond, then
 | 
						|
	 * advance the tick more.
 | 
						|
	 */
 | 
						|
	time_phase += time_adj;
 | 
						|
	if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
 | 
						|
		long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
 | 
						|
		time_phase -= ltemp << (SHIFT_SCALE - 10);
 | 
						|
		delta_nsec += ltemp;
 | 
						|
	}
 | 
						|
	xtime.tv_nsec += delta_nsec;
 | 
						|
	time_interpolator_update(delta_nsec);
 | 
						|
 | 
						|
	/* Changes by adjtime() do not take effect till next tick. */
 | 
						|
	if (time_next_adjust != 0) {
 | 
						|
		time_adjust = time_next_adjust;
 | 
						|
		time_next_adjust = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return how long ticks are at the moment, that is, how much time
 | 
						|
 * update_wall_time_one_tick will add to xtime next time we call it
 | 
						|
 * (assuming no calls to do_adjtimex in the meantime).
 | 
						|
 * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10
 | 
						|
 * bits to the right of the binary point.
 | 
						|
 * This function has no side-effects.
 | 
						|
 */
 | 
						|
u64 current_tick_length(void)
 | 
						|
{
 | 
						|
	long delta_nsec;
 | 
						|
 | 
						|
	delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
 | 
						|
	return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Using a loop looks inefficient, but "ticks" is
 | 
						|
 * usually just one (we shouldn't be losing ticks,
 | 
						|
 * we're doing this this way mainly for interrupt
 | 
						|
 * latency reasons, not because we think we'll
 | 
						|
 * have lots of lost timer ticks
 | 
						|
 */
 | 
						|
static void update_wall_time(unsigned long ticks)
 | 
						|
{
 | 
						|
	do {
 | 
						|
		ticks--;
 | 
						|
		update_wall_time_one_tick();
 | 
						|
		if (xtime.tv_nsec >= 1000000000) {
 | 
						|
			xtime.tv_nsec -= 1000000000;
 | 
						|
			xtime.tv_sec++;
 | 
						|
			second_overflow();
 | 
						|
		}
 | 
						|
	} while (ticks);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from the timer interrupt handler to charge one tick to the current 
 | 
						|
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 | 
						|
 */
 | 
						|
void update_process_times(int user_tick)
 | 
						|
{
 | 
						|
	struct task_struct *p = current;
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
 | 
						|
	/* Note: this timer irq context must be accounted for as well. */
 | 
						|
	if (user_tick)
 | 
						|
		account_user_time(p, jiffies_to_cputime(1));
 | 
						|
	else
 | 
						|
		account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
 | 
						|
	run_local_timers();
 | 
						|
	if (rcu_pending(cpu))
 | 
						|
		rcu_check_callbacks(cpu, user_tick);
 | 
						|
	scheduler_tick();
 | 
						|
 	run_posix_cpu_timers(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Nr of active tasks - counted in fixed-point numbers
 | 
						|
 */
 | 
						|
static unsigned long count_active_tasks(void)
 | 
						|
{
 | 
						|
	return (nr_running() + nr_uninterruptible()) * FIXED_1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 | 
						|
 * imply that avenrun[] is the standard name for this kind of thing.
 | 
						|
 * Nothing else seems to be standardized: the fractional size etc
 | 
						|
 * all seem to differ on different machines.
 | 
						|
 *
 | 
						|
 * Requires xtime_lock to access.
 | 
						|
 */
 | 
						|
unsigned long avenrun[3];
 | 
						|
 | 
						|
EXPORT_SYMBOL(avenrun);
 | 
						|
 | 
						|
/*
 | 
						|
 * calc_load - given tick count, update the avenrun load estimates.
 | 
						|
 * This is called while holding a write_lock on xtime_lock.
