mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZJU4SwAKCRCRxhvAZXjc
 ojOTAP9gT/z1gasIf8OwDHb4inZGnVpHh2ApKLvgMXH6ICtwRgD+OBtOcf438Lx1
 cpFSTVJlh21QXMOOXWHe/LRUV2kZ5wI=
 =zdfx
 -----END PGP SIGNATURE-----
Merge tag 'v6.5/vfs.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull misc vfs updates from Christian Brauner:
 "Miscellaneous features, cleanups, and fixes for vfs and individual fs
  Features:
   - Use mode 0600 for file created by cachefilesd so it can be run by
     unprivileged users. This aligns them with directories which are
     already created with mode 0700 by cachefilesd
   - Reorder a few members in struct file to prevent some false sharing
     scenarios
   - Indicate that an eventfd is used a semaphore in the eventfd's
     fdinfo procfs file
   - Add a missing uapi header for eventfd exposing relevant uapi
     defines
   - Let the VFS protect transitions of a superblock from read-only to
     read-write in addition to the protection it already provides for
     transitions from read-write to read-only. Protecting read-only to
     read-write transitions allows filesystems such as ext4 to perform
     internal writes, keeping writers away until the transition is
     completed
  Cleanups:
   - Arnd removed the architecture specific arch_report_meminfo()
     prototypes and added a generic one into procfs.h. Note, we got a
     report about a warning in amdpgpu codepaths that suggested this was
     bisectable to this change but we concluded it was a false positive
   - Remove unused parameters from split_fs_names()
   - Rename put_and_unmap_page() to unmap_and_put_page() to let the name
     reflect the order of the cleanup operation that has to unmap before
     the actual put
   - Unexport buffer_check_dirty_writeback() as it is not used outside
     of block device aops
   - Stop allocating aio rings from highmem
   - Protecting read-{only,write} transitions in the VFS used open-coded
     barriers in various places. Replace them with proper little helpers
     and document both the helpers and all barrier interactions involved
     when transitioning between read-{only,write} states
   - Use flexible array members in old readdir codepaths
  Fixes:
   - Use the correct type __poll_t for epoll and eventfd
   - Replace all deprecated strlcpy() invocations, whose return value
     isn't checked with an equivalent strscpy() call
   - Fix some kernel-doc warnings in fs/open.c
   - Reduce the stack usage in jffs2's xattr codepaths finally getting
     rid of this: fs/jffs2/xattr.c:887:1: error: the frame size of 1088
     bytes is larger than 1024 bytes [-Werror=frame-larger-than=]
     royally annoying compilation warning
   - Use __FMODE_NONOTIFY instead of FMODE_NONOTIFY where an int and not
     fmode_t is required to avoid fmode_t to integer degradation
     warnings
   - Create coredumps with O_WRONLY instead of O_RDWR. There's a long
     explanation in that commit how O_RDWR is actually a bug which we
     found out with the help of Linus and git archeology
   - Fix "no previous prototype" warnings in the pipe codepaths
   - Add overflow calculations for remap_verify_area() as a signed
     addition overflow could be triggered in xfstests
   - Fix a null pointer dereference in sysv
   - Use an unsigned variable for length calculations in jfs avoiding
     compilation warnings with gcc 13
   - Fix a dangling pipe pointer in the watch queue codepath
   - The legacy mount option parser provided as a fallback by the VFS
     for filesystems not yet converted to the new mount api did prefix
     the generated mount option string with a leading ',' causing issues
     for some filesystems
   - Fix a repeated word in a comment in fs.h
   - autofs: Update the ctime when mtime is updated as mandated by
     POSIX"
* tag 'v6.5/vfs.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (27 commits)
  readdir: Replace one-element arrays with flexible-array members
  fs: Provide helpers for manipulating sb->s_readonly_remount
  fs: Protect reconfiguration of sb read-write from racing writes
  eventfd: add a uapi header for eventfd userspace APIs
  autofs: set ctime as well when mtime changes on a dir
  eventfd: show the EFD_SEMAPHORE flag in fdinfo
  fs/aio: Stop allocating aio rings from HIGHMEM
  fs: Fix comment typo
  fs: unexport buffer_check_dirty_writeback
  fs: avoid empty option when generating legacy mount string
  watch_queue: prevent dangling pipe pointer
  fs.h: Optimize file struct to prevent false sharing
  highmem: Rename put_and_unmap_page() to unmap_and_put_page()
  cachefiles: Allow the cache to be non-root
  init: remove unused names parameter in split_fs_names()
  jfs: Use unsigned variable for length calculations
  fs/sysv: Null check to prevent null-ptr-deref bug
  fs: use UB-safe check for signed addition overflow in remap_verify_area
  procfs: consolidate arch_report_meminfo declaration
  fs: pipe: reveal missing function protoypes
  ...
		
	
			
		
			
				
	
	
		
			2487 lines
		
	
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2487 lines
		
	
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
 *  fs/eventpoll.c (Efficient event retrieval implementation)
 | 
						|
 *  Copyright (C) 2001,...,2009	 Davide Libenzi
 | 
						|
 *
 | 
						|
 *  Davide Libenzi <davidel@xmailserver.org>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/sched/signal.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/signal.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/poll.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/hash.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/rbtree.h>
 | 
						|
#include <linux/wait.h>
 | 
						|
#include <linux/eventpoll.h>
 | 
						|
#include <linux/mount.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/anon_inodes.h>
 | 
						|
#include <linux/device.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <asm/io.h>
 | 
						|
#include <asm/mman.h>
 | 
						|
#include <linux/atomic.h>
 | 
						|
#include <linux/proc_fs.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/compat.h>
 | 
						|
#include <linux/rculist.h>
 | 
						|
#include <net/busy_poll.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * LOCKING:
 | 
						|
 * There are three level of locking required by epoll :
 | 
						|
 *
 | 
						|
 * 1) epnested_mutex (mutex)
 | 
						|
 * 2) ep->mtx (mutex)
 | 
						|
 * 3) ep->lock (rwlock)
 | 
						|
 *
 | 
						|
 * The acquire order is the one listed above, from 1 to 3.
 | 
						|
 * We need a rwlock (ep->lock) because we manipulate objects
 | 
						|
 * from inside the poll callback, that might be triggered from
 | 
						|
 * a wake_up() that in turn might be called from IRQ context.
 | 
						|
 * So we can't sleep inside the poll callback and hence we need
 | 
						|
 * a spinlock. During the event transfer loop (from kernel to
 | 
						|
 * user space) we could end up sleeping due a copy_to_user(), so
 | 
						|
 * we need a lock that will allow us to sleep. This lock is a
 | 
						|
 * mutex (ep->mtx). It is acquired during the event transfer loop,
 | 
						|
 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
 | 
						|
 * The epnested_mutex is acquired when inserting an epoll fd onto another
 | 
						|
 * epoll fd. We do this so that we walk the epoll tree and ensure that this
 | 
						|
 * insertion does not create a cycle of epoll file descriptors, which
 | 
						|
 * could lead to deadlock. We need a global mutex to prevent two
 | 
						|
 * simultaneous inserts (A into B and B into A) from racing and
 | 
						|
 * constructing a cycle without either insert observing that it is
 | 
						|
 * going to.
 | 
						|
 * It is necessary to acquire multiple "ep->mtx"es at once in the
 | 
						|
 * case when one epoll fd is added to another. In this case, we
 | 
						|
 * always acquire the locks in the order of nesting (i.e. after
 | 
						|
 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
 | 
						|
 * before e2->mtx). Since we disallow cycles of epoll file
 | 
						|
 * descriptors, this ensures that the mutexes are well-ordered. In
 | 
						|
 * order to communicate this nesting to lockdep, when walking a tree
 | 
						|
 * of epoll file descriptors, we use the current recursion depth as
 | 
						|
 * the lockdep subkey.
 | 
						|
 * It is possible to drop the "ep->mtx" and to use the global
 | 
						|
 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
 | 
						|
 * but having "ep->mtx" will make the interface more scalable.
 | 
						|
 * Events that require holding "epnested_mutex" are very rare, while for
 | 
						|
 * normal operations the epoll private "ep->mtx" will guarantee
 | 
						|
 * a better scalability.
 | 
						|
 */
 | 
						|
 | 
						|
/* Epoll private bits inside the event mask */
 | 
						|
#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
 | 
						|
 | 
						|
#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
 | 
						|
 | 
						|
#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
 | 
						|
				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
 | 
						|
 | 
						|
/* Maximum number of nesting allowed inside epoll sets */
 | 
						|
#define EP_MAX_NESTS 4
 | 
						|
 | 
						|
#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
 | 
						|
 | 
						|
#define EP_UNACTIVE_PTR ((void *) -1L)
 | 
						|
 | 
						|
#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
 | 
						|
 | 
						|
struct epoll_filefd {
 | 
						|
	struct file *file;
 | 
						|
	int fd;
 | 
						|
} __packed;
 | 
						|
 | 
						|
/* Wait structure used by the poll hooks */
 | 
						|
struct eppoll_entry {
 | 
						|
	/* List header used to link this structure to the "struct epitem" */
 | 
						|
	struct eppoll_entry *next;
 | 
						|
 | 
						|
	/* The "base" pointer is set to the container "struct epitem" */
 | 
						|
	struct epitem *base;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wait queue item that will be linked to the target file wait
 | 
						|
	 * queue head.
 | 
						|
	 */
 | 
						|
	wait_queue_entry_t wait;
 | 
						|
 | 
						|
	/* The wait queue head that linked the "wait" wait queue item */
 | 
						|
	wait_queue_head_t *whead;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Each file descriptor added to the eventpoll interface will
 | 
						|
 * have an entry of this type linked to the "rbr" RB tree.
 | 
						|
 * Avoid increasing the size of this struct, there can be many thousands
 | 
						|
 * of these on a server and we do not want this to take another cache line.
 | 
						|
 */
 | 
						|
struct epitem {
 | 
						|
	union {
 | 
						|
		/* RB tree node links this structure to the eventpoll RB tree */
 | 
						|
		struct rb_node rbn;
 | 
						|
		/* Used to free the struct epitem */
 | 
						|
		struct rcu_head rcu;
 | 
						|
	};
 | 
						|
 | 
						|
	/* List header used to link this structure to the eventpoll ready list */
 | 
						|
	struct list_head rdllink;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Works together "struct eventpoll"->ovflist in keeping the
 | 
						|
	 * single linked chain of items.
 | 
						|
	 */
 | 
						|
	struct epitem *next;
 | 
						|
 | 
						|
	/* The file descriptor information this item refers to */
 | 
						|
	struct epoll_filefd ffd;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Protected by file->f_lock, true for to-be-released epitem already
 | 
						|
	 * removed from the "struct file" items list; together with
 | 
						|
	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
 | 
						|
	 */
 | 
						|
	bool dying;
 | 
						|
 | 
						|
	/* List containing poll wait queues */
 | 
						|
	struct eppoll_entry *pwqlist;
 | 
						|
 | 
						|
	/* The "container" of this item */
 | 
						|
	struct eventpoll *ep;
 | 
						|
 | 
						|
	/* List header used to link this item to the "struct file" items list */
 | 
						|
	struct hlist_node fllink;
 | 
						|
 | 
						|
	/* wakeup_source used when EPOLLWAKEUP is set */
 | 
						|
	struct wakeup_source __rcu *ws;
 | 
						|
 | 
						|
	/* The structure that describe the interested events and the source fd */
 | 
						|
	struct epoll_event event;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * This structure is stored inside the "private_data" member of the file
 | 
						|
 * structure and represents the main data structure for the eventpoll
 | 
						|
 * interface.
 | 
						|
 */
 | 
						|
struct eventpoll {
 | 
						|
	/*
 | 
						|
	 * This mutex is used to ensure that files are not removed
 | 
						|
	 * while epoll is using them. This is held during the event
 | 
						|
	 * collection loop, the file cleanup path, the epoll file exit
 | 
						|
	 * code and the ctl operations.
