mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Allow TCP to have multiple pluggable congestion control algorithms. Algorithms are defined by a set of operations and can be built in or modules. The legacy "new RENO" algorithm is used as a starting point and fallback. Signed-off-by: Stephen Hemminger <shemminger@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1077 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1077 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 | 
						|
 *		operating system.  INET is implemented using the  BSD Socket
 | 
						|
 *		interface as the means of communication with the user level.
 | 
						|
 *
 | 
						|
 *		Implementation of the Transmission Control Protocol(TCP).
 | 
						|
 *
 | 
						|
 * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
 | 
						|
 *
 | 
						|
 * Authors:	Ross Biro
 | 
						|
 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 | 
						|
 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 | 
						|
 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 | 
						|
 *		Florian La Roche, <flla@stud.uni-sb.de>
 | 
						|
 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 | 
						|
 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 | 
						|
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 | 
						|
 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 | 
						|
 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 | 
						|
 *		Jorge Cwik, <jorge@laser.satlink.net>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/config.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/sysctl.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
#include <net/tcp.h>
 | 
						|
#include <net/inet_common.h>
 | 
						|
#include <net/xfrm.h>
 | 
						|
 | 
						|
#ifdef CONFIG_SYSCTL
 | 
						|
#define SYNC_INIT 0 /* let the user enable it */
 | 
						|
#else
 | 
						|
#define SYNC_INIT 1
 | 
						|
#endif
 | 
						|
 | 
						|
int sysctl_tcp_tw_recycle;
 | 
						|
int sysctl_tcp_max_tw_buckets = NR_FILE*2;
 | 
						|
 | 
						|
int sysctl_tcp_syncookies = SYNC_INIT; 
 | 
						|
int sysctl_tcp_abort_on_overflow;
 | 
						|
 | 
						|
static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo);
 | 
						|
 | 
						|
static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 | 
						|
{
 | 
						|
	if (seq == s_win)
 | 
						|
		return 1;
 | 
						|
	if (after(end_seq, s_win) && before(seq, e_win))
 | 
						|
		return 1;
 | 
						|
	return (seq == e_win && seq == end_seq);
 | 
						|
}
 | 
						|
 | 
						|
/* New-style handling of TIME_WAIT sockets. */
 | 
						|
 | 
						|
int tcp_tw_count;
 | 
						|
 | 
						|
 | 
						|
/* Must be called with locally disabled BHs. */
 | 
						|
static void tcp_timewait_kill(struct tcp_tw_bucket *tw)
 | 
						|
{
 | 
						|
	struct tcp_ehash_bucket *ehead;
 | 
						|
	struct tcp_bind_hashbucket *bhead;
 | 
						|
	struct tcp_bind_bucket *tb;
 | 
						|
 | 
						|
	/* Unlink from established hashes. */
 | 
						|
	ehead = &tcp_ehash[tw->tw_hashent];
 | 
						|
	write_lock(&ehead->lock);
 | 
						|
	if (hlist_unhashed(&tw->tw_node)) {
 | 
						|
		write_unlock(&ehead->lock);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	__hlist_del(&tw->tw_node);
 | 
						|
	sk_node_init(&tw->tw_node);
 | 
						|
	write_unlock(&ehead->lock);
 | 
						|
 | 
						|
	/* Disassociate with bind bucket. */
 | 
						|
	bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)];
 | 
						|
	spin_lock(&bhead->lock);
 | 
						|
	tb = tw->tw_tb;
 | 
						|
	__hlist_del(&tw->tw_bind_node);
 | 
						|
	tw->tw_tb = NULL;
 | 
						|
	tcp_bucket_destroy(tb);
 | 
						|
	spin_unlock(&bhead->lock);
 | 
						|
 | 
						|
#ifdef INET_REFCNT_DEBUG
 | 
						|
	if (atomic_read(&tw->tw_refcnt) != 1) {
 | 
						|
		printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw,
 | 
						|
		       atomic_read(&tw->tw_refcnt));
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	tcp_tw_put(tw);
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 | 
						|
 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 | 
						|
 *   (and, probably, tail of data) and one or more our ACKs are lost.
 | 
						|
 * * What is TIME-WAIT timeout? It is associated with maximal packet
 | 
						|
 *   lifetime in the internet, which results in wrong conclusion, that
 | 
						|
 *   it is set to catch "old duplicate segments" wandering out of their path.
 | 
						|
 *   It is not quite correct. This timeout is calculated so that it exceeds
 | 
						|
 *   maximal retransmission timeout enough to allow to lose one (or more)
 | 
						|
 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 | 
						|
 * * When TIME-WAIT socket receives RST, it means that another end
 | 
						|
 *   finally closed and we are allowed to kill TIME-WAIT too.
 | 
						|
 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 | 
						|
 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 | 
						|
 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 | 
						|
 * * If we invented some more clever way to catch duplicates
 | 
						|
 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 | 
						|
 *
 | 
						|
 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 | 
						|
 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 | 
						|
 * from the very beginning.
 | 
						|
 *
 | 
						|
 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 | 
						|
 * is _not_ stateless. It means, that strictly speaking we must
 | 
						|
 * spinlock it. I do not want! Well, probability of misbehaviour
 | 
						|
 * is ridiculously low and, seems, we could use some mb() tricks
 | 
						|
 * to avoid misread sequence numbers, states etc.  --ANK
 | 
						|
 */
 | 
						|
enum tcp_tw_status
 | 
						|
tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb,
 | 
						|
			   struct tcphdr *th, unsigned len)
 | 
						|
{
 | 
						|
	struct tcp_options_received tmp_opt;
 | 
						|
	int paws_reject = 0;
 | 
						|
 | 
						|
	tmp_opt.saw_tstamp = 0;
 | 
						|
	if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) {
 | 
						|
		tcp_parse_options(skb, &tmp_opt, 0);
 | 
						|
 | 
						|
		if (tmp_opt.saw_tstamp) {
 | 
						|
			tmp_opt.ts_recent	   = tw->tw_ts_recent;
 | 
						|
			tmp_opt.ts_recent_stamp = tw->tw_ts_recent_stamp;
 | 
						|
			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (tw->tw_substate == TCP_FIN_WAIT2) {
 | 
						|
		/* Just repeat all the checks of tcp_rcv_state_process() */
 | 
						|
 | 
						|
		/* Out of window, send ACK */
 | 
						|
		if (paws_reject ||
 | 
						|
		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
 | 
						|
				   tw->tw_rcv_nxt,
 | 
						|
				   tw->tw_rcv_nxt + tw->tw_rcv_wnd))
 | 
						|
			return TCP_TW_ACK;
 | 
						|
 | 
						|
		if (th->rst)
 | 
						|
			goto kill;
 | 
						|
 | 
						|
		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt))
 | 
						|
			goto kill_with_rst;
 | 
						|
 | 
						|
		/* Dup ACK? */
 | 
						|
		if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) ||
 | 
						|
		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
 | 
						|
			tcp_tw_put(tw);
 | 
						|
			return TCP_TW_SUCCESS;
 | 
						|
		}
 | 
						|
 | 
						|
		/* New data or FIN. If new data arrive after half-duplex close,
 | 
						|
		 * reset.
