mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 b6f885060e
			
		
	
	
		b6f885060e
		
	
	
	
	
		
			
			The previous version used a verbose `match` to get `current`, which may be slightly confusing at first glance. This change makes it shorter and more clearly expresses the intent: prefer `next` if available, otherwise fall back to `prev`. Signed-off-by: Onur Özkan <work@onurozkan.dev> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Alexandre Courbot <acourbot@nvidia.com> Link: https://lore.kernel.org/r/20250708075850.25789-1-work@onurozkan.dev Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
		
			
				
	
	
		
			1280 lines
		
	
	
	
		
			48 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1280 lines
		
	
	
	
		
			48 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | ||
| 
 | ||
| //! Red-black trees.
 | ||
| //!
 | ||
| //! C header: [`include/linux/rbtree.h`](srctree/include/linux/rbtree.h)
 | ||
| //!
 | ||
| //! Reference: <https://docs.kernel.org/core-api/rbtree.html>
 | ||
| 
 | ||
| use crate::{alloc::Flags, bindings, container_of, error::Result, prelude::*};
 | ||
| use core::{
 | ||
|     cmp::{Ord, Ordering},
 | ||
|     marker::PhantomData,
 | ||
|     mem::MaybeUninit,
 | ||
|     ptr::{addr_of_mut, from_mut, NonNull},
 | ||
| };
 | ||
| 
 | ||
| /// A red-black tree with owned nodes.
 | ||
| ///
 | ||
| /// It is backed by the kernel C red-black trees.
 | ||
| ///
 | ||
| /// # Examples
 | ||
| ///
 | ||
| /// In the example below we do several operations on a tree. We note that insertions may fail if
 | ||
| /// the system is out of memory.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use kernel::{alloc::flags, rbtree::{RBTree, RBTreeNode, RBTreeNodeReservation}};
 | ||
| ///
 | ||
| /// // Create a new tree.
 | ||
| /// let mut tree = RBTree::new();
 | ||
| ///
 | ||
| /// // Insert three elements.
 | ||
| /// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| /// // Check the nodes we just inserted.
 | ||
| /// {
 | ||
| ///     assert_eq!(tree.get(&10), Some(&100));
 | ||
| ///     assert_eq!(tree.get(&20), Some(&200));
 | ||
| ///     assert_eq!(tree.get(&30), Some(&300));
 | ||
| /// }
 | ||
| ///
 | ||
| /// // Iterate over the nodes we just inserted.
 | ||
| /// {
 | ||
| ///     let mut iter = tree.iter();
 | ||
| ///     assert_eq!(iter.next(), Some((&10, &100)));
 | ||
| ///     assert_eq!(iter.next(), Some((&20, &200)));
 | ||
| ///     assert_eq!(iter.next(), Some((&30, &300)));
 | ||
| ///     assert!(iter.next().is_none());
 | ||
| /// }
 | ||
| ///
 | ||
| /// // Print all elements.
 | ||
| /// for (key, value) in &tree {
 | ||
| ///     pr_info!("{} = {}\n", key, value);
 | ||
| /// }
 | ||
| ///
 | ||
| /// // Replace one of the elements.
 | ||
| /// tree.try_create_and_insert(10, 1000, flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| /// // Check that the tree reflects the replacement.
 | ||
| /// {
 | ||
| ///     let mut iter = tree.iter();
 | ||
| ///     assert_eq!(iter.next(), Some((&10, &1000)));
 | ||
| ///     assert_eq!(iter.next(), Some((&20, &200)));
 | ||
| ///     assert_eq!(iter.next(), Some((&30, &300)));
 | ||
| ///     assert!(iter.next().is_none());
 | ||
| /// }
 | ||
| ///
 | ||
| /// // Change the value of one of the elements.
 | ||
| /// *tree.get_mut(&30).unwrap() = 3000;
 | ||
| ///
 | ||
| /// // Check that the tree reflects the update.
 | ||
| /// {
 | ||
| ///     let mut iter = tree.iter();
 | ||
| ///     assert_eq!(iter.next(), Some((&10, &1000)));
 | ||
| ///     assert_eq!(iter.next(), Some((&20, &200)));
 | ||
| ///     assert_eq!(iter.next(), Some((&30, &3000)));
 | ||
| ///     assert!(iter.next().is_none());
 | ||
| /// }
 | ||
| ///
 | ||
| /// // Remove an element.
 | ||
| /// tree.remove(&10);
 | ||
| ///
 | ||
| /// // Check that the tree reflects the removal.
 | ||
| /// {
 | ||
| ///     let mut iter = tree.iter();
 | ||
| ///     assert_eq!(iter.next(), Some((&20, &200)));
 | ||
| ///     assert_eq!(iter.next(), Some((&30, &3000)));
 | ||
| ///     assert!(iter.next().is_none());
 | ||
| /// }
 | ||
| ///
 | ||
| /// # Ok::<(), Error>(())
 | ||
| /// ```
 | ||
| ///
 | ||
