mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 c28a280bd4
			
		
	
	
		c28a280bd4
		
	
	
	
	
		
			
			Instead of using CPUFREQ_ETERNAL for signaling an error condition in cppc_get_transition_latency(), change the return value type of that function to int and make it return a proper negative error code on failures. No intentional functional impact. Reviewed-by: Mario Limonciello (AMD) <superm1@kernel.org> Reviewed-by: Jie Zhan <zhanjie9@hisilicon.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Qais Yousef <qyousef@layalina.io>
		
			
				
	
	
		
			2031 lines
		
	
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2031 lines
		
	
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 | |
|  *
 | |
|  * (C) Copyright 2014, 2015 Linaro Ltd.
 | |
|  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 | |
|  *
 | |
|  * CPPC describes a few methods for controlling CPU performance using
 | |
|  * information from a per CPU table called CPC. This table is described in
 | |
|  * the ACPI v5.0+ specification. The table consists of a list of
 | |
|  * registers which may be memory mapped or hardware registers and also may
 | |
|  * include some static integer values.
 | |
|  *
 | |
|  * CPU performance is on an abstract continuous scale as against a discretized
 | |
|  * P-state scale which is tied to CPU frequency only. In brief, the basic
 | |
|  * operation involves:
 | |
|  *
 | |
|  * - OS makes a CPU performance request. (Can provide min and max bounds)
 | |
|  *
 | |
|  * - Platform (such as BMC) is free to optimize request within requested bounds
 | |
|  *   depending on power/thermal budgets etc.
 | |
|  *
 | |
|  * - Platform conveys its decision back to OS
 | |
|  *
 | |
|  * The communication between OS and platform occurs through another medium
 | |
|  * called (PCC) Platform Communication Channel. This is a generic mailbox like
 | |
|  * mechanism which includes doorbell semantics to indicate register updates.
 | |
|  * See drivers/mailbox/pcc.c for details on PCC.
 | |
|  *
 | |
|  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 | |
|  * above specifications.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt)	"ACPI CPPC: " fmt
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/iopoll.h>
 | |
| #include <linux/ktime.h>
 | |
| #include <linux/rwsem.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/units.h>
 | |
| #include <linux/unaligned.h>
 | |
| 
 | |
| #include <acpi/cppc_acpi.h>
 | |
| 
 | |
| struct cppc_pcc_data {
 | |
| 	struct pcc_mbox_chan *pcc_channel;
 | |
| 	bool pcc_channel_acquired;
 | |
| 	unsigned int deadline_us;
 | |
| 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
 | |
| 
 | |
| 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
 | |
| 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
 | |
| 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock to provide controlled access to the PCC channel.
 | |
| 	 *
 | |
| 	 * For performance critical usecases(currently cppc_set_perf)
 | |
| 	 *	We need to take read_lock and check if channel belongs to OSPM
 | |
| 	 * before reading or writing to PCC subspace
 | |
| 	 *	We need to take write_lock before transferring the channel
 | |
| 	 * ownership to the platform via a Doorbell
 | |
| 	 *	This allows us to batch a number of CPPC requests if they happen
 | |
| 	 * to originate in about the same time
 | |
| 	 *
 | |
| 	 * For non-performance critical usecases(init)
 | |
| 	 *	Take write_lock for all purposes which gives exclusive access
 | |
| 	 */
 | |
| 	struct rw_semaphore pcc_lock;
 | |
| 
 | |
| 	/* Wait queue for CPUs whose requests were batched */
 | |
| 	wait_queue_head_t pcc_write_wait_q;
 | |
| 	ktime_t last_cmd_cmpl_time;
 | |
| 	ktime_t last_mpar_reset;
 | |
| 	int mpar_count;
 | |
| 	int refcount;
 | |
| };
 | |
| 
 | |
| /* Array to represent the PCC channel per subspace ID */
 | |
| static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
 | |
| /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
 | |
| static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
 | |
| 
 | |
| /*
 | |
|  * The cpc_desc structure contains the ACPI register details
 | |
|  * as described in the per CPU _CPC tables. The details
 | |
|  * include the type of register (e.g. PCC, System IO, FFH etc.)
 | |
|  * and destination addresses which lets us READ/WRITE CPU performance
 | |
|  * information using the appropriate I/O methods.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
 | |
| 
 | |
| /* pcc mapped address + header size + offset within PCC subspace */
 | |
| #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_channel->shmem + \
 | |
| 						0x8 + (offs))
 | |
| 
 | |
| /* Check if a CPC register is in PCC */
 | |
| #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
 | |
| 				(cpc)->cpc_entry.reg.space_id ==	\
 | |
| 				ACPI_ADR_SPACE_PLATFORM_COMM)
 | |
| 
 | |
| /* Check if a CPC register is in FFH */
 | |
| #define CPC_IN_FFH(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
 | |
| 				(cpc)->cpc_entry.reg.space_id ==	\
 | |
| 				ACPI_ADR_SPACE_FIXED_HARDWARE)
 | |
| 
 | |
| /* Check if a CPC register is in SystemMemory */
 | |
| #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
 | |
| 				(cpc)->cpc_entry.reg.space_id ==	\
 | |
| 				ACPI_ADR_SPACE_SYSTEM_MEMORY)
 | |
| 
 | |
| /* Check if a CPC register is in SystemIo */
 | |
| #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
 | |
| 				(cpc)->cpc_entry.reg.space_id ==	\
 | |
| 				ACPI_ADR_SPACE_SYSTEM_IO)
 | |
| 
 | |
| /* Evaluates to True if reg is a NULL register descriptor */
 | |
| #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
 | |
| 				(reg)->address == 0 &&			\
 | |
| 				(reg)->bit_width == 0 &&		\
 | |
| 				(reg)->bit_offset == 0 &&		\
 | |
| 				(reg)->access_width == 0)
 | |
| 
 | |
| /* Evaluates to True if an optional cpc field is supported */
 | |
| #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
 | |
| 				!!(cpc)->cpc_entry.int_value :		\
 | |
| 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
 | |
| 
 | |
| /*
 | |
|  * Each bit indicates the optionality of the register in per-cpu
 | |
|  * cpc_regs[] with the corresponding index. 0 means mandatory and 1
 | |
|  * means optional.
 | |
|  */
 | |
| #define REG_OPTIONAL (0x1FC7D0)
 | |
| 
 | |
| /*
 | |
|  * Use the index of the register in per-cpu cpc_regs[] to check if
 | |
|  * it's an optional one.
 | |
|  */
 | |
| #define IS_OPTIONAL_CPC_REG(reg_idx) (REG_OPTIONAL & (1U << (reg_idx)))
 | |
| 
 | |
| /*
 | |
|  * Arbitrary Retries in case the remote processor is slow to respond
 | |
|  * to PCC commands. Keeping it high enough to cover emulators where
 | |
|  * the processors run painfully slow.
