mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	As indicated in the added comment, the algorithm works better if b is big. As multiplication is commutative, a and b can be swapped. Do this if a is bigger than b. Link: https://lkml.kernel.org/r/20240303092408.662449-2-u.kleine-koenig@pengutronix.de Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Tested-by: Biju Das <biju.das.jz@bp.renesas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			240 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			240 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
 | 
						|
 *
 | 
						|
 * Based on former do_div() implementation from asm-parisc/div64.h:
 | 
						|
 *	Copyright (C) 1999 Hewlett-Packard Co
 | 
						|
 *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * Generic C version of 64bit/32bit division and modulo, with
 | 
						|
 * 64bit result and 32bit remainder.
 | 
						|
 *
 | 
						|
 * The fast case for (n>>32 == 0) is handled inline by do_div().
 | 
						|
 *
 | 
						|
 * Code generated for this function might be very inefficient
 | 
						|
 * for some CPUs. __div64_32() can be overridden by linking arch-specific
 | 
						|
 * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
 | 
						|
 * or by defining a preprocessor macro in arch/include/asm/div64.h.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/math.h>
 | 
						|
#include <linux/math64.h>
 | 
						|
#include <linux/minmax.h>
 | 
						|
#include <linux/log2.h>
 | 
						|
 | 
						|
/* Not needed on 64bit architectures */
 | 
						|
#if BITS_PER_LONG == 32
 | 
						|
 | 
						|
#ifndef __div64_32
 | 
						|
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
 | 
						|
{
 | 
						|
	uint64_t rem = *n;
 | 
						|
	uint64_t b = base;
 | 
						|
	uint64_t res, d = 1;
 | 
						|
	uint32_t high = rem >> 32;
 | 
						|
 | 
						|
	/* Reduce the thing a bit first */
 | 
						|
	res = 0;
 | 
						|
	if (high >= base) {
 | 
						|
		high /= base;
 | 
						|
		res = (uint64_t) high << 32;
 | 
						|
		rem -= (uint64_t) (high*base) << 32;
 | 
						|
	}
 | 
						|
 | 
						|
	while ((int64_t)b > 0 && b < rem) {
 | 
						|
		b = b+b;
 | 
						|
		d = d+d;
 | 
						|
	}
 | 
						|
 | 
						|
	do {
 | 
						|
		if (rem >= b) {
 | 
						|
			rem -= b;
 | 
						|
			res += d;
 | 
						|
		}
 | 
						|
		b >>= 1;
 | 
						|
		d >>= 1;
 | 
						|
	} while (d);
 | 
						|
 | 
						|
	*n = res;
 | 
						|
	return rem;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__div64_32);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef div_s64_rem
 | 
						|
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
 | 
						|
{
 | 
						|
	u64 quotient;
 | 
						|
 | 
						|
	if (dividend < 0) {
 | 
						|
		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
 | 
						|
		*remainder = -*remainder;
 | 
						|
		if (divisor > 0)
 | 
						|
			quotient = -quotient;
 | 
						|
	} else {
 | 
						|
		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
 | 
						|
		if (divisor < 0)
 | 
						|
			quotient = -quotient;
 | 
						|
	}
 | 
						|
	return quotient;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(div_s64_rem);
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
 | 
						|
 * @dividend:	64bit dividend
 | 
						|
 * @divisor:	64bit divisor
 | 
						|
 * @remainder:  64bit remainder
 | 
						|
 *
 | 
						|
 * This implementation is a comparable to algorithm used by div64_u64.
 | 
						|
 * But this operation, which includes math for calculating the remainder,
 | 
						|
 * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
 | 
						|
 * systems.
 | 
						|
 */
 | 
						|
#ifndef div64_u64_rem
 | 
						|
u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
 | 
						|
{
 | 
						|
	u32 high = divisor >> 32;
 | 
						|
	u64 quot;
 | 
						|
 | 
						|
	if (high == 0) {
 | 
						|
		u32 rem32;
 | 
						|
		quot = div_u64_rem(dividend, divisor, &rem32);
 | 
						|
		*remainder = rem32;
 | 
						|
	} else {
 | 
						|
		int n = fls(high);
 | 
						|
		quot = div_u64(dividend >> n, divisor >> n);
 | 
						|
 | 
						|
		if (quot != 0)
 | 
						|
			quot--;
 | 
						|
 | 
						|
		*remainder = dividend - quot * divisor;
 | 
						|
		if (*remainder >= divisor) {
 | 
						|
			quot++;
 | 
						|
			*remainder -= divisor;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return quot;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(div64_u64_rem);
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * div64_u64 - unsigned 64bit divide with 64bit divisor
 | 
						|
 * @dividend:	64bit dividend
 | 
						|
 * @divisor:	64bit divisor
 | 
						|
 *
 | 
						|
 * This implementation is a modified version of the algorithm proposed
 | 
						|
 * by the book 'Hacker's Delight'.  The original source and full proof
 | 
						|
 * can be found here and is available for use without restriction.
