mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 c28a280bd4
			
		
	
	
		c28a280bd4
		
	
	
	
	
		
			
			Instead of using CPUFREQ_ETERNAL for signaling an error condition in cppc_get_transition_latency(), change the return value type of that function to int and make it return a proper negative error code on failures. No intentional functional impact. Reviewed-by: Mario Limonciello (AMD) <superm1@kernel.org> Reviewed-by: Jie Zhan <zhanjie9@hisilicon.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Qais Yousef <qyousef@layalina.io>
		
			
				
	
	
		
			964 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			964 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * CPPC (Collaborative Processor Performance Control) driver for
 | |
|  * interfacing with the CPUfreq layer and governors. See
 | |
|  * cppc_acpi.c for CPPC specific methods.
 | |
|  *
 | |
|  * (C) Copyright 2014, 2015 Linaro Ltd.
 | |
|  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
 | |
| 
 | |
| #include <linux/arch_topology.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/irq_work.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <uapi/linux/sched/types.h>
 | |
| 
 | |
| #include <linux/unaligned.h>
 | |
| 
 | |
| #include <acpi/cppc_acpi.h>
 | |
| 
 | |
| static struct cpufreq_driver cppc_cpufreq_driver;
 | |
| 
 | |
| #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
 | |
| static enum {
 | |
| 	FIE_UNSET = -1,
 | |
| 	FIE_ENABLED,
 | |
| 	FIE_DISABLED
 | |
| } fie_disabled = FIE_UNSET;
 | |
| 
 | |
| module_param(fie_disabled, int, 0444);
 | |
| MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
 | |
| 
 | |
| /* Frequency invariance support */
 | |
| struct cppc_freq_invariance {
 | |
| 	int cpu;
 | |
| 	struct irq_work irq_work;
 | |
| 	struct kthread_work work;
 | |
| 	struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
 | |
| 	struct cppc_cpudata *cpu_data;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
 | |
| static struct kthread_worker *kworker_fie;
 | |
| 
 | |
| static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0,
 | |
| 				 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
 | |
| 
 | |
| /**
 | |
|  * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
 | |
|  * @work: The work item.
 | |
|  *
 | |
|  * The CPPC driver register itself with the topology core to provide its own
 | |
|  * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
 | |
|  * gets called by the scheduler on every tick.
 | |
|  *
 | |
|  * Note that the arch specific counters have higher priority than CPPC counters,
 | |
|  * if available, though the CPPC driver doesn't need to have any special
 | |
|  * handling for that.
 | |
|  *
 | |
|  * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
 | |
|  * reach here from hard-irq context), which then schedules a normal work item
 | |
|  * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
 | |
|  * based on the counter updates since the last tick.
 | |
|  */
 | |
| static void cppc_scale_freq_workfn(struct kthread_work *work)
 | |
| {
 | |
| 	struct cppc_freq_invariance *cppc_fi;
 | |
| 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
 | |
| 	struct cppc_cpudata *cpu_data;
 | |
| 	unsigned long local_freq_scale;
 | |
| 	u64 perf;
 | |
| 
 | |
| 	cppc_fi = container_of(work, struct cppc_freq_invariance, work);
 | |
| 	cpu_data = cppc_fi->cpu_data;
 | |
| 
 | |
| 	if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
 | |
| 		pr_warn("%s: failed to read perf counters\n", __func__);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	perf = cppc_perf_from_fbctrs(&cppc_fi->prev_perf_fb_ctrs, &fb_ctrs);
 | |
| 	if (!perf)
 | |
| 		return;
 | |
| 
 | |
| 	cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
 | |
| 
 | |
| 	perf <<= SCHED_CAPACITY_SHIFT;
 | |
| 	local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
 | |
| 
 | |
| 	/* This can happen due to counter's overflow */
 | |
| 	if (unlikely(local_freq_scale > 1024))
 | |
| 		local_freq_scale = 1024;
 | |
| 
 | |
| 	per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
 | |
| }
 | |
| 
 | |
| static void cppc_irq_work(struct irq_work *irq_work)
 | |
| {
 | |
| 	struct cppc_freq_invariance *cppc_fi;
 | |
| 
 | |
| 	cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
 | |
| 	kthread_queue_work(kworker_fie, &cppc_fi->work);
 | |
| }
 | |
| 
 | |
| static void cppc_scale_freq_tick(void)
 | |
| {
 | |
| 	struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
 | |
| 
 | |
| 	/*
 | |
| 	 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
 | |
| 	 * context.
