mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 634a816095
			
		
	
	
		634a816095
		
	
	
	
	
		
			
			We lose the distinction between "found a PID" and "nothing, but that's not
an error" a bit too early in waitid().  Easily fixed, fortunately...
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Fixes: 67d7ddded3 ("waitid(2): leave copyout of siginfo to syscall itself")
Tested-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
		
	
			
		
			
				
	
	
		
			1751 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1751 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/exit.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/autogroup.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/stat.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/sched/cputime.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/iocontext.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/acct.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/taskstats_kern.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/cn_proc.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/futex.h>
 | |
| #include <linux/pipe_fs_i.h>
 | |
| #include <linux/audit.h> /* for audit_free() */
 | |
| #include <linux/resource.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| #include <linux/tracehook.h>
 | |
| #include <linux/fs_struct.h>
 | |
| #include <linux/init_task.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <trace/events/sched.h>
 | |
| #include <linux/hw_breakpoint.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/shm.h>
 | |
| #include <linux/kcov.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/rcuwait.h>
 | |
| #include <linux/compat.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/unistd.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/mmu_context.h>
 | |
| 
 | |
| static void __unhash_process(struct task_struct *p, bool group_dead)
 | |
| {
 | |
| 	nr_threads--;
 | |
| 	detach_pid(p, PIDTYPE_PID);
 | |
| 	if (group_dead) {
 | |
| 		detach_pid(p, PIDTYPE_PGID);
 | |
| 		detach_pid(p, PIDTYPE_SID);
 | |
| 
 | |
| 		list_del_rcu(&p->tasks);
 | |
| 		list_del_init(&p->sibling);
 | |
| 		__this_cpu_dec(process_counts);
 | |
| 	}
 | |
| 	list_del_rcu(&p->thread_group);
 | |
| 	list_del_rcu(&p->thread_node);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function expects the tasklist_lock write-locked.
 | |
|  */
 | |
| static void __exit_signal(struct task_struct *tsk)
 | |
| {
 | |
| 	struct signal_struct *sig = tsk->signal;
 | |
| 	bool group_dead = thread_group_leader(tsk);
 | |
| 	struct sighand_struct *sighand;
 | |
| 	struct tty_struct *uninitialized_var(tty);
 | |
| 	u64 utime, stime;
 | |
| 
 | |
| 	sighand = rcu_dereference_check(tsk->sighand,
 | |
| 					lockdep_tasklist_lock_is_held());
 | |
| 	spin_lock(&sighand->siglock);
 | |
| 
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| 	posix_cpu_timers_exit(tsk);
 | |
| 	if (group_dead) {
 | |
| 		posix_cpu_timers_exit_group(tsk);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * This can only happen if the caller is de_thread().
 | |
| 		 * FIXME: this is the temporary hack, we should teach
 | |
| 		 * posix-cpu-timers to handle this case correctly.
 | |
| 		 */
 | |
| 		if (unlikely(has_group_leader_pid(tsk)))
 | |
| 			posix_cpu_timers_exit_group(tsk);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (group_dead) {
 | |
| 		tty = sig->tty;
 | |
| 		sig->tty = NULL;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If there is any task waiting for the group exit
 | |
| 		 * then notify it:
 | |
| 		 */
 | |
| 		if (sig->notify_count > 0 && !--sig->notify_count)
 | |
| 			wake_up_process(sig->group_exit_task);
 | |
| 
 | |
| 		if (tsk == sig->curr_target)
 | |
| 			sig->curr_target = next_thread(tsk);
 | |
| 	}
 | |
| 
 | |
| 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
 | |
| 			      sizeof(unsigned long long));
 | |
| 
 | |
| 	/*
 | |
| 	 * Accumulate here the counters for all threads as they die. We could
 | |
| 	 * skip the group leader because it is the last user of signal_struct,
 | |
| 	 * but we want to avoid the race with thread_group_cputime() which can
 | |
| 	 * see the empty ->thread_head list.
 | |
| 	 */
 | |
| 	task_cputime(tsk, &utime, &stime);
 | |
| 	write_seqlock(&sig->stats_lock);
 | |
| 	sig->utime += utime;
 | |
| 	sig->stime += stime;
 | |
| 	sig->gtime += task_gtime(tsk);
 | |
| 	sig->min_flt += tsk->min_flt;
 | |
| 	sig->maj_flt += tsk->maj_flt;
 | |
| 	sig->nvcsw += tsk->nvcsw;
 | |
| 	sig->nivcsw += tsk->nivcsw;
 | |
| 	sig->inblock += task_io_get_inblock(tsk);
 | |
| 	sig->oublock += task_io_get_oublock(tsk);
 | |
| 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
 | |
| 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 | |
| 	sig->nr_threads--;
 | |
| 	__unhash_process(tsk, group_dead);
 | |
| 	write_sequnlock(&sig->stats_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do this under ->siglock, we can race with another thread
 | |
| 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 | |
| 	 */
 | |
| 	flush_sigqueue(&tsk->pending);
 | |
| 	tsk->sighand = NULL;
 | |
| 	spin_unlock(&sighand->siglock);
 | |
| 
 | |
| 	__cleanup_sighand(sighand);
 | |
| 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 | |
| 	if (group_dead) {
 | |
| 		flush_sigqueue(&sig->shared_pending);
 | |
| 		tty_kref_put(tty);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void delayed_put_task_struct(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 | |
| 
 | |
| 	perf_event_delayed_put(tsk);
 | |
| 	trace_sched_process_free(tsk);
 | |
| 	put_task_struct(tsk);
 | |
| }
 | |
| 
 | |
| 
 | |
| void release_task(struct task_struct *p)
 | |
| {
 | |
| 	struct task_struct *leader;
 | |
| 	int zap_leader;
 | |
| repeat:
 | |
| 	/* don't need to get the RCU readlock here - the process is dead and
 | |
| 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
 | |
| 	rcu_read_lock();
 | |
| 	atomic_dec(&__task_cred(p)->user->processes);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	proc_flush_task(p);
 | |
| 
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 	ptrace_release_task(p);
 | |
| 	__exit_signal(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are the last non-leader member of the thread
 | |
| 	 * group, and the leader is zombie, then notify the
 | |
| 	 * group leader's parent process. (if it wants notification.)
 | |
| 	 */
 | |
| 	zap_leader = 0;
 | |
| 	leader = p->group_leader;
 | |
| 	if (leader != p && thread_group_empty(leader)
 | |
| 			&& leader->exit_state == EXIT_ZOMBIE) {
 | |
| 		/*
 | |
| 		 * If we were the last child thread and the leader has
 | |
| 		 * exited already, and the leader's parent ignores SIGCHLD,
 | |
| 		 * then we are the one who should release the leader.
 | |
| 		 */
 | |
| 		zap_leader = do_notify_parent(leader, leader->exit_signal);
 | |
| 		if (zap_leader)
 | |
| 			leader->exit_state = EXIT_DEAD;
 | |
| 	}
 | |
| 
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 	release_thread(p);
 | |
| 	call_rcu(&p->rcu, delayed_put_task_struct);
 | |
| 
 | |
| 	p = leader;
 | |
| 	if (unlikely(zap_leader))
 | |
| 		goto repeat;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that if this function returns a valid task_struct pointer (!NULL)
 | |
|  * task->usage must remain >0 for the duration of the RCU critical section.