 | 
						|
 *
 | 
						|
 * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
 | 
						|
 */
 | 
						|
#ifndef div64_u64
 | 
						|
u64 div64_u64(u64 dividend, u64 divisor)
 | 
						|
{
 | 
						|
	u32 high = divisor >> 32;
 | 
						|
	u64 quot;
 | 
						|
 | 
						|
	if (high == 0) {
 | 
						|
		quot = div_u64(dividend, divisor);
 | 
						|
	} else {
 | 
						|
		int n = fls(high);
 | 
						|
		quot = div_u64(dividend >> n, divisor >> n);
 | 
						|
 | 
						|
		if (quot != 0)
 | 
						|
			quot--;
 | 
						|
		if ((dividend - quot * divisor) >= divisor)
 | 
						|
			quot++;
 | 
						|
	}
 | 
						|
 | 
						|
	return quot;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(div64_u64);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef div64_s64
 | 
						|
s64 div64_s64(s64 dividend, s64 divisor)
 | 
						|
{
 | 
						|
	s64 quot, t;
 | 
						|
 | 
						|
	quot = div64_u64(abs(dividend), abs(divisor));
 | 
						|
	t = (dividend ^ divisor) >> 63;
 | 
						|
 | 
						|
	return (quot ^ t) - t;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(div64_s64);
 | 
						|
#endif
 | 
						|
 | 
						|
#endif /* BITS_PER_LONG == 32 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterative div/mod for use when dividend is not expected to be much
 | 
						|
 * bigger than divisor.
 | 
						|
 */
 | 
						|
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
 | 
						|
{
 | 
						|
	return __iter_div_u64_rem(dividend, divisor, remainder);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(iter_div_u64_rem);
 | 
						|
 | 
						|
#ifndef mul_u64_u64_div_u64
 | 
						|
u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
 | 
						|
{
 | 
						|
	u64 res = 0, div, rem;
 | 
						|
	int shift;
 | 
						|
 | 
						|
	/* can a * b overflow ? */
 | 
						|
	if (ilog2(a) + ilog2(b) > 62) {
 | 
						|
		/*
 | 
						|
		 * Note that the algorithm after the if block below might lose
 | 
						|
		 * some precision and the result is more exact for b > a. So
 | 
						|
		 * exchange a and b if a is bigger than b.
 | 
						|
		 *
 | 
						|
		 * For example with a = 43980465100800, b = 100000000, c = 1000000000
 | 
						|
		 * the below calculation doesn't modify b at all because div == 0
 | 
						|
		 * and then shift becomes 45 + 26 - 62 = 9 and so the result
 | 
						|
		 * becomes 4398035251080. However with a and b swapped the exact
 | 
						|
		 * result is calculated (i.e. 4398046510080).
 | 
						|
		 */
 | 
						|
		if (a > b)
 | 
						|
			swap(a, b);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * (b * a) / c is equal to
 | 
						|
		 *
 | 
						|
		 *      (b / c) * a +
 | 
						|
		 *      (b % c) * a / c
 | 
						|
		 *
 | 
						|
		 * if nothing overflows. Can the 1st multiplication
 | 
						|
		 * overflow? Yes, but we do not care: this can only
 | 
						|
		 * happen if the end result can't fit in u64 anyway.
 | 
						|
		 *
 | 
						|
		 * So the code below does
 | 
						|
		 *
 | 
						|
		 *      res = (b / c) * a;
 | 
						|
		 *      b = b % c;
 | 
						|
		 */
 | 
						|
		div = div64_u64_rem(b, c, &rem);
 | 
						|
		res = div * a;
 | 
						|
		b = rem;
 | 
						|
 | 
						|
		shift = ilog2(a) + ilog2(b) - 62;
 | 
						|
		if (shift > 0) {
 | 
						|
			/* drop precision */
 | 
						|
			b >>= shift;
 | 
						|
			c >>= shift;
 | 
						|
			if (!c)
 | 
						|
				return res;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return res + div64_u64(a * b, c);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(mul_u64_u64_div_u64);
 | 
						|
#endif
 |