 | 
						|
 */
 | 
						|
static inline void calc_load(unsigned long ticks)
 | 
						|
{
 | 
						|
	unsigned long active_tasks; /* fixed-point */
 | 
						|
	static int count = LOAD_FREQ;
 | 
						|
 | 
						|
	count -= ticks;
 | 
						|
	if (count < 0) {
 | 
						|
		count += LOAD_FREQ;
 | 
						|
		active_tasks = count_active_tasks();
 | 
						|
		CALC_LOAD(avenrun[0], EXP_1, active_tasks);
 | 
						|
		CALC_LOAD(avenrun[1], EXP_5, active_tasks);
 | 
						|
		CALC_LOAD(avenrun[2], EXP_15, active_tasks);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* jiffies at the most recent update of wall time */
 | 
						|
unsigned long wall_jiffies = INITIAL_JIFFIES;
 | 
						|
 | 
						|
/*
 | 
						|
 * This read-write spinlock protects us from races in SMP while
 | 
						|
 * playing with xtime and avenrun.
 | 
						|
 */
 | 
						|
#ifndef ARCH_HAVE_XTIME_LOCK
 | 
						|
seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
 | 
						|
 | 
						|
EXPORT_SYMBOL(xtime_lock);
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * This function runs timers and the timer-tq in bottom half context.
 | 
						|
 */
 | 
						|
static void run_timer_softirq(struct softirq_action *h)
 | 
						|
{
 | 
						|
	tvec_base_t *base = __get_cpu_var(tvec_bases);
 | 
						|
 | 
						|
 	hrtimer_run_queues();
 | 
						|
	if (time_after_eq(jiffies, base->timer_jiffies))
 | 
						|
		__run_timers(base);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called by the local, per-CPU timer interrupt on SMP.
 | 
						|
 */
 | 
						|
void run_local_timers(void)
 | 
						|
{
 | 
						|
	raise_softirq(TIMER_SOFTIRQ);
 | 
						|
	softlockup_tick();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called by the timer interrupt. xtime_lock must already be taken
 | 
						|
 * by the timer IRQ!
 | 
						|
 */
 | 
						|
static inline void update_times(void)
 | 
						|
{
 | 
						|
	unsigned long ticks;
 | 
						|
 | 
						|
	ticks = jiffies - wall_jiffies;
 | 
						|
	if (ticks) {
 | 
						|
		wall_jiffies += ticks;
 | 
						|
		update_wall_time(ticks);
 | 
						|
	}
 | 
						|
	calc_load(ticks);
 | 
						|
}
 | 
						|
  
 | 
						|
/*
 | 
						|
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 | 
						|
 * without sampling the sequence number in xtime_lock.
 | 
						|
 * jiffies is defined in the linker script...
 | 
						|
 */
 | 
						|
 | 
						|
void do_timer(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	jiffies_64++;
 | 
						|
	/* prevent loading jiffies before storing new jiffies_64 value. */
 | 
						|
	barrier();
 | 
						|
	update_times();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef __ARCH_WANT_SYS_ALARM
 | 
						|
 | 
						|
/*
 | 
						|
 * For backwards compatibility?  This can be done in libc so Alpha
 | 
						|
 * and all newer ports shouldn't need it.
 | 
						|
 */
 | 
						|
asmlinkage unsigned long sys_alarm(unsigned int seconds)
 | 
						|
{
 | 
						|
	return alarm_setitimer(seconds);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __alpha__
 | 
						|
 | 
						|
/*
 | 
						|
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 | 
						|
 * should be moved into arch/i386 instead?