 | 
						|
	 */
 | 
						|
	struct mutex mtx;
 | 
						|
 | 
						|
	/* Wait queue used by sys_epoll_wait() */
 | 
						|
	wait_queue_head_t wq;
 | 
						|
 | 
						|
	/* Wait queue used by file->poll() */
 | 
						|
	wait_queue_head_t poll_wait;
 | 
						|
 | 
						|
	/* List of ready file descriptors */
 | 
						|
	struct list_head rdllist;
 | 
						|
 | 
						|
	/* Lock which protects rdllist and ovflist */
 | 
						|
	rwlock_t lock;
 | 
						|
 | 
						|
	/* RB tree root used to store monitored fd structs */
 | 
						|
	struct rb_root_cached rbr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is a single linked list that chains all the "struct epitem" that
 | 
						|
	 * happened while transferring ready events to userspace w/out
 | 
						|
	 * holding ->lock.
 | 
						|
	 */
 | 
						|
	struct epitem *ovflist;
 | 
						|
 | 
						|
	/* wakeup_source used when ep_scan_ready_list is running */
 | 
						|
	struct wakeup_source *ws;
 | 
						|
 | 
						|
	/* The user that created the eventpoll descriptor */
 | 
						|
	struct user_struct *user;
 | 
						|
 | 
						|
	struct file *file;
 | 
						|
 | 
						|
	/* used to optimize loop detection check */
 | 
						|
	u64 gen;
 | 
						|
	struct hlist_head refs;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * usage count, used together with epitem->dying to
 | 
						|
	 * orchestrate the disposal of this struct
 | 
						|
	 */
 | 
						|
	refcount_t refcount;
 | 
						|
 | 
						|
#ifdef CONFIG_NET_RX_BUSY_POLL
 | 
						|
	/* used to track busy poll napi_id */
 | 
						|
	unsigned int napi_id;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
 | 
						|
	/* tracks wakeup nests for lockdep validation */
 | 
						|
	u8 nests;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
/* Wrapper struct used by poll queueing */
 | 
						|
struct ep_pqueue {
 | 
						|
	poll_table pt;
 | 
						|
	struct epitem *epi;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Configuration options available inside /proc/sys/fs/epoll/
 | 
						|
 */
 | 
						|
/* Maximum number of epoll watched descriptors, per user */
 | 
						|
static long max_user_watches __read_mostly;
 | 
						|
 | 
						|
/* Used for cycles detection */
 | 
						|
static DEFINE_MUTEX(epnested_mutex);
 | 
						|
 | 
						|
static u64 loop_check_gen = 0;
 | 
						|
 | 
						|
/* Used to check for epoll file descriptor inclusion loops */
 | 
						|
static struct eventpoll *inserting_into;
 | 
						|
 | 
						|
/* Slab cache used to allocate "struct epitem" */
 | 
						|
static struct kmem_cache *epi_cache __read_mostly;
 | 
						|
 | 
						|
/* Slab cache used to allocate "struct eppoll_entry" */
 | 
						|
static struct kmem_cache *pwq_cache __read_mostly;
 | 
						|
 | 
						|
/*
 | 
						|
 * List of files with newly added links, where we may need to limit the number
 | 
						|
 * of emanating paths. Protected by the epnested_mutex.
 | 
						|
 */
 | 
						|
struct epitems_head {
 | 
						|
	struct hlist_head epitems;
 | 
						|
	struct epitems_head *next;
 | 
						|
};
 | 
						|
static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
 | 
						|
 | 
						|
static struct kmem_cache *ephead_cache __read_mostly;
 | 
						|
 | 
						|
static inline void free_ephead(struct epitems_head *head)
 | 
						|
{
 | 
						|
	if (head)
 | 
						|
		kmem_cache_free(ephead_cache, head);
 | 
						|
}
 | 
						|
 | 
						|
static void list_file(struct file *file)
 | 
						|
{
 | 
						|
	struct epitems_head *head;
 | 
						|
 | 
						|
	head = container_of(file->f_ep, struct epitems_head, epitems);
 | 
						|
	if (!head->next) {
 | 
						|
		head->next = tfile_check_list;
 | 
						|
		tfile_check_list = head;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void unlist_file(struct epitems_head *head)
 | 
						|
{
 | 
						|
	struct epitems_head *to_free = head;
 | 
						|
	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
 | 
						|
	if (p) {
 | 
						|
		struct epitem *epi= container_of(p, struct epitem, fllink);
 | 
						|
		spin_lock(&epi->ffd.file->f_lock);
 | 
						|
		if (!hlist_empty(&head->epitems))
 | 
						|
			to_free = NULL;
 | 
						|
		head->next = NULL;
 | 
						|
		spin_unlock(&epi->ffd.file->f_lock);
 | 
						|
	}
 | 
						|
	free_ephead(to_free);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SYSCTL
 | 
						|
 | 
						|
#include <linux/sysctl.h>
 | 
						|
 | 
						|
static long long_zero;
 | 
						|
static long long_max = LONG_MAX;
 | 
						|
 | 
						|
static struct ctl_table epoll_table[] = {
 | 
						|
	{
 | 
						|
		.procname	= "max_user_watches",
 | 
						|
		.data		= &max_user_watches,
 | 
						|
		.maxlen		= sizeof(max_user_watches),
 | 
						|
		.mode		= 0644,
 | 
						|
		.proc_handler	= proc_doulongvec_minmax,
 | 
						|
		.extra1		= &long_zero,
 | 
						|
		.extra2		= &long_max,
 | 
						|
	},
 | 
						|
	{ }
 | 
						|
};
 | 
						|
 | 
						|
static void __init epoll_sysctls_init(void)
 | 
						|
{
 | 
						|
	register_sysctl("fs/epoll", epoll_table);
 | 
						|
}
 | 
						|
#else
 | 
						|
#define epoll_sysctls_init() do { } while (0)
 | 
						|
#endif /* CONFIG_SYSCTL */
 | 
						|
 | 
						|
static const struct file_operations eventpoll_fops;
 | 
						|
 | 
						|
static inline int is_file_epoll(struct file *f)
 | 
						|
{
 | 
						|
	return f->f_op == &eventpoll_fops;
 | 
						|
}
 | 
						|
 | 
						|
/* Setup the structure that is used as key for the RB tree */
 | 
						|
static inline void ep_set_ffd(struct epoll_filefd *ffd,
 | 
						|
			      struct file *file, int fd)
 | 
						|
{
 | 
						|
	ffd->file = file;
 | 
						|
	ffd->fd = fd;
 | 
						|
}
 | 
						|
 | 
						|
/* Compare RB tree keys */
 | 
						|
static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 | 
						|
			     struct epoll_filefd *p2)
 | 
						|
{
 | 
						|
	return (p1->file > p2->file ? +1:
 | 
						|
	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
 | 
						|
}
 | 
						|
 | 
						|
/* Tells us if the item is currently linked */
 | 
						|
static inline int ep_is_linked(struct epitem *epi)
 | 
						|
{
 | 
						|
	return !list_empty(&epi->rdllink);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
 | 
						|
{
 | 
						|
	return container_of(p, struct eppoll_entry, wait);
 | 
						|
}
 | 
						|
 | 
						|
/* Get the "struct epitem" from a wait queue pointer */
 | 
						|
static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
 | 
						|
{
 | 
						|
	return container_of(p, struct eppoll_entry, wait)->base;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ep_events_available - Checks if ready events might be available.
 | 
						|
 *
 | 
						|
 * @ep: Pointer to the eventpoll context.
 | 
						|
 *
 | 
						|
 * Return: a value different than %zero if ready events are available,
 | 
						|
 *          or %zero otherwise.
 | 
						|
 */
 | 
						|
static inline int ep_events_available(struct eventpoll *ep)
 | 
						|
{
 | 
						|
	return !list_empty_careful(&ep->rdllist) ||
 | 
						|
		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NET_RX_BUSY_POLL
 | 
						|
static bool ep_busy_loop_end(void *p, unsigned long start_time)
 | 
						|
{
 | 
						|
	struct eventpoll *ep = p;
 | 
						|
 | 
						|
	return ep_events_available(ep) || busy_loop_timeout(start_time);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Busy poll if globally on and supporting sockets found && no events,
 | 
						|
 * busy loop will return if need_resched or ep_events_available.
 | 
						|
 *
 | 
						|
 * we must do our busy polling with irqs enabled
 | 
						|
 */
 | 
						|
static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
 | 
						|
{
 | 
						|
	unsigned int napi_id = READ_ONCE(ep->napi_id);
 | 
						|
 | 
						|
	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
 | 
						|
		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
 | 
						|
			       BUSY_POLL_BUDGET);
 | 
						|
		if (ep_events_available(ep))
 | 
						|
			return true;
 | 
						|
		/*
 | 
						|
		 * Busy poll timed out.  Drop NAPI ID for now, we can add
 | 
						|
		 * it back in when we have moved a socket with a valid NAPI
 | 
						|
		 * ID onto the ready list.
 | 
						|
		 */
 | 
						|
		ep->napi_id = 0;
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set epoll busy poll NAPI ID from sk.
 | 
						|
 */
 | 
						|
static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 | 
						|
{
 | 
						|
	struct eventpoll *ep;
 | 
						|
	unsigned int napi_id;
 | 
						|
	struct socket *sock;
 | 
						|
	struct sock *sk;
 | 
						|
 | 
						|
	if (!net_busy_loop_on())
 | 
						|
		return;
 | 
						|
 | 
						|
	sock = sock_from_file(epi->ffd.file);
 | 
						|
	if (!sock)
 | 
						|
		return;
 | 
						|
 | 
						|
	sk = sock->sk;
 | 
						|
	if (!sk)
 | 
						|
		return;
 | 
						|
 | 
						|
	napi_id = READ_ONCE(sk->sk_napi_id);
 | 
						|
	ep = epi->ep;
 | 
						|
 | 
						|
	/* Non-NAPI IDs can be rejected
 | 
						|
	 *	or
 | 
						|
	 * Nothing to do if we already have this ID
 | 
						|
	 */
 | 
						|
	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* record NAPI ID for use in next busy poll */
 | 
						|
	ep->napi_id = napi_id;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_NET_RX_BUSY_POLL */
 | 
						|
 | 
						|
/*
 | 
						|
 * As described in commit 0ccf831cb lockdep: annotate epoll
 | 
						|
 * the use of wait queues used by epoll is done in a very controlled
 | 
						|
 * manner. Wake ups can nest inside each other, but are never done
 | 
						|
 * with the same locking. For example:
 | 
						|
 *
 | 
						|
 *   dfd = socket(...);
 | 
						|
 *   efd1 = epoll_create();
 | 
						|
 *   efd2 = epoll_create();
 | 
						|
 *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
 | 
						|
 *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
 | 
						|
 *
 | 
						|
 * When a packet arrives to the device underneath "dfd", the net code will
 | 
						|
 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
 | 
						|
 * callback wakeup entry on that queue, and the wake_up() performed by the
 | 
						|
 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
 | 
						|
 * (efd1) notices that it may have some event ready, so it needs to wake up
 | 
						|
 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
 | 
						|
 * that ends up in another wake_up(), after having checked about the
 | 
						|
 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
 | 
						|
 * stack blasting.
 | 
						|
 *
 | 
						|
 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
 | 
						|
 * this special case of epoll.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
 | 
						|
 | 
						|
static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
 | 
						|
			     unsigned pollflags)
 | 
						|
{
 | 
						|
	struct eventpoll *ep_src;
 | 
						|
	unsigned long flags;
 | 
						|
	u8 nests = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
 | 
						|
	 * it might be natural to create a per-cpu nest count. However, since
 | 
						|
	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
 | 
						|
	 * schedule() in the -rt kernel, the per-cpu variable are no longer
 | 
						|
	 * protected. Thus, we are introducing a per eventpoll nest field.
 | 
						|
	 * If we are not being call from ep_poll_callback(), epi is NULL and
 | 
						|
	 * we are at the first level of nesting, 0. Otherwise, we are being
 | 
						|
	 * called from ep_poll_callback() and if a previous wakeup source is
 | 
						|
	 * not an epoll file itself, we are at depth 1 since the wakeup source
 | 
						|
	 * is depth 0. If the wakeup source is a previous epoll file in the
 | 
						|
	 * wakeup chain then we use its nests value and record ours as
 | 
						|
	 * nests + 1. The previous epoll file nests value is stable since its
 | 
						|
	 * already holding its own poll_wait.lock.