 | 
						|
		 */
 | 
						|
		if (!th->fin ||
 | 
						|
		    TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) {
 | 
						|
kill_with_rst:
 | 
						|
			tcp_tw_deschedule(tw);
 | 
						|
			tcp_tw_put(tw);
 | 
						|
			return TCP_TW_RST;
 | 
						|
		}
 | 
						|
 | 
						|
		/* FIN arrived, enter true time-wait state. */
 | 
						|
		tw->tw_substate	= TCP_TIME_WAIT;
 | 
						|
		tw->tw_rcv_nxt	= TCP_SKB_CB(skb)->end_seq;
 | 
						|
		if (tmp_opt.saw_tstamp) {
 | 
						|
			tw->tw_ts_recent_stamp	= xtime.tv_sec;
 | 
						|
			tw->tw_ts_recent	= tmp_opt.rcv_tsval;
 | 
						|
		}
 | 
						|
 | 
						|
		/* I am shamed, but failed to make it more elegant.
 | 
						|
		 * Yes, it is direct reference to IP, which is impossible
 | 
						|
		 * to generalize to IPv6. Taking into account that IPv6
 | 
						|
		 * do not undertsnad recycling in any case, it not
 | 
						|
		 * a big problem in practice. --ANK */
 | 
						|
		if (tw->tw_family == AF_INET &&
 | 
						|
		    sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp &&
 | 
						|
		    tcp_v4_tw_remember_stamp(tw))
 | 
						|
			tcp_tw_schedule(tw, tw->tw_timeout);
 | 
						|
		else
 | 
						|
			tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
 | 
						|
		return TCP_TW_ACK;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 *	Now real TIME-WAIT state.
 | 
						|
	 *
 | 
						|
	 *	RFC 1122:
 | 
						|
	 *	"When a connection is [...] on TIME-WAIT state [...]
 | 
						|
	 *	[a TCP] MAY accept a new SYN from the remote TCP to
 | 
						|
	 *	reopen the connection directly, if it:
 | 
						|
	 *	
 | 
						|
	 *	(1)  assigns its initial sequence number for the new
 | 
						|
	 *	connection to be larger than the largest sequence
 | 
						|
	 *	number it used on the previous connection incarnation,
 | 
						|
	 *	and
 | 
						|
	 *
 | 
						|
	 *	(2)  returns to TIME-WAIT state if the SYN turns out 
 | 
						|
	 *	to be an old duplicate".
 | 
						|
	 */
 | 
						|
 | 
						|
	if (!paws_reject &&
 | 
						|
	    (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt &&
 | 
						|
	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
 | 
						|
		/* In window segment, it may be only reset or bare ack. */
 | 
						|
 | 
						|
		if (th->rst) {
 | 
						|
			/* This is TIME_WAIT assasination, in two flavors.
 | 
						|
			 * Oh well... nobody has a sufficient solution to this
 | 
						|
			 * protocol bug yet.
 | 
						|
			 */
 | 
						|
			if (sysctl_tcp_rfc1337 == 0) {
 | 
						|
kill:
 | 
						|
				tcp_tw_deschedule(tw);
 | 
						|
				tcp_tw_put(tw);
 | 
						|
				return TCP_TW_SUCCESS;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
 | 
						|
 | 
						|
		if (tmp_opt.saw_tstamp) {
 | 
						|
			tw->tw_ts_recent	= tmp_opt.rcv_tsval;
 | 
						|
			tw->tw_ts_recent_stamp	= xtime.tv_sec;
 | 
						|
		}
 | 
						|
 | 
						|
		tcp_tw_put(tw);
 | 
						|
		return TCP_TW_SUCCESS;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Out of window segment.
 | 
						|
 | 
						|
	   All the segments are ACKed immediately.
 | 
						|
 | 
						|
	   The only exception is new SYN. We accept it, if it is
 | 
						|
	   not old duplicate and we are not in danger to be killed
 | 
						|
	   by delayed old duplicates. RFC check is that it has
 | 
						|
	   newer sequence number works at rates <40Mbit/sec.
 | 
						|
	   However, if paws works, it is reliable AND even more,
 | 
						|
	   we even may relax silly seq space cutoff.
 | 
						|
 | 
						|
	   RED-PEN: we violate main RFC requirement, if this SYN will appear
 | 
						|
	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
 | 
						|
	   we must return socket to time-wait state. It is not good,
 | 
						|
	   but not fatal yet.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (th->syn && !th->rst && !th->ack && !paws_reject &&
 | 
						|
	    (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) ||
 | 
						|
	     (tmp_opt.saw_tstamp && (s32)(tw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
 | 
						|
		u32 isn = tw->tw_snd_nxt + 65535 + 2;
 | 
						|
		if (isn == 0)
 | 
						|
			isn++;
 | 
						|
		TCP_SKB_CB(skb)->when = isn;
 | 
						|
		return TCP_TW_SYN;
 | 
						|
	}
 | 
						|
 | 
						|
	if (paws_reject)
 | 
						|
		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
 | 
						|
 | 
						|
	if(!th->rst) {
 | 
						|
		/* In this case we must reset the TIMEWAIT timer.