 | |
|  */
 | |
| #define NUM_RETRIES 500ULL
 | |
| 
 | |
| #define OVER_16BTS_MASK ~0xFFFFULL
 | |
| 
 | |
| #define define_one_cppc_ro(_name)		\
 | |
| static struct kobj_attribute _name =		\
 | |
| __ATTR(_name, 0444, show_##_name, NULL)
 | |
| 
 | |
| #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
 | |
| 
 | |
| #define show_cppc_data(access_fn, struct_name, member_name)		\
 | |
| 	static ssize_t show_##member_name(struct kobject *kobj,		\
 | |
| 				struct kobj_attribute *attr, char *buf)	\
 | |
| 	{								\
 | |
| 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
 | |
| 		struct struct_name st_name = {0};			\
 | |
| 		int ret;						\
 | |
| 									\
 | |
| 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
 | |
| 		if (ret)						\
 | |
| 			return ret;					\
 | |
| 									\
 | |
| 		return sysfs_emit(buf, "%llu\n",		\
 | |
| 				(u64)st_name.member_name);		\
 | |
| 	}								\
 | |
| 	define_one_cppc_ro(member_name)
 | |
| 
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, guaranteed_perf);
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
 | |
| 
 | |
| show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
 | |
| show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
 | |
| 
 | |
| /* Check for valid access_width, otherwise, fallback to using bit_width */
 | |
| #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
 | |
| 
 | |
| /* Shift and apply the mask for CPC reads/writes */
 | |
| #define MASK_VAL_READ(reg, val) (((val) >> (reg)->bit_offset) &				\
 | |
| 					GENMASK(((reg)->bit_width) - 1, 0))
 | |
| #define MASK_VAL_WRITE(reg, prev_val, val)						\
 | |
| 	((((val) & GENMASK(((reg)->bit_width) - 1, 0)) << (reg)->bit_offset) |		\
 | |
| 	((prev_val) & ~(GENMASK(((reg)->bit_width) - 1, 0) << (reg)->bit_offset)))	\
 | |
| 
 | |
| static ssize_t show_feedback_ctrs(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
 | |
| 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return sysfs_emit(buf, "ref:%llu del:%llu\n",
 | |
| 			fb_ctrs.reference, fb_ctrs.delivered);
 | |
| }
 | |
| define_one_cppc_ro(feedback_ctrs);
 | |
| 
 | |
| static struct attribute *cppc_attrs[] = {
 | |
| 	&feedback_ctrs.attr,
 | |
| 	&reference_perf.attr,
 | |
| 	&wraparound_time.attr,
 | |
| 	&highest_perf.attr,
 | |
| 	&lowest_perf.attr,
 | |
| 	&lowest_nonlinear_perf.attr,
 | |
| 	&guaranteed_perf.attr,
 | |
| 	&nominal_perf.attr,
 | |
| 	&nominal_freq.attr,
 | |
| 	&lowest_freq.attr,
 | |
| 	NULL
 | |
| };
 | |
| ATTRIBUTE_GROUPS(cppc);
 | |
| 
 | |
| static const struct kobj_type cppc_ktype = {
 | |
| 	.sysfs_ops = &kobj_sysfs_ops,
 | |
| 	.default_groups = cppc_groups,
 | |
| };
 | |
| 
 | |
| static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
 | |
| {
 | |
| 	int ret, status;
 | |
| 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
 | |
| 					pcc_ss_data->pcc_channel->shmem;
 | |
| 
 | |
| 	if (!pcc_ss_data->platform_owns_pcc)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Poll PCC status register every 3us(delay_us) for maximum of
 | |
| 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
 | |
| 	 */
 | |
| 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
 | |
| 					status & PCC_CMD_COMPLETE_MASK, 3,
 | |
| 					pcc_ss_data->deadline_us);
 | |
| 
 | |
| 	if (likely(!ret)) {
 | |
| 		pcc_ss_data->platform_owns_pcc = false;
 | |
| 		if (chk_err_bit && (status & PCC_ERROR_MASK))
 | |
| 			ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ret))
 | |
| 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
 | |
| 		       pcc_ss_id, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function transfers the ownership of the PCC to the platform
 | |
|  * So it must be called while holding write_lock(pcc_lock)
 | |
|  */
 | |
| static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
 | |
| {
 | |
| 	int ret = -EIO, i;
 | |
| 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
 | |
| 					pcc_ss_data->pcc_channel->shmem;
 | |
| 	unsigned int time_delta;
 | |
| 
 | |
| 	/*
 | |
| 	 * For CMD_WRITE we know for a fact the caller should have checked
 | |
| 	 * the channel before writing to PCC space
 | |
| 	 */
 | |
| 	if (cmd == CMD_READ) {
 | |
| 		/*
 | |
| 		 * If there are pending cpc_writes, then we stole the channel
 | |
| 		 * before write completion, so first send a WRITE command to
 | |
| 		 * platform
 | |
| 		 */
 | |
| 		if (pcc_ss_data->pending_pcc_write_cmd)
 | |
| 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
 | |
| 
 | |
| 		ret = check_pcc_chan(pcc_ss_id, false);
 | |
| 		if (ret)
 | |
| 			goto end;
 | |
| 	} else /* CMD_WRITE */
 | |
| 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the Minimum Request Turnaround Time(MRTT)
 | |
| 	 * "The minimum amount of time that OSPM must wait after the completion
 | |
| 	 * of a command before issuing the next command, in microseconds"
 | |
| 	 */
 | |
| 	if (pcc_ss_data->pcc_mrtt) {
 | |
| 		time_delta = ktime_us_delta(ktime_get(),
 | |
| 					    pcc_ss_data->last_cmd_cmpl_time);
 | |
| 		if (pcc_ss_data->pcc_mrtt > time_delta)
 | |
| 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
 | |
| 	 * "The maximum number of periodic requests that the subspace channel can
 | |
| 	 * support, reported in commands per minute. 0 indicates no limitation."
 | |
| 	 *
 | |
| 	 * This parameter should be ideally zero or large enough so that it can
 | |
| 	 * handle maximum number of requests that all the cores in the system can
 | |
| 	 * collectively generate. If it is not, we will follow the spec and just
 | |
| 	 * not send the request to the platform after hitting the MPAR limit in
 | |
| 	 * any 60s window
 | |
| 	 */
 | |
| 	if (pcc_ss_data->pcc_mpar) {
 | |
| 		if (pcc_ss_data->mpar_count == 0) {
 | |
| 			time_delta = ktime_ms_delta(ktime_get(),
 | |
| 						    pcc_ss_data->last_mpar_reset);
 | |
| 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
 | |
| 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
 | |
| 					 pcc_ss_id);
 | |
| 				ret = -EIO;
 | |
| 				goto end;
 | |
| 			}
 | |
| 			pcc_ss_data->last_mpar_reset = ktime_get();
 | |
| 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
 | |
| 		}
 | |
| 		pcc_ss_data->mpar_count--;
 | |
| 	}
 | |
| 
 | |
| 	/* Write to the shared comm region. */
 | |
| 	writew_relaxed(cmd, &generic_comm_base->command);
 | |
| 
 | |
| 	/* Flip CMD COMPLETE bit */
 | |
| 	writew_relaxed(0, &generic_comm_base->status);
 | |
| 
 | |
| 	pcc_ss_data->platform_owns_pcc = true;
 | |
| 
 | |
| 	/* Ring doorbell */
 | |
| 	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
 | |
| 		       pcc_ss_id, cmd, ret);
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	/* wait for completion and check for PCC error bit */
 | |
| 	ret = check_pcc_chan(pcc_ss_id, true);
 | |
| 
 | |
| 	if (pcc_ss_data->pcc_mrtt)
 | |
| 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
 | |
| 
 | |
| 	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
 | |
| 		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
 | |
| 	else
 | |
| 		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
 | |
| 
 | |
| end:
 | |
| 	if (cmd == CMD_WRITE) {
 | |
| 		if (unlikely(ret)) {
 | |
| 			for_each_possible_cpu(i) {
 | |
| 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
 | |
| 
 | |
| 				if (!desc)
 | |
| 					continue;
 | |
| 
 | |
| 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
 | |
| 					desc->write_cmd_status = ret;
 | |
| 			}
 | |
| 		}
 | |
| 		pcc_ss_data->pcc_write_cnt++;
 | |
| 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
 | |
| {
 | |
| 	if (ret < 0)
 | |
| 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
 | |
| 				*(u16 *)msg, ret);
 | |
| 	else
 | |
| 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
 | |
| 				*(u16 *)msg, ret);
 | |
| }
 | |
| 
 | |
| static struct mbox_client cppc_mbox_cl = {
 | |
| 	.tx_done = cppc_chan_tx_done,
 | |
| 	.knows_txdone = true,
 | |
| };
 | |
| 
 | |
| static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
 | |
| {
 | |
| 	int result = -EFAULT;
 | |
| 	acpi_status status = AE_OK;
 | |
| 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
 | |
| 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
 | |
| 	struct acpi_buffer state = {0, NULL};
 | |
| 	union acpi_object  *psd = NULL;
 | |
| 	struct acpi_psd_package *pdomain;
 | |
| 
 | |
| 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
 | |
| 					    &buffer, ACPI_TYPE_PACKAGE);
 | |
| 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
 | |
| 		return 0;
 | |
| 	if (ACPI_FAILURE(status))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	psd = buffer.pointer;
 | |
| 	if (!psd || psd->package.count != 1) {
 | |
| 		pr_debug("Invalid _PSD data\n");
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	pdomain = &(cpc_ptr->domain_info);
 | |
| 
 | |
| 	state.length = sizeof(struct acpi_psd_package);
 | |
| 	state.pointer = pdomain;
 | |
| 
 | |
| 	status = acpi_extract_package(&(psd->package.elements[0]),
 | |
| 		&format, &state);
 | |
| 	if (ACPI_FAILURE(status)) {
 | |
| 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
 | |
| 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
 | |
| 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
 | |
| 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
 | |
| 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
 | |
| 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	result = 0;
 | |
| end:
 | |
| 	kfree(buffer.pointer);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| bool acpi_cpc_valid(void)
 | |
| {
 | |
| 	struct cpc_desc *cpc_ptr;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (acpi_disabled)
 | |
| 		return false;
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
 | |
| 		if (!cpc_ptr)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(acpi_cpc_valid);
 | |
| 
 | |
| bool cppc_allow_fast_switch(void)
 | |
| {
 | |
| 	struct cpc_register_resource *desired_reg;
 | |
| 	struct cpc_desc *cpc_ptr;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
 | |
| 		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
 | |
| 		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
 | |
| 				!CPC_IN_SYSTEM_IO(desired_reg))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
 | |
| 
 | |
| /**
 | |
|  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
 | |
|  * @cpu: Find all CPUs that share a domain with cpu.