 | 
						|
	 */
 | 
						|
	if (epi) {
 | 
						|
		if ((is_file_epoll(epi->ffd.file))) {
 | 
						|
			ep_src = epi->ffd.file->private_data;
 | 
						|
			nests = ep_src->nests;
 | 
						|
		} else {
 | 
						|
			nests = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
 | 
						|
	ep->nests = nests + 1;
 | 
						|
	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
 | 
						|
	ep->nests = 0;
 | 
						|
	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
 | 
						|
			     __poll_t pollflags)
 | 
						|
{
 | 
						|
	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static void ep_remove_wait_queue(struct eppoll_entry *pwq)
 | 
						|
{
 | 
						|
	wait_queue_head_t *whead;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	/*
 | 
						|
	 * If it is cleared by POLLFREE, it should be rcu-safe.
 | 
						|
	 * If we read NULL we need a barrier paired with
 | 
						|
	 * smp_store_release() in ep_poll_callback(), otherwise
 | 
						|
	 * we rely on whead->lock.
 | 
						|
	 */
 | 
						|
	whead = smp_load_acquire(&pwq->whead);
 | 
						|
	if (whead)
 | 
						|
		remove_wait_queue(whead, &pwq->wait);
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function unregisters poll callbacks from the associated file
 | 
						|
 * descriptor.  Must be called with "mtx" held.
 | 
						|
 */
 | 
						|
static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
 | 
						|
{
 | 
						|
	struct eppoll_entry **p = &epi->pwqlist;
 | 
						|
	struct eppoll_entry *pwq;
 | 
						|
 | 
						|
	while ((pwq = *p) != NULL) {
 | 
						|
		*p = pwq->next;
 | 
						|
		ep_remove_wait_queue(pwq);
 | 
						|
		kmem_cache_free(pwq_cache, pwq);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* call only when ep->mtx is held */
 | 
						|
static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
 | 
						|
{
 | 
						|
	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
 | 
						|
}
 | 
						|
 | 
						|
/* call only when ep->mtx is held */
 | 
						|
static inline void ep_pm_stay_awake(struct epitem *epi)
 | 
						|
{
 | 
						|
	struct wakeup_source *ws = ep_wakeup_source(epi);
 | 
						|
 | 
						|
	if (ws)
 | 
						|
		__pm_stay_awake(ws);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ep_has_wakeup_source(struct epitem *epi)
 | 
						|
{
 | 
						|
	return rcu_access_pointer(epi->ws) ? true : false;
 | 
						|
}
 | 
						|
 | 
						|
/* call when ep->mtx cannot be held (ep_poll_callback) */
 | 
						|
static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
 | 
						|
{
 | 
						|
	struct wakeup_source *ws;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	ws = rcu_dereference(epi->ws);
 | 
						|
	if (ws)
 | 
						|
		__pm_stay_awake(ws);
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * ep->mutex needs to be held because we could be hit by
 | 
						|
 * eventpoll_release_file() and epoll_ctl().
 | 
						|
 */
 | 
						|
static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Steal the ready list, and re-init the original one to the
 | 
						|
	 * empty list. Also, set ep->ovflist to NULL so that events
 | 
						|
	 * happening while looping w/out locks, are not lost. We cannot
 | 
						|
	 * have the poll callback to queue directly on ep->rdllist,
 | 
						|
	 * because we want the "sproc" callback to be able to do it
 | 
						|
	 * in a lockless way.
 | 
						|
	 */
 | 
						|
	lockdep_assert_irqs_enabled();
 | 
						|
	write_lock_irq(&ep->lock);
 | 
						|
	list_splice_init(&ep->rdllist, txlist);
 | 
						|
	WRITE_ONCE(ep->ovflist, NULL);
 | 
						|
	write_unlock_irq(&ep->lock);
 | 
						|
}
 | 
						|
 | 
						|
static void ep_done_scan(struct eventpoll *ep,
 | 
						|
			 struct list_head *txlist)
 | 
						|
{
 | 
						|
	struct epitem *epi, *nepi;
 | 
						|
 | 
						|
	write_lock_irq(&ep->lock);
 | 
						|
	/*
 | 
						|
	 * During the time we spent inside the "sproc" callback, some
 | 
						|
	 * other events might have been queued by the poll callback.
 | 
						|
	 * We re-insert them inside the main ready-list here.
 | 
						|
	 */
 | 
						|
	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
 | 
						|
	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
 | 
						|
		/*
 | 
						|
		 * We need to check if the item is already in the list.
 | 
						|
		 * During the "sproc" callback execution time, items are
 | 
						|
		 * queued into ->ovflist but the "txlist" might already
 | 
						|
		 * contain them, and the list_splice() below takes care of them.
 | 
						|
		 */
 | 
						|
		if (!ep_is_linked(epi)) {
 | 
						|
			/*
 | 
						|
			 * ->ovflist is LIFO, so we have to reverse it in order
 | 
						|
			 * to keep in FIFO.
 | 
						|
			 */
 | 
						|
			list_add(&epi->rdllink, &ep->rdllist);
 | 
						|
			ep_pm_stay_awake(epi);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
 | 
						|
	 * releasing the lock, events will be queued in the normal way inside
 | 
						|
	 * ep->rdllist.
 | 
						|
	 */
 | 
						|
	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Quickly re-inject items left on "txlist".
 | 
						|
	 */
 | 
						|
	list_splice(txlist, &ep->rdllist);
 | 
						|
	__pm_relax(ep->ws);
 | 
						|
 | 
						|
	if (!list_empty(&ep->rdllist)) {
 | 
						|
		if (waitqueue_active(&ep->wq))
 | 
						|
			wake_up(&ep->wq);
 | 
						|
	}
 | 
						|
 | 
						|
	write_unlock_irq(&ep->lock);
 | 
						|
}
 | 
						|
 | 
						|
static void epi_rcu_free(struct rcu_head *head)
 | 
						|
{
 | 
						|
	struct epitem *epi = container_of(head, struct epitem, rcu);
 | 
						|
	kmem_cache_free(epi_cache, epi);
 | 
						|
}
 | 
						|
 | 
						|
static void ep_get(struct eventpoll *ep)
 | 
						|
{
 | 
						|
	refcount_inc(&ep->refcount);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns true if the event poll can be disposed
 | 
						|
 */
 | 
						|
static bool ep_refcount_dec_and_test(struct eventpoll *ep)
 | 
						|
{
 | 
						|
	if (!refcount_dec_and_test(&ep->refcount))
 | 
						|
		return false;
 | 
						|
 | 
						|
	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void ep_free(struct eventpoll *ep)
 | 
						|
{
 | 
						|
	mutex_destroy(&ep->mtx);
 | 
						|
	free_uid(ep->user);
 | 
						|
	wakeup_source_unregister(ep->ws);
 | 
						|
	kfree(ep);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
 | 
						|
 * all the associated resources. Must be called with "mtx" held.
 | 
						|
 * If the dying flag is set, do the removal only if force is true.
 | 
						|
 * This prevents ep_clear_and_put() from dropping all the ep references
 | 
						|
 * while running concurrently with eventpoll_release_file().
 | 
						|
 * Returns true if the eventpoll can be disposed.
 | 
						|
 */
 | 
						|
static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
 | 
						|
{
 | 
						|
	struct file *file = epi->ffd.file;
 | 
						|
	struct epitems_head *to_free;
 | 
						|
	struct hlist_head *head;
 | 
						|
 | 
						|
	lockdep_assert_irqs_enabled();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Removes poll wait queue hooks.
 | 
						|
	 */
 | 
						|
	ep_unregister_pollwait(ep, epi);
 | 
						|
 | 
						|
	/* Remove the current item from the list of epoll hooks */
 | 
						|
	spin_lock(&file->f_lock);
 | 
						|
	if (epi->dying && !force) {
 | 
						|
		spin_unlock(&file->f_lock);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	to_free = NULL;
 | 
						|
	head = file->f_ep;
 | 
						|
	if (head->first == &epi->fllink && !epi->fllink.next) {
 | 
						|
		file->f_ep = NULL;
 | 
						|
		if (!is_file_epoll(file)) {
 | 
						|
			struct epitems_head *v;
 | 
						|
			v = container_of(head, struct epitems_head, epitems);
 | 
						|
			if (!smp_load_acquire(&v->next))
 | 
						|
				to_free = v;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	hlist_del_rcu(&epi->fllink);
 | 
						|
	spin_unlock(&file->f_lock);
 | 
						|
	free_ephead(to_free);
 | 
						|
 | 
						|
	rb_erase_cached(&epi->rbn, &ep->rbr);
 | 
						|
 | 
						|
	write_lock_irq(&ep->lock);
 | 
						|
	if (ep_is_linked(epi))
 | 
						|
		list_del_init(&epi->rdllink);
 | 
						|
	write_unlock_irq(&ep->lock);
 | 
						|
 | 
						|
	wakeup_source_unregister(ep_wakeup_source(epi));
 | 
						|
	/*
 | 
						|
	 * At this point it is safe to free the eventpoll item. Use the union
 | 
						|
	 * field epi->rcu, since we are trying to minimize the size of
 | 
						|
	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
 | 
						|
	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
 | 
						|
	 * use of the rbn field.
 | 
						|
	 */
 | 
						|
	call_rcu(&epi->rcu, epi_rcu_free);
 | 
						|
 | 
						|
	percpu_counter_dec(&ep->user->epoll_watches);
 | 
						|
	return ep_refcount_dec_and_test(ep);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ep_remove variant for callers owing an additional reference to the ep
 | 
						|
 */
 | 
						|
static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
 | 
						|
{
 | 
						|
	WARN_ON_ONCE(__ep_remove(ep, epi, false));
 | 
						|
}
 | 
						|
 | 
						|
static void ep_clear_and_put(struct eventpoll *ep)
 | 
						|
{
 | 
						|
	struct rb_node *rbp, *next;
 | 
						|
	struct epitem *epi;
 | 
						|
	bool dispose;
 | 
						|
 | 
						|
	/* We need to release all tasks waiting for these file */
 | 
						|
	if (waitqueue_active(&ep->poll_wait))
 | 
						|
		ep_poll_safewake(ep, NULL, 0);
 | 
						|
 | 
						|
	mutex_lock(&ep->mtx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Walks through the whole tree by unregistering poll callbacks.
 | 
						|
	 */
 | 
						|
	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 | 
						|
		epi = rb_entry(rbp, struct epitem, rbn);
 | 
						|
 | 
						|
		ep_unregister_pollwait(ep, epi);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Walks through the whole tree and try to free each "struct epitem".
 | 
						|
	 * Note that ep_remove_safe() will not remove the epitem in case of a
 | 
						|
	 * racing eventpoll_release_file(); the latter will do the removal.
 | 
						|
	 * At this point we are sure no poll callbacks will be lingering around.
 | 
						|
	 * Since we still own a reference to the eventpoll struct, the loop can't
 | 
						|
	 * dispose it.
 | 
						|
	 */
 | 
						|
	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
 | 
						|
		next = rb_next(rbp);
 | 
						|
		epi = rb_entry(rbp, struct epitem, rbn);
 | 
						|
		ep_remove_safe(ep, epi);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	dispose = ep_refcount_dec_and_test(ep);
 | 
						|
	mutex_unlock(&ep->mtx);
 | 
						|
 | 
						|
	if (dispose)
 | 
						|
		ep_free(ep);
 | 
						|
}
 | 
						|
 | 
						|
static int ep_eventpoll_release(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	struct eventpoll *ep = file->private_data;
 | 
						|
 | 
						|
	if (ep)
 | 
						|
		ep_clear_and_put(ep);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
 | 
						|
 | 
						|
static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
 | 
						|
{
 | 
						|
	struct eventpoll *ep = file->private_data;
 | 
						|
	LIST_HEAD(txlist);
 | 
						|
	struct epitem *epi, *tmp;
 | 
						|
	poll_table pt;
 | 
						|
	__poll_t res = 0;
 | 
						|
 | 
						|
	init_poll_funcptr(&pt, NULL);
 | 
						|
 | 
						|
	/* Insert inside our poll wait queue */
 | 
						|
	poll_wait(file, &ep->poll_wait, wait);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Proceed to find out if wanted events are really available inside
 | 
						|
	 * the ready list.