 | |
|  */
 | |
| struct task_struct *task_rcu_dereference(struct task_struct **ptask)
 | |
| {
 | |
| 	struct sighand_struct *sighand;
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to verify that release_task() was not called and thus
 | |
| 	 * delayed_put_task_struct() can't run and drop the last reference
 | |
| 	 * before rcu_read_unlock(). We check task->sighand != NULL,
 | |
| 	 * but we can read the already freed and reused memory.
 | |
| 	 */
 | |
| retry:
 | |
| 	task = rcu_dereference(*ptask);
 | |
| 	if (!task)
 | |
| 		return NULL;
 | |
| 
 | |
| 	probe_kernel_address(&task->sighand, sighand);
 | |
| 
 | |
| 	/*
 | |
| 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
 | |
| 	 * was already freed we can not miss the preceding update of this
 | |
| 	 * pointer.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	if (unlikely(task != READ_ONCE(*ptask)))
 | |
| 		goto retry;
 | |
| 
 | |
| 	/*
 | |
| 	 * We've re-checked that "task == *ptask", now we have two different
 | |
| 	 * cases:
 | |
| 	 *
 | |
| 	 * 1. This is actually the same task/task_struct. In this case
 | |
| 	 *    sighand != NULL tells us it is still alive.
 | |
| 	 *
 | |
| 	 * 2. This is another task which got the same memory for task_struct.
 | |
| 	 *    We can't know this of course, and we can not trust
 | |
| 	 *    sighand != NULL.
 | |
| 	 *
 | |
| 	 *    In this case we actually return a random value, but this is
 | |
| 	 *    correct.
 | |
| 	 *
 | |
| 	 *    If we return NULL - we can pretend that we actually noticed that
 | |
| 	 *    *ptask was updated when the previous task has exited. Or pretend
 | |
| 	 *    that probe_slab_address(&sighand) reads NULL.
 | |
| 	 *
 | |
| 	 *    If we return the new task (because sighand is not NULL for any
 | |
| 	 *    reason) - this is fine too. This (new) task can't go away before
 | |
| 	 *    another gp pass.
 | |
| 	 *
 | |
| 	 *    And note: We could even eliminate the false positive if re-read
 | |
| 	 *    task->sighand once again to avoid the falsely NULL. But this case
 | |
| 	 *    is very unlikely so we don't care.
 | |
| 	 */
 | |
| 	if (!sighand)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| void rcuwait_wake_up(struct rcuwait *w)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Order condition vs @task, such that everything prior to the load
 | |
| 	 * of @task is visible. This is the condition as to why the user called
 | |
| 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
 | |
| 	 * barrier (A) in rcuwait_wait_event().
 | |
| 	 *
 | |
| 	 *    WAIT                WAKE
 | |
| 	 *    [S] tsk = current	  [S] cond = true
 | |
| 	 *        MB (A)	      MB (B)
 | |
| 	 *    [L] cond		  [L] tsk
 | |
| 	 */
 | |
| 	smp_rmb(); /* (B) */
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
 | |
| 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
 | |
| 	 */
 | |
| 	task = rcu_dereference(w->task);
 | |
| 	if (task)
 | |
| 		wake_up_process(task);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if a process group is "orphaned", according to the POSIX
 | |
|  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 | |
|  * by terminal-generated stop signals.  Newly orphaned process groups are
 | |
|  * to receive a SIGHUP and a SIGCONT.
 | |
|  *
 | |
|  * "I ask you, have you ever known what it is to be an orphan?"
 | |
|  */
 | |
| static int will_become_orphaned_pgrp(struct pid *pgrp,
 | |
| 					struct task_struct *ignored_task)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | |
| 		if ((p == ignored_task) ||
 | |
| 		    (p->exit_state && thread_group_empty(p)) ||
 | |
| 		    is_global_init(p->real_parent))
 | |
| 			continue;
 | |
| 
 | |
| 		if (task_pgrp(p->real_parent) != pgrp &&
 | |
| 		    task_session(p->real_parent) == task_session(p))
 | |
| 			return 0;
 | |
| 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int is_current_pgrp_orphaned(void)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static bool has_stopped_jobs(struct pid *pgrp)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | |
| 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 | |
| 			return true;
 | |
| 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if any process groups have become orphaned as
 | |
|  * a result of our exiting, and if they have any stopped jobs,
 | |
|  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 | |
|  */
 | |
| static void
 | |
| kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 | |
| {
 | |
| 	struct pid *pgrp = task_pgrp(tsk);
 | |
| 	struct task_struct *ignored_task = tsk;
 | |
| 
 | |
| 	if (!parent)
 | |
| 		/* exit: our father is in a different pgrp than
 | |
| 		 * we are and we were the only connection outside.
 | |
| 		 */
 | |
| 		parent = tsk->real_parent;
 | |
| 	else
 | |
| 		/* reparent: our child is in a different pgrp than
 | |
| 		 * we are, and it was the only connection outside.
 | |
| 		 */
 | |
| 		ignored_task = NULL;
 | |
| 
 | |
| 	if (task_pgrp(parent) != pgrp &&
 | |
| 	    task_session(parent) == task_session(tsk) &&
 | |
| 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
 | |
| 	    has_stopped_jobs(pgrp)) {
 | |
| 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 | |
| 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| /*
 | |
|  * A task is exiting.   If it owned this mm, find a new owner for the mm.
 | |
|  */
 | |
| void mm_update_next_owner(struct mm_struct *mm)
 | |
| {
 | |
| 	struct task_struct *c, *g, *p = current;
 | |
| 
 | |
| retry:
 | |
| 	/*
 | |
| 	 * If the exiting or execing task is not the owner, it's
 | |
| 	 * someone else's problem.
 | |
| 	 */
 | |
| 	if (mm->owner != p)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * The current owner is exiting/execing and there are no other
 | |
| 	 * candidates.  Do not leave the mm pointing to a possibly
 | |
| 	 * freed task structure.
 | |
| 	 */
 | |
| 	if (atomic_read(&mm->mm_users) <= 1) {
 | |
| 		mm->owner = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	/*
 | |
| 	 * Search in the children
 | |
| 	 */
 | |
| 	list_for_each_entry(c, &p->children, sibling) {
 | |
| 		if (c->mm == mm)
 | |
| 			goto assign_new_owner;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search in the siblings
 | |
| 	 */
 | |
| 	list_for_each_entry(c, &p->real_parent->children, sibling) {
 | |
| 		if (c->mm == mm)
 | |
| 			goto assign_new_owner;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search through everything else, we should not get here often.
 | |
| 	 */
 | |
| 	for_each_process(g) {
 | |
| 		if (g->flags & PF_KTHREAD)
 | |
| 			continue;
 | |
| 		for_each_thread(g, c) {
 | |
| 			if (c->mm == mm)
 | |
| 				goto assign_new_owner;
 | |
| 			if (c->mm)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	/*
 | |
| 	 * We found no owner yet mm_users > 1: this implies that we are
 | |
| 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
 | |
| 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 | |
| 	 */
 | |
| 	mm->owner = NULL;
 | |
| 	return;
 | |
| 
 | |
| assign_new_owner:
 | |
| 	BUG_ON(c == p);
 | |
| 	get_task_struct(c);
 | |
| 	/*
 | |
| 	 * The task_lock protects c->mm from changing.