 | 
						|
		 *
 | 
						|
		 * If it is ACKless SYN it may be both old duplicate
 | 
						|
		 * and new good SYN with random sequence number <rcv_nxt.
 | 
						|
		 * Do not reschedule in the last case.
 | 
						|
		 */
 | 
						|
		if (paws_reject || th->ack)
 | 
						|
			tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
 | 
						|
 | 
						|
		/* Send ACK. Note, we do not put the bucket,
 | 
						|
		 * it will be released by caller.
 | 
						|
		 */
 | 
						|
		return TCP_TW_ACK;
 | 
						|
	}
 | 
						|
	tcp_tw_put(tw);
 | 
						|
	return TCP_TW_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
/* Enter the time wait state.  This is called with locally disabled BH.
 | 
						|
 * Essentially we whip up a timewait bucket, copy the
 | 
						|
 * relevant info into it from the SK, and mess with hash chains
 | 
						|
 * and list linkage.
 | 
						|
 */
 | 
						|
static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw)
 | 
						|
{
 | 
						|
	struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent];
 | 
						|
	struct tcp_bind_hashbucket *bhead;
 | 
						|
 | 
						|
	/* Step 1: Put TW into bind hash. Original socket stays there too.
 | 
						|
	   Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in
 | 
						|
	   binding cache, even if it is closed.
 | 
						|
	 */
 | 
						|
	bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)];
 | 
						|
	spin_lock(&bhead->lock);
 | 
						|
	tw->tw_tb = tcp_sk(sk)->bind_hash;
 | 
						|
	BUG_TRAP(tcp_sk(sk)->bind_hash);
 | 
						|
	tw_add_bind_node(tw, &tw->tw_tb->owners);
 | 
						|
	spin_unlock(&bhead->lock);
 | 
						|
 | 
						|
	write_lock(&ehead->lock);
 | 
						|
 | 
						|
	/* Step 2: Remove SK from established hash. */
 | 
						|
	if (__sk_del_node_init(sk))
 | 
						|
		sock_prot_dec_use(sk->sk_prot);
 | 
						|
 | 
						|
	/* Step 3: Hash TW into TIMEWAIT half of established hash table. */
 | 
						|
	tw_add_node(tw, &(ehead + tcp_ehash_size)->chain);
 | 
						|
	atomic_inc(&tw->tw_refcnt);
 | 
						|
 | 
						|
	write_unlock(&ehead->lock);
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * Move a socket to time-wait or dead fin-wait-2 state.
 | 
						|
 */ 
 | 
						|
void tcp_time_wait(struct sock *sk, int state, int timeo)
 | 
						|
{
 | 
						|
	struct tcp_tw_bucket *tw = NULL;
 | 
						|
	struct tcp_sock *tp = tcp_sk(sk);
 | 
						|
	int recycle_ok = 0;
 | 
						|
 | 
						|
	if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp)
 | 
						|
		recycle_ok = tp->af_specific->remember_stamp(sk);
 | 
						|
 | 
						|
	if (tcp_tw_count < sysctl_tcp_max_tw_buckets)
 | 
						|
		tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC);
 | 
						|
 | 
						|
	if(tw != NULL) {
 | 
						|
		struct inet_sock *inet = inet_sk(sk);
 | 
						|
		int rto = (tp->rto<<2) - (tp->rto>>1);
 | 
						|
 | 
						|
		/* Give us an identity. */
 | 
						|
		tw->tw_daddr		= inet->daddr;
 | 
						|
		tw->tw_rcv_saddr	= inet->rcv_saddr;
 | 
						|
		tw->tw_bound_dev_if	= sk->sk_bound_dev_if;
 | 
						|
		tw->tw_num		= inet->num;
 | 
						|
		tw->tw_state		= TCP_TIME_WAIT;
 | 
						|
		tw->tw_substate		= state;
 | 
						|
		tw->tw_sport		= inet->sport;
 | 
						|
		tw->tw_dport		= inet->dport;
 | 
						|
		tw->tw_family		= sk->sk_family;
 | 
						|
		tw->tw_reuse		= sk->sk_reuse;
 | 
						|
		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
 | 
						|
		atomic_set(&tw->tw_refcnt, 1);
 | 
						|
 | 
						|
		tw->tw_hashent		= sk->sk_hashent;
 | 
						|
		tw->tw_rcv_nxt		= tp->rcv_nxt;
 | 
						|
		tw->tw_snd_nxt		= tp->snd_nxt;
 | 
						|
		tw->tw_rcv_wnd		= tcp_receive_window(tp);
 | 
						|
		tw->tw_ts_recent	= tp->rx_opt.ts_recent;
 | 
						|
		tw->tw_ts_recent_stamp	= tp->rx_opt.ts_recent_stamp;
 | 
						|
		tw_dead_node_init(tw);
 | 
						|
 | 
						|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
 | 
						|
		if (tw->tw_family == PF_INET6) {
 | 
						|
			struct ipv6_pinfo *np = inet6_sk(sk);
 | 
						|
 | 
						|
			ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr);
 | 
						|
			ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr);
 | 
						|
			tw->tw_v6_ipv6only = np->ipv6only;
 | 
						|
		} else {
 | 
						|
			memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr));
 | 
						|
			memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr));
 | 
						|
			tw->tw_v6_ipv6only = 0;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
		/* Linkage updates. */
 | 
						|
		__tcp_tw_hashdance(sk, tw);
 | 
						|
 | 
						|
		/* Get the TIME_WAIT timeout firing. */
 | 
						|
		if (timeo < rto)
 | 
						|
			timeo = rto;
 | 
						|
 | 
						|
		if (recycle_ok) {
 | 
						|
			tw->tw_timeout = rto;
 | 
						|
		} else {
 | 
						|
			tw->tw_timeout = TCP_TIMEWAIT_LEN;
 | 
						|
			if (state == TCP_TIME_WAIT)
 | 
						|
				timeo = TCP_TIMEWAIT_LEN;
 | 
						|
		}
 | 
						|
 | 
						|
		tcp_tw_schedule(tw, timeo);
 | 
						|
		tcp_tw_put(tw);
 | 
						|
	} else {
 | 
						|
		/* Sorry, if we're out of memory, just CLOSE this
 | 
						|
		 * socket up.  We've got bigger problems than
 | 
						|
		 * non-graceful socket closings.