| /// In the example below, we first allocate a node, acquire a spinlock, then insert the node into
 | ||
| /// the tree. This is useful when the insertion context does not allow sleeping, for example, when
 | ||
| /// holding a spinlock.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use kernel::{alloc::flags, rbtree::{RBTree, RBTreeNode}, sync::SpinLock};
 | ||
| ///
 | ||
| /// fn insert_test(tree: &SpinLock<RBTree<u32, u32>>) -> Result {
 | ||
| ///     // Pre-allocate node. This may fail (as it allocates memory).
 | ||
| ///     let node = RBTreeNode::new(10, 100, flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| ///     // Insert node while holding the lock. It is guaranteed to succeed with no allocation
 | ||
| ///     // attempts.
 | ||
| ///     let mut guard = tree.lock();
 | ||
| ///     guard.insert(node);
 | ||
| ///     Ok(())
 | ||
| /// }
 | ||
| /// ```
 | ||
| ///
 | ||
| /// In the example below, we reuse an existing node allocation from an element we removed.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use kernel::{alloc::flags, rbtree::{RBTree, RBTreeNodeReservation}};
 | ||
| ///
 | ||
| /// // Create a new tree.
 | ||
| /// let mut tree = RBTree::new();
 | ||
| ///
 | ||
| /// // Insert three elements.
 | ||
| /// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| /// // Check the nodes we just inserted.
 | ||
| /// {
 | ||
| ///     let mut iter = tree.iter();
 | ||
| ///     assert_eq!(iter.next(), Some((&10, &100)));
 | ||
| ///     assert_eq!(iter.next(), Some((&20, &200)));
 | ||
| ///     assert_eq!(iter.next(), Some((&30, &300)));
 | ||
| ///     assert!(iter.next().is_none());
 | ||
| /// }
 | ||
| ///
 | ||
| /// // Remove a node, getting back ownership of it.
 | ||
| /// let existing = tree.remove(&30);
 | ||
| ///
 | ||
| /// // Check that the tree reflects the removal.
 | ||
| /// {
 | ||
| ///     let mut iter = tree.iter();
 | ||
| ///     assert_eq!(iter.next(), Some((&10, &100)));
 | ||
| ///     assert_eq!(iter.next(), Some((&20, &200)));
 | ||
| ///     assert!(iter.next().is_none());
 | ||
| /// }
 | ||
| ///
 | ||
| /// // Create a preallocated reservation that we can re-use later.
 | ||
| /// let reservation = RBTreeNodeReservation::new(flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| /// // Insert a new node into the tree, reusing the previous allocation. This is guaranteed to
 | ||
| /// // succeed (no memory allocations).
 | ||
| /// tree.insert(reservation.into_node(15, 150));
 | ||
| ///
 | ||
| /// // Check that the tree reflect the new insertion.
 | ||
| /// {
 | ||
| ///     let mut iter = tree.iter();
 | ||
| ///     assert_eq!(iter.next(), Some((&10, &100)));
 | ||
| ///     assert_eq!(iter.next(), Some((&15, &150)));
 | ||
| ///     assert_eq!(iter.next(), Some((&20, &200)));
 | ||
| ///     assert!(iter.next().is_none());
 | ||
| /// }
 | ||
| ///
 | ||
| /// # Ok::<(), Error>(())
 | ||
| /// ```
 | ||
| ///
 | ||
| /// # Invariants
 | ||
| ///
 | ||
| /// Non-null parent/children pointers stored in instances of the `rb_node` C struct are always
 | ||
| /// valid, and pointing to a field of our internal representation of a node.
 | ||
| pub struct RBTree<K, V> {
 | ||
|     root: bindings::rb_root,
 | ||
|     _p: PhantomData<Node<K, V>>,
 | ||
| }
 | ||
| 
 | ||
| // SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
 | ||
| // fields, so we use the same Send condition as would be used for a struct with K and V fields.
 | ||
| unsafe impl<K: Send, V: Send> Send for RBTree<K, V> {}
 | ||
| 
 | ||
| // SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
 | ||
| // fields, so we use the same Sync condition as would be used for a struct with K and V fields.
 | ||
| unsafe impl<K: Sync, V: Sync> Sync for RBTree<K, V> {}
 | ||
| 
 | ||
| impl<K, V> RBTree<K, V> {
 | ||
|     /// Creates a new and empty tree.
 | ||
|     pub fn new() -> Self {
 | ||
|         Self {
 | ||
|             // INVARIANT: There are no nodes in the tree, so the invariant holds vacuously.
 | ||
|             root: bindings::rb_root::default(),
 | ||
|             _p: PhantomData,
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns true if this tree is empty.