 | |
| 	 */
 | |
| 	irq_work_queue(&cppc_fi->irq_work);
 | |
| }
 | |
| 
 | |
| static struct scale_freq_data cppc_sftd = {
 | |
| 	.source = SCALE_FREQ_SOURCE_CPPC,
 | |
| 	.set_freq_scale = cppc_scale_freq_tick,
 | |
| };
 | |
| 
 | |
| static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cppc_freq_invariance *cppc_fi;
 | |
| 	int cpu, ret;
 | |
| 
 | |
| 	if (fie_disabled)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_cpu(cpu, policy->cpus) {
 | |
| 		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
 | |
| 		cppc_fi->cpu = cpu;
 | |
| 		cppc_fi->cpu_data = policy->driver_data;
 | |
| 		kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
 | |
| 		init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
 | |
| 
 | |
| 		ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
 | |
| 		if (ret) {
 | |
| 			pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
 | |
| 				__func__, cpu, ret);
 | |
| 
 | |
| 			/*
 | |
| 			 * Don't abort if the CPU was offline while the driver
 | |
| 			 * was getting registered.
 | |
| 			 */
 | |
| 			if (cpu_online(cpu))
 | |
| 				return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Register for freq-invariance */
 | |
| 	topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We free all the resources on policy's removal and not on CPU removal as the
 | |
|  * irq-work are per-cpu and the hotplug core takes care of flushing the pending
 | |
|  * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
 | |
|  * fires on another CPU after the concerned CPU is removed, it won't harm.
 | |
|  *
 | |
|  * We just need to make sure to remove them all on policy->exit().
 | |
|  */
 | |
| static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cppc_freq_invariance *cppc_fi;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (fie_disabled)
 | |
| 		return;
 | |
| 
 | |
| 	/* policy->cpus will be empty here, use related_cpus instead */
 | |
| 	topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
 | |
| 
 | |
| 	for_each_cpu(cpu, policy->related_cpus) {
 | |
| 		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
 | |
| 		irq_work_sync(&cppc_fi->irq_work);
 | |
| 		kthread_cancel_work_sync(&cppc_fi->work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init cppc_freq_invariance_init(void)
 | |
| {
 | |
| 	struct sched_attr attr = {
 | |
| 		.size		= sizeof(struct sched_attr),
 | |
| 		.sched_policy	= SCHED_DEADLINE,
 | |
| 		.sched_nice	= 0,
 | |
| 		.sched_priority	= 0,
 | |
| 		/*
 | |
| 		 * Fake (unused) bandwidth; workaround to "fix"
 | |
| 		 * priority inheritance.