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_getpid - return the thread group id of the current process
 | 
						|
 *
 | 
						|
 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 | 
						|
 * the pid are identical unless CLONE_THREAD was specified on clone() in
 | 
						|
 * which case the tgid is the same in all threads of the same group.
 | 
						|
 *
 | 
						|
 * This is SMP safe as current->tgid does not change.
 | 
						|
 */
 | 
						|
asmlinkage long sys_getpid(void)
 | 
						|
{
 | 
						|
	return current->tgid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Accessing ->group_leader->real_parent is not SMP-safe, it could
 | 
						|
 * change from under us. However, rather than getting any lock
 | 
						|
 * we can use an optimistic algorithm: get the parent
 | 
						|
 * pid, and go back and check that the parent is still
 | 
						|
 * the same. If it has changed (which is extremely unlikely
 | 
						|
 * indeed), we just try again..
 | 
						|
 *
 | 
						|
 * NOTE! This depends on the fact that even if we _do_
 | 
						|
 * get an old value of "parent", we can happily dereference
 | 
						|
 * the pointer (it was and remains a dereferencable kernel pointer
 | 
						|
 * no matter what): we just can't necessarily trust the result
 | 
						|
 * until we know that the parent pointer is valid.
 | 
						|
 *
 | 
						|
 * NOTE2: ->group_leader never changes from under us.
 | 
						|
 */
 | 
						|
asmlinkage long sys_getppid(void)
 | 
						|
{
 | 
						|
	int pid;
 | 
						|
	struct task_struct *me = current;
 | 
						|
	struct task_struct *parent;
 | 
						|
 | 
						|
	parent = me->group_leader->real_parent;
 | 
						|
	for (;;) {
 | 
						|
		pid = parent->tgid;
 | 
						|
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
 | 
						|
{
 | 
						|
		struct task_struct *old = parent;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Make sure we read the pid before re-reading the
 | 
						|
		 * parent pointer:
 | 
						|
		 */
 | 
						|
		smp_rmb();
 | 
						|
		parent = me->group_leader->real_parent;
 | 
						|
		if (old != parent)
 | 
						|
			continue;
 | 
						|
}
 | 
						|
#endif
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return pid;
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage long sys_getuid(void)
 | 
						|
{
 | 
						|
	/* Only we change this so SMP safe */
 | 
						|
	return current->uid;
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage long sys_geteuid(void)
 | 
						|
{
 | 
						|
	/* Only we change this so SMP safe */
 | 
						|
	return current->euid;
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage long sys_getgid(void)
 | 
						|
{
 | 
						|
	/* Only we change this so SMP safe */
 | 
						|
	return current->gid;
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage long sys_getegid(void)
 | 
						|
{
 | 
						|
	/* Only we change this so SMP safe */
 | 
						|
	return  current->egid;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static void process_timeout(unsigned long __data)
 | 
						|
{
 | 
						|
	wake_up_process((task_t *)__data);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * schedule_timeout - sleep until timeout
 | 
						|
 * @timeout: timeout value in jiffies
 | 
						|
 *
 | 
						|
 * Make the current task sleep until @timeout jiffies have
 | 
						|
 * elapsed. The routine will return immediately unless
 | 
						|
 * the current task state has been set (see set_current_state()).
 | 
						|
 *
 | 
						|
 * You can set the task state as follows -
 | 
						|
 *
 | 
						|
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 | 
						|
 * pass before the routine returns. The routine will return 0
 | 
						|
 *
 | 
						|
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 | 
						|
 * delivered to the current task. In this case the remaining time
 | 
						|
 * in jiffies will be returned, or 0 if the timer expired in time
 | 
						|
 *
 | 
						|
 * The current task state is guaranteed to be TASK_RUNNING when this
 | 
						|
 * routine returns.
 | 
						|
 *
 | 
						|
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 | 
						|
 * the CPU away without a bound on the timeout. In this case the return
 | 
						|
 * value will be %MAX_SCHEDULE_TIMEOUT.
 | 
						|
 *
 | 
						|
 * In all cases the return value is guaranteed to be non-negative.