 | |
|  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
 | |
|  *
 | |
|  *	Return: 0 for success or negative value for err.
 | |
|  */
 | |
| int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
 | |
| {
 | |
| 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
 | |
| 	struct acpi_psd_package *match_pdomain;
 | |
| 	struct acpi_psd_package *pdomain;
 | |
| 	int count_target, i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we have _PSD data from all CPUs, let's setup P-state
 | |
| 	 * domain info.
 | |
| 	 */
 | |
| 	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
 | |
| 	if (!cpc_ptr)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	pdomain = &(cpc_ptr->domain_info);
 | |
| 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
 | |
| 	if (pdomain->num_processors <= 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Validate the Domain info */
 | |
| 	count_target = pdomain->num_processors;
 | |
| 	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
 | |
| 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 | |
| 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
 | |
| 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
 | |
| 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
 | |
| 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		if (i == cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
 | |
| 		if (!match_cpc_ptr)
 | |
| 			goto err_fault;
 | |
| 
 | |
| 		match_pdomain = &(match_cpc_ptr->domain_info);
 | |
| 		if (match_pdomain->domain != pdomain->domain)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Here i and cpu are in the same domain */
 | |
| 		if (match_pdomain->num_processors != count_target)
 | |
| 			goto err_fault;
 | |
| 
 | |
| 		if (pdomain->coord_type != match_pdomain->coord_type)
 | |
| 			goto err_fault;
 | |
| 
 | |
| 		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_fault:
 | |
| 	/* Assume no coordination on any error parsing domain info */
 | |
| 	cpumask_clear(cpu_data->shared_cpu_map);
 | |
| 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
 | |
| 	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
 | |
| 
 | |
| 	return -EFAULT;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(acpi_get_psd_map);
 | |
| 
 | |
| static int register_pcc_channel(int pcc_ss_idx)
 | |
| {
 | |
| 	struct pcc_mbox_chan *pcc_chan;
 | |
| 	u64 usecs_lat;
 | |
| 
 | |
| 	if (pcc_ss_idx >= 0) {
 | |
| 		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
 | |
| 
 | |
| 		if (IS_ERR(pcc_chan)) {
 | |
| 			pr_err("Failed to find PCC channel for subspace %d\n",
 | |
| 			       pcc_ss_idx);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
 | |
| 		/*
 | |
| 		 * cppc_ss->latency is just a Nominal value. In reality
 | |
| 		 * the remote processor could be much slower to reply.
 | |
| 		 * So add an arbitrary amount of wait on top of Nominal.
 | |
| 		 */
 | |
| 		usecs_lat = NUM_RETRIES * pcc_chan->latency;
 | |
| 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
 | |
| 		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
 | |
| 		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
 | |
| 		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
 | |
| 
 | |
| 		/* Set flag so that we don't come here for each CPU. */
 | |
| 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpc_ffh_supported() - check if FFH reading supported
 | |
|  *
 | |
|  * Check if the architecture has support for functional fixed hardware
 | |
|  * read/write capability.
 | |
|  *
 | |
|  * Return: true for supported, false for not supported
 | |
|  */
 | |
| bool __weak cpc_ffh_supported(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
 | |
|  *
 | |
|  * Check if the architectural support for CPPC is present even
 | |
|  * if the _OSC hasn't prescribed it
 | |
|  *
 | |
|  * Return: true for supported, false for not supported
 | |
|  */
 | |
| bool __weak cpc_supported_by_cpu(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
 | |
|  * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
 | |
|  *
 | |
|  * Check and allocate the cppc_pcc_data memory.
 | |
|  * In some processor configurations it is possible that same subspace
 | |
|  * is shared between multiple CPUs. This is seen especially in CPUs
 | |
|  * with hardware multi-threading support.
 | |
|  *
 | |
|  * Return: 0 for success, errno for failure
 | |
|  */
 | |
| static int pcc_data_alloc(int pcc_ss_id)
 | |
| {
 | |
| 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pcc_data[pcc_ss_id]) {
 | |
| 		pcc_data[pcc_ss_id]->refcount++;
 | |
| 	} else {
 | |
| 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
 | |
| 					      GFP_KERNEL);
 | |
| 		if (!pcc_data[pcc_ss_id])
 | |
| 			return -ENOMEM;
 | |
| 		pcc_data[pcc_ss_id]->refcount++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * An example CPC table looks like the following.
 | |
|  *
 | |
|  *  Name (_CPC, Package() {
 | |
|  *      17,							// NumEntries
 | |
|  *      1,							// Revision
 | |
|  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
 | |
|  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
 | |
|  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
 | |
|  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
 | |
|  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
 | |
|  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
 | |
|  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
 | |
|  *      ...
 | |
|  *      ...
 | |
|  *      ...
 | |
|  *  }
 | |
|  * Each Register() encodes how to access that specific register.
 | |
|  * e.g. a sample PCC entry has the following encoding:
 | |
|  *
 | |
|  *  Register (
 | |
|  *      PCC,	// AddressSpaceKeyword
 | |
|  *      8,	// RegisterBitWidth
 | |
|  *      8,	// RegisterBitOffset
 | |
|  *      0x30,	// RegisterAddress
 | |
|  *      9,	// AccessSize (subspace ID)
 | |
|  *  )
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 | |
|  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
 | |
|  *
 | |
|  *	Return: 0 for success or negative value for err.
 | |
|  */
 | |
| int acpi_cppc_processor_probe(struct acpi_processor *pr)
 | |
| {
 | |
| 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
 | |
| 	union acpi_object *out_obj, *cpc_obj;
 | |
| 	struct cpc_desc *cpc_ptr;
 | |
| 	struct cpc_reg *gas_t;
 | |
| 	struct device *cpu_dev;
 | |
| 	acpi_handle handle = pr->handle;
 | |
| 	unsigned int num_ent, i, cpc_rev;
 | |
| 	int pcc_subspace_id = -1;
 | |
| 	acpi_status status;
 | |
| 	int ret = -ENODATA;
 | |
| 
 | |
| 	if (!osc_sb_cppc2_support_acked) {
 | |
| 		pr_debug("CPPC v2 _OSC not acked\n");
 | |
| 		if (!cpc_supported_by_cpu()) {
 | |
| 			pr_debug("CPPC is not supported by the CPU\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Parse the ACPI _CPC table for this CPU. */
 | |
| 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
 | |
| 			ACPI_TYPE_PACKAGE);
 | |
| 	if (ACPI_FAILURE(status)) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_buf_free;
 | |
| 	}
 | |
| 
 | |
| 	out_obj = (union acpi_object *) output.pointer;
 | |
| 
 | |
| 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
 | |
| 	if (!cpc_ptr) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_buf_free;
 | |
| 	}
 | |
| 
 | |
| 	/* First entry is NumEntries. */
 | |
| 	cpc_obj = &out_obj->package.elements[0];
 | |
| 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 | |
| 		num_ent = cpc_obj->integer.value;
 | |
| 		if (num_ent <= 1) {
 | |
| 			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
 | |
| 				 num_ent, pr->id);
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 	} else {
 | |
| 		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
 | |
| 			 cpc_obj->type, pr->id);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Second entry should be revision. */
 | |
| 	cpc_obj = &out_obj->package.elements[1];
 | |
| 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 | |
| 		cpc_rev = cpc_obj->integer.value;
 | |
| 	} else {
 | |
| 		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
 | |
| 			 cpc_obj->type, pr->id);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	if (cpc_rev < CPPC_V2_REV) {
 | |
| 		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
 | |
| 			 pr->id);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disregard _CPC if the number of entries in the return pachage is not
 | |
| 	 * as expected, but support future revisions being proper supersets of
 | |
| 	 * the v3 and only causing more entries to be returned by _CPC.