 | 
						|
		 */
 | 
						|
		if (net_ratelimit())
 | 
						|
			printk(KERN_INFO "TCP: time wait bucket table overflow\n");
 | 
						|
	}
 | 
						|
 | 
						|
	tcp_update_metrics(sk);
 | 
						|
	tcp_done(sk);
 | 
						|
}
 | 
						|
 | 
						|
/* Kill off TIME_WAIT sockets once their lifetime has expired. */
 | 
						|
static int tcp_tw_death_row_slot;
 | 
						|
 | 
						|
static void tcp_twkill(unsigned long);
 | 
						|
 | 
						|
/* TIME_WAIT reaping mechanism. */
 | 
						|
#define TCP_TWKILL_SLOTS	8	/* Please keep this a power of 2. */
 | 
						|
#define TCP_TWKILL_PERIOD	(TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS)
 | 
						|
 | 
						|
#define TCP_TWKILL_QUOTA	100
 | 
						|
 | 
						|
static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS];
 | 
						|
static DEFINE_SPINLOCK(tw_death_lock);
 | 
						|
static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0);
 | 
						|
static void twkill_work(void *);
 | 
						|
static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL);
 | 
						|
static u32 twkill_thread_slots;
 | 
						|
 | 
						|
/* Returns non-zero if quota exceeded.  */
 | 
						|
static int tcp_do_twkill_work(int slot, unsigned int quota)
 | 
						|
{
 | 
						|
	struct tcp_tw_bucket *tw;
 | 
						|
	struct hlist_node *node;
 | 
						|
	unsigned int killed;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* NOTE: compare this to previous version where lock
 | 
						|
	 * was released after detaching chain. It was racy,
 | 
						|
	 * because tw buckets are scheduled in not serialized context
 | 
						|
	 * in 2.3 (with netfilter), and with softnet it is common, because
 | 
						|
	 * soft irqs are not sequenced.
 | 
						|
	 */
 | 
						|
	killed = 0;
 | 
						|
	ret = 0;
 | 
						|
rescan:
 | 
						|
	tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) {
 | 
						|
		__tw_del_dead_node(tw);
 | 
						|
		spin_unlock(&tw_death_lock);
 | 
						|
		tcp_timewait_kill(tw);
 | 
						|
		tcp_tw_put(tw);
 | 
						|
		killed++;
 | 
						|
		spin_lock(&tw_death_lock);
 | 
						|
		if (killed > quota) {
 | 
						|
			ret = 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* While we dropped tw_death_lock, another cpu may have
 | 
						|
		 * killed off the next TW bucket in the list, therefore
 | 
						|
		 * do a fresh re-read of the hlist head node with the
 | 
						|
		 * lock reacquired.  We still use the hlist traversal
 | 
						|
		 * macro in order to get the prefetches.
 | 
						|
		 */
 | 
						|
		goto rescan;
 | 
						|
	}
 | 
						|
 | 
						|
	tcp_tw_count -= killed;
 | 
						|
	NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void tcp_twkill(unsigned long dummy)
 | 
						|
{
 | 
						|
	int need_timer, ret;
 | 
						|
 | 
						|
	spin_lock(&tw_death_lock);
 | 
						|
 | 
						|
	if (tcp_tw_count == 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	need_timer = 0;
 | 
						|
	ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA);
 | 
						|
	if (ret) {
 | 
						|
		twkill_thread_slots |= (1 << tcp_tw_death_row_slot);
 | 
						|
		mb();
 | 
						|
		schedule_work(&tcp_twkill_work);
 | 
						|
		need_timer = 1;
 | 
						|
	} else {
 | 
						|
		/* We purged the entire slot, anything left?  */
 | 
						|
		if (tcp_tw_count)
 | 
						|
			need_timer = 1;
 | 
						|
	}
 | 
						|
	tcp_tw_death_row_slot =
 | 
						|
		((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1));
 | 
						|
	if (need_timer)
 | 
						|
		mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD);
 | 
						|
out:
 | 
						|
	spin_unlock(&tw_death_lock);
 | 
						|
}
 | 
						|
 | 
						|
extern void twkill_slots_invalid(void);
 | 
						|
 | 
						|
static void twkill_work(void *dummy)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8))
 | 
						|
		twkill_slots_invalid();
 | 
						|
 | 
						|
	while (twkill_thread_slots) {
 | 
						|
		spin_lock_bh(&tw_death_lock);
 | 
						|
		for (i = 0; i < TCP_TWKILL_SLOTS; i++) {
 | 
						|
			if (!(twkill_thread_slots & (1 << i)))
 | 
						|
				continue;
 | 
						|
 | 
						|
			while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) {
 | 
						|
				if (need_resched()) {
 | 
						|
					spin_unlock_bh(&tw_death_lock);
 | 
						|
					schedule();
 | 
						|
					spin_lock_bh(&tw_death_lock);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			twkill_thread_slots &= ~(1 << i);
 | 
						|
		}
 | 
						|
		spin_unlock_bh(&tw_death_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* These are always called from BH context.  See callers in
 | 
						|
 * tcp_input.c to verify this.
 | 
						|
 */
 | 
						|
 | 
						|
/* This is for handling early-kills of TIME_WAIT sockets. */
 | 
						|
void tcp_tw_deschedule(struct tcp_tw_bucket *tw)
 | 
						|
{
 | 
						|
	spin_lock(&tw_death_lock);
 | 
						|
	if (tw_del_dead_node(tw)) {
 | 
						|
		tcp_tw_put(tw);
 | 
						|
		if (--tcp_tw_count == 0)
 | 
						|
			del_timer(&tcp_tw_timer);
 | 
						|
	}
 | 
						|
	spin_unlock(&tw_death_lock);
 | 
						|
	tcp_timewait_kill(tw);
 | 
						|
}
 | 
						|
 | 
						|
/* Short-time timewait calendar */
 | 
						|
 | 
						|
static int tcp_twcal_hand = -1;
 | 
						|
static int tcp_twcal_jiffie;
 | 
						|
static void tcp_twcal_tick(unsigned long);
 | 
						|
static struct timer_list tcp_twcal_timer =
 | 
						|
		TIMER_INITIALIZER(tcp_twcal_tick, 0, 0);
 | 
						|
static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS];
 | 
						|
 | 
						|
static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo)
 | 
						|
{
 | 
						|
	struct hlist_head *list;
 | 
						|
	int slot;
 | 
						|
 | 
						|
	/* timeout := RTO * 3.5
 | 
						|
	 *
 | 
						|
	 * 3.5 = 1+2+0.5 to wait for two retransmits.