 | ||
|     #[inline]
 | ||
|     pub fn is_empty(&self) -> bool {
 | ||
|         self.root.rb_node.is_null()
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns an iterator over the tree nodes, sorted by key.
 | ||
|     pub fn iter(&self) -> Iter<'_, K, V> {
 | ||
|         Iter {
 | ||
|             _tree: PhantomData,
 | ||
|             // INVARIANT:
 | ||
|             //   - `self.root` is a valid pointer to a tree root.
 | ||
|             //   - `bindings::rb_first` produces a valid pointer to a node given `root` is valid.
 | ||
|             iter_raw: IterRaw {
 | ||
|                 // SAFETY: by the invariants, all pointers are valid.
 | ||
|                 next: unsafe { bindings::rb_first(&self.root) },
 | ||
|                 _phantom: PhantomData,
 | ||
|             },
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns a mutable iterator over the tree nodes, sorted by key.
 | ||
|     pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
 | ||
|         IterMut {
 | ||
|             _tree: PhantomData,
 | ||
|             // INVARIANT:
 | ||
|             //   - `self.root` is a valid pointer to a tree root.
 | ||
|             //   - `bindings::rb_first` produces a valid pointer to a node given `root` is valid.
 | ||
|             iter_raw: IterRaw {
 | ||
|                 // SAFETY: by the invariants, all pointers are valid.
 | ||
|                 next: unsafe { bindings::rb_first(from_mut(&mut self.root)) },
 | ||
|                 _phantom: PhantomData,
 | ||
|             },
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns an iterator over the keys of the nodes in the tree, in sorted order.
 | ||
|     pub fn keys(&self) -> impl Iterator<Item = &'_ K> {
 | ||
|         self.iter().map(|(k, _)| k)
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns an iterator over the values of the nodes in the tree, sorted by key.
 | ||
|     pub fn values(&self) -> impl Iterator<Item = &'_ V> {
 | ||
|         self.iter().map(|(_, v)| v)
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns a mutable iterator over the values of the nodes in the tree, sorted by key.
 | ||
|     pub fn values_mut(&mut self) -> impl Iterator<Item = &'_ mut V> {
 | ||
|         self.iter_mut().map(|(_, v)| v)
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns a cursor over the tree nodes, starting with the smallest key.
 | ||
|     pub fn cursor_front(&mut self) -> Option<Cursor<'_, K, V>> {
 | ||
|         let root = addr_of_mut!(self.root);
 | ||
|         // SAFETY: `self.root` is always a valid root node
 | ||
|         let current = unsafe { bindings::rb_first(root) };
 | ||
|         NonNull::new(current).map(|current| {
 | ||
|             // INVARIANT:
 | ||
|             // - `current` is a valid node in the [`RBTree`] pointed to by `self`.
 | ||
|             Cursor {
 | ||
|                 current,
 | ||
|                 tree: self,
 | ||
|             }
 | ||
|         })
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns a cursor over the tree nodes, starting with the largest key.
 | ||
|     pub fn cursor_back(&mut self) -> Option<Cursor<'_, K, V>> {
 | ||
|         let root = addr_of_mut!(self.root);
 | ||
|         // SAFETY: `self.root` is always a valid root node
 | ||
|         let current = unsafe { bindings::rb_last(root) };
 | ||
|         NonNull::new(current).map(|current| {
 | ||
|             // INVARIANT:
 | ||
|             // - `current` is a valid node in the [`RBTree`] pointed to by `self`.
 | ||
|             Cursor {
 | ||
|                 current,
 | ||
|                 tree: self,
 | ||
|             }
 | ||
|         })
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<K, V> RBTree<K, V>
 | ||
| where
 | ||
|     K: Ord,
 | ||
| {
 | ||
|     /// Tries to insert a new value into the tree.
 | ||
|     ///
 | ||
|     /// It overwrites a node if one already exists with the same key and returns it (containing the
 | ||
|     /// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
 | ||
|     ///
 | ||
|     /// Returns an error if it cannot allocate memory for the new node.
 | ||
|     pub fn try_create_and_insert(