 | 
						|
 */
 | 
						|
fastcall signed long __sched schedule_timeout(signed long timeout)
 | 
						|
{
 | 
						|
	struct timer_list timer;
 | 
						|
	unsigned long expire;
 | 
						|
 | 
						|
	switch (timeout)
 | 
						|
	{
 | 
						|
	case MAX_SCHEDULE_TIMEOUT:
 | 
						|
		/*
 | 
						|
		 * These two special cases are useful to be comfortable
 | 
						|
		 * in the caller. Nothing more. We could take
 | 
						|
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
 | 
						|
		 * but I' d like to return a valid offset (>=0) to allow
 | 
						|
		 * the caller to do everything it want with the retval.
 | 
						|
		 */
 | 
						|
		schedule();
 | 
						|
		goto out;
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * Another bit of PARANOID. Note that the retval will be
 | 
						|
		 * 0 since no piece of kernel is supposed to do a check
 | 
						|
		 * for a negative retval of schedule_timeout() (since it
 | 
						|
		 * should never happens anyway). You just have the printk()
 | 
						|
		 * that will tell you if something is gone wrong and where.
 | 
						|
		 */
 | 
						|
		if (timeout < 0)
 | 
						|
		{
 | 
						|
			printk(KERN_ERR "schedule_timeout: wrong timeout "
 | 
						|
				"value %lx from %p\n", timeout,
 | 
						|
				__builtin_return_address(0));
 | 
						|
			current->state = TASK_RUNNING;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	expire = timeout + jiffies;
 | 
						|
 | 
						|
	setup_timer(&timer, process_timeout, (unsigned long)current);
 | 
						|
	__mod_timer(&timer, expire);
 | 
						|
	schedule();
 | 
						|
	del_singleshot_timer_sync(&timer);
 | 
						|
 | 
						|
	timeout = expire - jiffies;
 | 
						|
 | 
						|
 out:
 | 
						|
	return timeout < 0 ? 0 : timeout;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(schedule_timeout);
 | 
						|
 | 
						|
/*
 | 
						|
 * We can use __set_current_state() here because schedule_timeout() calls
 | 
						|
 * schedule() unconditionally.
 | 
						|
 */
 | 
						|
signed long __sched schedule_timeout_interruptible(signed long timeout)
 | 
						|
{
 | 
						|
	__set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
	return schedule_timeout(timeout);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(schedule_timeout_interruptible);
 | 
						|
 | 
						|
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
 | 
						|
{
 | 
						|
	__set_current_state(TASK_UNINTERRUPTIBLE);
 | 
						|
	return schedule_timeout(timeout);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(schedule_timeout_uninterruptible);
 | 
						|
 | 
						|
/* Thread ID - the internal kernel "pid" */
 | 
						|
asmlinkage long sys_gettid(void)
 | 
						|
{
 | 
						|
	return current->pid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_sysinfo - fill in sysinfo struct
 | 
						|
 */ 
 | 
						|
asmlinkage long sys_sysinfo(struct sysinfo __user *info)
 | 
						|
{
 | 
						|
	struct sysinfo val;
 | 
						|
	unsigned long mem_total, sav_total;
 | 
						|
	unsigned int mem_unit, bitcount;
 | 
						|
	unsigned long seq;
 | 
						|
 | 
						|
	memset((char *)&val, 0, sizeof(struct sysinfo));
 | 
						|
 | 
						|
	do {
 | 
						|
		struct timespec tp;
 | 
						|
		seq = read_seqbegin(&xtime_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This is annoying.  The below is the same thing
 | 
						|
		 * posix_get_clock_monotonic() does, but it wants to
 | 
						|
		 * take the lock which we want to cover the loads stuff
 | 
						|
		 * too.