 | |
| 	 * We always want mm->owner->mm == mm
 | |
| 	 */
 | |
| 	task_lock(c);
 | |
| 	/*
 | |
| 	 * Delay read_unlock() till we have the task_lock()
 | |
| 	 * to ensure that c does not slip away underneath us
 | |
| 	 */
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	if (c->mm != mm) {
 | |
| 		task_unlock(c);
 | |
| 		put_task_struct(c);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	mm->owner = c;
 | |
| 	task_unlock(c);
 | |
| 	put_task_struct(c);
 | |
| }
 | |
| #endif /* CONFIG_MEMCG */
 | |
| 
 | |
| /*
 | |
|  * Turn us into a lazy TLB process if we
 | |
|  * aren't already..
 | |
|  */
 | |
| static void exit_mm(void)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct core_state *core_state;
 | |
| 
 | |
| 	mm_release(current, mm);
 | |
| 	if (!mm)
 | |
| 		return;
 | |
| 	sync_mm_rss(mm);
 | |
| 	/*
 | |
| 	 * Serialize with any possible pending coredump.
 | |
| 	 * We must hold mmap_sem around checking core_state
 | |
| 	 * and clearing tsk->mm.  The core-inducing thread
 | |
| 	 * will increment ->nr_threads for each thread in the
 | |
| 	 * group with ->mm != NULL.
 | |
| 	 */
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	core_state = mm->core_state;
 | |
| 	if (core_state) {
 | |
| 		struct core_thread self;
 | |
| 
 | |
| 		up_read(&mm->mmap_sem);
 | |
| 
 | |
| 		self.task = current;
 | |
| 		self.next = xchg(&core_state->dumper.next, &self);
 | |
| 		/*
 | |
| 		 * Implies mb(), the result of xchg() must be visible
 | |
| 		 * to core_state->dumper.
 | |
| 		 */
 | |
| 		if (atomic_dec_and_test(&core_state->nr_threads))
 | |
| 			complete(&core_state->startup);
 | |
| 
 | |
| 		for (;;) {
 | |
| 			set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			if (!self.task) /* see coredump_finish() */
 | |
| 				break;
 | |
| 			freezable_schedule();
 | |
| 		}
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 	}
 | |
| 	mmgrab(mm);
 | |
| 	BUG_ON(mm != current->active_mm);
 | |
| 	/* more a memory barrier than a real lock */
 | |
| 	task_lock(current);
 | |
| 	current->mm = NULL;
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	enter_lazy_tlb(mm, current);
 | |
| 	task_unlock(current);
 | |
| 	mm_update_next_owner(mm);
 | |
| 	mmput(mm);
 | |
| 	if (test_thread_flag(TIF_MEMDIE))
 | |
| 		exit_oom_victim();
 | |
| }
 | |
| 
 | |
| static struct task_struct *find_alive_thread(struct task_struct *p)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	for_each_thread(p, t) {
 | |
| 		if (!(t->flags & PF_EXITING))
 | |
| 			return t;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct task_struct *find_child_reaper(struct task_struct *father)
 | |
| 	__releases(&tasklist_lock)
 | |
| 	__acquires(&tasklist_lock)
 | |
| {
 | |
| 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
 | |
| 	struct task_struct *reaper = pid_ns->child_reaper;
 | |
| 
 | |
| 	if (likely(reaper != father))
 | |
| 		return reaper;
 | |
| 
 | |
| 	reaper = find_alive_thread(father);
 | |
| 	if (reaper) {
 | |
| 		pid_ns->child_reaper = reaper;
 | |
| 		return reaper;
 | |
| 	}
 | |
| 
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 	if (unlikely(pid_ns == &init_pid_ns)) {
 | |
| 		panic("Attempted to kill init! exitcode=0x%08x\n",
 | |
| 			father->signal->group_exit_code ?: father->exit_code);
 | |
| 	}
 | |
| 	zap_pid_ns_processes(pid_ns);
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 
 | |
| 	return father;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we die, we re-parent all our children, and try to:
 | |
|  * 1. give them to another thread in our thread group, if such a member exists
 | |
|  * 2. give it to the first ancestor process which prctl'd itself as a
 | |
|  *    child_subreaper for its children (like a service manager)
 | |
|  * 3. give it to the init process (PID 1) in our pid namespace
 | |
|  */
 | |
| static struct task_struct *find_new_reaper(struct task_struct *father,
 | |
| 					   struct task_struct *child_reaper)
 | |
| {
 | |
| 	struct task_struct *thread, *reaper;
 | |
| 
 | |
| 	thread = find_alive_thread(father);
 | |
| 	if (thread)
 | |
| 		return thread;
 | |
| 
 | |
| 	if (father->signal->has_child_subreaper) {
 | |
| 		unsigned int ns_level = task_pid(father)->level;
 | |
| 		/*
 | |
| 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 | |
| 		 * We can't check reaper != child_reaper to ensure we do not
 | |
| 		 * cross the namespaces, the exiting parent could be injected
 | |
| 		 * by setns() + fork().
 | |
| 		 * We check pid->level, this is slightly more efficient than
 | |
| 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
 | |
| 		 */
 | |
| 		for (reaper = father->real_parent;
 | |
| 		     task_pid(reaper)->level == ns_level;
 | |
| 		     reaper = reaper->real_parent) {
 | |
| 			if (reaper == &init_task)
 | |
| 				break;
 | |
| 			if (!reaper->signal->is_child_subreaper)
 | |
| 				continue;
 | |
| 			thread = find_alive_thread(reaper);
 | |
| 			if (thread)
 | |
| 				return thread;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return child_reaper;
 | |
| }
 | |
| 
 | |
| /*
 | |
| * Any that need to be release_task'd are put on the @dead list.
 | |
|  */
 | |
| static void reparent_leader(struct task_struct *father, struct task_struct *p,
 | |
| 				struct list_head *dead)
 | |
| {
 | |
| 	if (unlikely(p->exit_state == EXIT_DEAD))
 | |
| 		return;
 | |
| 
 | |
| 	/* We don't want people slaying init. */
 | |
| 	p->exit_signal = SIGCHLD;
 | |
| 
 | |
| 	/* If it has exited notify the new parent about this child's death. */
 | |
| 	if (!p->ptrace &&
 | |
| 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 | |
| 		if (do_notify_parent(p, p->exit_signal)) {
 | |
| 			p->exit_state = EXIT_DEAD;
 | |
| 			list_add(&p->ptrace_entry, dead);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kill_orphaned_pgrp(p, father);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This does two things:
 | |
|  *
 | |
|  * A.  Make init inherit all the child processes
 | |
|  * B.  Check to see if any process groups have become orphaned
 | |
|  *	as a result of our exiting, and if they have any stopped
 | |
|  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 | |
|  */
 | |
| static void forget_original_parent(struct task_struct *father,
 | |
| 					struct list_head *dead)
 | |
| {
 | |
| 	struct task_struct *p, *t, *reaper;
 | |
| 
 | |
| 	if (unlikely(!list_empty(&father->ptraced)))
 | |
| 		exit_ptrace(father, dead);
 | |
| 
 | |
| 	/* Can drop and reacquire tasklist_lock */
 | |
| 	reaper = find_child_reaper(father);
 | |
| 	if (list_empty(&father->children))
 | |
| 		return;
 | |
| 
 | |
| 	reaper = find_new_reaper(father, reaper);
 | |
| 	list_for_each_entry(p, &father->children, sibling) {
 | |
| 		for_each_thread(p, t) {
 | |
| 			t->real_parent = reaper;
 | |
| 			BUG_ON((!t->ptrace) != (t->parent == father));
 | |
| 			if (likely(!t->ptrace))
 | |
| 				t->parent = t->real_parent;
 | |
| 			if (t->pdeath_signal)
 | |
| 				group_send_sig_info(t->pdeath_signal,
 | |
| 						    SEND_SIG_NOINFO, t);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If this is a threaded reparent there is no need to
 | |
| 		 * notify anyone anything has happened.