 | ||
|         &mut self,
 | ||
|         key: K,
 | ||
|         value: V,
 | ||
|         flags: Flags,
 | ||
|     ) -> Result<Option<RBTreeNode<K, V>>> {
 | ||
|         Ok(self.insert(RBTreeNode::new(key, value, flags)?))
 | ||
|     }
 | ||
| 
 | ||
|     /// Inserts a new node into the tree.
 | ||
|     ///
 | ||
|     /// It overwrites a node if one already exists with the same key and returns it (containing the
 | ||
|     /// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
 | ||
|     ///
 | ||
|     /// This function always succeeds.
 | ||
|     pub fn insert(&mut self, node: RBTreeNode<K, V>) -> Option<RBTreeNode<K, V>> {
 | ||
|         match self.raw_entry(&node.node.key) {
 | ||
|             RawEntry::Occupied(entry) => Some(entry.replace(node)),
 | ||
|             RawEntry::Vacant(entry) => {
 | ||
|                 entry.insert(node);
 | ||
|                 None
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     fn raw_entry(&mut self, key: &K) -> RawEntry<'_, K, V> {
 | ||
|         let raw_self: *mut RBTree<K, V> = self;
 | ||
|         // The returned `RawEntry` is used to call either `rb_link_node` or `rb_replace_node`.
 | ||
|         // The parameters of `bindings::rb_link_node` are as follows:
 | ||
|         // - `node`: A pointer to an uninitialized node being inserted.
 | ||
|         // - `parent`: A pointer to an existing node in the tree. One of its child pointers must be
 | ||
|         //          null, and `node` will become a child of `parent` by replacing that child pointer
 | ||
|         //          with a pointer to `node`.
 | ||
|         // - `rb_link`: A pointer to either the left-child or right-child field of `parent`. This
 | ||
|         //          specifies which child of `parent` should hold `node` after this call. The
 | ||
|         //          value of `*rb_link` must be null before the call to `rb_link_node`. If the
 | ||
|         //          red/black tree is empty, then it’s also possible for `parent` to be null. In
 | ||
|         //          this case, `rb_link` is a pointer to the `root` field of the red/black tree.
 | ||
|         //
 | ||
|         // We will traverse the tree looking for a node that has a null pointer as its child,
 | ||
|         // representing an empty subtree where we can insert our new node. We need to make sure
 | ||
|         // that we preserve the ordering of the nodes in the tree. In each iteration of the loop
 | ||
|         // we store `parent` and `child_field_of_parent`, and the new `node` will go somewhere
 | ||
|         // in the subtree of `parent` that `child_field_of_parent` points at. Once
 | ||
|         // we find an empty subtree, we can insert the new node using `rb_link_node`.
 | ||
|         let mut parent = core::ptr::null_mut();
 | ||
|         let mut child_field_of_parent: &mut *mut bindings::rb_node =
 | ||
|             // SAFETY: `raw_self` is a valid pointer to the `RBTree` (created from `self` above).
 | ||
|             unsafe { &mut (*raw_self).root.rb_node };
 | ||
|         while !(*child_field_of_parent).is_null() {
 | ||
|             let curr = *child_field_of_parent;
 | ||
|             // SAFETY: All links fields we create are in a `Node<K, V>`.
 | ||
|             let node = unsafe { container_of!(curr, Node<K, V>, links) };
 | ||
| 
 | ||
|             // SAFETY: `node` is a non-null node so it is valid by the type invariants.
 | ||
|             match key.cmp(unsafe { &(*node).key }) {
 | ||
|                 // SAFETY: `curr` is a non-null node so it is valid by the type invariants.
 | ||
|                 Ordering::Less => child_field_of_parent = unsafe { &mut (*curr).rb_left },
 | ||
|                 // SAFETY: `curr` is a non-null node so it is valid by the type invariants.
 | ||
|                 Ordering::Greater => child_field_of_parent = unsafe { &mut (*curr).rb_right },
 | ||
|                 Ordering::Equal => {
 | ||
|                     return RawEntry::Occupied(OccupiedEntry {
 | ||
|                         rbtree: self,
 | ||
|                         node_links: curr,
 | ||
|                     })
 | ||
|                 }