 | 
						|
	 */
 | 
						|
	mutex_lock_nested(&ep->mtx, depth);
 | 
						|
	ep_start_scan(ep, &txlist);
 | 
						|
	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
 | 
						|
		if (ep_item_poll(epi, &pt, depth + 1)) {
 | 
						|
			res = EPOLLIN | EPOLLRDNORM;
 | 
						|
			break;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Item has been dropped into the ready list by the poll
 | 
						|
			 * callback, but it's not actually ready, as far as
 | 
						|
			 * caller requested events goes. We can remove it here.
 | 
						|
			 */
 | 
						|
			__pm_relax(ep_wakeup_source(epi));
 | 
						|
			list_del_init(&epi->rdllink);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ep_done_scan(ep, &txlist);
 | 
						|
	mutex_unlock(&ep->mtx);
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Differs from ep_eventpoll_poll() in that internal callers already have
 | 
						|
 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
 | 
						|
 * is correctly annotated.
 | 
						|
 */
 | 
						|
static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
 | 
						|
				 int depth)
 | 
						|
{
 | 
						|
	struct file *file = epi->ffd.file;
 | 
						|
	__poll_t res;
 | 
						|
 | 
						|
	pt->_key = epi->event.events;
 | 
						|
	if (!is_file_epoll(file))
 | 
						|
		res = vfs_poll(file, pt);
 | 
						|
	else
 | 
						|
		res = __ep_eventpoll_poll(file, pt, depth);
 | 
						|
	return res & epi->event.events;
 | 
						|
}
 | 
						|
 | 
						|
static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
 | 
						|
{
 | 
						|
	return __ep_eventpoll_poll(file, wait, 0);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PROC_FS
 | 
						|
static void ep_show_fdinfo(struct seq_file *m, struct file *f)
 | 
						|
{
 | 
						|
	struct eventpoll *ep = f->private_data;
 | 
						|
	struct rb_node *rbp;
 | 
						|
 | 
						|
	mutex_lock(&ep->mtx);
 | 
						|
	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 | 
						|
		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
 | 
						|
		struct inode *inode = file_inode(epi->ffd.file);
 | 
						|
 | 
						|
		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
 | 
						|
			   " pos:%lli ino:%lx sdev:%x\n",
 | 
						|
			   epi->ffd.fd, epi->event.events,
 | 
						|
			   (long long)epi->event.data,
 | 
						|
			   (long long)epi->ffd.file->f_pos,
 | 
						|
			   inode->i_ino, inode->i_sb->s_dev);
 | 
						|
		if (seq_has_overflowed(m))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	mutex_unlock(&ep->mtx);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* File callbacks that implement the eventpoll file behaviour */
 | 
						|
static const struct file_operations eventpoll_fops = {
 | 
						|
#ifdef CONFIG_PROC_FS
 | 
						|
	.show_fdinfo	= ep_show_fdinfo,
 | 
						|
#endif
 | 
						|
	.release	= ep_eventpoll_release,
 | 
						|
	.poll		= ep_eventpoll_poll,
 | 
						|
	.llseek		= noop_llseek,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called from eventpoll_release() to unlink files from the eventpoll
 | 
						|
 * interface. We need to have this facility to cleanup correctly files that are
 | 
						|
 * closed without being removed from the eventpoll interface.
 | 
						|
 */
 | 
						|
void eventpoll_release_file(struct file *file)
 | 
						|
{
 | 
						|
	struct eventpoll *ep;
 | 
						|
	struct epitem *epi;
 | 
						|
	bool dispose;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
 | 
						|
	 * touching the epitems list before eventpoll_release_file() can access
 | 
						|
	 * the ep->mtx.
 | 
						|
	 */
 | 
						|
again:
 | 
						|
	spin_lock(&file->f_lock);
 | 
						|
	if (file->f_ep && file->f_ep->first) {
 | 
						|
		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
 | 
						|
		epi->dying = true;
 | 
						|
		spin_unlock(&file->f_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * ep access is safe as we still own a reference to the ep
 | 
						|
		 * struct
 | 
						|
		 */
 | 
						|
		ep = epi->ep;
 | 
						|
		mutex_lock(&ep->mtx);
 | 
						|
		dispose = __ep_remove(ep, epi, true);
 | 
						|
		mutex_unlock(&ep->mtx);
 | 
						|
 | 
						|
		if (dispose)
 | 
						|
			ep_free(ep);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	spin_unlock(&file->f_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int ep_alloc(struct eventpoll **pep)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
	struct user_struct *user;
 | 
						|
	struct eventpoll *ep;
 | 
						|
 | 
						|
	user = get_current_user();
 | 
						|
	error = -ENOMEM;
 | 
						|
	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
 | 
						|
	if (unlikely(!ep))
 | 
						|
		goto free_uid;
 | 
						|
 | 
						|
	mutex_init(&ep->mtx);
 | 
						|
	rwlock_init(&ep->lock);
 | 
						|
	init_waitqueue_head(&ep->wq);
 | 
						|
	init_waitqueue_head(&ep->poll_wait);
 | 
						|
	INIT_LIST_HEAD(&ep->rdllist);
 | 
						|
	ep->rbr = RB_ROOT_CACHED;
 | 
						|
	ep->ovflist = EP_UNACTIVE_PTR;
 | 
						|
	ep->user = user;
 | 
						|
	refcount_set(&ep->refcount, 1);
 | 
						|
 | 
						|
	*pep = ep;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
free_uid:
 | 
						|
	free_uid(user);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Search the file inside the eventpoll tree. The RB tree operations
 | 
						|
 * are protected by the "mtx" mutex, and ep_find() must be called with
 | 
						|
 * "mtx" held.
 | 
						|
 */
 | 
						|
static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
 | 
						|
{
 | 
						|
	int kcmp;
 | 
						|
	struct rb_node *rbp;
 | 
						|
	struct epitem *epi, *epir = NULL;
 | 
						|
	struct epoll_filefd ffd;
 | 
						|
 | 
						|
	ep_set_ffd(&ffd, file, fd);
 | 
						|
	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
 | 
						|
		epi = rb_entry(rbp, struct epitem, rbn);
 | 
						|
		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
 | 
						|
		if (kcmp > 0)
 | 
						|
			rbp = rbp->rb_right;
 | 
						|
		else if (kcmp < 0)
 | 
						|
			rbp = rbp->rb_left;
 | 
						|
		else {
 | 
						|
			epir = epi;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return epir;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_KCMP
 | 
						|
static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
 | 
						|
{
 | 
						|
	struct rb_node *rbp;
 | 
						|
	struct epitem *epi;
 | 
						|
 | 
						|
	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 | 
						|
		epi = rb_entry(rbp, struct epitem, rbn);
 | 
						|
		if (epi->ffd.fd == tfd) {
 | 
						|
			if (toff == 0)
 | 
						|
				return epi;
 | 
						|
			else
 | 
						|
				toff--;
 | 
						|
		}
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
 | 
						|
				     unsigned long toff)
 | 
						|
{
 | 
						|
	struct file *file_raw;
 | 
						|
	struct eventpoll *ep;
 | 
						|
	struct epitem *epi;
 | 
						|
 | 
						|
	if (!is_file_epoll(file))
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	ep = file->private_data;
 | 
						|
 | 
						|
	mutex_lock(&ep->mtx);
 | 
						|
	epi = ep_find_tfd(ep, tfd, toff);
 | 
						|
	if (epi)
 | 
						|
		file_raw = epi->ffd.file;
 | 
						|
	else
 | 
						|
		file_raw = ERR_PTR(-ENOENT);
 | 
						|
	mutex_unlock(&ep->mtx);
 | 
						|
 | 
						|
	return file_raw;
 | 
						|
}
 | 
						|
#endif /* CONFIG_KCMP */
 | 
						|
 | 
						|
/*
 | 
						|
 * Adds a new entry to the tail of the list in a lockless way, i.e.
 | 
						|
 * multiple CPUs are allowed to call this function concurrently.
 | 
						|
 *
 | 
						|
 * Beware: it is necessary to prevent any other modifications of the
 | 
						|
 *         existing list until all changes are completed, in other words
 | 
						|
 *         concurrent list_add_tail_lockless() calls should be protected
 | 
						|
 *         with a read lock, where write lock acts as a barrier which
 | 
						|
 *         makes sure all list_add_tail_lockless() calls are fully
 | 
						|
 *         completed.
 | 
						|
 *
 | 
						|
 *        Also an element can be locklessly added to the list only in one
 | 
						|
 *        direction i.e. either to the tail or to the head, otherwise
 | 
						|
 *        concurrent access will corrupt the list.
 | 
						|
 *
 | 
						|
 * Return: %false if element has been already added to the list, %true
 | 
						|
 * otherwise.
 | 
						|
 */
 | 
						|
static inline bool list_add_tail_lockless(struct list_head *new,
 | 
						|
					  struct list_head *head)
 | 
						|
{
 | 
						|
	struct list_head *prev;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is simple 'new->next = head' operation, but cmpxchg()
 | 
						|
	 * is used in order to detect that same element has been just
 | 
						|
	 * added to the list from another CPU: the winner observes
 | 
						|
	 * new->next == new.
 | 
						|
	 */
 | 
						|
	if (!try_cmpxchg(&new->next, &new, head))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initially ->next of a new element must be updated with the head
 | 
						|
	 * (we are inserting to the tail) and only then pointers are atomically
 | 
						|
	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
 | 
						|
	 * updated before pointers are actually swapped and pointers are
 | 
						|
	 * swapped before prev->next is updated.
 | 
						|
	 */
 | 
						|
 | 
						|
	prev = xchg(&head->prev, new);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is safe to modify prev->next and new->prev, because a new element
 | 
						|
	 * is added only to the tail and new->next is updated before XCHG.
 | 
						|
	 */
 | 
						|
 | 
						|
	prev->next = new;
 | 
						|
	new->prev = prev;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
 | 
						|
 * i.e. multiple CPUs are allowed to call this function concurrently.
 | 
						|
 *
 | 
						|
 * Return: %false if epi element has been already chained, %true otherwise.
 | 
						|
 */
 | 
						|
static inline bool chain_epi_lockless(struct epitem *epi)
 | 
						|
{
 | 
						|
	struct eventpoll *ep = epi->ep;
 | 
						|
 | 
						|
	/* Fast preliminary check */
 | 
						|
	if (epi->next != EP_UNACTIVE_PTR)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Check that the same epi has not been just chained from another CPU */
 | 
						|
	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Atomically exchange tail */
 | 
						|
	epi->next = xchg(&ep->ovflist, epi);
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the callback that is passed to the wait queue wakeup
 | 
						|
 * mechanism. It is called by the stored file descriptors when they
 | 
						|
 * have events to report.
 | 
						|
 *
 | 
						|
 * This callback takes a read lock in order not to contend with concurrent
 | 
						|
 * events from another file descriptor, thus all modifications to ->rdllist
 | 
						|
 * or ->ovflist are lockless.  Read lock is paired with the write lock from
 | 
						|
 * ep_scan_ready_list(), which stops all list modifications and guarantees
 | 
						|
 * that lists state is seen correctly.
 | 
						|
 *
 | 
						|
 * Another thing worth to mention is that ep_poll_callback() can be called
 | 
						|
 * concurrently for the same @epi from different CPUs if poll table was inited
 | 
						|
 * with several wait queues entries.  Plural wakeup from different CPUs of a
 | 
						|
 * single wait queue is serialized by wq.lock, but the case when multiple wait
 | 
						|
 * queues are used should be detected accordingly.  This is detected using
 | 
						|
 * cmpxchg() operation.