 | |
| 		 */
 | |
| 		if (!same_thread_group(reaper, father))
 | |
| 			reparent_leader(father, p, dead);
 | |
| 	}
 | |
| 	list_splice_tail_init(&father->children, &reaper->children);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send signals to all our closest relatives so that they know
 | |
|  * to properly mourn us..
 | |
|  */
 | |
| static void exit_notify(struct task_struct *tsk, int group_dead)
 | |
| {
 | |
| 	bool autoreap;
 | |
| 	struct task_struct *p, *n;
 | |
| 	LIST_HEAD(dead);
 | |
| 
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 	forget_original_parent(tsk, &dead);
 | |
| 
 | |
| 	if (group_dead)
 | |
| 		kill_orphaned_pgrp(tsk->group_leader, NULL);
 | |
| 
 | |
| 	if (unlikely(tsk->ptrace)) {
 | |
| 		int sig = thread_group_leader(tsk) &&
 | |
| 				thread_group_empty(tsk) &&
 | |
| 				!ptrace_reparented(tsk) ?
 | |
| 			tsk->exit_signal : SIGCHLD;
 | |
| 		autoreap = do_notify_parent(tsk, sig);
 | |
| 	} else if (thread_group_leader(tsk)) {
 | |
| 		autoreap = thread_group_empty(tsk) &&
 | |
| 			do_notify_parent(tsk, tsk->exit_signal);
 | |
| 	} else {
 | |
| 		autoreap = true;
 | |
| 	}
 | |
| 
 | |
| 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 | |
| 	if (tsk->exit_state == EXIT_DEAD)
 | |
| 		list_add(&tsk->ptrace_entry, &dead);
 | |
| 
 | |
| 	/* mt-exec, de_thread() is waiting for group leader */
 | |
| 	if (unlikely(tsk->signal->notify_count < 0))
 | |
| 		wake_up_process(tsk->signal->group_exit_task);
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 | |
| 		list_del_init(&p->ptrace_entry);
 | |
| 		release_task(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_STACK_USAGE
 | |
| static void check_stack_usage(void)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(low_water_lock);
 | |
| 	static int lowest_to_date = THREAD_SIZE;
 | |
| 	unsigned long free;
 | |
| 
 | |
| 	free = stack_not_used(current);
 | |
| 
 | |
| 	if (free >= lowest_to_date)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&low_water_lock);
 | |
| 	if (free < lowest_to_date) {
 | |
| 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
 | |
| 			current->comm, task_pid_nr(current), free);
 | |
| 		lowest_to_date = free;
 | |
| 	}
 | |
| 	spin_unlock(&low_water_lock);
 | |
| }
 | |
| #else
 | |
| static inline void check_stack_usage(void) {}
 | |
| #endif
 | |
| 
 | |
| void __noreturn do_exit(long code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	int group_dead;
 | |
| 	TASKS_RCU(int tasks_rcu_i);
 | |
| 
 | |
| 	profile_task_exit(tsk);
 | |
| 	kcov_task_exit(tsk);
 | |
| 
 | |
| 	WARN_ON(blk_needs_flush_plug(tsk));
 | |
| 
 | |
| 	if (unlikely(in_interrupt()))
 | |
| 		panic("Aiee, killing interrupt handler!");
 | |
| 	if (unlikely(!tsk->pid))
 | |
| 		panic("Attempted to kill the idle task!");
 | |
| 
 | |
| 	/*
 | |
| 	 * If do_exit is called because this processes oopsed, it's possible
 | |
| 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 | |
| 	 * continuing. Amongst other possible reasons, this is to prevent
 | |
| 	 * mm_release()->clear_child_tid() from writing to a user-controlled
 | |
| 	 * kernel address.
 | |
| 	 */
 | |
| 	set_fs(USER_DS);
 | |
| 
 | |
| 	ptrace_event(PTRACE_EVENT_EXIT, code);
 | |
| 
 | |
| 	validate_creds_for_do_exit(tsk);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're taking recursive faults here in do_exit. Safest is to just
 | |
| 	 * leave this task alone and wait for reboot.
 | |
| 	 */
 | |
| 	if (unlikely(tsk->flags & PF_EXITING)) {
 | |
| 		pr_alert("Fixing recursive fault but reboot is needed!\n");
 | |
| 		/*
 | |
| 		 * We can do this unlocked here. The futex code uses
 | |
| 		 * this flag just to verify whether the pi state
 | |
| 		 * cleanup has been done or not. In the worst case it
 | |
| 		 * loops once more. We pretend that the cleanup was
 | |
| 		 * done as there is no way to return. Either the
 | |
| 		 * OWNER_DIED bit is set by now or we push the blocked
 | |
| 		 * task into the wait for ever nirwana as well.
 | |
| 		 */
 | |
| 		tsk->flags |= PF_EXITPIDONE;
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		schedule();
 | |
| 	}
 | |
| 
 | |
| 	exit_signals(tsk);  /* sets PF_EXITING */
 | |
| 	/*
 | |
| 	 * Ensure that all new tsk->pi_lock acquisitions must observe
 | |
| 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	/*
 | |
| 	 * Ensure that we must observe the pi_state in exit_mm() ->
 | |
| 	 * mm_release() -> exit_pi_state_list().
 | |
| 	 */
 | |
| 	raw_spin_unlock_wait(&tsk->pi_lock);
 | |
| 
 | |
| 	if (unlikely(in_atomic())) {
 | |
| 		pr_info("note: %s[%d] exited with preempt_count %d\n",
 | |
| 			current->comm, task_pid_nr(current),
 | |
| 			preempt_count());
 | |
| 		preempt_count_set(PREEMPT_ENABLED);
 | |
| 	}
 | |
| 
 | |
| 	/* sync mm's RSS info before statistics gathering */
 | |
| 	if (tsk->mm)
 | |
| 		sync_mm_rss(tsk->mm);
 | |
| 	acct_update_integrals(tsk);
 | |
| 	group_dead = atomic_dec_and_test(&tsk->signal->live);
 | |
| 	if (group_dead) {
 | |
| #ifdef CONFIG_POSIX_TIMERS
 | |
| 		hrtimer_cancel(&tsk->signal->real_timer);
 | |
| 		exit_itimers(tsk->signal);
 | |
| #endif
 | |
| 		if (tsk->mm)
 | |
| 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 | |
| 	}
 | |
| 	acct_collect(code, group_dead);
 | |
| 	if (group_dead)
 | |
| 		tty_audit_exit();
 | |
| 	audit_free(tsk);
 | |
| 
 | |
| 	tsk->exit_code = code;
 | |
| 	taskstats_exit(tsk, group_dead);
 | |
| 
 | |
| 	exit_mm();
 | |
| 
 | |
| 	if (group_dead)
 | |
| 		acct_process();
 | |
| 	trace_sched_process_exit(tsk);
 | |
| 
 | |
| 	exit_sem(tsk);
 | |
| 	exit_shm(tsk);
 | |
| 	exit_files(tsk);
 | |
| 	exit_fs(tsk);
 | |
| 	if (group_dead)
 | |
| 		disassociate_ctty(1);
 | |
| 	exit_task_namespaces(tsk);
 | |
| 	exit_task_work(tsk);
 | |
| 	exit_thread(tsk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush inherited counters to the parent - before the parent
 | |
| 	 * gets woken up by child-exit notifications.