 | ||
|             }
 | ||
|             parent = curr;
 | ||
|         }
 | ||
| 
 | ||
|         RawEntry::Vacant(RawVacantEntry {
 | ||
|             rbtree: raw_self,
 | ||
|             parent,
 | ||
|             child_field_of_parent,
 | ||
|             _phantom: PhantomData,
 | ||
|         })
 | ||
|     }
 | ||
| 
 | ||
|     /// Gets the given key's corresponding entry in the map for in-place manipulation.
 | ||
|     pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
 | ||
|         match self.raw_entry(&key) {
 | ||
|             RawEntry::Occupied(entry) => Entry::Occupied(entry),
 | ||
|             RawEntry::Vacant(entry) => Entry::Vacant(VacantEntry { raw: entry, key }),
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Used for accessing the given node, if it exists.
 | ||
|     pub fn find_mut(&mut self, key: &K) -> Option<OccupiedEntry<'_, K, V>> {
 | ||
|         match self.raw_entry(key) {
 | ||
|             RawEntry::Occupied(entry) => Some(entry),
 | ||
|             RawEntry::Vacant(_entry) => None,
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns a reference to the value corresponding to the key.
 | ||
|     pub fn get(&self, key: &K) -> Option<&V> {
 | ||
|         let mut node = self.root.rb_node;
 | ||
|         while !node.is_null() {
 | ||
|             // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
 | ||
|             // point to the links field of `Node<K, V>` objects.
 | ||
|             let this = unsafe { container_of!(node, Node<K, V>, links) };
 | ||
|             // SAFETY: `this` is a non-null node so it is valid by the type invariants.
 | ||
|             node = match key.cmp(unsafe { &(*this).key }) {
 | ||
|                 // SAFETY: `node` is a non-null node so it is valid by the type invariants.
 | ||
|                 Ordering::Less => unsafe { (*node).rb_left },
 | ||
|                 // SAFETY: `node` is a non-null node so it is valid by the type invariants.
 | ||
|                 Ordering::Greater => unsafe { (*node).rb_right },
 | ||
|                 // SAFETY: `node` is a non-null node so it is valid by the type invariants.
 | ||
|                 Ordering::Equal => return Some(unsafe { &(*this).value }),
 | ||
|             }
 | ||
|         }
 | ||
|         None
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns a mutable reference to the value corresponding to the key.
 | ||
|     pub fn get_mut(&mut self, key: &K) -> Option<&mut V> {
 | ||
|         self.find_mut(key).map(|node| node.into_mut())
 | ||
|     }
 | ||
| 
 | ||
|     /// Removes the node with the given key from the tree.
 | ||
|     ///
 | ||
|     /// It returns the node that was removed if one exists, or [`None`] otherwise.
 | ||
|     pub fn remove_node(&mut self, key: &K) -> Option<RBTreeNode<K, V>> {
 | ||
|         self.find_mut(key).map(OccupiedEntry::remove_node)
 | ||
|     }
 | ||
| 
 | ||
|     /// Removes the node with the given key from the tree.
 | ||
|     ///
 | ||
|     /// It returns the value that was removed if one exists, or [`None`] otherwise.
 | ||
|     pub fn remove(&mut self, key: &K) -> Option<V> {
 | ||
|         self.find_mut(key).map(OccupiedEntry::remove)
 | ||
|     }
 | ||
| 
 | ||
|     /// Returns a cursor over the tree nodes based on the given key.
 | ||
|     ///
 | ||
|     /// If the given key exists, the cursor starts there.
 | ||
|     /// Otherwise it starts with the first larger key in sort order.
 | ||
|     /// If there is no larger key, it returns [`None`].
 | ||
|     pub fn cursor_lower_bound(&mut self, key: &K) -> Option<Cursor<'_, K, V>>
 | ||
|     where
 | ||
|         K: Ord,
 | ||
|     {
 | ||
|         let mut node = self.root.rb_node;
 | ||
|         let mut best_match: Option<NonNull<Node<K, V>>> = None;
 | ||
|         while !node.is_null() {
 | ||
|             // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
 | ||
|             // point to the links field of `Node<K, V>` objects.
 | ||
|             let this = unsafe { container_of!(node, Node<K, V>, links) };
 | ||
|             // SAFETY: `this` is a non-null node so it is valid by the type invariants.
 | ||