 | |
| 		 */
 | |
| 		.sched_runtime	= NSEC_PER_MSEC,
 | |
| 		.sched_deadline = 10 * NSEC_PER_MSEC,
 | |
| 		.sched_period	= 10 * NSEC_PER_MSEC,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
 | |
| 		fie_disabled = FIE_ENABLED;
 | |
| 		if (cppc_perf_ctrs_in_pcc()) {
 | |
| 			pr_info("FIE not enabled on systems with registers in PCC\n");
 | |
| 			fie_disabled = FIE_DISABLED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (fie_disabled)
 | |
| 		return;
 | |
| 
 | |
| 	kworker_fie = kthread_run_worker(0, "cppc_fie");
 | |
| 	if (IS_ERR(kworker_fie)) {
 | |
| 		pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
 | |
| 			PTR_ERR(kworker_fie));
 | |
| 		fie_disabled = FIE_DISABLED;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ret = sched_setattr_nocheck(kworker_fie->task, &attr);
 | |
| 	if (ret) {
 | |
| 		pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
 | |
| 			ret);
 | |
| 		kthread_destroy_worker(kworker_fie);
 | |
| 		fie_disabled = FIE_DISABLED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cppc_freq_invariance_exit(void)
 | |
| {
 | |
| 	if (fie_disabled)
 | |
| 		return;
 | |
| 
 | |
| 	kthread_destroy_worker(kworker_fie);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void cppc_freq_invariance_init(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void cppc_freq_invariance_exit(void)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
 | |
| 
 | |
| static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
 | |
| 				   unsigned int target_freq,
 | |
| 				   unsigned int relation)
 | |
| {
 | |
| 	struct cppc_cpudata *cpu_data = policy->driver_data;
 | |
| 	unsigned int cpu = policy->cpu;
 | |
| 	struct cpufreq_freqs freqs;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	cpu_data->perf_ctrls.desired_perf =
 | |
| 			cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
 | |
| 	freqs.old = policy->cur;
 | |
| 	freqs.new = target_freq;
 | |
| 
 | |
| 	cpufreq_freq_transition_begin(policy, &freqs);
 | |
| 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
 | |
| 	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
 | |
| 
 | |
| 	if (ret)
 | |
| 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
 | |
| 			 cpu, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
 | |
| 					      unsigned int target_freq)
 | |
| {
 | |
| 	struct cppc_cpudata *cpu_data = policy->driver_data;
 | |
| 	unsigned int cpu = policy->cpu;
 | |
| 	u32 desired_perf;
 | |
| 	int ret;
 | |
| 
 | |
| 	desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
 | |
| 	cpu_data->perf_ctrls.desired_perf = desired_perf;
 | |
| 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
 | |
| 			 cpu, ret);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return target_freq;
 | |
| }
 | |
| 
 | |
| static int cppc_verify_policy(struct cpufreq_policy_data *policy)
 | |
| {
 | |
| 	cpufreq_verify_within_cpu_limits(policy);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int __cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
 | |
| {
 | |
| 	int transition_latency_ns = cppc_get_transition_latency(cpu);
 | |
| 
 | |
| 	if (transition_latency_ns < 0)
 | |
| 		return CPUFREQ_DEFAULT_TRANSITION_LATENCY_NS / NSEC_PER_USEC;
 | |
| 
 | |
| 	return transition_latency_ns / NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The PCC subspace describes the rate at which platform can accept commands
 | |
|  * on the shared PCC channel (including READs which do not count towards freq
 | |
|  * transition requests), so ideally we need to use the PCC values as a fallback
 | |
|  * if we don't have a platform specific transition_delay_us
 | |
|  */
 | |
| #ifdef CONFIG_ARM64
 | |
| #include <asm/cputype.h>
 | |
| 
 | |
| static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
 | |
| {
 | |
| 	unsigned long implementor = read_cpuid_implementor();
 | |
| 	unsigned long part_num = read_cpuid_part_number();
 | |
| 
 | |
| 	switch (implementor) {
 | |
| 	case ARM_CPU_IMP_QCOM:
 | |
| 		switch (part_num) {
 | |
| 		case QCOM_CPU_PART_FALKOR_V1:
 | |