 | |
| 	 *
 | |
| 	 * because of cgroup mode, must be called before cgroup_exit()
 | |
| 	 */
 | |
| 	perf_event_exit_task(tsk);
 | |
| 
 | |
| 	sched_autogroup_exit_task(tsk);
 | |
| 	cgroup_exit(tsk);
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: do that only when needed, using sched_exit tracepoint
 | |
| 	 */
 | |
| 	flush_ptrace_hw_breakpoint(tsk);
 | |
| 
 | |
| 	TASKS_RCU(preempt_disable());
 | |
| 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
 | |
| 	TASKS_RCU(preempt_enable());
 | |
| 	exit_notify(tsk, group_dead);
 | |
| 	proc_exit_connector(tsk);
 | |
| 	mpol_put_task_policy(tsk);
 | |
| #ifdef CONFIG_FUTEX
 | |
| 	if (unlikely(current->pi_state_cache))
 | |
| 		kfree(current->pi_state_cache);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Make sure we are holding no locks:
 | |
| 	 */
 | |
| 	debug_check_no_locks_held();
 | |
| 	/*
 | |
| 	 * We can do this unlocked here. The futex code uses this flag
 | |
| 	 * just to verify whether the pi state cleanup has been done
 | |
| 	 * or not. In the worst case it loops once more.
 | |
| 	 */
 | |
| 	tsk->flags |= PF_EXITPIDONE;
 | |
| 
 | |
| 	if (tsk->io_context)
 | |
| 		exit_io_context(tsk);
 | |
| 
 | |
| 	if (tsk->splice_pipe)
 | |
| 		free_pipe_info(tsk->splice_pipe);
 | |
| 
 | |
| 	if (tsk->task_frag.page)
 | |
| 		put_page(tsk->task_frag.page);
 | |
| 
 | |
| 	validate_creds_for_do_exit(tsk);
 | |
| 
 | |
| 	check_stack_usage();
 | |
| 	preempt_disable();
 | |
| 	if (tsk->nr_dirtied)
 | |
| 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 | |
| 	exit_rcu();
 | |
| 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
 | |
| 
 | |
| 	do_task_dead();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(do_exit);
 | |
| 
 | |
| void complete_and_exit(struct completion *comp, long code)
 | |
| {
 | |
| 	if (comp)
 | |
| 		complete(comp);
 | |
| 
 | |
| 	do_exit(code);
 | |
| }
 | |
| EXPORT_SYMBOL(complete_and_exit);
 | |
| 
 | |
| SYSCALL_DEFINE1(exit, int, error_code)
 | |
| {
 | |
| 	do_exit((error_code&0xff)<<8);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take down every thread in the group.  This is called by fatal signals
 | |
|  * as well as by sys_exit_group (below).
 | |
|  */
 | |
| void
 | |
| do_group_exit(int exit_code)
 | |
| {
 | |
| 	struct signal_struct *sig = current->signal;
 | |
| 
 | |
| 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 | |
| 
 | |
| 	if (signal_group_exit(sig))
 | |
| 		exit_code = sig->group_exit_code;
 | |
| 	else if (!thread_group_empty(current)) {
 | |
| 		struct sighand_struct *const sighand = current->sighand;
 | |
| 
 | |
| 		spin_lock_irq(&sighand->siglock);
 | |
| 		if (signal_group_exit(sig))
 | |
| 			/* Another thread got here before we took the lock.  */
 | |
| 			exit_code = sig->group_exit_code;
 | |
| 		else {
 | |
| 			sig->group_exit_code = exit_code;
 | |
| 			sig->flags = SIGNAL_GROUP_EXIT;
 | |
| 			zap_other_threads(current);
 | |
| 		}
 | |
| 		spin_unlock_irq(&sighand->siglock);
 | |
| 	}
 | |
| 
 | |
| 	do_exit(exit_code);
 | |
| 	/* NOTREACHED */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this kills every thread in the thread group. Note that any externally
 | |
|  * wait4()-ing process will get the correct exit code - even if this
 | |
|  * thread is not the thread group leader.
 | |
|  */
 | |
| SYSCALL_DEFINE1(exit_group, int, error_code)
 | |
| {
 | |
| 	do_group_exit((error_code & 0xff) << 8);
 | |
| 	/* NOTREACHED */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct waitid_info {
 | |
| 	pid_t pid;
 | |
| 	uid_t uid;
 | |
| 	int status;
 | |
| 	int cause;
 | |
| };
 | |
| 
 | |
| struct wait_opts {
 | |
| 	enum pid_type		wo_type;
 | |
| 	int			wo_flags;
 | |
| 	struct pid		*wo_pid;
 | |
| 
 | |
| 	struct waitid_info	*wo_info;
 | |
| 	int			wo_stat;
 | |
| 	struct rusage		*wo_rusage;
 | |
| 
 | |
| 	wait_queue_entry_t		child_wait;
 | |
| 	int			notask_error;
 | |
| };
 | |
| 
 | |
| static inline
 | |
| struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	if (type != PIDTYPE_PID)
 | |
| 		task = task->group_leader;
 | |
| 	return task->pids[type].pid;
 | |
| }
 | |
| 
 | |
| static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 | |
| {
 | |
| 	return	wo->wo_type == PIDTYPE_MAX ||
 | |
| 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
 | |
| }
 | |
| 
 | |
| static int
 | |
| eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
 | |
| {
 | |
| 	if (!eligible_pid(wo, p))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for all children (clone and not) if __WALL is set or
 | |
| 	 * if it is traced by us.
 | |
| 	 */
 | |
| 	if (ptrace || (wo->wo_flags & __WALL))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
 | |
| 	 * otherwise, wait for non-clone children *only*.
 | |
| 	 *
 | |
| 	 * Note: a "clone" child here is one that reports to its parent
 | |
| 	 * using a signal other than SIGCHLD, or a non-leader thread which
 | |
| 	 * we can only see if it is traced by us.
 | |
| 	 */
 | |
| 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 | |
|  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 | |
|  * the lock and this task is uninteresting.  If we return nonzero, we have
 | |
|  * released the lock and the system call should return.
 | |
|  */
 | |
| static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 | |
| {
 | |
| 	int state, status;
 | |
| 	pid_t pid = task_pid_vnr(p);
 | |
| 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
 | |
| 	struct waitid_info *infop;
 | |
| 
 | |
| 	if (!likely(wo->wo_flags & WEXITED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(wo->wo_flags & WNOWAIT)) {
 | |
| 		status = p->exit_code;
 | |
| 		get_task_struct(p);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		sched_annotate_sleep();
 | |
| 		if (wo->wo_rusage)
 | |
| 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
 | |
| 		put_task_struct(p);
 | |
| 		goto out_info;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
 | |
| 	 */
 | |
| 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
 | |
| 		EXIT_TRACE : EXIT_DEAD;
 | |
| 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We own this thread, nobody else can reap it.
 | |
| 	 */
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	sched_annotate_sleep();
 | |
| 
 | |
| 	/*
 | |
| 	 * Check thread_group_leader() to exclude the traced sub-threads.