 | |
| 	 */
 | |
| 	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
 | |
| 	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
 | |
| 	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
 | |
| 		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
 | |
| 			 num_ent, pr->id);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	if (cpc_rev > CPPC_V3_REV) {
 | |
| 		num_ent = CPPC_V3_NUM_ENT;
 | |
| 		cpc_rev = CPPC_V3_REV;
 | |
| 	}
 | |
| 
 | |
| 	cpc_ptr->num_entries = num_ent;
 | |
| 	cpc_ptr->version = cpc_rev;
 | |
| 
 | |
| 	/* Iterate through remaining entries in _CPC */
 | |
| 	for (i = 2; i < num_ent; i++) {
 | |
| 		cpc_obj = &out_obj->package.elements[i];
 | |
| 
 | |
| 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 | |
| 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
 | |
| 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
 | |
| 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
 | |
| 			gas_t = (struct cpc_reg *)
 | |
| 				cpc_obj->buffer.pointer;
 | |
| 
 | |
| 			/*
 | |
| 			 * The PCC Subspace index is encoded inside
 | |
| 			 * the CPC table entries. The same PCC index
 | |
| 			 * will be used for all the PCC entries,
 | |
| 			 * so extract it only once.
 | |
| 			 */
 | |
| 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
 | |
| 				if (pcc_subspace_id < 0) {
 | |
| 					pcc_subspace_id = gas_t->access_width;
 | |
| 					if (pcc_data_alloc(pcc_subspace_id))
 | |
| 						goto out_free;
 | |
| 				} else if (pcc_subspace_id != gas_t->access_width) {
 | |
| 					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
 | |
| 						 pr->id);
 | |
| 					goto out_free;
 | |
| 				}
 | |
| 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
 | |
| 				if (gas_t->address) {
 | |
| 					void __iomem *addr;
 | |
| 					size_t access_width;
 | |
| 
 | |
| 					if (!osc_cpc_flexible_adr_space_confirmed) {
 | |
| 						pr_debug("Flexible address space capability not supported\n");
 | |
| 						if (!cpc_supported_by_cpu())
 | |
| 							goto out_free;
 | |
| 					}
 | |
| 
 | |
| 					access_width = GET_BIT_WIDTH(gas_t) / 8;
 | |
| 					addr = ioremap(gas_t->address, access_width);
 | |
| 					if (!addr)
 | |
| 						goto out_free;
 | |
| 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
 | |
| 				}
 | |
| 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
 | |
| 				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
 | |
| 					/*
 | |
| 					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
 | |
| 					 * SystemIO doesn't implement 64-bit
 | |
| 					 * registers.
 | |
| 					 */
 | |
| 					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
 | |
| 						 gas_t->access_width);
 | |
| 					goto out_free;
 | |
| 				}
 | |
| 				if (gas_t->address & OVER_16BTS_MASK) {
 | |
| 					/* SystemIO registers use 16-bit integer addresses */
 | |
| 					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
 | |
| 						 gas_t->address);
 | |
| 					goto out_free;
 | |
| 				}
 | |
| 				if (!osc_cpc_flexible_adr_space_confirmed) {
 | |
| 					pr_debug("Flexible address space capability not supported\n");
 | |
| 					if (!cpc_supported_by_cpu())
 | |
| 						goto out_free;
 | |
| 				}
 | |
| 			} else {
 | |
| 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
 | |
| 					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
 | |
| 					pr_debug("Unsupported register type (%d) in _CPC\n",
 | |
| 						 gas_t->space_id);
 | |
| 					goto out_free;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
 | |
| 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
 | |
| 		} else {
 | |
| 			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
 | |
| 				 i, pr->id);
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 	}
 | |
| 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the remaining cpc_regs as unsupported.
 | |
| 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
 | |
| 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
 | |
| 	 */
 | |
| 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
 | |
| 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
 | |
| 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Store CPU Logical ID */
 | |
| 	cpc_ptr->cpu_id = pr->id;
 | |
| 	raw_spin_lock_init(&cpc_ptr->rmw_lock);
 | |
| 
 | |
| 	/* Parse PSD data for this CPU */
 | |
| 	ret = acpi_get_psd(cpc_ptr, handle);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/* Register PCC channel once for all PCC subspace ID. */
 | |
| 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
 | |
| 		ret = register_pcc_channel(pcc_subspace_id);
 | |
| 		if (ret)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
 | |
| 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
 | |
| 	}
 | |
| 
 | |
| 	/* Everything looks okay */
 | |
| 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
 | |
| 
 | |
| 	/* Add per logical CPU nodes for reading its feedback counters. */
 | |
| 	cpu_dev = get_cpu_device(pr->id);
 | |
| 	if (!cpu_dev) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Plug PSD data into this CPU's CPC descriptor. */
 | |
| 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
 | |
| 
 | |
| 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
 | |
| 			"acpi_cppc");
 | |
| 	if (ret) {
 | |
| 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
 | |
| 		kobject_put(&cpc_ptr->kobj);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	kfree(output.pointer);
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	/* Free all the mapped sys mem areas for this CPU */
 | |
| 	for (i = 2; i < cpc_ptr->num_entries; i++) {
 | |
| 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
 | |
| 
 | |
| 		if (addr)
 | |
| 			iounmap(addr);
 | |
| 	}
 | |
| 	kfree(cpc_ptr);
 | |
| 
 | |
| out_buf_free:
 | |
| 	kfree(output.pointer);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
 | |
| 
 | |
| /**
 | |
|  * acpi_cppc_processor_exit - Cleanup CPC structs.
 | |
|  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
 | |
|  *
 | |
|  * Return: Void
 | |
|  */
 | |
| void acpi_cppc_processor_exit(struct acpi_processor *pr)
 | |
| {
 | |
| 	struct cpc_desc *cpc_ptr;
 | |
| 	unsigned int i;
 | |
| 	void __iomem *addr;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
 | |
| 
 | |
| 	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
 | |
| 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
 | |
| 			pcc_data[pcc_ss_id]->refcount--;
 | |
| 			if (!pcc_data[pcc_ss_id]->refcount) {
 | |
| 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
 | |
| 				kfree(pcc_data[pcc_ss_id]);
 | |
| 				pcc_data[pcc_ss_id] = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
 | |
| 	if (!cpc_ptr)
 | |
| 		return;
 | |
| 
 | |
| 	/* Free all the mapped sys mem areas for this CPU */
 | |
| 	for (i = 2; i < cpc_ptr->num_entries; i++) {
 | |
| 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
 | |
| 		if (addr)
 | |
| 			iounmap(addr);
 | |
| 	}
 | |
| 
 | |
| 	kobject_put(&cpc_ptr->kobj);
 | |
| 	kfree(cpc_ptr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
 | |
| 
 | |
| /**
 | |
|  * cpc_read_ffh() - Read FFH register
 | |
|  * @cpunum:	CPU number to read
 | |
|  * @reg:	cppc register information
 | |
|  * @val:	place holder for return value
 | |
|  *
 | |
|  * Read bit_width bits from a specified address and bit_offset
 | |
|  *
 | |
|  * Return: 0 for success and error code
 | |
|  */
 | |
| int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
 | |
| {
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpc_write_ffh() - Write FFH register
 | |
|  * @cpunum:	CPU number to write
 | |
|  * @reg:	cppc register information
 | |
|  * @val:	value to write
 | |
|  *
 | |
|  * Write value of bit_width bits to a specified address and bit_offset
 | |
|  *
 | |
|  * Return: 0 for success and error code
 | |
|  */
 | |
| int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
 | |
| {
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 | |
|  * as fast as possible. We have already mapped the PCC subspace during init, so
 | |
|  * we can directly write to it.
 | |
|  */
 | |
| 
 | |
| static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
 | |
| {
 | |
| 	void __iomem *vaddr = NULL;
 | |
| 	int size;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 | |
| 	struct cpc_reg *reg = ®_res->cpc_entry.reg;
 | |
| 
 | |
| 	if (reg_res->type == ACPI_TYPE_INTEGER) {
 | |
| 		*val = reg_res->cpc_entry.int_value;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	*val = 0;
 | |
| 	size = GET_BIT_WIDTH(reg);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
 | |
| 	    reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
 | |
| 		u32 val_u32;
 | |
| 		acpi_status status;
 | |
| 
 | |
| 		status = acpi_os_read_port((acpi_io_address)reg->address,
 | |
| 					   &val_u32, size);
 | |
| 		if (ACPI_FAILURE(status)) {
 | |
| 			pr_debug("Error: Failed to read SystemIO port %llx\n",
 | |
| 				 reg->address);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		*val = val_u32;
 | |
| 		return 0;
 | |
| 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
 | |
| 		/*
 | |
| 		 * For registers in PCC space, the register size is determined
 | |
| 		 * by the bit width field; the access size is used to indicate
 | |
| 		 * the PCC subspace id.