| 		case QCOM_CPU_PART_FALKOR:
 | |
| 			return 10000;
 | |
| 		}
 | |
| 	}
 | |
| 	return __cppc_cpufreq_get_transition_delay_us(cpu);
 | |
| }
 | |
| #else
 | |
| static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
 | |
| {
 | |
| 	return __cppc_cpufreq_get_transition_delay_us(cpu);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned int, efficiency_class);
 | |
| 
 | |
| /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
 | |
| #define CPPC_EM_CAP_STEP	(20)
 | |
| /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
 | |
| #define CPPC_EM_COST_STEP	(1)
 | |
| /* Add a cost gap correspnding to the energy of 4 CPUs. */
 | |
| #define CPPC_EM_COST_GAP	(4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
 | |
| 				/ CPPC_EM_CAP_STEP)
 | |
| 
 | |
| static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cppc_perf_caps *perf_caps;
 | |
| 	unsigned int min_cap, max_cap;
 | |
| 	struct cppc_cpudata *cpu_data;
 | |
| 	int cpu = policy->cpu;
 | |
| 
 | |
| 	cpu_data = policy->driver_data;
 | |
| 	perf_caps = &cpu_data->perf_caps;
 | |
| 	max_cap = arch_scale_cpu_capacity(cpu);
 | |
| 	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
 | |
| 			  perf_caps->highest_perf);
 | |
| 	if ((min_cap == 0) || (max_cap < min_cap))
 | |
| 		return 0;
 | |
| 	return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The cost is defined as:
 | |
|  *   cost = power * max_frequency / frequency
 | |
|  */
 | |
| static inline unsigned long compute_cost(int cpu, int step)
 | |
| {
 | |
| 	return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
 | |
| 			step * CPPC_EM_COST_STEP;
 | |
| }
 | |
| 
 | |
| static int cppc_get_cpu_power(struct device *cpu_dev,
 | |
| 		unsigned long *power, unsigned long *KHz)
 | |
| {
 | |
| 	unsigned long perf_step, perf_prev, perf, perf_check;
 | |
| 	unsigned int min_step, max_step, step, step_check;
 | |
| 	unsigned long prev_freq = *KHz;
 | |
| 	unsigned int min_cap, max_cap;
 | |
| 	struct cpufreq_policy *policy;
 | |
| 
 | |
| 	struct cppc_perf_caps *perf_caps;
 | |
| 	struct cppc_cpudata *cpu_data;
 | |
| 
 | |
| 	policy = cpufreq_cpu_get_raw(cpu_dev->id);
 | |
| 	if (!policy)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cpu_data = policy->driver_data;
 | |
| 	perf_caps = &cpu_data->perf_caps;
 | |
| 	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
 | |
| 	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
 | |
| 			  perf_caps->highest_perf);
 | |
| 	perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
 | |
| 			    max_cap);
 | |
| 	min_step = min_cap / CPPC_EM_CAP_STEP;
 | |
| 	max_step = max_cap / CPPC_EM_CAP_STEP;
 | |
| 
 | |
| 	perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
 | |
| 	step = perf_prev / perf_step;
 | |
| 
 | |
| 	if (step > max_step)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (min_step == max_step) {
 | |
| 		step = max_step;
 | |
| 		perf = perf_caps->highest_perf;
 | |
| 	} else if (step < min_step) {
 | |
| 		step = min_step;
 | |
| 		perf = perf_caps->lowest_perf;
 | |
| 	} else {
 | |
| 		step++;
 | |
| 		if (step == max_step)
 | |
| 			perf = perf_caps->highest_perf;
 | |
| 		else
 | |
| 			perf = step * perf_step;
 | |
| 	}
 | |
| 
 | |
| 	*KHz = cppc_perf_to_khz(perf_caps, perf);
 | |
| 	perf_check = cppc_khz_to_perf(perf_caps, *KHz);
 | |
| 	step_check = perf_check / perf_step;
 | |
| 
 | |
| 	/*
 | |
| 	 * To avoid bad integer approximation, check that new frequency value
 | |
| 	 * increased and that the new frequency will be converted to the
 | |
| 	 * desired step value.
 | |
| 	 */
 | |
| 	while ((*KHz == prev_freq) || (step_check != step)) {
 | |
| 		perf++;
 | |
| 		*KHz = cppc_perf_to_khz(perf_caps, perf);
 | |
| 		perf_check = cppc_khz_to_perf(perf_caps, *KHz);
 | |
| 		step_check = perf_check / perf_step;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * With an artificial EM, only the cost value is used. Still the power
 | |
| 	 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
 | |
| 	 * more sense to the artificial performance states.