 | |
| 	 */
 | |
| 	if (state == EXIT_DEAD && thread_group_leader(p)) {
 | |
| 		struct signal_struct *sig = p->signal;
 | |
| 		struct signal_struct *psig = current->signal;
 | |
| 		unsigned long maxrss;
 | |
| 		u64 tgutime, tgstime;
 | |
| 
 | |
| 		/*
 | |
| 		 * The resource counters for the group leader are in its
 | |
| 		 * own task_struct.  Those for dead threads in the group
 | |
| 		 * are in its signal_struct, as are those for the child
 | |
| 		 * processes it has previously reaped.  All these
 | |
| 		 * accumulate in the parent's signal_struct c* fields.
 | |
| 		 *
 | |
| 		 * We don't bother to take a lock here to protect these
 | |
| 		 * p->signal fields because the whole thread group is dead
 | |
| 		 * and nobody can change them.
 | |
| 		 *
 | |
| 		 * psig->stats_lock also protects us from our sub-theads
 | |
| 		 * which can reap other children at the same time. Until
 | |
| 		 * we change k_getrusage()-like users to rely on this lock
 | |
| 		 * we have to take ->siglock as well.
 | |
| 		 *
 | |
| 		 * We use thread_group_cputime_adjusted() to get times for
 | |
| 		 * the thread group, which consolidates times for all threads
 | |
| 		 * in the group including the group leader.
 | |
| 		 */
 | |
| 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
 | |
| 		spin_lock_irq(¤t->sighand->siglock);
 | |
| 		write_seqlock(&psig->stats_lock);
 | |
| 		psig->cutime += tgutime + sig->cutime;
 | |
| 		psig->cstime += tgstime + sig->cstime;
 | |
| 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
 | |
| 		psig->cmin_flt +=
 | |
| 			p->min_flt + sig->min_flt + sig->cmin_flt;
 | |
| 		psig->cmaj_flt +=
 | |
| 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
 | |
| 		psig->cnvcsw +=
 | |
| 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
 | |
| 		psig->cnivcsw +=
 | |
| 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
 | |
| 		psig->cinblock +=
 | |
| 			task_io_get_inblock(p) +
 | |
| 			sig->inblock + sig->cinblock;
 | |
| 		psig->coublock +=
 | |
| 			task_io_get_oublock(p) +
 | |
| 			sig->oublock + sig->coublock;
 | |
| 		maxrss = max(sig->maxrss, sig->cmaxrss);
 | |
| 		if (psig->cmaxrss < maxrss)
 | |
| 			psig->cmaxrss = maxrss;
 | |
| 		task_io_accounting_add(&psig->ioac, &p->ioac);
 | |
| 		task_io_accounting_add(&psig->ioac, &sig->ioac);
 | |
| 		write_sequnlock(&psig->stats_lock);
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	}
 | |
| 
 | |
| 	if (wo->wo_rusage)
 | |
| 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
 | |
| 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
 | |
| 		? p->signal->group_exit_code : p->exit_code;
 | |
| 	wo->wo_stat = status;
 | |
| 
 | |
| 	if (state == EXIT_TRACE) {
 | |
| 		write_lock_irq(&tasklist_lock);
 | |
| 		/* We dropped tasklist, ptracer could die and untrace */
 | |
| 		ptrace_unlink(p);
 | |
| 
 | |
| 		/* If parent wants a zombie, don't release it now */
 | |
| 		state = EXIT_ZOMBIE;
 | |
| 		if (do_notify_parent(p, p->exit_signal))
 | |
| 			state = EXIT_DEAD;
 | |
| 		p->exit_state = state;
 | |
| 		write_unlock_irq(&tasklist_lock);
 | |
| 	}
 | |
| 	if (state == EXIT_DEAD)
 | |
| 		release_task(p);
 | |
| 
 | |
| out_info:
 | |
| 	infop = wo->wo_info;
 | |
| 	if (infop) {
 | |
| 		if ((status & 0x7f) == 0) {
 | |
| 			infop->cause = CLD_EXITED;
 | |
| 			infop->status = status >> 8;
 | |
| 		} else {
 | |
| 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
 | |
| 			infop->status = status & 0x7f;
 | |
| 		}
 | |
| 		infop->pid = pid;
 | |
| 		infop->uid = uid;
 | |
| 	}
 | |
| 
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| static int *task_stopped_code(struct task_struct *p, bool ptrace)
 | |
| {
 | |
| 	if (ptrace) {
 | |
| 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
 | |
| 			return &p->exit_code;
 | |
| 	} else {
 | |
| 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
 | |
| 			return &p->signal->group_exit_code;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
 | |
|  * @wo: wait options
 | |
|  * @ptrace: is the wait for ptrace
 | |
|  * @p: task to wait for
 | |
|  *
 | |
|  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
 | |
|  *
 | |
|  * CONTEXT:
 | |
|  * read_lock(&tasklist_lock), which is released if return value is
 | |
|  * non-zero.  Also, grabs and releases @p->sighand->siglock.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 if wait condition didn't exist and search for other wait conditions
 | |
|  * should continue.  Non-zero return, -errno on failure and @p's pid on
 | |
|  * success, implies that tasklist_lock is released and wait condition
 | |
|  * search should terminate.
 | |
|  */
 | |
| static int wait_task_stopped(struct wait_opts *wo,
 | |
| 				int ptrace, struct task_struct *p)
 | |
| {
 | |
| 	struct waitid_info *infop;
 | |
| 	int exit_code, *p_code, why;
 | |
| 	uid_t uid = 0; /* unneeded, required by compiler */
 | |
| 	pid_t pid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
 | |
| 	 */
 | |
| 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!task_stopped_code(p, ptrace))
 | |
| 		return 0;
 | |
| 
 | |
| 	exit_code = 0;
 | |
| 	spin_lock_irq(&p->sighand->siglock);
 | |
| 
 | |
| 	p_code = task_stopped_code(p, ptrace);
 | |
| 	if (unlikely(!p_code))
 | |
| 		goto unlock_sig;
 | |
| 
 | |
| 	exit_code = *p_code;
 | |
| 	if (!exit_code)
 | |
| 		goto unlock_sig;
 | |
| 
 | |
| 	if (!unlikely(wo->wo_flags & WNOWAIT))
 | |
| 		*p_code = 0;
 | |
| 
 | |
| 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
 | |
| unlock_sig:
 | |
| 	spin_unlock_irq(&p->sighand->siglock);
 | |
| 	if (!exit_code)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are pretty sure this task is interesting.
 | |
| 	 * Make sure it doesn't get reaped out from under us while we
 | |
| 	 * give up the lock and then examine it below.  We don't want to
 | |
| 	 * keep holding onto the tasklist_lock while we call getrusage and
 | |
| 	 * possibly take page faults for user memory.
 | |
| 	 */
 | |
| 	get_task_struct(p);
 | |
| 	pid = task_pid_vnr(p);
 | |
| 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	sched_annotate_sleep();
 | |
| 	if (wo->wo_rusage)
 | |
| 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
 | |
| 	put_task_struct(p);
 | |
| 
 | |
| 	if (likely(!(wo->wo_flags & WNOWAIT)))
 | |
| 		wo->wo_stat = (exit_code << 8) | 0x7f;
 | |
| 
 | |
| 	infop = wo->wo_info;
 | |
| 	if (infop) {
 | |
| 		infop->cause = why;
 | |
| 		infop->status = exit_code;
 | |
| 		infop->pid = pid;
 | |
| 		infop->uid = uid;
 | |
| 	}
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle do_wait work for one task in a live, non-stopped state.