 | 
						|
 */
 | 
						|
static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
 | 
						|
{
 | 
						|
	int pwake = 0;
 | 
						|
	struct epitem *epi = ep_item_from_wait(wait);
 | 
						|
	struct eventpoll *ep = epi->ep;
 | 
						|
	__poll_t pollflags = key_to_poll(key);
 | 
						|
	unsigned long flags;
 | 
						|
	int ewake = 0;
 | 
						|
 | 
						|
	read_lock_irqsave(&ep->lock, flags);
 | 
						|
 | 
						|
	ep_set_busy_poll_napi_id(epi);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the event mask does not contain any poll(2) event, we consider the
 | 
						|
	 * descriptor to be disabled. This condition is likely the effect of the
 | 
						|
	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
 | 
						|
	 * until the next EPOLL_CTL_MOD will be issued.
 | 
						|
	 */
 | 
						|
	if (!(epi->event.events & ~EP_PRIVATE_BITS))
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check the events coming with the callback. At this stage, not
 | 
						|
	 * every device reports the events in the "key" parameter of the
 | 
						|
	 * callback. We need to be able to handle both cases here, hence the
 | 
						|
	 * test for "key" != NULL before the event match test.
 | 
						|
	 */
 | 
						|
	if (pollflags && !(pollflags & epi->event.events))
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are transferring events to userspace, we can hold no locks
 | 
						|
	 * (because we're accessing user memory, and because of linux f_op->poll()
 | 
						|
	 * semantics). All the events that happen during that period of time are
 | 
						|
	 * chained in ep->ovflist and requeued later on.
 | 
						|
	 */
 | 
						|
	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
 | 
						|
		if (chain_epi_lockless(epi))
 | 
						|
			ep_pm_stay_awake_rcu(epi);
 | 
						|
	} else if (!ep_is_linked(epi)) {
 | 
						|
		/* In the usual case, add event to ready list. */
 | 
						|
		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
 | 
						|
			ep_pm_stay_awake_rcu(epi);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
 | 
						|
	 * wait list.
 | 
						|
	 */
 | 
						|
	if (waitqueue_active(&ep->wq)) {
 | 
						|
		if ((epi->event.events & EPOLLEXCLUSIVE) &&
 | 
						|
					!(pollflags & POLLFREE)) {
 | 
						|
			switch (pollflags & EPOLLINOUT_BITS) {
 | 
						|
			case EPOLLIN:
 | 
						|
				if (epi->event.events & EPOLLIN)
 | 
						|
					ewake = 1;
 | 
						|
				break;
 | 
						|
			case EPOLLOUT:
 | 
						|
				if (epi->event.events & EPOLLOUT)
 | 
						|
					ewake = 1;
 | 
						|
				break;
 | 
						|
			case 0:
 | 
						|
				ewake = 1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		wake_up(&ep->wq);
 | 
						|
	}
 | 
						|
	if (waitqueue_active(&ep->poll_wait))
 | 
						|
		pwake++;
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	read_unlock_irqrestore(&ep->lock, flags);
 | 
						|
 | 
						|
	/* We have to call this outside the lock */
 | 
						|
	if (pwake)
 | 
						|
		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
 | 
						|
 | 
						|
	if (!(epi->event.events & EPOLLEXCLUSIVE))
 | 
						|
		ewake = 1;
 | 
						|
 | 
						|
	if (pollflags & POLLFREE) {
 | 
						|
		/*
 | 
						|
		 * If we race with ep_remove_wait_queue() it can miss
 | 
						|
		 * ->whead = NULL and do another remove_wait_queue() after
 | 
						|
		 * us, so we can't use __remove_wait_queue().
 | 
						|
		 */
 | 
						|
		list_del_init(&wait->entry);
 | 
						|
		/*
 | 
						|
		 * ->whead != NULL protects us from the race with
 | 
						|
		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
 | 
						|
		 * takes whead->lock held by the caller. Once we nullify it,
 | 
						|
		 * nothing protects ep/epi or even wait.
 | 
						|
		 */
 | 
						|
		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	return ewake;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the callback that is used to add our wait queue to the
 | 
						|
 * target file wakeup lists.
 | 
						|
 */
 | 
						|
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
 | 
						|
				 poll_table *pt)
 | 
						|
{
 | 
						|
	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
 | 
						|
	struct epitem *epi = epq->epi;
 | 
						|
	struct eppoll_entry *pwq;
 | 
						|
 | 
						|
	if (unlikely(!epi))	// an earlier allocation has failed
 | 
						|
		return;
 | 
						|
 | 
						|
	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
 | 
						|
	if (unlikely(!pwq)) {
 | 
						|
		epq->epi = NULL;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
 | 
						|
	pwq->whead = whead;
 | 
						|
	pwq->base = epi;
 | 
						|
	if (epi->event.events & EPOLLEXCLUSIVE)
 | 
						|
		add_wait_queue_exclusive(whead, &pwq->wait);
 | 
						|
	else
 | 
						|
		add_wait_queue(whead, &pwq->wait);
 | 
						|
	pwq->next = epi->pwqlist;
 | 
						|
	epi->pwqlist = pwq;
 | 
						|
}
 | 
						|
 | 
						|
static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
 | 
						|
{
 | 
						|
	int kcmp;
 | 
						|
	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
 | 
						|
	struct epitem *epic;
 | 
						|
	bool leftmost = true;
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		epic = rb_entry(parent, struct epitem, rbn);
 | 
						|
		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
 | 
						|
		if (kcmp > 0) {
 | 
						|
			p = &parent->rb_right;
 | 
						|
			leftmost = false;
 | 
						|
		} else
 | 
						|
			p = &parent->rb_left;
 | 
						|
	}
 | 
						|
	rb_link_node(&epi->rbn, parent, p);
 | 
						|
	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#define PATH_ARR_SIZE 5
 | 
						|
/*
 | 
						|
 * These are the number paths of length 1 to 5, that we are allowing to emanate
 | 
						|
 * from a single file of interest. For example, we allow 1000 paths of length
 | 
						|
 * 1, to emanate from each file of interest. This essentially represents the
 | 
						|
 * potential wakeup paths, which need to be limited in order to avoid massive
 | 
						|
 * uncontrolled wakeup storms. The common use case should be a single ep which
 | 
						|
 * is connected to n file sources. In this case each file source has 1 path
 | 
						|
 * of length 1. Thus, the numbers below should be more than sufficient. These
 | 
						|
 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
 | 
						|
 * and delete can't add additional paths. Protected by the epnested_mutex.
 | 
						|
 */
 | 
						|
static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
 | 
						|
static int path_count[PATH_ARR_SIZE];
 | 
						|
 | 
						|
static int path_count_inc(int nests)
 | 
						|
{
 | 
						|
	/* Allow an arbitrary number of depth 1 paths */
 | 
						|
	if (nests == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (++path_count[nests] > path_limits[nests])
 | 
						|
		return -1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void path_count_init(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < PATH_ARR_SIZE; i++)
 | 
						|
		path_count[i] = 0;
 | 
						|
}
 | 
						|
 | 
						|
static int reverse_path_check_proc(struct hlist_head *refs, int depth)
 | 
						|
{
 | 
						|
	int error = 0;
 | 
						|
	struct epitem *epi;
 | 
						|
 | 
						|
	if (depth > EP_MAX_NESTS) /* too deep nesting */
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* CTL_DEL can remove links here, but that can't increase our count */
 | 
						|
	hlist_for_each_entry_rcu(epi, refs, fllink) {
 | 
						|
		struct hlist_head *refs = &epi->ep->refs;
 | 
						|
		if (hlist_empty(refs))
 | 
						|
			error = path_count_inc(depth);
 | 
						|
		else
 | 
						|
			error = reverse_path_check_proc(refs, depth + 1);
 | 
						|
		if (error != 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
 | 
						|
 *                      links that are proposed to be newly added. We need to
 | 
						|
 *                      make sure that those added links don't add too many
 | 
						|
 *                      paths such that we will spend all our time waking up
 | 
						|
 *                      eventpoll objects.
 | 
						|
 *
 | 
						|
 * Return: %zero if the proposed links don't create too many paths,
 | 
						|
 *	    %-1 otherwise.
 | 
						|
 */
 | 
						|
static int reverse_path_check(void)
 | 
						|
{
 | 
						|
	struct epitems_head *p;
 | 
						|
 | 
						|
	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
 | 
						|
		int error;
 | 
						|
		path_count_init();
 | 
						|
		rcu_read_lock();
 | 
						|
		error = reverse_path_check_proc(&p->epitems, 0);
 | 
						|
		rcu_read_unlock();
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ep_create_wakeup_source(struct epitem *epi)
 | 
						|
{
 | 
						|
	struct name_snapshot n;
 | 
						|
	struct wakeup_source *ws;
 | 
						|
 | 
						|
	if (!epi->ep->ws) {
 | 
						|
		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
 | 
						|
		if (!epi->ep->ws)
 | 
						|
			return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
 | 
						|
	ws = wakeup_source_register(NULL, n.name.name);
 | 
						|
	release_dentry_name_snapshot(&n);
 | 
						|
 | 
						|
	if (!ws)
 | 
						|
		return -ENOMEM;
 | 
						|
	rcu_assign_pointer(epi->ws, ws);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
 | 
						|
static noinline void ep_destroy_wakeup_source(struct epitem *epi)
 | 
						|
{
 | 
						|
	struct wakeup_source *ws = ep_wakeup_source(epi);
 | 
						|
 | 
						|
	RCU_INIT_POINTER(epi->ws, NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
 | 
						|
	 * used internally by wakeup_source_remove, too (called by
 | 
						|
	 * wakeup_source_unregister), so we cannot use call_rcu
 | 
						|
	 */
 | 
						|
	synchronize_rcu();
 | 
						|
	wakeup_source_unregister(ws);
 | 
						|
}
 | 
						|
 | 
						|
static int attach_epitem(struct file *file, struct epitem *epi)
 | 
						|
{
 | 
						|
	struct epitems_head *to_free = NULL;
 | 
						|
	struct hlist_head *head = NULL;
 | 
						|
	struct eventpoll *ep = NULL;
 | 
						|
 | 
						|
	if (is_file_epoll(file))
 | 
						|
		ep = file->private_data;
 | 
						|
 | 
						|
	if (ep) {
 | 
						|
		head = &ep->refs;
 | 
						|
	} else if (!READ_ONCE(file->f_ep)) {
 | 
						|
allocate:
 | 
						|
		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
 | 
						|
		if (!to_free)
 | 
						|
			return -ENOMEM;
 | 
						|
		head = &to_free->epitems;
 | 
						|
	}
 | 
						|
	spin_lock(&file->f_lock);
 | 
						|
	if (!file->f_ep) {
 | 
						|
		if (unlikely(!head)) {
 | 
						|
			spin_unlock(&file->f_lock);
 | 
						|
			goto allocate;
 | 
						|
		}
 | 
						|
		file->f_ep = head;
 | 
						|
		to_free = NULL;
 | 
						|
	}
 | 
						|
	hlist_add_head_rcu(&epi->fllink, file->f_ep);
 | 
						|
	spin_unlock(&file->f_lock);
 | 
						|
	free_ephead(to_free);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Must be called with "mtx" held.
 | 
						|
 */
 | 
						|
static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
 | 
						|
		     struct file *tfile, int fd, int full_check)
 | 
						|
{
 | 
						|
	int error, pwake = 0;
 | 
						|
	__poll_t revents;
 | 
						|
	struct epitem *epi;
 | 
						|
	struct ep_pqueue epq;
 | 
						|
	struct eventpoll *tep = NULL;
 | 
						|
 | 
						|
	if (is_file_epoll(tfile))
 | 
						|
		tep = tfile->private_data;
 | 
						|
 | 
						|
	lockdep_assert_irqs_enabled();
 | 
						|
 | 
						|
	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
 | 
						|
					    max_user_watches) >= 0))
 | 
						|
		return -ENOSPC;
 | 
						|
	percpu_counter_inc(&ep->user->epoll_watches);
 | 
						|
 | 
						|
	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
 | 
						|
		percpu_counter_dec(&ep->user->epoll_watches);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Item initialization follow here ... */
 | 
						|
	INIT_LIST_HEAD(&epi->rdllink);
 | 
						|
	epi->ep = ep;
 | 
						|
	ep_set_ffd(&epi->ffd, tfile, fd);
 | 
						|
	epi->event = *event;
 | 
						|
	epi->next = EP_UNACTIVE_PTR;
 | 
						|
 | 
						|
	if (tep)
 | 
						|
		mutex_lock_nested(&tep->mtx, 1);
 | 
						|
	/* Add the current item to the list of active epoll hook for this file */
 | 
						|
	if (unlikely(attach_epitem(tfile, epi) < 0)) {
 | 
						|
		if (tep)
 | 
						|
			mutex_unlock(&tep->mtx);
 | 
						|
		kmem_cache_free(epi_cache, epi);
 | 
						|
		percpu_counter_dec(&ep->user->epoll_watches);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	if (full_check && !tep)
 | 
						|
		list_file(tfile);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add the current item to the RB tree. All RB tree operations are
 | 
						|
	 * protected by "mtx", and ep_insert() is called with "mtx" held.