 | |
| 	 */
 | |
| 	*power = compute_cost(cpu_dev->id, step);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
 | |
| 		unsigned long *cost)
 | |
| {
 | |
| 	unsigned long perf_step, perf_prev;
 | |
| 	struct cppc_perf_caps *perf_caps;
 | |
| 	struct cpufreq_policy *policy;
 | |
| 	struct cppc_cpudata *cpu_data;
 | |
| 	unsigned int max_cap;
 | |
| 	int step;
 | |
| 
 | |
| 	policy = cpufreq_cpu_get_raw(cpu_dev->id);
 | |
| 	if (!policy)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cpu_data = policy->driver_data;
 | |
| 	perf_caps = &cpu_data->perf_caps;
 | |
| 	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
 | |
| 
 | |
| 	perf_prev = cppc_khz_to_perf(perf_caps, KHz);
 | |
| 	perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
 | |
| 	step = perf_prev / perf_step;
 | |
| 
 | |
| 	*cost = compute_cost(cpu_dev->id, step);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cppc_cpudata *cpu_data;
 | |
| 	struct em_data_callback em_cb =
 | |
| 		EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
 | |
| 
 | |
| 	cpu_data = policy->driver_data;
 | |
| 	em_dev_register_perf_domain(get_cpu_device(policy->cpu),
 | |
| 			get_perf_level_count(policy), &em_cb,
 | |
| 			cpu_data->shared_cpu_map, 0);
 | |
| }
 | |
| 
 | |
| static void populate_efficiency_class(void)
 | |
| {
 | |
| 	struct acpi_madt_generic_interrupt *gicc;
 | |
| 	DECLARE_BITMAP(used_classes, 256) = {};
 | |
| 	int class, cpu, index;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		gicc = acpi_cpu_get_madt_gicc(cpu);
 | |
| 		class = gicc->efficiency_class;
 | |
| 		bitmap_set(used_classes, class, 1);
 | |
| 	}
 | |
| 
 | |
| 	if (bitmap_weight(used_classes, 256) <= 1) {
 | |
| 		pr_debug("Efficiency classes are all equal (=%d). "
 | |
| 			"No EM registered", class);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Squeeze efficiency class values on [0:#efficiency_class-1].
 | |
| 	 * Values are per spec in [0:255].
 | |
| 	 */
 | |
| 	index = 0;
 | |
| 	for_each_set_bit(class, used_classes, 256) {
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			gicc = acpi_cpu_get_madt_gicc(cpu);
 | |
| 			if (gicc->efficiency_class == class)
 | |
| 				per_cpu(efficiency_class, cpu) = index;
 | |
| 		}
 | |
| 		index++;
 | |
| 	}
 | |
| 	cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
 | |
| }
 | |
| 
 | |
| #else
 | |
| static void populate_efficiency_class(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
 | |
| {
 | |
| 	struct cppc_cpudata *cpu_data;
 | |
| 	int ret;
 | |
| 
 | |
| 	cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
 | |
| 	if (!cpu_data)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
 | |
| 		goto free_cpu;
 | |
| 
 | |
| 	ret = acpi_get_psd_map(cpu, cpu_data);
 | |
| 	if (ret) {
 | |
| 		pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
 | |
| 		goto free_mask;
 | |
| 	}
 | |
| 
 | |
| 	ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
 | |
| 	if (ret) {
 | |
| 		pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
 | |
| 		goto free_mask;
 | |
| 	}
 | |
| 
 | |
| 	return cpu_data;
 | |
| 
 | |
| free_mask:
 | |
| 	free_cpumask_var(cpu_data->shared_cpu_map);
 | |
| free_cpu:
 | |
| 	kfree(cpu_data);
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cppc_cpudata *cpu_data = policy->driver_data;
 | |
| 
 | |
| 	free_cpumask_var(cpu_data->shared_cpu_map);
 | |
| 	kfree(cpu_data);
 | |
| 	policy->driver_data = NULL;
 | |
| }
 | |
| 
 | |
| static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	unsigned int cpu = policy->cpu;
 | |
| 	struct cppc_cpudata *cpu_data;
 | |
| 	struct cppc_perf_caps *caps;
 | |
| 	int ret;
 | |
| 
 | |
| 	cpu_data = cppc_cpufreq_get_cpu_data(cpu);
 | |
| 	if (!cpu_data) {
 | |
| 		pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	caps = &cpu_data->perf_caps;
 | |
| 	policy->driver_data = cpu_data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
 | |
| 	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
 | |
| 	 */
 | |
| 	policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
 | |
| 	policy->max = cppc_perf_to_khz(caps, policy->boost_enabled ?