 | |
|  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 | |
|  * the lock and this task is uninteresting.  If we return nonzero, we have
 | |
|  * released the lock and the system call should return.
 | |
|  */
 | |
| static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
 | |
| {
 | |
| 	struct waitid_info *infop;
 | |
| 	pid_t pid;
 | |
| 	uid_t uid;
 | |
| 
 | |
| 	if (!unlikely(wo->wo_flags & WCONTINUED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock_irq(&p->sighand->siglock);
 | |
| 	/* Re-check with the lock held.  */
 | |
| 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
 | |
| 		spin_unlock_irq(&p->sighand->siglock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (!unlikely(wo->wo_flags & WNOWAIT))
 | |
| 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
 | |
| 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
 | |
| 	spin_unlock_irq(&p->sighand->siglock);
 | |
| 
 | |
| 	pid = task_pid_vnr(p);
 | |
| 	get_task_struct(p);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	sched_annotate_sleep();
 | |
| 	if (wo->wo_rusage)
 | |
| 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
 | |
| 	put_task_struct(p);
 | |
| 
 | |
| 	infop = wo->wo_info;
 | |
| 	if (!infop) {
 | |
| 		wo->wo_stat = 0xffff;
 | |
| 	} else {
 | |
| 		infop->cause = CLD_CONTINUED;
 | |
| 		infop->pid = pid;
 | |
| 		infop->uid = uid;
 | |
| 		infop->status = SIGCONT;
 | |
| 	}
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Consider @p for a wait by @parent.
 | |
|  *
 | |
|  * -ECHILD should be in ->notask_error before the first call.
 | |
|  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
 | |
|  * Returns zero if the search for a child should continue;
 | |
|  * then ->notask_error is 0 if @p is an eligible child,
 | |
|  * or still -ECHILD.
 | |
|  */
 | |
| static int wait_consider_task(struct wait_opts *wo, int ptrace,
 | |
| 				struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * We can race with wait_task_zombie() from another thread.
 | |
| 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
 | |
| 	 * can't confuse the checks below.
 | |
| 	 */
 | |
| 	int exit_state = ACCESS_ONCE(p->exit_state);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(exit_state == EXIT_DEAD))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = eligible_child(wo, ptrace, p);
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (unlikely(exit_state == EXIT_TRACE)) {
 | |
| 		/*
 | |
| 		 * ptrace == 0 means we are the natural parent. In this case
 | |
| 		 * we should clear notask_error, debugger will notify us.
 | |
| 		 */
 | |
| 		if (likely(!ptrace))
 | |
| 			wo->notask_error = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!ptrace) && unlikely(p->ptrace)) {
 | |
| 		/*
 | |
| 		 * If it is traced by its real parent's group, just pretend
 | |
| 		 * the caller is ptrace_do_wait() and reap this child if it
 | |
| 		 * is zombie.
 | |
| 		 *
 | |
| 		 * This also hides group stop state from real parent; otherwise
 | |
| 		 * a single stop can be reported twice as group and ptrace stop.
 | |
| 		 * If a ptracer wants to distinguish these two events for its
 | |
| 		 * own children it should create a separate process which takes
 | |
| 		 * the role of real parent.
 | |
| 		 */
 | |
| 		if (!ptrace_reparented(p))
 | |
| 			ptrace = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* slay zombie? */
 | |
| 	if (exit_state == EXIT_ZOMBIE) {
 | |
| 		/* we don't reap group leaders with subthreads */
 | |
| 		if (!delay_group_leader(p)) {
 | |
| 			/*
 | |
| 			 * A zombie ptracee is only visible to its ptracer.
 | |
| 			 * Notification and reaping will be cascaded to the
 | |
| 			 * real parent when the ptracer detaches.
 | |
| 			 */
 | |
| 			if (unlikely(ptrace) || likely(!p->ptrace))
 | |
| 				return wait_task_zombie(wo, p);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Allow access to stopped/continued state via zombie by
 | |
| 		 * falling through.  Clearing of notask_error is complex.
 | |
| 		 *
 | |
| 		 * When !@ptrace:
 | |
| 		 *
 | |
| 		 * If WEXITED is set, notask_error should naturally be
 | |
| 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
 | |
| 		 * so, if there are live subthreads, there are events to
 | |
| 		 * wait for.  If all subthreads are dead, it's still safe
 | |
| 		 * to clear - this function will be called again in finite
 | |
| 		 * amount time once all the subthreads are released and
 | |
| 		 * will then return without clearing.
 | |
| 		 *
 | |
| 		 * When @ptrace:
 | |
| 		 *
 | |
| 		 * Stopped state is per-task and thus can't change once the
 | |
| 		 * target task dies.  Only continued and exited can happen.
 | |
| 		 * Clear notask_error if WCONTINUED | WEXITED.
 | |
| 		 */
 | |
| 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
 | |
| 			wo->notask_error = 0;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * @p is alive and it's gonna stop, continue or exit, so
 | |
| 		 * there always is something to wait for.
 | |
| 		 */
 | |
| 		wo->notask_error = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for stopped.  Depending on @ptrace, different stopped state
 | |
| 	 * is used and the two don't interact with each other.
 | |
| 	 */
 | |
| 	ret = wait_task_stopped(wo, ptrace, p);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for continued.  There's only one continued state and the
 | |
| 	 * ptracer can consume it which can confuse the real parent.  Don't
 | |
| 	 * use WCONTINUED from ptracer.  You don't need or want it.
 | |
| 	 */
 | |
| 	return wait_task_continued(wo, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the work of do_wait() for one thread in the group, @tsk.
 | |
|  *
 | |
|  * -ECHILD should be in ->notask_error before the first call.
 | |
|  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
 | |
|  * Returns zero if the search for a child should continue; then
 | |
|  * ->notask_error is 0 if there were any eligible children,
 | |
|  * or still -ECHILD.
 | |
|  */
 | |
| static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	list_for_each_entry(p, &tsk->children, sibling) {
 | |
| 		int ret = wait_consider_task(wo, 0, p);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
 | |
| 		int ret = wait_consider_task(wo, 1, p);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
 | |
| 				int sync, void *key)
 | |
| {
 | |
| 	struct wait_opts *wo = container_of(wait, struct wait_opts,
 | |
| 						child_wait);
 | |
| 	struct task_struct *p = key;
 | |
| 
 | |
| 	if (!eligible_pid(wo, p))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
 | |
| 		return 0;
 | |
| 
 | |
| 	return default_wake_function(wait, mode, sync, key);
 | |
| }
 | |
| 
 | |
| void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
 | |
| {
 | |
| 	__wake_up_sync_key(&parent->signal->wait_chldexit,
 | |
| 				TASK_INTERRUPTIBLE, 1, p);
 | |
| }
 | |
| 
 | |
| static long do_wait(struct wait_opts *wo)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	int retval;
 | |
| 
 | |
| 	trace_sched_process_wait(wo->wo_pid);
 | |
| 
 | |
| 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
 | |
| 	wo->child_wait.private = current;
 | |
| 	add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
 | |
| repeat:
 | |
| 	/*
 | |
| 	 * If there is nothing that can match our criteria, just get out.
 | |
| 	 * We will clear ->notask_error to zero if we see any child that
 | |
| 	 * might later match our criteria, even if we are not able to reap
 | |
| 	 * it yet.