 | 
						|
	 *
 | 
						|
	 * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
 | 
						|
	 * our ACK acking that FIN can be lost. If N subsequent retransmitted
 | 
						|
	 * FINs (or previous seqments) are lost (probability of such event
 | 
						|
	 * is p^(N+1), where p is probability to lose single packet and
 | 
						|
	 * time to detect the loss is about RTO*(2^N - 1) with exponential
 | 
						|
	 * backoff). Normal timewait length is calculated so, that we
 | 
						|
	 * waited at least for one retransmitted FIN (maximal RTO is 120sec).
 | 
						|
	 * [ BTW Linux. following BSD, violates this requirement waiting
 | 
						|
	 *   only for 60sec, we should wait at least for 240 secs.
 | 
						|
	 *   Well, 240 consumes too much of resources 8)
 | 
						|
	 * ]
 | 
						|
	 * This interval is not reduced to catch old duplicate and
 | 
						|
	 * responces to our wandering segments living for two MSLs.
 | 
						|
	 * However, if we use PAWS to detect
 | 
						|
	 * old duplicates, we can reduce the interval to bounds required
 | 
						|
	 * by RTO, rather than MSL. So, if peer understands PAWS, we
 | 
						|
	 * kill tw bucket after 3.5*RTO (it is important that this number
 | 
						|
	 * is greater than TS tick!) and detect old duplicates with help
 | 
						|
	 * of PAWS.
 | 
						|
	 */
 | 
						|
	slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK;
 | 
						|
 | 
						|
	spin_lock(&tw_death_lock);
 | 
						|
 | 
						|
	/* Unlink it, if it was scheduled */
 | 
						|
	if (tw_del_dead_node(tw))
 | 
						|
		tcp_tw_count--;
 | 
						|
	else
 | 
						|
		atomic_inc(&tw->tw_refcnt);
 | 
						|
 | 
						|
	if (slot >= TCP_TW_RECYCLE_SLOTS) {
 | 
						|
		/* Schedule to slow timer */
 | 
						|
		if (timeo >= TCP_TIMEWAIT_LEN) {
 | 
						|
			slot = TCP_TWKILL_SLOTS-1;
 | 
						|
		} else {
 | 
						|
			slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD;
 | 
						|
			if (slot >= TCP_TWKILL_SLOTS)
 | 
						|
				slot = TCP_TWKILL_SLOTS-1;
 | 
						|
		}
 | 
						|
		tw->tw_ttd = jiffies + timeo;
 | 
						|
		slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1);
 | 
						|
		list = &tcp_tw_death_row[slot];
 | 
						|
	} else {
 | 
						|
		tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK);
 | 
						|
 | 
						|
		if (tcp_twcal_hand < 0) {
 | 
						|
			tcp_twcal_hand = 0;
 | 
						|
			tcp_twcal_jiffie = jiffies;
 | 
						|
			tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK);
 | 
						|
			add_timer(&tcp_twcal_timer);
 | 
						|
		} else {
 | 
						|
			if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK)))
 | 
						|
				mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK));
 | 
						|
			slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1);
 | 
						|
		}
 | 
						|
		list = &tcp_twcal_row[slot];
 | 
						|
	}
 | 
						|
 | 
						|
	hlist_add_head(&tw->tw_death_node, list);
 | 
						|
 | 
						|
	if (tcp_tw_count++ == 0)
 | 
						|
		mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
 | 
						|
	spin_unlock(&tw_death_lock);
 | 
						|
}
 | 
						|
 | 
						|
void tcp_twcal_tick(unsigned long dummy)
 | 
						|
{
 | 
						|
	int n, slot;
 | 
						|
	unsigned long j;
 | 
						|
	unsigned long now = jiffies;
 | 
						|
	int killed = 0;
 | 
						|
	int adv = 0;
 | 
						|
 | 
						|
	spin_lock(&tw_death_lock);
 | 
						|
	if (tcp_twcal_hand < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	slot = tcp_twcal_hand;
 | 
						|
	j = tcp_twcal_jiffie;
 | 
						|
 | 
						|
	for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) {
 | 
						|
		if (time_before_eq(j, now)) {
 | 
						|
			struct hlist_node *node, *safe;
 | 
						|
			struct tcp_tw_bucket *tw;
 | 
						|
 | 
						|
			tw_for_each_inmate_safe(tw, node, safe,
 | 
						|
					   &tcp_twcal_row[slot]) {
 | 
						|
				__tw_del_dead_node(tw);
 | 
						|
				tcp_timewait_kill(tw);
 | 
						|
				tcp_tw_put(tw);
 | 
						|
				killed++;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			if (!adv) {
 | 
						|
				adv = 1;
 | 
						|
				tcp_twcal_jiffie = j;
 | 
						|
				tcp_twcal_hand = slot;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!hlist_empty(&tcp_twcal_row[slot])) {
 | 
						|
				mod_timer(&tcp_twcal_timer, j);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		j += (1<<TCP_TW_RECYCLE_TICK);
 | 
						|
		slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1);
 | 
						|
	}
 | 
						|
	tcp_twcal_hand = -1;
 | 
						|
 | 
						|
out:
 | 
						|
	if ((tcp_tw_count -= killed) == 0)
 | 
						|
		del_timer(&tcp_tw_timer);
 | 
						|
	NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed);
 | 
						|
	spin_unlock(&tw_death_lock);
 | 
						|
}
 | 
						|
 | 
						|
/* This is not only more efficient than what we used to do, it eliminates
 | 
						|
 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
 | 
						|
 *
 | 
						|
 * Actually, we could lots of memory writes here. tp of listening
 | 
						|
 * socket contains all necessary default parameters.