 | |
| 						caps->highest_perf : caps->nominal_perf);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
 | |
| 	 * available if userspace wants to use any perf between lowest & lowest
 | |
| 	 * nonlinear perf
 | |
| 	 */
 | |
| 	policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
 | |
| 	policy->cpuinfo.max_freq = policy->max;
 | |
| 
 | |
| 	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
 | |
| 	policy->shared_type = cpu_data->shared_type;
 | |
| 
 | |
| 	switch (policy->shared_type) {
 | |
| 	case CPUFREQ_SHARED_TYPE_HW:
 | |
| 	case CPUFREQ_SHARED_TYPE_NONE:
 | |
| 		/* Nothing to be done - we'll have a policy for each CPU */
 | |
| 		break;
 | |
| 	case CPUFREQ_SHARED_TYPE_ANY:
 | |
| 		/*
 | |
| 		 * All CPUs in the domain will share a policy and all cpufreq
 | |
| 		 * operations will use a single cppc_cpudata structure stored
 | |
| 		 * in policy->driver_data.
 | |
| 		 */
 | |
| 		cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_debug("Unsupported CPU co-ord type: %d\n",
 | |
| 			 policy->shared_type);
 | |
| 		ret = -EFAULT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	policy->fast_switch_possible = cppc_allow_fast_switch();
 | |
| 	policy->dvfs_possible_from_any_cpu = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
 | |
| 	 * is supported.
 | |
| 	 */
 | |
| 	if (caps->highest_perf > caps->nominal_perf)
 | |
| 		policy->boost_supported = true;
 | |
| 
 | |
| 	/* Set policy->cur to max now. The governors will adjust later. */
 | |
| 	policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
 | |
| 	cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
 | |
| 
 | |
| 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
 | |
| 	if (ret) {
 | |
| 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
 | |
| 			 caps->highest_perf, cpu, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	cppc_cpufreq_cpu_fie_init(policy);
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	cppc_cpufreq_put_cpu_data(policy);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cppc_cpudata *cpu_data = policy->driver_data;
 | |
| 	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
 | |
| 	unsigned int cpu = policy->cpu;
 | |
| 	int ret;
 | |
| 
 | |
| 	cppc_cpufreq_cpu_fie_exit(policy);
 | |
| 
 | |
| 	cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
 | |
| 
 | |
| 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
 | |
| 	if (ret)
 | |
| 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
 | |
| 			 caps->lowest_perf, cpu, ret);
 | |
| 
 | |
| 	cppc_cpufreq_put_cpu_data(policy);
 | |
| }
 | |
| 
 | |
| static inline u64 get_delta(u64 t1, u64 t0)
 | |
| {
 | |
| 	if (t1 > t0 || t0 > ~(u32)0)
 | |
| 		return t1 - t0;
 | |
| 
 | |
| 	return (u32)t1 - (u32)t0;
 | |
| }
 | |
| 
 | |
| static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0,
 | |
| 				 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
 | |
| {
 | |
| 	u64 delta_reference, delta_delivered;
 | |
| 	u64 reference_perf;
 | |
| 
 | |
| 	reference_perf = fb_ctrs_t0->reference_perf;
 | |
| 
 | |
| 	delta_reference = get_delta(fb_ctrs_t1->reference,
 | |
| 				    fb_ctrs_t0->reference);
 | |
| 	delta_delivered = get_delta(fb_ctrs_t1->delivered,
 | |
| 				    fb_ctrs_t0->delivered);
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid divide-by zero and unchanged feedback counters.