 | 
						|
	 */
 | 
						|
	ep_rbtree_insert(ep, epi);
 | 
						|
	if (tep)
 | 
						|
		mutex_unlock(&tep->mtx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * ep_remove_safe() calls in the later error paths can't lead to
 | 
						|
	 * ep_free() as the ep file itself still holds an ep reference.
 | 
						|
	 */
 | 
						|
	ep_get(ep);
 | 
						|
 | 
						|
	/* now check if we've created too many backpaths */
 | 
						|
	if (unlikely(full_check && reverse_path_check())) {
 | 
						|
		ep_remove_safe(ep, epi);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (epi->event.events & EPOLLWAKEUP) {
 | 
						|
		error = ep_create_wakeup_source(epi);
 | 
						|
		if (error) {
 | 
						|
			ep_remove_safe(ep, epi);
 | 
						|
			return error;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Initialize the poll table using the queue callback */
 | 
						|
	epq.epi = epi;
 | 
						|
	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Attach the item to the poll hooks and get current event bits.
 | 
						|
	 * We can safely use the file* here because its usage count has
 | 
						|
	 * been increased by the caller of this function. Note that after
 | 
						|
	 * this operation completes, the poll callback can start hitting
 | 
						|
	 * the new item.
 | 
						|
	 */
 | 
						|
	revents = ep_item_poll(epi, &epq.pt, 1);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have to check if something went wrong during the poll wait queue
 | 
						|
	 * install process. Namely an allocation for a wait queue failed due
 | 
						|
	 * high memory pressure.
 | 
						|
	 */
 | 
						|
	if (unlikely(!epq.epi)) {
 | 
						|
		ep_remove_safe(ep, epi);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We have to drop the new item inside our item list to keep track of it */
 | 
						|
	write_lock_irq(&ep->lock);
 | 
						|
 | 
						|
	/* record NAPI ID of new item if present */
 | 
						|
	ep_set_busy_poll_napi_id(epi);
 | 
						|
 | 
						|
	/* If the file is already "ready" we drop it inside the ready list */
 | 
						|
	if (revents && !ep_is_linked(epi)) {
 | 
						|
		list_add_tail(&epi->rdllink, &ep->rdllist);
 | 
						|
		ep_pm_stay_awake(epi);
 | 
						|
 | 
						|
		/* Notify waiting tasks that events are available */
 | 
						|
		if (waitqueue_active(&ep->wq))
 | 
						|
			wake_up(&ep->wq);
 | 
						|
		if (waitqueue_active(&ep->poll_wait))
 | 
						|
			pwake++;
 | 
						|
	}
 | 
						|
 | 
						|
	write_unlock_irq(&ep->lock);
 | 
						|
 | 
						|
	/* We have to call this outside the lock */
 | 
						|
	if (pwake)
 | 
						|
		ep_poll_safewake(ep, NULL, 0);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Modify the interest event mask by dropping an event if the new mask
 | 
						|
 * has a match in the current file status. Must be called with "mtx" held.
 | 
						|
 */
 | 
						|
static int ep_modify(struct eventpoll *ep, struct epitem *epi,
 | 
						|
		     const struct epoll_event *event)
 | 
						|
{
 | 
						|
	int pwake = 0;
 | 
						|
	poll_table pt;
 | 
						|
 | 
						|
	lockdep_assert_irqs_enabled();
 | 
						|
 | 
						|
	init_poll_funcptr(&pt, NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set the new event interest mask before calling f_op->poll();
 | 
						|
	 * otherwise we might miss an event that happens between the
 | 
						|
	 * f_op->poll() call and the new event set registering.
 | 
						|
	 */
 | 
						|
	epi->event.events = event->events; /* need barrier below */
 | 
						|
	epi->event.data = event->data; /* protected by mtx */
 | 
						|
	if (epi->event.events & EPOLLWAKEUP) {
 | 
						|
		if (!ep_has_wakeup_source(epi))
 | 
						|
			ep_create_wakeup_source(epi);
 | 
						|
	} else if (ep_has_wakeup_source(epi)) {
 | 
						|
		ep_destroy_wakeup_source(epi);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The following barrier has two effects:
 | 
						|
	 *
 | 
						|
	 * 1) Flush epi changes above to other CPUs.  This ensures
 | 
						|
	 *    we do not miss events from ep_poll_callback if an
 | 
						|
	 *    event occurs immediately after we call f_op->poll().
 | 
						|
	 *    We need this because we did not take ep->lock while
 | 
						|
	 *    changing epi above (but ep_poll_callback does take
 | 
						|
	 *    ep->lock).
 | 
						|
	 *
 | 
						|
	 * 2) We also need to ensure we do not miss _past_ events
 | 
						|
	 *    when calling f_op->poll().  This barrier also
 | 
						|
	 *    pairs with the barrier in wq_has_sleeper (see
 | 
						|
	 *    comments for wq_has_sleeper).
 | 
						|
	 *
 | 
						|
	 * This barrier will now guarantee ep_poll_callback or f_op->poll
 | 
						|
	 * (or both) will notice the readiness of an item.
 | 
						|
	 */
 | 
						|
	smp_mb();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get current event bits. We can safely use the file* here because
 | 
						|
	 * its usage count has been increased by the caller of this function.
 | 
						|
	 * If the item is "hot" and it is not registered inside the ready
 | 
						|
	 * list, push it inside.
 | 
						|
	 */
 | 
						|
	if (ep_item_poll(epi, &pt, 1)) {
 | 
						|
		write_lock_irq(&ep->lock);
 | 
						|
		if (!ep_is_linked(epi)) {
 | 
						|
			list_add_tail(&epi->rdllink, &ep->rdllist);
 | 
						|
			ep_pm_stay_awake(epi);
 | 
						|
 | 
						|
			/* Notify waiting tasks that events are available */
 | 
						|
			if (waitqueue_active(&ep->wq))
 | 
						|
				wake_up(&ep->wq);
 | 
						|
			if (waitqueue_active(&ep->poll_wait))
 | 
						|
				pwake++;
 | 
						|
		}
 | 
						|
		write_unlock_irq(&ep->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/* We have to call this outside the lock */
 | 
						|
	if (pwake)
 | 
						|
		ep_poll_safewake(ep, NULL, 0);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ep_send_events(struct eventpoll *ep,
 | 
						|
			  struct epoll_event __user *events, int maxevents)
 | 
						|
{
 | 
						|
	struct epitem *epi, *tmp;
 | 
						|
	LIST_HEAD(txlist);
 | 
						|
	poll_table pt;
 | 
						|
	int res = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Always short-circuit for fatal signals to allow threads to make a
 | 
						|
	 * timely exit without the chance of finding more events available and
 | 
						|
	 * fetching repeatedly.
 | 
						|
	 */
 | 
						|
	if (fatal_signal_pending(current))
 | 
						|
		return -EINTR;
 | 
						|
 | 
						|
	init_poll_funcptr(&pt, NULL);
 | 
						|
 | 
						|
	mutex_lock(&ep->mtx);
 | 
						|
	ep_start_scan(ep, &txlist);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can loop without lock because we are passed a task private list.
 | 
						|
	 * Items cannot vanish during the loop we are holding ep->mtx.
 | 
						|
	 */
 | 
						|
	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
 | 
						|
		struct wakeup_source *ws;
 | 
						|
		__poll_t revents;
 | 
						|
 | 
						|
		if (res >= maxevents)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Activate ep->ws before deactivating epi->ws to prevent
 | 
						|
		 * triggering auto-suspend here (in case we reactive epi->ws
 | 
						|
		 * below).
 | 
						|
		 *
 | 
						|
		 * This could be rearranged to delay the deactivation of epi->ws
 | 
						|
		 * instead, but then epi->ws would temporarily be out of sync
 | 
						|
		 * with ep_is_linked().
 | 
						|
		 */
 | 
						|
		ws = ep_wakeup_source(epi);
 | 
						|
		if (ws) {
 | 
						|
			if (ws->active)
 | 
						|
				__pm_stay_awake(ep->ws);
 | 
						|
			__pm_relax(ws);
 | 
						|
		}
 | 
						|
 | 
						|
		list_del_init(&epi->rdllink);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the event mask intersect the caller-requested one,
 | 
						|
		 * deliver the event to userspace. Again, we are holding ep->mtx,
 | 
						|
		 * so no operations coming from userspace can change the item.
 | 
						|
		 */
 | 
						|
		revents = ep_item_poll(epi, &pt, 1);
 | 
						|
		if (!revents)
 | 
						|
			continue;
 | 
						|
 | 
						|
		events = epoll_put_uevent(revents, epi->event.data, events);
 | 
						|
		if (!events) {
 | 
						|
			list_add(&epi->rdllink, &txlist);
 | 
						|
			ep_pm_stay_awake(epi);
 | 
						|
			if (!res)
 | 
						|
				res = -EFAULT;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		res++;
 | 
						|
		if (epi->event.events & EPOLLONESHOT)
 | 
						|
			epi->event.events &= EP_PRIVATE_BITS;
 | 
						|
		else if (!(epi->event.events & EPOLLET)) {
 | 
						|
			/*
 | 
						|
			 * If this file has been added with Level
 | 
						|
			 * Trigger mode, we need to insert back inside
 | 
						|
			 * the ready list, so that the next call to
 | 
						|
			 * epoll_wait() will check again the events
 | 
						|
			 * availability. At this point, no one can insert
 | 
						|
			 * into ep->rdllist besides us. The epoll_ctl()
 | 
						|
			 * callers are locked out by
 | 
						|
			 * ep_scan_ready_list() holding "mtx" and the
 | 
						|
			 * poll callback will queue them in ep->ovflist.
 | 
						|
			 */
 | 
						|
			list_add_tail(&epi->rdllink, &ep->rdllist);
 | 
						|
			ep_pm_stay_awake(epi);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ep_done_scan(ep, &txlist);
 | 
						|
	mutex_unlock(&ep->mtx);
 | 
						|
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
 | 
						|
{
 | 
						|
	struct timespec64 now;
 | 
						|
 | 
						|
	if (ms < 0)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (!ms) {
 | 
						|
		to->tv_sec = 0;
 | 
						|
		to->tv_nsec = 0;
 | 
						|
		return to;
 | 
						|
	}
 | 
						|
 | 
						|
	to->tv_sec = ms / MSEC_PER_SEC;
 | 
						|
	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
 | 
						|
 | 
						|
	ktime_get_ts64(&now);
 | 
						|
	*to = timespec64_add_safe(now, *to);
 | 
						|
	return to;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * autoremove_wake_function, but remove even on failure to wake up, because we
 | 
						|
 * know that default_wake_function/ttwu will only fail if the thread is already
 | 
						|
 * woken, and in that case the ep_poll loop will remove the entry anyways, not
 | 
						|
 * try to reuse it.
 | 
						|
 */
 | 
						|
static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
 | 
						|
				       unsigned int mode, int sync, void *key)
 | 
						|
{
 | 
						|
	int ret = default_wake_function(wq_entry, mode, sync, key);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
 | 
						|
	 * iterations see the cause of this wakeup.
 | 
						|
	 */
 | 
						|
	list_del_init_careful(&wq_entry->entry);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
 | 
						|
 *           event buffer.
 | 
						|
 *
 | 
						|
 * @ep: Pointer to the eventpoll context.