 | |
| 		 */
 | |
| 		size = reg->bit_width;
 | |
| 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
 | |
| 	}
 | |
| 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 | |
| 		vaddr = reg_res->sys_mem_vaddr;
 | |
| 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
 | |
| 		return cpc_read_ffh(cpu, reg, val);
 | |
| 	else
 | |
| 		return acpi_os_read_memory((acpi_physical_address)reg->address,
 | |
| 				val, size);
 | |
| 
 | |
| 	switch (size) {
 | |
| 	case 8:
 | |
| 		*val = readb_relaxed(vaddr);
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		*val = readw_relaxed(vaddr);
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		*val = readl_relaxed(vaddr);
 | |
| 		break;
 | |
| 	case 64:
 | |
| 		*val = readq_relaxed(vaddr);
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
 | |
| 			pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
 | |
| 				size, reg->address);
 | |
| 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
 | |
| 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
 | |
| 				size, pcc_ss_id);
 | |
| 		}
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 | |
| 		*val = MASK_VAL_READ(reg, *val);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
 | |
| {
 | |
| 	int ret_val = 0;
 | |
| 	int size;
 | |
| 	u64 prev_val;
 | |
| 	void __iomem *vaddr = NULL;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 | |
| 	struct cpc_reg *reg = ®_res->cpc_entry.reg;
 | |
| 	struct cpc_desc *cpc_desc;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	size = GET_BIT_WIDTH(reg);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
 | |
| 	    reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
 | |
| 		acpi_status status;
 | |
| 
 | |
| 		status = acpi_os_write_port((acpi_io_address)reg->address,
 | |
| 					    (u32)val, size);
 | |
| 		if (ACPI_FAILURE(status)) {
 | |
| 			pr_debug("Error: Failed to write SystemIO port %llx\n",
 | |
| 				 reg->address);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
 | |
| 		/*
 | |
| 		 * For registers in PCC space, the register size is determined
 | |
| 		 * by the bit width field; the access size is used to indicate
 | |
| 		 * the PCC subspace id.
 | |
| 		 */
 | |
| 		size = reg->bit_width;
 | |
| 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
 | |
| 	}
 | |
| 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 | |
| 		vaddr = reg_res->sys_mem_vaddr;
 | |
| 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
 | |
| 		return cpc_write_ffh(cpu, reg, val);
 | |
| 	else
 | |
| 		return acpi_os_write_memory((acpi_physical_address)reg->address,
 | |
| 				val, size);
 | |
| 
 | |
| 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
 | |
| 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
 | |
| 		if (!cpc_desc) {
 | |
| 			pr_debug("No CPC descriptor for CPU:%d\n", cpu);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&cpc_desc->rmw_lock, flags);
 | |
| 		switch (size) {
 | |
| 		case 8:
 | |
| 			prev_val = readb_relaxed(vaddr);
 | |
| 			break;
 | |
| 		case 16:
 | |
| 			prev_val = readw_relaxed(vaddr);
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			prev_val = readl_relaxed(vaddr);
 | |
| 			break;
 | |
| 		case 64:
 | |
| 			prev_val = readq_relaxed(vaddr);
 | |
| 			break;
 | |
| 		default:
 | |
| 			raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		val = MASK_VAL_WRITE(reg, prev_val, val);
 | |
| 	}
 | |
| 
 | |
| 	switch (size) {
 | |
| 	case 8:
 | |
| 		writeb_relaxed(val, vaddr);
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		writew_relaxed(val, vaddr);
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		writel_relaxed(val, vaddr);
 | |
| 		break;
 | |
| 	case 64:
 | |
| 		writeq_relaxed(val, vaddr);
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
 | |
| 			pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
 | |
| 				size, reg->address);
 | |
| 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
 | |
| 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
 | |
| 				size, pcc_ss_id);
 | |
| 		}
 | |
| 		ret_val = -EFAULT;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 | |
| 		raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| static int cppc_get_reg_val_in_pcc(int cpu, struct cpc_register_resource *reg, u64 *val)
 | |
| {
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 | |
| 	struct cppc_pcc_data *pcc_ss_data = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (pcc_ss_id < 0) {
 | |
| 		pr_debug("Invalid pcc_ss_id\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 
 | |
| 	down_write(&pcc_ss_data->pcc_lock);
 | |
| 
 | |
| 	if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
 | |
| 		ret = cpc_read(cpu, reg, val);
 | |
| 	else
 | |
| 		ret = -EIO;
 | |
| 
 | |
| 	up_write(&pcc_ss_data->pcc_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cppc_get_reg_val(int cpu, enum cppc_regs reg_idx, u64 *val)
 | |
| {
 | |
| 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
 | |
| 	struct cpc_register_resource *reg;
 | |
| 
 | |
| 	if (val == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!cpc_desc) {
 | |
| 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	reg = &cpc_desc->cpc_regs[reg_idx];
 | |
| 
 | |
| 	if ((reg->type == ACPI_TYPE_INTEGER && IS_OPTIONAL_CPC_REG(reg_idx) &&
 | |
| 	     !reg->cpc_entry.int_value) || (reg->type != ACPI_TYPE_INTEGER &&
 | |
| 	     IS_NULL_REG(®->cpc_entry.reg))) {
 | |
| 		pr_debug("CPC register is not supported\n");
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (CPC_IN_PCC(reg))
 | |
| 		return cppc_get_reg_val_in_pcc(cpu, reg, val);
 | |
| 
 | |
| 	return cpc_read(cpu, reg, val);
 | |
| }
 | |
| 
 | |
| static int cppc_set_reg_val_in_pcc(int cpu, struct cpc_register_resource *reg, u64 val)
 | |
| {
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 | |
| 	struct cppc_pcc_data *pcc_ss_data = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (pcc_ss_id < 0) {
 | |
| 		pr_debug("Invalid pcc_ss_id\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	ret = cpc_write(cpu, reg, val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 
 | |
| 	down_write(&pcc_ss_data->pcc_lock);
 | |
| 	/* after writing CPC, transfer the ownership of PCC to platform */
 | |
| 	ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
 | |
| 	up_write(&pcc_ss_data->pcc_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cppc_set_reg_val(int cpu, enum cppc_regs reg_idx, u64 val)
 | |
| {
 | |
| 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
 | |
| 	struct cpc_register_resource *reg;
 | |
| 
 | |
| 	if (!cpc_desc) {
 | |
| 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	reg = &cpc_desc->cpc_regs[reg_idx];
 | |
| 
 | |
| 	/* if a register is writeable, it must be a buffer and not null */
 | |
| 	if ((reg->type != ACPI_TYPE_BUFFER) || IS_NULL_REG(®->cpc_entry.reg)) {
 | |
| 		pr_debug("CPC register is not supported\n");
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (CPC_IN_PCC(reg))
 | |
| 		return cppc_set_reg_val_in_pcc(cpu, reg, val);
 | |
| 
 | |
| 	return cpc_write(cpu, reg, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cppc_get_desired_perf - Get the desired performance register value.
 | |
|  * @cpunum: CPU from which to get desired performance.
 | |
|  * @desired_perf: Return address.
 | |
|  *
 | |
|  * Return: 0 for success, -EIO otherwise.
 | |
|  */
 | |
| int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
 | |
| {
 | |
| 	return cppc_get_reg_val(cpunum, DESIRED_PERF, desired_perf);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
 | |
| 
 | |
| /**
 | |
|  * cppc_get_nominal_perf - Get the nominal performance register value.
 | |
|  * @cpunum: CPU from which to get nominal performance.
 | |
|  * @nominal_perf: Return address.
 | |
|  *
 | |
|  * Return: 0 for success, -EIO otherwise.
 | |
|  */
 | |
| int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
 | |
| {
 | |
| 	return cppc_get_reg_val(cpunum, NOMINAL_PERF, nominal_perf);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cppc_get_highest_perf - Get the highest performance register value.
 | |
|  * @cpunum: CPU from which to get highest performance.
 | |
|  * @highest_perf: Return address.
 | |
|  *
 | |
|  * Return: 0 for success, -EIO otherwise.
 | |
|  */
 | |
| int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
 | |
| {
 | |
| 	return cppc_get_reg_val(cpunum, HIGHEST_PERF, highest_perf);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
 | |
| 
 | |
| /**
 | |
|  * cppc_get_epp_perf - Get the epp register value.