 | 
						|
		 */
 | 
						|
 | 
						|
		getnstimeofday(&tp);
 | 
						|
		tp.tv_sec += wall_to_monotonic.tv_sec;
 | 
						|
		tp.tv_nsec += wall_to_monotonic.tv_nsec;
 | 
						|
		if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
 | 
						|
			tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
 | 
						|
			tp.tv_sec++;
 | 
						|
		}
 | 
						|
		val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
 | 
						|
 | 
						|
		val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
 | 
						|
		val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
 | 
						|
		val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
 | 
						|
 | 
						|
		val.procs = nr_threads;
 | 
						|
	} while (read_seqretry(&xtime_lock, seq));
 | 
						|
 | 
						|
	si_meminfo(&val);
 | 
						|
	si_swapinfo(&val);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the sum of all the available memory (i.e. ram + swap)
 | 
						|
	 * is less than can be stored in a 32 bit unsigned long then
 | 
						|
	 * we can be binary compatible with 2.2.x kernels.  If not,
 | 
						|
	 * well, in that case 2.2.x was broken anyways...
 | 
						|
	 *
 | 
						|
	 *  -Erik Andersen <andersee@debian.org>
 | 
						|
	 */
 | 
						|
 | 
						|
	mem_total = val.totalram + val.totalswap;
 | 
						|
	if (mem_total < val.totalram || mem_total < val.totalswap)
 | 
						|
		goto out;
 | 
						|
	bitcount = 0;
 | 
						|
	mem_unit = val.mem_unit;
 | 
						|
	while (mem_unit > 1) {
 | 
						|
		bitcount++;
 | 
						|
		mem_unit >>= 1;
 | 
						|
		sav_total = mem_total;
 | 
						|
		mem_total <<= 1;
 | 
						|
		if (mem_total < sav_total)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If mem_total did not overflow, multiply all memory values by
 | 
						|
	 * val.mem_unit and set it to 1.  This leaves things compatible
 | 
						|
	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
 | 
						|
	 * kernels...
 | 
						|
	 */
 | 
						|
 | 
						|
	val.mem_unit = 1;
 | 
						|
	val.totalram <<= bitcount;
 | 
						|
	val.freeram <<= bitcount;
 | 
						|
	val.sharedram <<= bitcount;
 | 
						|
	val.bufferram <<= bitcount;
 | 
						|
	val.totalswap <<= bitcount;
 | 
						|
	val.freeswap <<= bitcount;
 | 
						|
	val.totalhigh <<= bitcount;
 | 
						|
	val.freehigh <<= bitcount;
 | 
						|
 | 
						|
 out:
 | 
						|
	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __devinit init_timers_cpu(int cpu)
 | 
						|
{
 | 
						|
	int j;
 | 
						|
	tvec_base_t *base;
 | 
						|
 | 
						|
	base = per_cpu(tvec_bases, cpu);
 | 
						|
	if (!base) {
 | 
						|
		static char boot_done;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Cannot do allocation in init_timers as that runs before the
 | 
						|
		 * allocator initializes (and would waste memory if there are
 | 
						|
		 * more possible CPUs than will ever be installed/brought up).
 | 
						|
		 */
 | 
						|
		if (boot_done) {
 | 
						|
			base = kmalloc_node(sizeof(*base), GFP_KERNEL,
 | 
						|
						cpu_to_node(cpu));
 | 
						|
			if (!base)
 | 
						|
				return -ENOMEM;
 | 
						|
			memset(base, 0, sizeof(*base));
 | 
						|
		} else {
 | 
						|
			base = &boot_tvec_bases;
 | 
						|
			boot_done = 1;
 | 
						|
		}
 | 
						|
		per_cpu(tvec_bases, cpu) = base;
 | 
						|
	}
 | 
						|
	spin_lock_init(&base->lock);
 | 
						|
	for (j = 0; j < TVN_SIZE; j++) {
 | 
						|
		INIT_LIST_HEAD(base->tv5.vec + j);
 | 
						|
		INIT_LIST_HEAD(base->tv4.vec + j);
 | 
						|
		INIT_LIST_HEAD(base->tv3.vec + j);
 | 
						|
		INIT_LIST_HEAD(base->tv2.vec + j);
 | 
						|
	}
 | 
						|
	for (j = 0; j < TVR_SIZE; j++)
 | 
						|
		INIT_LIST_HEAD(base->tv1.vec + j);
 | 
						|
 | 
						|
	base->timer_jiffies = jiffies;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
 | 
						|
{
 | 
						|
	struct timer_list *timer;
 | 
						|
 | 
						|
	while (!list_empty(head)) {
 | 
						|