|             let this_key = unsafe { &(*this).key };
 | ||
|             // SAFETY: `node` is a non-null node so it is valid by the type invariants.
 | ||
|             let left_child = unsafe { (*node).rb_left };
 | ||
|             // SAFETY: `node` is a non-null node so it is valid by the type invariants.
 | ||
|             let right_child = unsafe { (*node).rb_right };
 | ||
|             match key.cmp(this_key) {
 | ||
|                 Ordering::Equal => {
 | ||
|                     best_match = NonNull::new(this);
 | ||
|                     break;
 | ||
|                 }
 | ||
|                 Ordering::Greater => {
 | ||
|                     node = right_child;
 | ||
|                 }
 | ||
|                 Ordering::Less => {
 | ||
|                     let is_better_match = match best_match {
 | ||
|                         None => true,
 | ||
|                         Some(best) => {
 | ||
|                             // SAFETY: `best` is a non-null node so it is valid by the type invariants.
 | ||
|                             let best_key = unsafe { &(*best.as_ptr()).key };
 | ||
|                             best_key > this_key
 | ||
|                         }
 | ||
|                     };
 | ||
|                     if is_better_match {
 | ||
|                         best_match = NonNull::new(this);
 | ||
|                     }
 | ||
|                     node = left_child;
 | ||
|                 }
 | ||
|             };
 | ||
|         }
 | ||
| 
 | ||
|         let best = best_match?;
 | ||
| 
 | ||
|         // SAFETY: `best` is a non-null node so it is valid by the type invariants.
 | ||
|         let links = unsafe { addr_of_mut!((*best.as_ptr()).links) };
 | ||
| 
 | ||
|         NonNull::new(links).map(|current| {
 | ||
|             // INVARIANT:
 | ||
|             // - `current` is a valid node in the [`RBTree`] pointed to by `self`.
 | ||
|             Cursor {
 | ||
|                 current,
 | ||
|                 tree: self,
 | ||
|             }
 | ||
|         })
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<K, V> Default for RBTree<K, V> {
 | ||
|     fn default() -> Self {
 | ||
|         Self::new()
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<K, V> Drop for RBTree<K, V> {
 | ||
|     fn drop(&mut self) {
 | ||
|         // SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
 | ||
|         let mut next = unsafe { bindings::rb_first_postorder(&self.root) };
 | ||
| 
 | ||
|         // INVARIANT: The loop invariant is that all tree nodes from `next` in postorder are valid.
 | ||
|         while !next.is_null() {
 | ||
|             // SAFETY: All links fields we create are in a `Node<K, V>`.
 | ||
|             let this = unsafe { container_of!(next, Node<K, V>, links) };
 | ||
| 
 | ||
|             // Find out what the next node is before disposing of the current one.
 | ||
|             // SAFETY: `next` and all nodes in postorder are still valid.
 | ||
|             next = unsafe { bindings::rb_next_postorder(next) };
 | ||
| 
 | ||
|             // INVARIANT: This is the destructor, so we break the type invariant during clean-up,
 | ||
|             // but it is not observable. The loop invariant is still maintained.
 | ||
| 
 | ||
|             // SAFETY: `this` is valid per the loop invariant.
 | ||
|             unsafe { drop(KBox::from_raw(this)) };
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// A bidirectional cursor over the tree nodes, sorted by key.
 | ||
| ///
 | ||
| /// # Examples
 | ||
| ///
 | ||
| /// In the following example, we obtain a cursor to the first element in the tree.
 | ||
| /// The cursor allows us to iterate bidirectionally over key/value pairs in the tree.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use kernel::{alloc::flags, rbtree::RBTree};
 | ||
| ///
 | ||
| /// // Create a new tree.
 | ||
| /// let mut tree = RBTree::new();
 | ||
| ///
 | ||
| /// // Insert three elements.
 | ||
| /// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| /// // Get a cursor to the first element.
 | ||
| /// let mut cursor = tree.cursor_front().unwrap();
 | ||
| /// let mut current = cursor.current();
 | ||