 | |
|  * @cpunum: CPU from which to get epp preference value.
 | |
|  * @epp_perf: Return address.
 | |
|  *
 | |
|  * Return: 0 for success, -EIO otherwise.
 | |
|  */
 | |
| int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
 | |
| {
 | |
| 	return cppc_get_reg_val(cpunum, ENERGY_PERF, epp_perf);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
 | |
| 
 | |
| /**
 | |
|  * cppc_get_perf_caps - Get a CPU's performance capabilities.
 | |
|  * @cpunum: CPU from which to get capabilities info.
 | |
|  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 | |
|  *
 | |
|  * Return: 0 for success with perf_caps populated else -ERRNO.
 | |
|  */
 | |
| int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
 | |
| {
 | |
| 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
 | |
| 	struct cpc_register_resource *highest_reg, *lowest_reg,
 | |
| 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
 | |
| 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
 | |
| 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
 | |
| 	struct cppc_pcc_data *pcc_ss_data = NULL;
 | |
| 	int ret = 0, regs_in_pcc = 0;
 | |
| 
 | |
| 	if (!cpc_desc) {
 | |
| 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
 | |
| 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
 | |
| 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
 | |
| 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
 | |
| 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
 | |
| 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
 | |
| 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
 | |
| 
 | |
| 	/* Are any of the regs PCC ?*/
 | |
| 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
 | |
| 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
 | |
| 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
 | |
| 		if (pcc_ss_id < 0) {
 | |
| 			pr_debug("Invalid pcc_ss_id\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 		pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 		regs_in_pcc = 1;
 | |
| 		down_write(&pcc_ss_data->pcc_lock);
 | |
| 		/* Ring doorbell once to update PCC subspace */
 | |
| 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
 | |
| 			ret = -EIO;
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cpc_read(cpunum, highest_reg, &high);
 | |
| 	perf_caps->highest_perf = high;
 | |
| 
 | |
| 	cpc_read(cpunum, lowest_reg, &low);
 | |
| 	perf_caps->lowest_perf = low;
 | |
| 
 | |
| 	cpc_read(cpunum, nominal_reg, &nom);
 | |
| 	perf_caps->nominal_perf = nom;
 | |
| 
 | |
| 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
 | |
| 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
 | |
| 		perf_caps->guaranteed_perf = 0;
 | |
| 	} else {
 | |
| 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
 | |
| 		perf_caps->guaranteed_perf = guaranteed;
 | |
| 	}
 | |
| 
 | |
| 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
 | |
| 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
 | |
| 
 | |
| 	if (!high || !low || !nom || !min_nonlinear)
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| 	/* Read optional lowest and nominal frequencies if present */
 | |
| 	if (CPC_SUPPORTED(low_freq_reg))
 | |
| 		cpc_read(cpunum, low_freq_reg, &low_f);
 | |
| 
 | |
| 	if (CPC_SUPPORTED(nom_freq_reg))
 | |
| 		cpc_read(cpunum, nom_freq_reg, &nom_f);
 | |
| 
 | |
| 	perf_caps->lowest_freq = low_f;
 | |
| 	perf_caps->nominal_freq = nom_f;
 | |
| 
 | |
| 
 | |
| out_err:
 | |
| 	if (regs_in_pcc)
 | |
| 		up_write(&pcc_ss_data->pcc_lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
 | |
| 
 | |
| /**
 | |
|  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
 | |
|  *
 | |
|  * CPPC has flexibility about how CPU performance counters are accessed.
 | |
|  * One of the choices is PCC regions, which can have a high access latency. This
 | |
|  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
 | |
|  *
 | |
|  * Return: true if any of the counters are in PCC regions, false otherwise
 | |
|  */
 | |
| bool cppc_perf_ctrs_in_pcc(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		struct cpc_register_resource *ref_perf_reg;
 | |
| 		struct cpc_desc *cpc_desc;
 | |
| 
 | |
| 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
 | |
| 
 | |
| 		if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
 | |
| 		    CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
 | |
| 		    CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
 | |
| 			return true;
 | |
| 
 | |
| 
 | |
| 		ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
 | |
| 
 | |
| 		/*
 | |
| 		 * If reference perf register is not supported then we should
 | |
| 		 * use the nominal perf value
 | |
| 		 */
 | |
| 		if (!CPC_SUPPORTED(ref_perf_reg))
 | |
| 			ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
 | |
| 
 | |
| 		if (CPC_IN_PCC(ref_perf_reg))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
 | |
| 
 | |
| /**
 | |
|  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
 | |
|  * @cpunum: CPU from which to read counters.
 | |
|  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 | |
|  *
 | |
|  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 | |
|  */
 | |
| int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
 | |
| {
 | |
| 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
 | |
| 	struct cpc_register_resource *delivered_reg, *reference_reg,
 | |
| 		*ref_perf_reg, *ctr_wrap_reg;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
 | |
| 	struct cppc_pcc_data *pcc_ss_data = NULL;
 | |
| 	u64 delivered, reference, ref_perf, ctr_wrap_time;
 | |
| 	int ret = 0, regs_in_pcc = 0;
 | |
| 
 | |
| 	if (!cpc_desc) {
 | |
| 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
 | |
| 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
 | |
| 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
 | |
| 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
 | |
| 
 | |
| 	/*
 | |
| 	 * If reference perf register is not supported then we should
 | |
| 	 * use the nominal perf value
 | |
| 	 */
 | |
| 	if (!CPC_SUPPORTED(ref_perf_reg))
 | |
| 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
 | |
| 
 | |
| 	/* Are any of the regs PCC ?*/
 | |
| 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
 | |
| 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
 | |
| 		if (pcc_ss_id < 0) {
 | |
| 			pr_debug("Invalid pcc_ss_id\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 		pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 		down_write(&pcc_ss_data->pcc_lock);
 | |
| 		regs_in_pcc = 1;
 | |
| 		/* Ring doorbell once to update PCC subspace */
 | |
| 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
 | |
| 			ret = -EIO;
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cpc_read(cpunum, delivered_reg, &delivered);
 | |
| 	cpc_read(cpunum, reference_reg, &reference);
 | |
| 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
 | |
| 
 | |
| 	/*
 | |
| 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
 | |
| 	 * performance counters are assumed to never wrap during the lifetime of
 | |
| 	 * platform
 | |
| 	 */
 | |
| 	ctr_wrap_time = (u64)(~((u64)0));
 | |
| 	if (CPC_SUPPORTED(ctr_wrap_reg))
 | |
| 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
 | |
| 
 | |
| 	if (!delivered || !reference ||	!ref_perf) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	perf_fb_ctrs->delivered = delivered;
 | |
| 	perf_fb_ctrs->reference = reference;
 | |
| 	perf_fb_ctrs->reference_perf = ref_perf;
 | |
| 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
 | |
| out_err:
 | |
| 	if (regs_in_pcc)
 | |
| 		up_write(&pcc_ss_data->pcc_lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
 | |
| 
 | |
| /*
 | |
|  * Set Energy Performance Preference Register value through
 | |
|  * Performance Controls Interface
 | |
|  */
 | |
| int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
 | |
| {
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 | |
| 	struct cpc_register_resource *epp_set_reg;
 | |
| 	struct cpc_register_resource *auto_sel_reg;
 | |
| 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
 | |
| 	struct cppc_pcc_data *pcc_ss_data = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!cpc_desc) {
 | |
| 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
 | |
| 	epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
 | |
| 
 | |
| 	if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
 | |
| 		if (pcc_ss_id < 0) {
 | |
| 			pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		if (CPC_SUPPORTED(auto_sel_reg)) {
 | |
| 			ret = cpc_write(cpu, auto_sel_reg, enable);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 
 | |
| 		if (CPC_SUPPORTED(epp_set_reg)) {
 | |
| 			ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 
 | |
| 		pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 
 | |
| 		down_write(&pcc_ss_data->pcc_lock);
 | |
| 		/* after writing CPC, transfer the ownership of PCC to platform */
 | |
| 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
 | |
| 		up_write(&pcc_ss_data->pcc_lock);
 | |
| 	} else if (osc_cpc_flexible_adr_space_confirmed &&
 | |
| 		   CPC_SUPPORTED(epp_set_reg) && CPC_IN_FFH(epp_set_reg)) {
 | |
| 		ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
 | |
| 	} else {
 | |
| 		ret = -ENOTSUPP;
 | |
| 		pr_debug("_CPC in PCC and _CPC in FFH are not supported\n");
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
 | |
| 
 | |
| /**
 | |
|  * cppc_set_epp() - Write the EPP register.