 | |
| 	 */
 | |
| 	wo->notask_error = -ECHILD;
 | |
| 	if ((wo->wo_type < PIDTYPE_MAX) &&
 | |
| 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
 | |
| 		goto notask;
 | |
| 
 | |
| 	set_current_state(TASK_INTERRUPTIBLE);
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	tsk = current;
 | |
| 	do {
 | |
| 		retval = do_wait_thread(wo, tsk);
 | |
| 		if (retval)
 | |
| 			goto end;
 | |
| 
 | |
| 		retval = ptrace_do_wait(wo, tsk);
 | |
| 		if (retval)
 | |
| 			goto end;
 | |
| 
 | |
| 		if (wo->wo_flags & __WNOTHREAD)
 | |
| 			break;
 | |
| 	} while_each_thread(current, tsk);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| notask:
 | |
| 	retval = wo->notask_error;
 | |
| 	if (!retval && !(wo->wo_flags & WNOHANG)) {
 | |
| 		retval = -ERESTARTSYS;
 | |
| 		if (!signal_pending(current)) {
 | |
| 			schedule();
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 	}
 | |
| end:
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
 | |
| 			  int options, struct rusage *ru)
 | |
| {
 | |
| 	struct wait_opts wo;
 | |
| 	struct pid *pid = NULL;
 | |
| 	enum pid_type type;
 | |
| 	long ret;
 | |
| 
 | |
| 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
 | |
| 			__WNOTHREAD|__WCLONE|__WALL))
 | |
| 		return -EINVAL;
 | |
| 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (which) {
 | |
| 	case P_ALL:
 | |
| 		type = PIDTYPE_MAX;
 | |
| 		break;
 | |
| 	case P_PID:
 | |
| 		type = PIDTYPE_PID;
 | |
| 		if (upid <= 0)
 | |
| 			return -EINVAL;
 | |
| 		break;
 | |
| 	case P_PGID:
 | |
| 		type = PIDTYPE_PGID;
 | |
| 		if (upid <= 0)
 | |
| 			return -EINVAL;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (type < PIDTYPE_MAX)
 | |
| 		pid = find_get_pid(upid);
 | |
| 
 | |
| 	wo.wo_type	= type;
 | |
| 	wo.wo_pid	= pid;
 | |
| 	wo.wo_flags	= options;
 | |
| 	wo.wo_info	= infop;
 | |
| 	wo.wo_rusage	= ru;
 | |
| 	ret = do_wait(&wo);
 | |
| 
 | |
| 	put_pid(pid);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
 | |
| 		infop, int, options, struct rusage __user *, ru)
 | |
| {
 | |
| 	struct rusage r;
 | |
| 	struct waitid_info info = {.status = 0};
 | |
| 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
 | |
| 	int signo = 0;
 | |
| 	if (err > 0) {
 | |
| 		signo = SIGCHLD;
 | |
| 		err = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!err) {
 | |
| 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	if (!infop)
 | |
| 		return err;
 | |
| 
 | |
| 	user_access_begin();
 | |
| 	unsafe_put_user(signo, &infop->si_signo, Efault);
 | |
| 	unsafe_put_user(0, &infop->si_errno, Efault);
 | |
| 	unsafe_put_user((short)info.cause, &infop->si_code, Efault);
 | |
| 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
 | |
| 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
 | |
| 	unsafe_put_user(info.status, &infop->si_status, Efault);
 | |
| 	user_access_end();
 | |
| 	return err;
 | |
| Efault:
 | |
| 	user_access_end();
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
 | |
| 		  struct rusage *ru)
 | |
| {
 | |
| 	struct wait_opts wo;
 | |
| 	struct pid *pid = NULL;
 | |
| 	enum pid_type type;
 | |
| 	long ret;
 | |
| 
 | |
| 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
 | |
| 			__WNOTHREAD|__WCLONE|__WALL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (upid == -1)
 | |
| 		type = PIDTYPE_MAX;
 | |
| 	else if (upid < 0) {
 | |
| 		type = PIDTYPE_PGID;
 | |
| 		pid = find_get_pid(-upid);
 | |
| 	} else if (upid == 0) {
 | |
| 		type = PIDTYPE_PGID;
 | |
| 		pid = get_task_pid(current, PIDTYPE_PGID);
 | |
| 	} else /* upid > 0 */ {
 | |
| 		type = PIDTYPE_PID;
 | |
| 		pid = find_get_pid(upid);
 | |
| 	}
 | |
| 
 | |
| 	wo.wo_type	= type;
 | |
| 	wo.wo_pid	= pid;
 | |
| 	wo.wo_flags	= options | WEXITED;
 | |
| 	wo.wo_info	= NULL;
 | |
| 	wo.wo_stat	= 0;
 | |
| 	wo.wo_rusage	= ru;
 | |
| 	ret = do_wait(&wo);
 | |
| 	put_pid(pid);
 | |
| 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
 | |
| 		int, options, struct rusage __user *, ru)
 | |
| {
 | |
| 	struct rusage r;
 | |
| 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
 | |
| 
 | |
| 	if (err > 0) {
 | |
| 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_WAITPID
 | |
| 
 | |
| /*
 | |
|  * sys_waitpid() remains for compatibility. waitpid() should be
 | |
|  * implemented by calling sys_wait4() from libc.a.
 | |
|  */
 | |
| SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
 | |
| {
 | |
| 	return sys_wait4(pid, stat_addr, options, NULL);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE4(wait4,
 | |
| 	compat_pid_t, pid,
 | |
| 	compat_uint_t __user *, stat_addr,
 | |
| 	int, options,
 | |
| 	struct compat_rusage __user *, ru)
 | |
| {
 | |
| 	struct rusage r;
 | |
| 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
 | |
| 	if (err > 0) {
 | |
| 		if (ru && put_compat_rusage(&r, ru))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| COMPAT_SYSCALL_DEFINE5(waitid,
 | |
| 		int, which, compat_pid_t, pid,
 | |
| 		struct compat_siginfo __user *, infop, int, options,
 | |
| 		struct compat_rusage __user *, uru)
 | |
| {
 | |
| 	struct rusage ru;
 | |
| 	struct waitid_info info = {.status = 0};
 | |
| 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
 | |
| 	int signo = 0;
 | |
| 	if (err > 0) {
 | |
| 		signo = SIGCHLD;
 | |
| 		err = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!err && uru) {
 | |
| 		/* kernel_waitid() overwrites everything in ru */
 | |
| 		if (COMPAT_USE_64BIT_TIME)
 | |
| 			err = copy_to_user(uru, &ru, sizeof(ru));
 | |
| 		else
 | |
| 			err = put_compat_rusage(&ru, uru);
 | |
| 		if (err)
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	if (!infop)
 | |
| 		return err;
 | |
| 
 | |
| 	user_access_begin();
 | |
| 	unsafe_put_user(signo, &infop->si_signo, Efault);
 | |
| 	unsafe_put_user(0, &infop->si_errno, Efault);
 | |
| 	unsafe_put_user((short)info.cause, &infop->si_code, Efault);
 | |
| 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
 | |
| 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
 | |
| 	unsafe_put_user(info.status, &infop->si_status, Efault);
 | |
| 	user_access_end();
 | |
| 	return err;
 | |
| Efault:
 | |
| 	user_access_end();
 | |
| 	return -EFAULT;
 | |
| }
 | |
| #endif
 |