| /// assert_eq!(current, (&10, &100));
 | ||
| ///
 | ||
| /// // Move the cursor, updating it to the 2nd element.
 | ||
| /// cursor = cursor.move_next().unwrap();
 | ||
| /// current = cursor.current();
 | ||
| /// assert_eq!(current, (&20, &200));
 | ||
| ///
 | ||
| /// // Peek at the next element without impacting the cursor.
 | ||
| /// let next = cursor.peek_next().unwrap();
 | ||
| /// assert_eq!(next, (&30, &300));
 | ||
| /// current = cursor.current();
 | ||
| /// assert_eq!(current, (&20, &200));
 | ||
| ///
 | ||
| /// // Moving past the last element causes the cursor to return [`None`].
 | ||
| /// cursor = cursor.move_next().unwrap();
 | ||
| /// current = cursor.current();
 | ||
| /// assert_eq!(current, (&30, &300));
 | ||
| /// let cursor = cursor.move_next();
 | ||
| /// assert!(cursor.is_none());
 | ||
| ///
 | ||
| /// # Ok::<(), Error>(())
 | ||
| /// ```
 | ||
| ///
 | ||
| /// A cursor can also be obtained at the last element in the tree.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use kernel::{alloc::flags, rbtree::RBTree};
 | ||
| ///
 | ||
| /// // Create a new tree.
 | ||
| /// let mut tree = RBTree::new();
 | ||
| ///
 | ||
| /// // Insert three elements.
 | ||
| /// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| /// let mut cursor = tree.cursor_back().unwrap();
 | ||
| /// let current = cursor.current();
 | ||
| /// assert_eq!(current, (&30, &300));
 | ||
| ///
 | ||
| /// # Ok::<(), Error>(())
 | ||
| /// ```
 | ||
| ///
 | ||
| /// Obtaining a cursor returns [`None`] if the tree is empty.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use kernel::rbtree::RBTree;
 | ||
| ///
 | ||
| /// let mut tree: RBTree<u16, u16> = RBTree::new();
 | ||
| /// assert!(tree.cursor_front().is_none());
 | ||
| ///
 | ||
| /// # Ok::<(), Error>(())
 | ||
| /// ```
 | ||
| ///
 | ||
| /// [`RBTree::cursor_lower_bound`] can be used to start at an arbitrary node in the tree.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use kernel::{alloc::flags, rbtree::RBTree};
 | ||
| ///
 | ||
| /// // Create a new tree.
 | ||
| /// let mut tree = RBTree::new();
 | ||
| ///
 | ||
| /// // Insert five elements.
 | ||
| /// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(40, 400, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(50, 500, flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| /// // If the provided key exists, a cursor to that key is returned.
 | ||
| /// let cursor = tree.cursor_lower_bound(&20).unwrap();
 | ||
| /// let current = cursor.current();
 | ||
| /// assert_eq!(current, (&20, &200));
 | ||
| ///
 | ||
| /// // If the provided key doesn't exist, a cursor to the first larger element in sort order is returned.
 | ||
| /// let cursor = tree.cursor_lower_bound(&25).unwrap();
 | ||
| /// let current = cursor.current();
 | ||
| /// assert_eq!(current, (&30, &300));
 | ||
| ///
 | ||
| /// // If there is no larger key, [`None`] is returned.
 | ||
| /// let cursor = tree.cursor_lower_bound(&55);
 | ||
| /// assert!(cursor.is_none());
 | ||
| ///
 | ||
| /// # Ok::<(), Error>(())
 | ||
| /// ```
 | ||
| ///
 | ||
| /// The cursor allows mutation of values in the tree.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use kernel::{alloc::flags, rbtree::RBTree};
 | ||
| ///
 | ||
| /// // Create a new tree.
 | ||
| /// let mut tree = RBTree::new();
 | ||
| ///
 | ||
| /// // Insert three elements.
 | ||
| /// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| /// // Retrieve a cursor.
 | ||
| /// let mut cursor = tree.cursor_front().unwrap();
 | ||
| ///
 | ||
| /// // Get a mutable reference to the current value.
 | ||
| /// let (k, v) = cursor.current_mut();
 | ||
| /// *v = 1000;
 | ||
| ///
 | ||
| /// // The updated value is reflected in the tree.
 | ||
| /// let updated = tree.get(&10).unwrap();
 | ||
| /// assert_eq!(updated, &1000);
 | ||
| ///
 | ||
| /// # Ok::<(), Error>(())
 | ||
| /// ```
 | ||
| ///
 | ||
| /// It also allows node removal. The following examples demonstrate the behavior of removing the current node.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use kernel::{alloc::flags, rbtree::RBTree};
 | ||
| ///
 | ||