 | |
|  * @cpu: CPU on which to write register.
 | |
|  * @epp_val: Value to write to the EPP register.
 | |
|  */
 | |
| int cppc_set_epp(int cpu, u64 epp_val)
 | |
| {
 | |
| 	if (epp_val > CPPC_ENERGY_PERF_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return cppc_set_reg_val(cpu, ENERGY_PERF, epp_val);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_set_epp);
 | |
| 
 | |
| /**
 | |
|  * cppc_get_auto_act_window() - Read autonomous activity window register.
 | |
|  * @cpu: CPU from which to read register.
 | |
|  * @auto_act_window: Return address.
 | |
|  *
 | |
|  * According to ACPI 6.5, s8.4.6.1.6, the value read from the autonomous
 | |
|  * activity window register consists of two parts: a 7 bits value indicate
 | |
|  * significand and a 3 bits value indicate exponent.
 | |
|  */
 | |
| int cppc_get_auto_act_window(int cpu, u64 *auto_act_window)
 | |
| {
 | |
| 	unsigned int exp;
 | |
| 	u64 val, sig;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (auto_act_window == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = cppc_get_reg_val(cpu, AUTO_ACT_WINDOW, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	sig = val & CPPC_AUTO_ACT_WINDOW_MAX_SIG;
 | |
| 	exp = (val >> CPPC_AUTO_ACT_WINDOW_SIG_BIT_SIZE) & CPPC_AUTO_ACT_WINDOW_MAX_EXP;
 | |
| 	*auto_act_window = sig * int_pow(10, exp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_auto_act_window);
 | |
| 
 | |
| /**
 | |
|  * cppc_set_auto_act_window() - Write autonomous activity window register.
 | |
|  * @cpu: CPU on which to write register.
 | |
|  * @auto_act_window: usec value to write to the autonomous activity window register.
 | |
|  *
 | |
|  * According to ACPI 6.5, s8.4.6.1.6, the value to write to the autonomous
 | |
|  * activity window register consists of two parts: a 7 bits value indicate
 | |
|  * significand and a 3 bits value indicate exponent.
 | |
|  */
 | |
| int cppc_set_auto_act_window(int cpu, u64 auto_act_window)
 | |
| {
 | |
| 	/* The max value to store is 1270000000 */
 | |
| 	u64 max_val = CPPC_AUTO_ACT_WINDOW_MAX_SIG * int_pow(10, CPPC_AUTO_ACT_WINDOW_MAX_EXP);
 | |
| 	int exp = 0;
 | |
| 	u64 val;
 | |
| 
 | |
| 	if (auto_act_window > max_val)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The max significand is 127, when auto_act_window is larger than
 | |
| 	 * 129, discard the precision of the last digit and increase the
 | |
| 	 * exponent by 1.
 | |
| 	 */
 | |
| 	while (auto_act_window > CPPC_AUTO_ACT_WINDOW_SIG_CARRY_THRESH) {
 | |
| 		auto_act_window /= 10;
 | |
| 		exp += 1;
 | |
| 	}
 | |
| 
 | |
| 	/* For 128 and 129, cut it to 127. */
 | |
| 	if (auto_act_window > CPPC_AUTO_ACT_WINDOW_MAX_SIG)
 | |
| 		auto_act_window = CPPC_AUTO_ACT_WINDOW_MAX_SIG;
 | |
| 
 | |
| 	val = (exp << CPPC_AUTO_ACT_WINDOW_SIG_BIT_SIZE) + auto_act_window;
 | |
| 
 | |
| 	return cppc_set_reg_val(cpu, AUTO_ACT_WINDOW, val);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_set_auto_act_window);
 | |
| 
 | |
| /**
 | |
|  * cppc_get_auto_sel() - Read autonomous selection register.
 | |
|  * @cpu: CPU from which to read register.
 | |
|  * @enable: Return address.
 | |
|  */
 | |
| int cppc_get_auto_sel(int cpu, bool *enable)
 | |
| {
 | |
| 	u64 auto_sel;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (enable == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = cppc_get_reg_val(cpu, AUTO_SEL_ENABLE, &auto_sel);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	*enable = (bool)auto_sel;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_auto_sel);
 | |
| 
 | |
| /**
 | |
|  * cppc_set_auto_sel - Write autonomous selection register.
 | |
|  * @cpu    : CPU to which to write register.
 | |
|  * @enable : the desired value of autonomous selection resiter to be updated.
 | |
|  */
 | |
| int cppc_set_auto_sel(int cpu, bool enable)
 | |
| {
 | |
| 	return cppc_set_reg_val(cpu, AUTO_SEL_ENABLE, enable);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
 | |
| 
 | |
| /**
 | |
|  * cppc_set_enable - Set to enable CPPC on the processor by writing the
 | |
|  * Continuous Performance Control package EnableRegister field.
 | |
|  * @cpu: CPU for which to enable CPPC register.
 | |
|  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
 | |
|  *
 | |
|  * Return: 0 for success, -ERRNO or -EIO otherwise.
 | |
|  */
 | |
| int cppc_set_enable(int cpu, bool enable)
 | |
| {
 | |
| 	return cppc_set_reg_val(cpu, ENABLE, enable);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_set_enable);
 | |
| 
 | |
| /**
 | |
|  * cppc_set_perf - Set a CPU's performance controls.
 | |
|  * @cpu: CPU for which to set performance controls.
 | |
|  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 | |
|  *
 | |
|  * Return: 0 for success, -ERRNO otherwise.
 | |
|  */
 | |
| int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
 | |
| {
 | |
| 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
 | |
| 	struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 | |
| 	struct cppc_pcc_data *pcc_ss_data = NULL;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!cpc_desc) {
 | |
| 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
 | |
| 	min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
 | |
| 	max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
 | |
| 
 | |
| 	/*
 | |
| 	 * This is Phase-I where we want to write to CPC registers
 | |
| 	 * -> We want all CPUs to be able to execute this phase in parallel
 | |
| 	 *
 | |
| 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
 | |
| 	 * achieve that goal here
 | |
| 	 */
 | |
| 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
 | |
| 		if (pcc_ss_id < 0) {
 | |
| 			pr_debug("Invalid pcc_ss_id\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 		pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
 | |
| 		if (pcc_ss_data->platform_owns_pcc) {
 | |
| 			ret = check_pcc_chan(pcc_ss_id, false);
 | |
| 			if (ret) {
 | |
| 				up_read(&pcc_ss_data->pcc_lock);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Update the pending_write to make sure a PCC CMD_READ will not
 | |
| 		 * arrive and steal the channel during the switch to write lock
 | |
| 		 */
 | |
| 		pcc_ss_data->pending_pcc_write_cmd = true;
 | |
| 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
 | |
| 		cpc_desc->write_cmd_status = 0;
 | |
| 	}
 | |
| 
 | |
| 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only write if min_perf and max_perf not zero. Some drivers pass zero
 | |
| 	 * value to min and max perf, but they don't mean to set the zero value,
 | |
| 	 * they just don't want to write to those registers.
 | |
| 	 */
 | |
| 	if (perf_ctrls->min_perf)
 | |
| 		cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
 | |
| 	if (perf_ctrls->max_perf)
 | |
| 		cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
 | |
| 
 | |
| 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
 | |
| 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
 | |
| 	/*
 | |
| 	 * This is Phase-II where we transfer the ownership of PCC to Platform
 | |
| 	 *
 | |
| 	 * Short Summary: Basically if we think of a group of cppc_set_perf
 | |
| 	 * requests that happened in short overlapping interval. The last CPU to
 | |
| 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
 | |
| 	 *
 | |
| 	 * We have the following requirements for Phase-II:
 | |
| 	 *     1. We want to execute Phase-II only when there are no CPUs
 | |
| 	 * currently executing in Phase-I
 | |
| 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
 | |
| 	 * entering Phase-I.
 | |
| 	 *     3. We want only one CPU among all those who went through Phase-I
 | |
| 	 * to run phase-II
 | |
| 	 *
 | |
| 	 * If write_trylock fails to get the lock and doesn't transfer the
 | |
| 	 * PCC ownership to the platform, then one of the following will be TRUE
 | |
| 	 *     1. There is at-least one CPU in Phase-I which will later execute
 | |
| 	 * write_trylock, so the CPUs in Phase-I will be responsible for
 | |
| 	 * executing the Phase-II.