 | 
						|
 * @events: Pointer to the userspace buffer where the ready events should be
 | 
						|
 *          stored.
 | 
						|
 * @maxevents: Size (in terms of number of events) of the caller event buffer.
 | 
						|
 * @timeout: Maximum timeout for the ready events fetch operation, in
 | 
						|
 *           timespec. If the timeout is zero, the function will not block,
 | 
						|
 *           while if the @timeout ptr is NULL, the function will block
 | 
						|
 *           until at least one event has been retrieved (or an error
 | 
						|
 *           occurred).
 | 
						|
 *
 | 
						|
 * Return: the number of ready events which have been fetched, or an
 | 
						|
 *          error code, in case of error.
 | 
						|
 */
 | 
						|
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
 | 
						|
		   int maxevents, struct timespec64 *timeout)
 | 
						|
{
 | 
						|
	int res, eavail, timed_out = 0;
 | 
						|
	u64 slack = 0;
 | 
						|
	wait_queue_entry_t wait;
 | 
						|
	ktime_t expires, *to = NULL;
 | 
						|
 | 
						|
	lockdep_assert_irqs_enabled();
 | 
						|
 | 
						|
	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
 | 
						|
		slack = select_estimate_accuracy(timeout);
 | 
						|
		to = &expires;
 | 
						|
		*to = timespec64_to_ktime(*timeout);
 | 
						|
	} else if (timeout) {
 | 
						|
		/*
 | 
						|
		 * Avoid the unnecessary trip to the wait queue loop, if the
 | 
						|
		 * caller specified a non blocking operation.
 | 
						|
		 */
 | 
						|
		timed_out = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This call is racy: We may or may not see events that are being added
 | 
						|
	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
 | 
						|
	 * with a non-zero timeout, this thread will check the ready list under
 | 
						|
	 * lock and will add to the wait queue.  For cases with a zero
 | 
						|
	 * timeout, the user by definition should not care and will have to
 | 
						|
	 * recheck again.
 | 
						|
	 */
 | 
						|
	eavail = ep_events_available(ep);
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		if (eavail) {
 | 
						|
			/*
 | 
						|
			 * Try to transfer events to user space. In case we get
 | 
						|
			 * 0 events and there's still timeout left over, we go
 | 
						|
			 * trying again in search of more luck.
 | 
						|
			 */
 | 
						|
			res = ep_send_events(ep, events, maxevents);
 | 
						|
			if (res)
 | 
						|
				return res;
 | 
						|
		}
 | 
						|
 | 
						|
		if (timed_out)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		eavail = ep_busy_loop(ep, timed_out);
 | 
						|
		if (eavail)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (signal_pending(current))
 | 
						|
			return -EINTR;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Internally init_wait() uses autoremove_wake_function(),
 | 
						|
		 * thus wait entry is removed from the wait queue on each
 | 
						|
		 * wakeup. Why it is important? In case of several waiters
 | 
						|
		 * each new wakeup will hit the next waiter, giving it the
 | 
						|
		 * chance to harvest new event. Otherwise wakeup can be
 | 
						|
		 * lost. This is also good performance-wise, because on
 | 
						|
		 * normal wakeup path no need to call __remove_wait_queue()
 | 
						|
		 * explicitly, thus ep->lock is not taken, which halts the
 | 
						|
		 * event delivery.
 | 
						|
		 *
 | 
						|
		 * In fact, we now use an even more aggressive function that
 | 
						|
		 * unconditionally removes, because we don't reuse the wait
 | 
						|
		 * entry between loop iterations. This lets us also avoid the
 | 
						|
		 * performance issue if a process is killed, causing all of its
 | 
						|
		 * threads to wake up without being removed normally.
 | 
						|
		 */
 | 
						|
		init_wait(&wait);
 | 
						|
		wait.func = ep_autoremove_wake_function;
 | 
						|
 | 
						|
		write_lock_irq(&ep->lock);
 | 
						|
		/*
 | 
						|
		 * Barrierless variant, waitqueue_active() is called under
 | 
						|
		 * the same lock on wakeup ep_poll_callback() side, so it
 | 
						|
		 * is safe to avoid an explicit barrier.
 | 
						|
		 */
 | 
						|
		__set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Do the final check under the lock. ep_scan_ready_list()
 | 
						|
		 * plays with two lists (->rdllist and ->ovflist) and there
 | 
						|
		 * is always a race when both lists are empty for short
 | 
						|
		 * period of time although events are pending, so lock is
 | 
						|
		 * important.
 | 
						|
		 */
 | 
						|
		eavail = ep_events_available(ep);
 | 
						|
		if (!eavail)
 | 
						|
			__add_wait_queue_exclusive(&ep->wq, &wait);
 | 
						|
 | 
						|
		write_unlock_irq(&ep->lock);
 | 
						|
 | 
						|
		if (!eavail)
 | 
						|
			timed_out = !schedule_hrtimeout_range(to, slack,
 | 
						|
							      HRTIMER_MODE_ABS);
 | 
						|
		__set_current_state(TASK_RUNNING);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We were woken up, thus go and try to harvest some events.
 | 
						|
		 * If timed out and still on the wait queue, recheck eavail
 | 
						|
		 * carefully under lock, below.
 | 
						|
		 */
 | 
						|
		eavail = 1;
 | 
						|
 | 
						|
		if (!list_empty_careful(&wait.entry)) {
 | 
						|
			write_lock_irq(&ep->lock);
 | 
						|
			/*
 | 
						|
			 * If the thread timed out and is not on the wait queue,
 | 
						|
			 * it means that the thread was woken up after its
 | 
						|
			 * timeout expired before it could reacquire the lock.
 | 
						|
			 * Thus, when wait.entry is empty, it needs to harvest
 | 
						|
			 * events.
 | 
						|
			 */
 | 
						|
			if (timed_out)
 | 
						|
				eavail = list_empty(&wait.entry);
 | 
						|
			__remove_wait_queue(&ep->wq, &wait);
 | 
						|
			write_unlock_irq(&ep->lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ep_loop_check_proc - verify that adding an epoll file inside another
 | 
						|
 *                      epoll structure does not violate the constraints, in
 | 
						|
 *                      terms of closed loops, or too deep chains (which can
 | 
						|
 *                      result in excessive stack usage).
 | 
						|
 *
 | 
						|
 * @ep: the &struct eventpoll to be currently checked.
 | 
						|
 * @depth: Current depth of the path being checked.
 | 
						|
 *
 | 
						|
 * Return: %zero if adding the epoll @file inside current epoll
 | 
						|
 *          structure @ep does not violate the constraints, or %-1 otherwise.
 | 
						|
 */
 | 
						|
static int ep_loop_check_proc(struct eventpoll *ep, int depth)
 | 
						|
{
 | 
						|
	int error = 0;
 | 
						|
	struct rb_node *rbp;
 | 
						|
	struct epitem *epi;
 | 
						|
 | 
						|
	mutex_lock_nested(&ep->mtx, depth + 1);
 | 
						|
	ep->gen = loop_check_gen;
 | 
						|
	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 | 
						|
		epi = rb_entry(rbp, struct epitem, rbn);
 | 
						|
		if (unlikely(is_file_epoll(epi->ffd.file))) {
 | 
						|
			struct eventpoll *ep_tovisit;
 | 
						|
			ep_tovisit = epi->ffd.file->private_data;
 | 
						|
			if (ep_tovisit->gen == loop_check_gen)
 | 
						|
				continue;
 | 
						|
			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
 | 
						|
				error = -1;
 | 
						|
			else
 | 
						|
				error = ep_loop_check_proc(ep_tovisit, depth + 1);
 | 
						|
			if (error != 0)
 | 
						|
				break;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * If we've reached a file that is not associated with
 | 
						|
			 * an ep, then we need to check if the newly added
 | 
						|
			 * links are going to add too many wakeup paths. We do
 | 
						|
			 * this by adding it to the tfile_check_list, if it's
 | 
						|
			 * not already there, and calling reverse_path_check()
 | 
						|
			 * during ep_insert().
 | 
						|
			 */
 | 
						|
			list_file(epi->ffd.file);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mutex_unlock(&ep->mtx);
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
 | 
						|
 *                 into another epoll file (represented by @ep) does not create
 | 
						|
 *                 closed loops or too deep chains.
 | 
						|
 *
 | 
						|
 * @ep: Pointer to the epoll we are inserting into.
 | 
						|
 * @to: Pointer to the epoll to be inserted.
 | 
						|
 *
 | 
						|
 * Return: %zero if adding the epoll @to inside the epoll @from
 | 
						|
 * does not violate the constraints, or %-1 otherwise.
 | 
						|
 */
 | 
						|
static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
 | 
						|
{
 | 
						|
	inserting_into = ep;
 | 
						|
	return ep_loop_check_proc(to, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void clear_tfile_check_list(void)
 | 
						|
{
 | 
						|
	rcu_read_lock();
 | 
						|
	while (tfile_check_list != EP_UNACTIVE_PTR) {
 | 
						|
		struct epitems_head *head = tfile_check_list;
 | 
						|
		tfile_check_list = head->next;
 | 
						|
		unlist_file(head);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Open an eventpoll file descriptor.
 | 
						|
 */
 | 
						|
static int do_epoll_create(int flags)
 | 
						|
{
 | 
						|
	int error, fd;
 | 
						|
	struct eventpoll *ep = NULL;
 | 
						|
	struct file *file;
 | 
						|
 | 
						|
	/* Check the EPOLL_* constant for consistency.  */
 | 
						|
	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
 | 
						|
 | 
						|
	if (flags & ~EPOLL_CLOEXEC)
 | 
						|
		return -EINVAL;
 | 
						|
	/*
 | 
						|
	 * Create the internal data structure ("struct eventpoll").
 | 
						|
	 */
 | 
						|
	error = ep_alloc(&ep);
 | 
						|
	if (error < 0)
 | 
						|
		return error;
 | 
						|
	/*
 | 
						|
	 * Creates all the items needed to setup an eventpoll file. That is,
 | 
						|
	 * a file structure and a free file descriptor.
 | 
						|
	 */
 | 
						|
	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
 | 
						|
	if (fd < 0) {
 | 
						|
		error = fd;
 | 
						|
		goto out_free_ep;
 | 
						|
	}
 | 
						|
	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
 | 
						|
				 O_RDWR | (flags & O_CLOEXEC));
 | 
						|
	if (IS_ERR(file)) {
 | 
						|
		error = PTR_ERR(file);
 | 
						|
		goto out_free_fd;
 | 
						|
	}
 | 
						|
	ep->file = file;
 | 
						|
	fd_install(fd, file);
 | 
						|
	return fd;
 | 
						|
 | 
						|
out_free_fd:
 | 
						|
	put_unused_fd(fd);
 | 
						|
out_free_ep:
 | 
						|
	ep_clear_and_put(ep);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE1(epoll_create1, int, flags)
 | 
						|
{
 | 
						|
	return do_epoll_create(flags);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE1(epoll_create, int, size)
 | 
						|
{
 | 
						|
	if (size <= 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return do_epoll_create(0);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PM_SLEEP
 | 
						|
static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
 | 
						|
{
 | 
						|
	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
 | 
						|
		epev->events &= ~EPOLLWAKEUP;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
 | 
						|
{
 | 
						|
	epev->events &= ~EPOLLWAKEUP;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
 | 
						|
				   bool nonblock)
 | 
						|
{
 | 
						|
	if (!nonblock) {
 | 
						|
		mutex_lock_nested(mutex, depth);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	if (mutex_trylock(mutex))
 | 
						|
		return 0;
 | 
						|
	return -EAGAIN;
 | 
						|
}
 | 
						|
 | 
						|
int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
 | 
						|
		 bool nonblock)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
	int full_check = 0;
 | 
						|
	struct fd f, tf;
 | 
						|
	struct eventpoll *ep;
 | 
						|
	struct epitem *epi;
 | 
						|
	struct eventpoll *tep = NULL;
 | 
						|
 | 
						|
	error = -EBADF;
 | 
						|
	f = fdget(epfd);
 | 
						|
	if (!f.file)
 | 
						|
		goto error_return;
 | 
						|
 | 
						|
	/* Get the "struct file *" for the target file */
 | 
						|
	tf = fdget(fd);
 | 
						|
	if (!tf.file)
 | 
						|
		goto error_fput;
 | 
						|
 | 
						|
	/* The target file descriptor must support poll */
 | 
						|
	error = -EPERM;
 | 
						|
	if (!file_can_poll(tf.file))
 | 
						|
		goto error_tgt_fput;
 | 
						|
 | 
						|
	/* Check if EPOLLWAKEUP is allowed */
 | 
						|
	if (ep_op_has_event(op))
 | 
						|
		ep_take_care_of_epollwakeup(epds);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have to check that the file structure underneath the file descriptor
 | 
						|
	 * the user passed to us _is_ an eventpoll file. And also we do not permit
 | 
						|
	 * adding an epoll file descriptor inside itself.