 | |
| 	 * Leave it for callers to handle.
 | |
| 	 */
 | |
| 	if (!delta_reference || !delta_delivered)
 | |
| 		return 0;
 | |
| 
 | |
| 	return (reference_perf * delta_delivered) / delta_reference;
 | |
| }
 | |
| 
 | |
| static int cppc_get_perf_ctrs_sample(int cpu,
 | |
| 				     struct cppc_perf_fb_ctrs *fb_ctrs_t0,
 | |
| 				     struct cppc_perf_fb_ctrs *fb_ctrs_t1)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	udelay(2); /* 2usec delay between sampling */
 | |
| 
 | |
| 	return cppc_get_perf_ctrs(cpu, fb_ctrs_t1);
 | |
| }
 | |
| 
 | |
| static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
 | |
| {
 | |
| 	struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
 | |
| 	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
 | |
| 	struct cppc_cpudata *cpu_data;
 | |
| 	u64 delivered_perf;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!policy)
 | |
| 		return 0;
 | |
| 
 | |
| 	cpu_data = policy->driver_data;
 | |
| 
 | |
| 	ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1);
 | |
| 	if (ret) {
 | |
| 		if (ret == -EFAULT)
 | |
| 			/* Any of the associated CPPC regs is 0. */
 | |
| 			goto out_invalid_counters;
 | |
| 		else
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	delivered_perf = cppc_perf_from_fbctrs(&fb_ctrs_t0, &fb_ctrs_t1);
 | |
| 	if (!delivered_perf)
 | |
| 		goto out_invalid_counters;
 | |
| 
 | |
| 	return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
 | |
| 
 | |
| out_invalid_counters:
 | |
| 	/*
 | |
| 	 * Feedback counters could be unchanged or 0 when a cpu enters a
 | |
| 	 * low-power idle state, e.g. clock-gated or power-gated.
 | |
| 	 * Use desired perf for reflecting frequency.  Get the latest register
 | |
| 	 * value first as some platforms may update the actual delivered perf
 | |
| 	 * there; if failed, resort to the cached desired perf.
 | |
| 	 */
 | |
| 	if (cppc_get_desired_perf(cpu, &delivered_perf))
 | |
| 		delivered_perf = cpu_data->perf_ctrls.desired_perf;
 | |
| 
 | |
| 	return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
 | |
| }
 | |
| 
 | |
| static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
 | |
| {
 | |
| 	struct cppc_cpudata *cpu_data = policy->driver_data;
 | |
| 	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (state)
 | |
| 		policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
 | |
| 	else
 | |
| 		policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
 | |
| 	policy->cpuinfo.max_freq = policy->max;
 | |
| 
 | |
| 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
 | |
| {
 | |
| 	struct cppc_cpudata *cpu_data = policy->driver_data;
 | |
| 
 | |
| 	return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
 | |
| }
 | |
| 
 | |
| static ssize_t show_auto_select(struct cpufreq_policy *policy, char *buf)
 | |
| {
 | |
| 	bool val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cppc_get_auto_sel(policy->cpu, &val);
 | |
| 
 | |
| 	/* show "<unsupported>" when this register is not supported by cpc */
 | |
| 	if (ret == -EOPNOTSUPP)
 | |
| 		return sysfs_emit(buf, "<unsupported>\n");
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return sysfs_emit(buf, "%d\n", val);
 | |
| }
 | |
| 
 | |
| static ssize_t store_auto_select(struct cpufreq_policy *policy,
 | |
| 				 const char *buf, size_t count)
 | |
| {
 | |
| 	bool val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtobool(buf, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = cppc_set_auto_sel(policy->cpu, val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t show_auto_act_window(struct cpufreq_policy *policy, char *buf)