 | 
						|
 */
 | 
						|
struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
 | 
						|
{
 | 
						|
	/* allocate the newsk from the same slab of the master sock,
 | 
						|
	 * if not, at sk_free time we'll try to free it from the wrong
 | 
						|
	 * slabcache (i.e. is it TCPv4 or v6?), this is handled thru sk->sk_prot -acme */
 | 
						|
	struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, sk->sk_prot, 0);
 | 
						|
 | 
						|
	if(newsk != NULL) {
 | 
						|
		struct inet_request_sock *ireq = inet_rsk(req);
 | 
						|
		struct tcp_request_sock *treq = tcp_rsk(req);
 | 
						|
		struct tcp_sock *newtp;
 | 
						|
		struct sk_filter *filter;
 | 
						|
 | 
						|
		memcpy(newsk, sk, sizeof(struct tcp_sock));
 | 
						|
		newsk->sk_state = TCP_SYN_RECV;
 | 
						|
 | 
						|
		/* SANITY */
 | 
						|
		sk_node_init(&newsk->sk_node);
 | 
						|
		tcp_sk(newsk)->bind_hash = NULL;
 | 
						|
 | 
						|
		/* Clone the TCP header template */
 | 
						|
		inet_sk(newsk)->dport = ireq->rmt_port;
 | 
						|
 | 
						|
		sock_lock_init(newsk);
 | 
						|
		bh_lock_sock(newsk);
 | 
						|
 | 
						|
		rwlock_init(&newsk->sk_dst_lock);
 | 
						|
		atomic_set(&newsk->sk_rmem_alloc, 0);
 | 
						|
		skb_queue_head_init(&newsk->sk_receive_queue);
 | 
						|
		atomic_set(&newsk->sk_wmem_alloc, 0);
 | 
						|
		skb_queue_head_init(&newsk->sk_write_queue);
 | 
						|
		atomic_set(&newsk->sk_omem_alloc, 0);
 | 
						|
		newsk->sk_wmem_queued = 0;
 | 
						|
		newsk->sk_forward_alloc = 0;
 | 
						|
 | 
						|
		sock_reset_flag(newsk, SOCK_DONE);
 | 
						|
		newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
 | 
						|
		newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
 | 
						|
		newsk->sk_send_head = NULL;
 | 
						|
		rwlock_init(&newsk->sk_callback_lock);
 | 
						|
		skb_queue_head_init(&newsk->sk_error_queue);
 | 
						|
		newsk->sk_write_space = sk_stream_write_space;
 | 
						|
 | 
						|
		if ((filter = newsk->sk_filter) != NULL)
 | 
						|
			sk_filter_charge(newsk, filter);
 | 
						|
 | 
						|
		if (unlikely(xfrm_sk_clone_policy(newsk))) {
 | 
						|
			/* It is still raw copy of parent, so invalidate
 | 
						|
			 * destructor and make plain sk_free() */
 | 
						|
			newsk->sk_destruct = NULL;
 | 
						|
			sk_free(newsk);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Now setup tcp_sock */
 | 
						|
		newtp = tcp_sk(newsk);
 | 
						|
		newtp->pred_flags = 0;
 | 
						|
		newtp->rcv_nxt = treq->rcv_isn + 1;
 | 
						|
		newtp->snd_nxt = treq->snt_isn + 1;
 | 
						|
		newtp->snd_una = treq->snt_isn + 1;
 | 
						|
		newtp->snd_sml = treq->snt_isn + 1;
 | 
						|
 | 
						|
		tcp_prequeue_init(newtp);
 | 
						|
 | 
						|
		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
 | 
						|
 | 
						|
		newtp->retransmits = 0;
 | 
						|
		newtp->backoff = 0;
 | 
						|
		newtp->srtt = 0;
 | 
						|
		newtp->mdev = TCP_TIMEOUT_INIT;
 | 
						|
		newtp->rto = TCP_TIMEOUT_INIT;
 | 
						|
 | 
						|
		newtp->packets_out = 0;
 | 
						|
		newtp->left_out = 0;
 | 
						|
		newtp->retrans_out = 0;
 | 
						|
		newtp->sacked_out = 0;
 | 
						|
		newtp->fackets_out = 0;
 | 
						|
		newtp->snd_ssthresh = 0x7fffffff;
 | 
						|
 | 
						|
		/* So many TCP implementations out there (incorrectly) count the
 | 
						|
		 * initial SYN frame in their delayed-ACK and congestion control
 | 
						|
		 * algorithms that we must have the following bandaid to talk
 | 
						|
		 * efficiently to them.  -DaveM
 | 
						|
		 */
 | 
						|
		newtp->snd_cwnd = 2;
 | 
						|
		newtp->snd_cwnd_cnt = 0;
 | 
						|
 | 
						|
		newtp->frto_counter = 0;
 | 
						|
		newtp->frto_highmark = 0;
 | 
						|
 | 
						|
		newtp->ca_ops = &tcp_reno;
 | 
						|
 | 
						|
		tcp_set_ca_state(newtp, TCP_CA_Open);
 | 
						|
		tcp_init_xmit_timers(newsk);
 | 
						|
		skb_queue_head_init(&newtp->out_of_order_queue);
 | 
						|
		newtp->rcv_wup = treq->rcv_isn + 1;
 | 
						|
		newtp->write_seq = treq->snt_isn + 1;
 | 
						|
		newtp->pushed_seq = newtp->write_seq;
 | 
						|
		newtp->copied_seq = treq->rcv_isn + 1;
 | 
						|
 | 
						|
		newtp->rx_opt.saw_tstamp = 0;
 | 
						|
 | 
						|
		newtp->rx_opt.dsack = 0;
 | 
						|
		newtp->rx_opt.eff_sacks = 0;
 | 
						|
 | 
						|
		newtp->probes_out = 0;
 | 
						|
		newtp->rx_opt.num_sacks = 0;
 | 
						|
		newtp->urg_data = 0;
 | 
						|
		/* Deinitialize accept_queue to trap illegal accesses. */
 | 
						|
		memset(&newtp->accept_queue, 0, sizeof(newtp->accept_queue));
 | 
						|
 | 
						|
		/* Back to base struct sock members. */
 | 
						|
		newsk->sk_err = 0;
 | 
						|
		newsk->sk_priority = 0;
 | 
						|
		atomic_set(&newsk->sk_refcnt, 2);
 | 
						|
#ifdef INET_REFCNT_DEBUG
 | 
						|
		atomic_inc(&inet_sock_nr);
 | 
						|
#endif
 | 
						|
		atomic_inc(&tcp_sockets_allocated);
 | 
						|
 | 
						|
		if (sock_flag(newsk, SOCK_KEEPOPEN))
 | 
						|
			tcp_reset_keepalive_timer(newsk,
 | 
						|
						  keepalive_time_when(newtp));
 | 
						|
		newsk->sk_socket = NULL;
 | 
						|
		newsk->sk_sleep = NULL;
 | 
						|
 | 
						|
		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
 | 
						|
		if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
 | 
						|
			if (sysctl_tcp_fack)