 | 
						|
	 */
 | 
						|
	error = -EINVAL;
 | 
						|
	if (f.file == tf.file || !is_file_epoll(f.file))
 | 
						|
		goto error_tgt_fput;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
 | 
						|
	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
 | 
						|
	 * Also, we do not currently supported nested exclusive wakeups.
 | 
						|
	 */
 | 
						|
	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
 | 
						|
		if (op == EPOLL_CTL_MOD)
 | 
						|
			goto error_tgt_fput;
 | 
						|
		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
 | 
						|
				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
 | 
						|
			goto error_tgt_fput;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point it is safe to assume that the "private_data" contains
 | 
						|
	 * our own data structure.
 | 
						|
	 */
 | 
						|
	ep = f.file->private_data;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When we insert an epoll file descriptor inside another epoll file
 | 
						|
	 * descriptor, there is the chance of creating closed loops, which are
 | 
						|
	 * better be handled here, than in more critical paths. While we are
 | 
						|
	 * checking for loops we also determine the list of files reachable
 | 
						|
	 * and hang them on the tfile_check_list, so we can check that we
 | 
						|
	 * haven't created too many possible wakeup paths.
 | 
						|
	 *
 | 
						|
	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
 | 
						|
	 * the epoll file descriptor is attaching directly to a wakeup source,
 | 
						|
	 * unless the epoll file descriptor is nested. The purpose of taking the
 | 
						|
	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
 | 
						|
	 * deep wakeup paths from forming in parallel through multiple
 | 
						|
	 * EPOLL_CTL_ADD operations.
 | 
						|
	 */
 | 
						|
	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
 | 
						|
	if (error)
 | 
						|
		goto error_tgt_fput;
 | 
						|
	if (op == EPOLL_CTL_ADD) {
 | 
						|
		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
 | 
						|
		    is_file_epoll(tf.file)) {
 | 
						|
			mutex_unlock(&ep->mtx);
 | 
						|
			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
 | 
						|
			if (error)
 | 
						|
				goto error_tgt_fput;
 | 
						|
			loop_check_gen++;
 | 
						|
			full_check = 1;
 | 
						|
			if (is_file_epoll(tf.file)) {
 | 
						|
				tep = tf.file->private_data;
 | 
						|
				error = -ELOOP;
 | 
						|
				if (ep_loop_check(ep, tep) != 0)
 | 
						|
					goto error_tgt_fput;
 | 
						|
			}
 | 
						|
			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
 | 
						|
			if (error)
 | 
						|
				goto error_tgt_fput;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
 | 
						|
	 * above, we can be sure to be able to use the item looked up by
 | 
						|
	 * ep_find() till we release the mutex.
 | 
						|
	 */
 | 
						|
	epi = ep_find(ep, tf.file, fd);
 | 
						|
 | 
						|
	error = -EINVAL;
 | 
						|
	switch (op) {
 | 
						|
	case EPOLL_CTL_ADD:
 | 
						|
		if (!epi) {
 | 
						|
			epds->events |= EPOLLERR | EPOLLHUP;
 | 
						|
			error = ep_insert(ep, epds, tf.file, fd, full_check);
 | 
						|
		} else
 | 
						|
			error = -EEXIST;
 | 
						|
		break;
 | 
						|
	case EPOLL_CTL_DEL:
 | 
						|
		if (epi) {
 | 
						|
			/*
 | 
						|
			 * The eventpoll itself is still alive: the refcount
 | 
						|
			 * can't go to zero here.
 | 
						|
			 */
 | 
						|
			ep_remove_safe(ep, epi);
 | 
						|
			error = 0;
 | 
						|
		} else {
 | 
						|
			error = -ENOENT;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case EPOLL_CTL_MOD:
 | 
						|
		if (epi) {
 | 
						|
			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
 | 
						|
				epds->events |= EPOLLERR | EPOLLHUP;
 | 
						|
				error = ep_modify(ep, epi, epds);
 | 
						|
			}
 | 
						|
		} else
 | 
						|
			error = -ENOENT;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	mutex_unlock(&ep->mtx);
 | 
						|
 | 
						|
error_tgt_fput:
 | 
						|
	if (full_check) {
 | 
						|
		clear_tfile_check_list();
 | 
						|
		loop_check_gen++;
 | 
						|
		mutex_unlock(&epnested_mutex);
 | 
						|
	}
 | 
						|
 | 
						|
	fdput(tf);
 | 
						|
error_fput:
 | 
						|
	fdput(f);
 | 
						|
error_return:
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The following function implements the controller interface for
 | 
						|
 * the eventpoll file that enables the insertion/removal/change of
 | 
						|
 * file descriptors inside the interest set.
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
 | 
						|
		struct epoll_event __user *, event)
 | 
						|
{
 | 
						|
	struct epoll_event epds;
 | 
						|
 | 
						|
	if (ep_op_has_event(op) &&
 | 
						|
	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return do_epoll_ctl(epfd, op, fd, &epds, false);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Implement the event wait interface for the eventpoll file. It is the kernel
 | 
						|
 * part of the user space epoll_wait(2).
 | 
						|
 */
 | 
						|
static int do_epoll_wait(int epfd, struct epoll_event __user *events,
 | 
						|
			 int maxevents, struct timespec64 *to)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
	struct fd f;
 | 
						|
	struct eventpoll *ep;
 | 
						|
 | 
						|
	/* The maximum number of event must be greater than zero */
 | 
						|
	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Verify that the area passed by the user is writeable */
 | 
						|
	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	/* Get the "struct file *" for the eventpoll file */
 | 
						|
	f = fdget(epfd);
 | 
						|
	if (!f.file)
 | 
						|
		return -EBADF;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have to check that the file structure underneath the fd
 | 
						|
	 * the user passed to us _is_ an eventpoll file.
 | 
						|
	 */
 | 
						|
	error = -EINVAL;
 | 
						|
	if (!is_file_epoll(f.file))
 | 
						|
		goto error_fput;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point it is safe to assume that the "private_data" contains
 | 
						|
	 * our own data structure.
 | 
						|
	 */
 | 
						|
	ep = f.file->private_data;
 | 
						|
 | 
						|
	/* Time to fish for events ... */
 | 
						|
	error = ep_poll(ep, events, maxevents, to);
 | 
						|
 | 
						|
error_fput:
 | 
						|
	fdput(f);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
 | 
						|
		int, maxevents, int, timeout)
 | 
						|
{
 | 
						|
	struct timespec64 to;
 | 
						|
 | 
						|
	return do_epoll_wait(epfd, events, maxevents,
 | 
						|
			     ep_timeout_to_timespec(&to, timeout));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Implement the event wait interface for the eventpoll file. It is the kernel
 | 
						|
 * part of the user space epoll_pwait(2).
 | 
						|
 */
 | 
						|
static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
 | 
						|
			  int maxevents, struct timespec64 *to,
 | 
						|
			  const sigset_t __user *sigmask, size_t sigsetsize)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the caller wants a certain signal mask to be set during the wait,
 | 
						|
	 * we apply it here.
 | 
						|
	 */
 | 
						|
	error = set_user_sigmask(sigmask, sigsetsize);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	error = do_epoll_wait(epfd, events, maxevents, to);
 | 
						|
 | 
						|
	restore_saved_sigmask_unless(error == -EINTR);
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
 | 
						|
		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
 | 
						|
		size_t, sigsetsize)
 | 
						|
{
 | 
						|
	struct timespec64 to;
 | 
						|
 | 
						|
	return do_epoll_pwait(epfd, events, maxevents,
 | 
						|
			      ep_timeout_to_timespec(&to, timeout),
 | 
						|
			      sigmask, sigsetsize);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
 | 
						|
		int, maxevents, const struct __kernel_timespec __user *, timeout,
 | 
						|
		const sigset_t __user *, sigmask, size_t, sigsetsize)
 | 
						|
{
 | 
						|
	struct timespec64 ts, *to = NULL;
 | 
						|
 | 
						|
	if (timeout) {
 | 
						|
		if (get_timespec64(&ts, timeout))
 | 
						|
			return -EFAULT;
 | 
						|
		to = &ts;
 | 
						|
		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return do_epoll_pwait(epfd, events, maxevents, to,
 | 
						|
			      sigmask, sigsetsize);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
 | 
						|
				 int maxevents, struct timespec64 *timeout,
 | 
						|
				 const compat_sigset_t __user *sigmask,
 | 
						|
				 compat_size_t sigsetsize)
 | 
						|
{
 | 
						|
	long err;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the caller wants a certain signal mask to be set during the wait,
 | 
						|
	 * we apply it here.
 | 
						|
	 */
 | 
						|
	err = set_compat_user_sigmask(sigmask, sigsetsize);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	err = do_epoll_wait(epfd, events, maxevents, timeout);
 | 
						|
 | 
						|
	restore_saved_sigmask_unless(err == -EINTR);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
 | 
						|
		       struct epoll_event __user *, events,
 | 
						|
		       int, maxevents, int, timeout,
 | 
						|
		       const compat_sigset_t __user *, sigmask,
 | 
						|
		       compat_size_t, sigsetsize)
 | 
						|
{
 | 
						|
	struct timespec64 to;
 | 
						|
 | 
						|
	return do_compat_epoll_pwait(epfd, events, maxevents,
 | 
						|
				     ep_timeout_to_timespec(&to, timeout),
 | 
						|
				     sigmask, sigsetsize);
 | 
						|
}
 | 
						|
 | 
						|
COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
 | 
						|
		       struct epoll_event __user *, events,
 | 
						|
		       int, maxevents,
 | 
						|
		       const struct __kernel_timespec __user *, timeout,
 | 
						|
		       const compat_sigset_t __user *, sigmask,
 | 
						|
		       compat_size_t, sigsetsize)
 | 
						|
{
 | 
						|
	struct timespec64 ts, *to = NULL;
 | 
						|
 | 
						|
	if (timeout) {
 | 
						|
		if (get_timespec64(&ts, timeout))
 | 
						|
			return -EFAULT;
 | 
						|
		to = &ts;
 | 
						|
		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return do_compat_epoll_pwait(epfd, events, maxevents, to,
 | 
						|
				     sigmask, sigsetsize);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static int __init eventpoll_init(void)
 | 
						|
{
 | 
						|
	struct sysinfo si;
 | 
						|
 | 
						|
	si_meminfo(&si);
 | 
						|
	/*
 | 
						|
	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
 | 
						|
	 */
 | 
						|
	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
 | 
						|
		EP_ITEM_COST;
 | 
						|
	BUG_ON(max_user_watches < 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can have many thousands of epitems, so prevent this from
 | 
						|
	 * using an extra cache line on 64-bit (and smaller) CPUs
 | 
						|
	 */
 | 
						|
	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
 | 
						|
 | 
						|
	/* Allocates slab cache used to allocate "struct epitem" items */
 | 
						|
	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
 | 
						|
			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
 | 
						|
 | 
						|
	/* Allocates slab cache used to allocate "struct eppoll_entry" */
 | 
						|
	pwq_cache = kmem_cache_create("eventpoll_pwq",
 | 
						|
		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
 | 
						|
	epoll_sysctls_init();
 | 
						|
 | 
						|
	ephead_cache = kmem_cache_create("ep_head",
 | 
						|
		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
fs_initcall(eventpoll_init);
 |