		timer = list_entry(head->next, struct timer_list, entry);
 | 
						|
		detach_timer(timer, 0);
 | 
						|
		timer->base = new_base;
 | 
						|
		internal_add_timer(new_base, timer);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __devinit migrate_timers(int cpu)
 | 
						|
{
 | 
						|
	tvec_base_t *old_base;
 | 
						|
	tvec_base_t *new_base;
 | 
						|
	int i;
 | 
						|
 | 
						|
	BUG_ON(cpu_online(cpu));
 | 
						|
	old_base = per_cpu(tvec_bases, cpu);
 | 
						|
	new_base = get_cpu_var(tvec_bases);
 | 
						|
 | 
						|
	local_irq_disable();
 | 
						|
	spin_lock(&new_base->lock);
 | 
						|
	spin_lock(&old_base->lock);
 | 
						|
 | 
						|
	BUG_ON(old_base->running_timer);
 | 
						|
 | 
						|
	for (i = 0; i < TVR_SIZE; i++)
 | 
						|
		migrate_timer_list(new_base, old_base->tv1.vec + i);
 | 
						|
	for (i = 0; i < TVN_SIZE; i++) {
 | 
						|
		migrate_timer_list(new_base, old_base->tv2.vec + i);
 | 
						|
		migrate_timer_list(new_base, old_base->tv3.vec + i);
 | 
						|
		migrate_timer_list(new_base, old_base->tv4.vec + i);
 | 
						|
		migrate_timer_list(new_base, old_base->tv5.vec + i);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&old_base->lock);
 | 
						|
	spin_unlock(&new_base->lock);
 | 
						|
	local_irq_enable();
 | 
						|
	put_cpu_var(tvec_bases);
 | 
						|
}
 | 
						|
#endif /* CONFIG_HOTPLUG_CPU */
 | 
						|
 | 
						|
static int __devinit timer_cpu_notify(struct notifier_block *self, 
 | 
						|
				unsigned long action, void *hcpu)
 | 
						|
{
 | 
						|
	long cpu = (long)hcpu;
 | 
						|
	switch(action) {
 | 
						|
	case CPU_UP_PREPARE:
 | 
						|
		if (init_timers_cpu(cpu) < 0)
 | 
						|
			return NOTIFY_BAD;
 | 
						|
		break;
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
	case CPU_DEAD:
 | 
						|
		migrate_timers(cpu);
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
static struct notifier_block __devinitdata timers_nb = {
 | 
						|
	.notifier_call	= timer_cpu_notify,
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
void __init init_timers(void)
 | 
						|
{
 | 
						|
	timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
 | 
						|
				(void *)(long)smp_processor_id());
 | 
						|
	register_cpu_notifier(&timers_nb);
 | 
						|
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_TIME_INTERPOLATION
 | 
						|
 | 
						|
struct time_interpolator *time_interpolator __read_mostly;
 | 
						|
static struct time_interpolator *time_interpolator_list __read_mostly;
 | 
						|
static DEFINE_SPINLOCK(time_interpolator_lock);
 | 
						|
 | 
						|
static inline u64 time_interpolator_get_cycles(unsigned int src)
 | 
						|
{
 | 
						|
	unsigned long (*x)(void);
 | 
						|
 | 
						|
	switch (src)
 | 
						|
	{
 | 
						|
		case TIME_SOURCE_FUNCTION:
 | 
						|
			x = time_interpolator->addr;
 | 
						|
			return x();
 | 
						|
 | 
						|
		case TIME_SOURCE_MMIO64	:
 | 
						|
			return readq_relaxed((void __iomem *)time_interpolator->addr);
 | 
						|
 | 
						|
		case TIME_SOURCE_MMIO32	:
 | 
						|
			return readl_relaxed((void __iomem *)time_interpolator->addr);
 | 
						|
 | 
						|
		default: return get_cycles();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline u64 time_interpolator_get_counter(int writelock)
 | 
						|
{
 | 
						|
	unsigned int src = time_interpolator->source;
 | 
						|
 | 
						|
	if (time_interpolator->jitter)
 | 
						|
	{
 | 
						|
		u64 lcycle;
 | 
						|
		u64 now;
 | 
						|
 | 
						|
		do {
 | 
						|
			lcycle = time_interpolator->last_cycle;
 | 
						|
			now = time_interpolator_get_cycles(src);
 | 
						|
			if (lcycle && time_after(lcycle, now))
 | 
						|
				return lcycle;
 | 
						|
 | 
						|
			/* When holding the xtime write lock, there's no need
 | 
						|
			 * to add the overhead of the cmpxchg.  Readers are
 | 
						|
			 * force to retry until the write lock is released.