 | 
						|
				newtp->rx_opt.sack_ok |= 2;
 | 
						|
		}
 | 
						|
		newtp->window_clamp = req->window_clamp;
 | 
						|
		newtp->rcv_ssthresh = req->rcv_wnd;
 | 
						|
		newtp->rcv_wnd = req->rcv_wnd;
 | 
						|
		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
 | 
						|
		if (newtp->rx_opt.wscale_ok) {
 | 
						|
			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
 | 
						|
			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
 | 
						|
		} else {
 | 
						|
			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
 | 
						|
			newtp->window_clamp = min(newtp->window_clamp, 65535U);
 | 
						|
		}
 | 
						|
		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
 | 
						|
		newtp->max_window = newtp->snd_wnd;
 | 
						|
 | 
						|
		if (newtp->rx_opt.tstamp_ok) {
 | 
						|
			newtp->rx_opt.ts_recent = req->ts_recent;
 | 
						|
			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
 | 
						|
			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
 | 
						|
		} else {
 | 
						|
			newtp->rx_opt.ts_recent_stamp = 0;
 | 
						|
			newtp->tcp_header_len = sizeof(struct tcphdr);
 | 
						|
		}
 | 
						|
		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
 | 
						|
			newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len;
 | 
						|
		newtp->rx_opt.mss_clamp = req->mss;
 | 
						|
		TCP_ECN_openreq_child(newtp, req);
 | 
						|
		if (newtp->ecn_flags&TCP_ECN_OK)
 | 
						|
			sock_set_flag(newsk, SOCK_NO_LARGESEND);
 | 
						|
 | 
						|
		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
 | 
						|
	}
 | 
						|
	return newsk;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 *	Process an incoming packet for SYN_RECV sockets represented
 | 
						|
 *	as a request_sock.
 | 
						|
 */
 | 
						|
 | 
						|
struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
 | 
						|
			   struct request_sock *req,
 | 
						|
			   struct request_sock **prev)
 | 
						|
{
 | 
						|
	struct tcphdr *th = skb->h.th;
 | 
						|
	struct tcp_sock *tp = tcp_sk(sk);
 | 
						|
	u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
 | 
						|
	int paws_reject = 0;
 | 
						|
	struct tcp_options_received tmp_opt;
 | 
						|
	struct sock *child;
 | 
						|
 | 
						|
	tmp_opt.saw_tstamp = 0;
 | 
						|
	if (th->doff > (sizeof(struct tcphdr)>>2)) {
 | 
						|
		tcp_parse_options(skb, &tmp_opt, 0);
 | 
						|
 | 
						|
		if (tmp_opt.saw_tstamp) {
 | 
						|
			tmp_opt.ts_recent = req->ts_recent;
 | 
						|
			/* We do not store true stamp, but it is not required,
 | 
						|
			 * it can be estimated (approximately)
 | 
						|
			 * from another data.
 | 
						|
			 */
 | 
						|
			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
 | 
						|
			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check for pure retransmitted SYN. */
 | 
						|
	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
 | 
						|
	    flg == TCP_FLAG_SYN &&
 | 
						|
	    !paws_reject) {
 | 
						|
		/*
 | 
						|
		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
 | 
						|
		 * this case on figure 6 and figure 8, but formal
 | 
						|
		 * protocol description says NOTHING.
 | 
						|
		 * To be more exact, it says that we should send ACK,
 | 
						|
		 * because this segment (at least, if it has no data)
 | 
						|
		 * is out of window.
 | 
						|
		 *
 | 
						|
		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
 | 
						|
		 *  describe SYN-RECV state. All the description
 | 
						|
		 *  is wrong, we cannot believe to it and should
 | 
						|
		 *  rely only on common sense and implementation
 | 
						|
		 *  experience.
 | 
						|
		 *
 | 
						|
		 * Enforce "SYN-ACK" according to figure 8, figure 6
 | 
						|
		 * of RFC793, fixed by RFC1122.
 | 
						|
		 */
 | 
						|
		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Further reproduces section "SEGMENT ARRIVES"
 | 
						|
	   for state SYN-RECEIVED of RFC793.
 | 
						|
	   It is broken, however, it does not work only
 | 
						|
	   when SYNs are crossed.
 | 
						|
 | 
						|
	   You would think that SYN crossing is impossible here, since
 | 
						|
	   we should have a SYN_SENT socket (from connect()) on our end,
 | 
						|
	   but this is not true if the crossed SYNs were sent to both
 | 
						|
	   ends by a malicious third party.  We must defend against this,
 | 
						|
	   and to do that we first verify the ACK (as per RFC793, page
 | 
						|
	   36) and reset if it is invalid.  Is this a true full defense?
 | 
						|
	   To convince ourselves, let us consider a way in which the ACK
 | 
						|
	   test can still pass in this 'malicious crossed SYNs' case.
 | 
						|
	   Malicious sender sends identical SYNs (and thus identical sequence
 | 
						|
	   numbers) to both A and B:
 | 
						|
 | 
						|
		A: gets SYN, seq=7
 | 
						|
		B: gets SYN, seq=7
 | 
						|
 | 
						|
	   By our good fortune, both A and B select the same initial
 | 
						|
	   send sequence number of seven :-)
 | 
						|
 | 
						|
		A: sends SYN|ACK, seq=7, ack_seq=8
 | 
						|
		B: sends SYN|ACK, seq=7, ack_seq=8
 | 
						|
 | 
						|
	   So we are now A eating this SYN|ACK, ACK test passes.  So
 | 
						|
	   does sequence test, SYN is truncated, and thus we consider
 | 
						|
	   it a bare ACK.