 | |
| {
 | |
| 	u64 val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cppc_get_auto_act_window(policy->cpu, &val);
 | |
| 
 | |
| 	/* show "<unsupported>" when this register is not supported by cpc */
 | |
| 	if (ret == -EOPNOTSUPP)
 | |
| 		return sysfs_emit(buf, "<unsupported>\n");
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return sysfs_emit(buf, "%llu\n", val);
 | |
| }
 | |
| 
 | |
| static ssize_t store_auto_act_window(struct cpufreq_policy *policy,
 | |
| 				     const char *buf, size_t count)
 | |
| {
 | |
| 	u64 usec;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtou64(buf, 0, &usec);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = cppc_set_auto_act_window(policy->cpu, usec);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t show_energy_performance_preference_val(struct cpufreq_policy *policy, char *buf)
 | |
| {
 | |
| 	u64 val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cppc_get_epp_perf(policy->cpu, &val);
 | |
| 
 | |
| 	/* show "<unsupported>" when this register is not supported by cpc */
 | |
| 	if (ret == -EOPNOTSUPP)
 | |
| 		return sysfs_emit(buf, "<unsupported>\n");
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return sysfs_emit(buf, "%llu\n", val);
 | |
| }
 | |
| 
 | |
| static ssize_t store_energy_performance_preference_val(struct cpufreq_policy *policy,
 | |
| 						       const char *buf, size_t count)
 | |
| {
 | |
| 	u64 val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtou64(buf, 0, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = cppc_set_epp(policy->cpu, val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| cpufreq_freq_attr_ro(freqdomain_cpus);
 | |
| cpufreq_freq_attr_rw(auto_select);
 | |
| cpufreq_freq_attr_rw(auto_act_window);
 | |
| cpufreq_freq_attr_rw(energy_performance_preference_val);
 | |
| 
 | |
| static struct freq_attr *cppc_cpufreq_attr[] = {
 | |
| 	&freqdomain_cpus,
 | |
| 	&auto_select,
 | |
| 	&auto_act_window,
 | |
| 	&energy_performance_preference_val,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct cpufreq_driver cppc_cpufreq_driver = {
 | |
| 	.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
 | |
| 	.verify = cppc_verify_policy,
 | |
| 	.target = cppc_cpufreq_set_target,
 | |
| 	.get = cppc_cpufreq_get_rate,
 | |
| 	.fast_switch = cppc_cpufreq_fast_switch,
 | |
| 	.init = cppc_cpufreq_cpu_init,
 | |
| 	.exit = cppc_cpufreq_cpu_exit,
 | |
| 	.set_boost = cppc_cpufreq_set_boost,
 | |
| 	.attr = cppc_cpufreq_attr,
 | |
| 	.name = "cppc_cpufreq",
 | |
| };
 | |
| 
 | |
| static int __init cppc_cpufreq_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!acpi_cpc_valid())
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	cppc_freq_invariance_init();
 | |
| 	populate_efficiency_class();
 | |
| 
 | |
| 	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
 | |
| 	if (ret)
 | |
| 		cppc_freq_invariance_exit();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit cppc_cpufreq_exit(void)
 | |
| {
 | |
| 	cpufreq_unregister_driver(&cppc_cpufreq_driver);
 | |
| 	cppc_freq_invariance_exit();
 | |
| }
 | |
| 
 | |
| module_exit(cppc_cpufreq_exit);
 | |
| MODULE_AUTHOR("Ashwin Chaugule");
 | |
| MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| late_initcall(cppc_cpufreq_init);
 | |
| 
 | |
| static const struct acpi_device_id cppc_acpi_ids[] __used = {
 | |
| 	{ACPI_PROCESSOR_DEVICE_HID, },
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
 |