 | 
						|
			 */
 | 
						|
			if (writelock) {
 | 
						|
				time_interpolator->last_cycle = now;
 | 
						|
				return now;
 | 
						|
			}
 | 
						|
			/* Keep track of the last timer value returned. The use of cmpxchg here
 | 
						|
			 * will cause contention in an SMP environment.
 | 
						|
			 */
 | 
						|
		} while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
 | 
						|
		return now;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return time_interpolator_get_cycles(src);
 | 
						|
}
 | 
						|
 | 
						|
void time_interpolator_reset(void)
 | 
						|
{
 | 
						|
	time_interpolator->offset = 0;
 | 
						|
	time_interpolator->last_counter = time_interpolator_get_counter(1);
 | 
						|
}
 | 
						|
 | 
						|
#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
 | 
						|
 | 
						|
unsigned long time_interpolator_get_offset(void)
 | 
						|
{
 | 
						|
	/* If we do not have a time interpolator set up then just return zero */
 | 
						|
	if (!time_interpolator)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return time_interpolator->offset +
 | 
						|
		GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
 | 
						|
}
 | 
						|
 | 
						|
#define INTERPOLATOR_ADJUST 65536
 | 
						|
#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
 | 
						|
 | 
						|
static void time_interpolator_update(long delta_nsec)
 | 
						|
{
 | 
						|
	u64 counter;
 | 
						|
	unsigned long offset;
 | 
						|
 | 
						|
	/* If there is no time interpolator set up then do nothing */
 | 
						|
	if (!time_interpolator)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The interpolator compensates for late ticks by accumulating the late
 | 
						|
	 * time in time_interpolator->offset. A tick earlier than expected will
 | 
						|
	 * lead to a reset of the offset and a corresponding jump of the clock
 | 
						|
	 * forward. Again this only works if the interpolator clock is running
 | 
						|
	 * slightly slower than the regular clock and the tuning logic insures
 | 
						|
	 * that.
 | 
						|
	 */
 | 
						|
 | 
						|
	counter = time_interpolator_get_counter(1);
 | 
						|
	offset = time_interpolator->offset +
 | 
						|
			GET_TI_NSECS(counter, time_interpolator);
 | 
						|
 | 
						|
	if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
 | 
						|
		time_interpolator->offset = offset - delta_nsec;
 | 
						|
	else {
 | 
						|
		time_interpolator->skips++;
 | 
						|
		time_interpolator->ns_skipped += delta_nsec - offset;
 | 
						|
		time_interpolator->offset = 0;
 | 
						|
	}
 | 
						|
	time_interpolator->last_counter = counter;
 | 
						|
 | 
						|
	/* Tuning logic for time interpolator invoked every minute or so.
 | 
						|
	 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
 | 
						|
	 * Increase interpolator clock speed if we skip too much time.