 | 
						|
 | 
						|
	   If tp->defer_accept, we silently drop this bare ACK.  Otherwise,
 | 
						|
	   we create an established connection.  Both ends (listening sockets)
 | 
						|
	   accept the new incoming connection and try to talk to each other. 8-)
 | 
						|
 | 
						|
	   Note: This case is both harmless, and rare.  Possibility is about the
 | 
						|
	   same as us discovering intelligent life on another plant tomorrow.
 | 
						|
 | 
						|
	   But generally, we should (RFC lies!) to accept ACK
 | 
						|
	   from SYNACK both here and in tcp_rcv_state_process().
 | 
						|
	   tcp_rcv_state_process() does not, hence, we do not too.
 | 
						|
 | 
						|
	   Note that the case is absolutely generic:
 | 
						|
	   we cannot optimize anything here without
 | 
						|
	   violating protocol. All the checks must be made
 | 
						|
	   before attempt to create socket.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
 | 
						|
	 *                  and the incoming segment acknowledges something not yet
 | 
						|
	 *                  sent (the segment carries an unaccaptable ACK) ...
 | 
						|
	 *                  a reset is sent."
 | 
						|
	 *
 | 
						|
	 * Invalid ACK: reset will be sent by listening socket
 | 
						|
	 */
 | 
						|
	if ((flg & TCP_FLAG_ACK) &&
 | 
						|
	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
 | 
						|
		return sk;
 | 
						|
 | 
						|
	/* Also, it would be not so bad idea to check rcv_tsecr, which
 | 
						|
	 * is essentially ACK extension and too early or too late values
 | 
						|
	 * should cause reset in unsynchronized states.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* RFC793: "first check sequence number". */
 | 
						|
 | 
						|
	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
 | 
						|
					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
 | 
						|
		/* Out of window: send ACK and drop. */
 | 
						|
		if (!(flg & TCP_FLAG_RST))
 | 
						|
			req->rsk_ops->send_ack(skb, req);
 | 
						|
		if (paws_reject)
 | 
						|
			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* In sequence, PAWS is OK. */
 | 
						|
 | 
						|
	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
 | 
						|
			req->ts_recent = tmp_opt.rcv_tsval;
 | 
						|
 | 
						|
		if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
 | 
						|
			/* Truncate SYN, it is out of window starting
 | 
						|
			   at tcp_rsk(req)->rcv_isn + 1. */
 | 
						|
			flg &= ~TCP_FLAG_SYN;
 | 
						|
		}
 | 
						|
 | 
						|
		/* RFC793: "second check the RST bit" and
 | 
						|
		 *	   "fourth, check the SYN bit"
 | 
						|
		 */
 | 
						|
		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
 | 
						|
			goto embryonic_reset;
 | 
						|
 | 
						|
		/* ACK sequence verified above, just make sure ACK is
 | 
						|
		 * set.  If ACK not set, just silently drop the packet.
 | 
						|
		 */
 | 
						|
		if (!(flg & TCP_FLAG_ACK))
 | 
						|
			return NULL;
 | 
						|
 | 
						|
		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
 | 
						|
		if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
 | 
						|
			inet_rsk(req)->acked = 1;
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		/* OK, ACK is valid, create big socket and
 | 
						|
		 * feed this segment to it. It will repeat all
 | 
						|
		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
 | 
						|
		 * ESTABLISHED STATE. If it will be dropped after
 | 
						|
		 * socket is created, wait for troubles.
 | 
						|
		 */
 | 
						|
		child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
 | 
						|
		if (child == NULL)
 | 
						|
			goto listen_overflow;
 | 
						|
 | 
						|
		tcp_synq_unlink(tp, req, prev);
 | 
						|
		tcp_synq_removed(sk, req);
 | 
						|
 | 
						|
		tcp_acceptq_queue(sk, req, child);
 | 
						|
		return child;
 | 
						|
 | 
						|
	listen_overflow:
 | 
						|
		if (!sysctl_tcp_abort_on_overflow) {
 | 
						|
			inet_rsk(req)->acked = 1;
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
	embryonic_reset:
 | 
						|
		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
 | 
						|
		if (!(flg & TCP_FLAG_RST))
 | 
						|
			req->rsk_ops->send_reset(skb);
 | 
						|
 | 
						|
		tcp_synq_drop(sk, req, prev);
 | 
						|
		return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Queue segment on the new socket if the new socket is active,
 | 
						|
 * otherwise we just shortcircuit this and continue with
 | 
						|
 * the new socket.
 | 
						|
 */
 | 
						|
 | 
						|
int tcp_child_process(struct sock *parent, struct sock *child,
 | 
						|
		      struct sk_buff *skb)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	int state = child->sk_state;
 | 
						|
 | 
						|
	if (!sock_owned_by_user(child)) {
 | 
						|
		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
 | 
						|
 | 
						|
		/* Wakeup parent, send SIGIO */
 | 
						|
		if (state == TCP_SYN_RECV && child->sk_state != state)
 | 
						|
			parent->sk_data_ready(parent, 0);
 | 
						|
	} else {
 | 
						|
		/* Alas, it is possible again, because we do lookup
 | 
						|
		 * in main socket hash table and lock on listening
 | 
						|
		 * socket does not protect us more.
 | 
						|
		 */
 | 
						|
		sk_add_backlog(child, skb);
 | 
						|
	}
 | 
						|
 | 
						|
	bh_unlock_sock(child);
 | 
						|
	sock_put(child);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(tcp_check_req);
 | 
						|
EXPORT_SYMBOL(tcp_child_process);
 | 
						|
EXPORT_SYMBOL(tcp_create_openreq_child);
 | 
						|
EXPORT_SYMBOL(tcp_timewait_state_process);
 | 
						|
EXPORT_SYMBOL(tcp_tw_deschedule);
 |