 | |
| 	 *     2. Some other CPU has beaten this CPU to successfully execute the
 | |
| 	 * write_trylock and has already acquired the write_lock. We know for a
 | |
| 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
 | |
| 	 * before this CPU's Phase-I as we held the read_lock.
 | |
| 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
 | |
| 	 * down_write, in which case, send_pcc_cmd will check for pending
 | |
| 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
 | |
| 	 * So this CPU can be certain that its request will be delivered
 | |
| 	 *    So in all cases, this CPU knows that its request will be delivered
 | |
| 	 * by another CPU and can return
 | |
| 	 *
 | |
| 	 * After getting the down_write we still need to check for
 | |
| 	 * pending_pcc_write_cmd to take care of the following scenario
 | |
| 	 *    The thread running this code could be scheduled out between
 | |
| 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
 | |
| 	 * could have delivered the request to Platform by triggering the
 | |
| 	 * doorbell and transferred the ownership of PCC to platform. So this
 | |
| 	 * avoids triggering an unnecessary doorbell and more importantly before
 | |
| 	 * triggering the doorbell it makes sure that the PCC channel ownership
 | |
| 	 * is still with OSPM.
 | |
| 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
 | |
| 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
 | |
| 	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
 | |
| 	 * case during a CMD_READ and if there are pending writes it delivers
 | |
| 	 * the write command before servicing the read command
 | |
| 	 */
 | |
| 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
 | |
| 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
 | |
| 			/* Update only if there are pending write commands */
 | |
| 			if (pcc_ss_data->pending_pcc_write_cmd)
 | |
| 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
 | |
| 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
 | |
| 		} else
 | |
| 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
 | |
| 			wait_event(pcc_ss_data->pcc_write_wait_q,
 | |
| 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
 | |
| 
 | |
| 		/* send_pcc_cmd updates the status in case of failure */
 | |
| 		ret = cpc_desc->write_cmd_status;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_set_perf);
 | |
| 
 | |
| /**
 | |
|  * cppc_get_transition_latency - returns frequency transition latency in ns
 | |
|  * @cpu_num: CPU number for per_cpu().
 | |
|  *
 | |
|  * ACPI CPPC does not explicitly specify how a platform can specify the
 | |
|  * transition latency for performance change requests. The closest we have
 | |
|  * is the timing information from the PCCT tables which provides the info
 | |
|  * on the number and frequency of PCC commands the platform can handle.
 | |
|  *
 | |
|  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
 | |
|  * then assume there is no latency.
 | |
|  */
 | |
| int cppc_get_transition_latency(int cpu_num)
 | |
| {
 | |
| 	/*
 | |
| 	 * Expected transition latency is based on the PCCT timing values
 | |
| 	 * Below are definition from ACPI spec:
 | |
| 	 * pcc_nominal- Expected latency to process a command, in microseconds
 | |
| 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
 | |
| 	 *              channel can support, reported in commands per minute. 0
 | |
| 	 *              indicates no limitation.
 | |
| 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
 | |
| 	 *              completion of a command before issuing the next command,
 | |
| 	 *              in microseconds.
 | |
| 	 */
 | |
| 	struct cpc_desc *cpc_desc;
 | |
| 	struct cpc_register_resource *desired_reg;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
 | |
| 	struct cppc_pcc_data *pcc_ss_data;
 | |
| 	int latency_ns = 0;
 | |
| 
 | |
| 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
 | |
| 	if (!cpc_desc)
 | |
| 		return -ENODATA;
 | |
| 
 | |
| 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
 | |
| 	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!CPC_IN_PCC(desired_reg) || pcc_ss_id < 0)
 | |
| 		return -ENODATA;
 | |
| 
 | |
| 	pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 	if (pcc_ss_data->pcc_mpar)
 | |
| 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
 | |
| 
 | |
| 	latency_ns = max_t(int, latency_ns, pcc_ss_data->pcc_nominal * 1000);
 | |
| 	latency_ns = max_t(int, latency_ns, pcc_ss_data->pcc_mrtt * 1000);
 | |
| 
 | |
| 	return latency_ns;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
 | |
| 
 | |
| /* Minimum struct length needed for the DMI processor entry we want */
 | |
| #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
 | |
| 
 | |
| /* Offset in the DMI processor structure for the max frequency */
 | |
| #define DMI_PROCESSOR_MAX_SPEED		0x14
 | |
| 
 | |
| /* Callback function used to retrieve the max frequency from DMI */
 | |
| static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
 | |
| {
 | |
| 	const u8 *dmi_data = (const u8 *)dm;
 | |
| 	u16 *mhz = (u16 *)private;
 | |
| 
 | |
| 	if (dm->type == DMI_ENTRY_PROCESSOR &&
 | |
| 	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
 | |
| 		u16 val = (u16)get_unaligned((const u16 *)
 | |
| 				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
 | |
| 		*mhz = umax(val, *mhz);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Look up the max frequency in DMI */
 | |
| static u64 cppc_get_dmi_max_khz(void)
 | |
| {
 | |
| 	u16 mhz = 0;
 | |
| 
 | |
| 	dmi_walk(cppc_find_dmi_mhz, &mhz);
 | |
| 
 | |
| 	/*
 | |
| 	 * Real stupid fallback value, just in case there is no
 | |
| 	 * actual value set.
 | |
| 	 */
 | |
| 	mhz = mhz ? mhz : 1;
 | |
| 
 | |
| 	return KHZ_PER_MHZ * mhz;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
 | |
|  * use them to convert perf to freq and vice versa. The conversion is
 | |
|  * extrapolated as an affine function passing by the 2 points:
 | |
|  *  - (Low perf, Low freq)
 | |
|  *  - (Nominal perf, Nominal freq)
 | |
|  */
 | |
| unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
 | |
| {
 | |
| 	s64 retval, offset = 0;
 | |
| 	static u64 max_khz;
 | |
| 	u64 mul, div;
 | |
| 
 | |
| 	if (caps->lowest_freq && caps->nominal_freq) {
 | |
| 		/* Avoid special case when nominal_freq is equal to lowest_freq */
 | |
| 		if (caps->lowest_freq == caps->nominal_freq) {
 | |
| 			mul = caps->nominal_freq;
 | |
| 			div = caps->nominal_perf;
 | |
| 		} else {
 | |
| 			mul = caps->nominal_freq - caps->lowest_freq;
 | |
| 			div = caps->nominal_perf - caps->lowest_perf;
 | |
| 		}
 | |
| 		mul *= KHZ_PER_MHZ;
 | |
| 		offset = caps->nominal_freq * KHZ_PER_MHZ -
 | |
| 			 div64_u64(caps->nominal_perf * mul, div);
 | |
| 	} else {
 | |
| 		if (!max_khz)
 | |
| 			max_khz = cppc_get_dmi_max_khz();
 | |
| 		mul = max_khz;
 | |
| 		div = caps->highest_perf;
 | |
| 	}
 | |
| 
 | |
| 	retval = offset + div64_u64(perf * mul, div);
 | |
| 	if (retval >= 0)
 | |
| 		return retval;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
 | |
| 
 | |
| unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
 | |
| {
 | |
| 	s64 retval, offset = 0;
 | |
| 	static u64 max_khz;
 | |
| 	u64 mul, div;
 | |
| 
 | |
| 	if (caps->lowest_freq && caps->nominal_freq) {
 | |
| 		/* Avoid special case when nominal_freq is equal to lowest_freq */
 | |
| 		if (caps->lowest_freq == caps->nominal_freq) {
 | |
| 			mul = caps->nominal_perf;
 | |
| 			div = caps->nominal_freq;
 | |
| 		} else {
 | |
| 			mul = caps->nominal_perf - caps->lowest_perf;
 | |
| 			div = caps->nominal_freq - caps->lowest_freq;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We don't need to convert to kHz for computing offset and can
 | |
| 		 * directly use nominal_freq and lowest_freq as the div64_u64
 | |
| 		 * will remove the frequency unit.
 | |
| 		 */
 | |
| 		offset = caps->nominal_perf -
 | |
| 			 div64_u64(caps->nominal_freq * mul, div);
 | |
| 		/* But we need it for computing the perf level. */
 | |
| 		div *= KHZ_PER_MHZ;
 | |
| 	} else {
 | |
| 		if (!max_khz)
 | |
| 			max_khz = cppc_get_dmi_max_khz();
 | |
| 		mul = caps->highest_perf;
 | |
| 		div = max_khz;
 | |
| 	}
 | |
| 
 | |
| 	retval = offset + div64_u64(freq * mul, div);
 | |
| 	if (retval >= 0)
 | |
| 		return retval;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
 |