 | 
						|
	 */
 | 
						|
	if (jiffies % INTERPOLATOR_ADJUST == 0)
 | 
						|
	{
 | 
						|
		if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
 | 
						|
			time_interpolator->nsec_per_cyc--;
 | 
						|
		if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
 | 
						|
			time_interpolator->nsec_per_cyc++;
 | 
						|
		time_interpolator->skips = 0;
 | 
						|
		time_interpolator->ns_skipped = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
is_better_time_interpolator(struct time_interpolator *new)
 | 
						|
{
 | 
						|
	if (!time_interpolator)
 | 
						|
		return 1;
 | 
						|
	return new->frequency > 2*time_interpolator->frequency ||
 | 
						|
	    (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
register_time_interpolator(struct time_interpolator *ti)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/* Sanity check */
 | 
						|
	if (ti->frequency == 0 || ti->mask == 0)
 | 
						|
		BUG();
 | 
						|
 | 
						|
	ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
 | 
						|
	spin_lock(&time_interpolator_lock);
 | 
						|
	write_seqlock_irqsave(&xtime_lock, flags);
 | 
						|
	if (is_better_time_interpolator(ti)) {
 | 
						|
		time_interpolator = ti;
 | 
						|
		time_interpolator_reset();
 | 
						|
	}
 | 
						|
	write_sequnlock_irqrestore(&xtime_lock, flags);
 | 
						|
 | 
						|
	ti->next = time_interpolator_list;
 | 
						|
	time_interpolator_list = ti;
 | 
						|
	spin_unlock(&time_interpolator_lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
unregister_time_interpolator(struct time_interpolator *ti)
 | 
						|
{
 | 
						|
	struct time_interpolator *curr, **prev;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock(&time_interpolator_lock);
 | 
						|
	prev = &time_interpolator_list;
 | 
						|
	for (curr = *prev; curr; curr = curr->next) {
 | 
						|
		if (curr == ti) {
 | 
						|
			*prev = curr->next;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		prev = &curr->next;
 | 
						|
	}
 | 
						|
 | 
						|
	write_seqlock_irqsave(&xtime_lock, flags);
 | 
						|
	if (ti == time_interpolator) {
 | 
						|
		/* we lost the best time-interpolator: */
 | 
						|
		time_interpolator = NULL;
 | 
						|
		/* find the next-best interpolator */
 | 
						|
		for (curr = time_interpolator_list; curr; curr = curr->next)
 | 
						|
			if (is_better_time_interpolator(curr))
 | 
						|
				time_interpolator = curr;
 | 
						|
		time_interpolator_reset();
 | 
						|
	}
 | 
						|
	write_sequnlock_irqrestore(&xtime_lock, flags);
 | 
						|
	spin_unlock(&time_interpolator_lock);
 | 
						|
}
 | 
						|
#endif /* CONFIG_TIME_INTERPOLATION */
 | 
						|
 | 
						|
/**
 | 
						|
 * msleep - sleep safely even with waitqueue interruptions
 | 
						|
 * @msecs: Time in milliseconds to sleep for
 | 
						|
 */
 | 
						|
void msleep(unsigned int msecs)
 | 
						|
{
 | 
						|
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
 | 
						|
 | 
						|
	while (timeout)
 | 
						|
		timeout = schedule_timeout_uninterruptible(timeout);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(msleep);
 | 
						|
 | 
						|
/**
 | 
						|
 * msleep_interruptible - sleep waiting for signals
 | 
						|
 * @msecs: Time in milliseconds to sleep for
 | 
						|
 */
 | 
						|
unsigned long msleep_interruptible(unsigned int msecs)
 | 
						|
{
 | 
						|
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
 | 
						|
 | 
						|
	while (timeout && !signal_pending(current))
 | 
						|
		timeout = schedule_timeout_interruptible(timeout);
 | 
						|
	return jiffies_to_msecs(timeout);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(msleep_interruptible);
 |