| /// // Create a new tree.
 | ||
| /// let mut tree = RBTree::new();
 | ||
| ///
 | ||
| /// // Insert three elements.
 | ||
| /// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| /// // Remove the first element.
 | ||
| /// let mut cursor = tree.cursor_front().unwrap();
 | ||
| /// let mut current = cursor.current();
 | ||
| /// assert_eq!(current, (&10, &100));
 | ||
| /// cursor = cursor.remove_current().0.unwrap();
 | ||
| ///
 | ||
| /// // If a node exists after the current element, it is returned.
 | ||
| /// current = cursor.current();
 | ||
| /// assert_eq!(current, (&20, &200));
 | ||
| ///
 | ||
| /// // Get a cursor to the last element, and remove it.
 | ||
| /// cursor = tree.cursor_back().unwrap();
 | ||
| /// current = cursor.current();
 | ||
| /// assert_eq!(current, (&30, &300));
 | ||
| ///
 | ||
| /// // Since there is no next node, the previous node is returned.
 | ||
| /// cursor = cursor.remove_current().0.unwrap();
 | ||
| /// current = cursor.current();
 | ||
| /// assert_eq!(current, (&20, &200));
 | ||
| ///
 | ||
| /// // Removing the last element in the tree returns [`None`].
 | ||
| /// assert!(cursor.remove_current().0.is_none());
 | ||
| ///
 | ||
| /// # Ok::<(), Error>(())
 | ||
| /// ```
 | ||
| ///
 | ||
| /// Nodes adjacent to the current node can also be removed.
 | ||
| ///
 | ||
| /// ```
 | ||
| /// use kernel::{alloc::flags, rbtree::RBTree};
 | ||
| ///
 | ||
| /// // Create a new tree.
 | ||
| /// let mut tree = RBTree::new();
 | ||
| ///
 | ||
| /// // Insert three elements.
 | ||
| /// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
 | ||
| /// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
 | ||
| ///
 | ||
| /// // Get a cursor to the first element.
 | ||
| /// let mut cursor = tree.cursor_front().unwrap();
 | ||
| /// let mut current = cursor.current();
 | ||
| /// assert_eq!(current, (&10, &100));
 | ||
| ///
 | ||
| /// // Calling `remove_prev` from the first element returns [`None`].
 | ||
| /// assert!(cursor.remove_prev().is_none());
 | ||
| ///
 | ||
| /// // Get a cursor to the last element.
 | ||
| /// cursor = tree.cursor_back().unwrap();
 | ||
| /// current = cursor.current();
 | ||
| /// assert_eq!(current, (&30, &300));
 | ||
| ///
 | ||
| /// // Calling `remove_prev` removes and returns the middle element.
 | ||
| /// assert_eq!(cursor.remove_prev().unwrap().to_key_value(), (20, 200));
 | ||
| ///
 | ||
| /// // Calling `remove_next` from the last element returns [`None`].
 | ||
| /// assert!(cursor.remove_next().is_none());
 | ||
| ///
 | ||
| /// // Move to the first element
 | ||
| /// cursor = cursor.move_prev().unwrap();
 | ||
| /// current = cursor.current();
 | ||
| /// assert_eq!(current, (&10, &100));
 | ||
| ///
 | ||
| /// // Calling `remove_next` removes and returns the last element.
 | ||
| /// assert_eq!(cursor.remove_next().unwrap().to_key_value(), (30, 300));
 | ||
| ///
 | ||
| /// # Ok::<(), Error>(())
 | ||
| ///
 | ||
| /// ```
 | ||
| ///
 | ||
| /// # Invariants
 | ||
| /// - `current` points to a node that is in the same [`RBTree`] as `tree`.
 | ||
| pub struct Cursor<'a, K, V> {
 | ||
|     tree: &'a mut RBTree<K, V>,
 | ||
|     current: NonNull<bindings::rb_node>,
 | ||
| }
 | ||
| 
 | ||
| // SAFETY: The [`Cursor`] has exclusive access to both `K` and `V`, so it is sufficient to require them to be `Send`.
 | ||
| // The cursor only gives out immutable references to the keys, but since it has excusive access to those same
 | ||
| // keys, `Send` is sufficient. `Sync` would be okay, but it is more restrictive to the user.
 | ||
| unsafe impl<'a, K: Send, V: Send> Send for Cursor<'a, K, V> {}
 | ||
| 
 | ||
| // SAFETY: The [`Cursor`] gives out immutable references to K and mutable references to V,
 | ||
| // so it has the same thread safety requirements as mutable references.
 | ||
| unsafe impl<'a, K: Sync, V: Sync> Sync for Cursor<'a, K, V> {}
 | ||
| 
 | ||
| impl<'a, K, V> Cursor<'a, K, V> {
 | ||
|     /// The current node
 | ||
|     pub fn current(&self) -> (&K, &V) {
 | ||
|         // SAFETY:
 | ||
|         // - `self.current` is a valid node by the type invariants.
 | ||
|         // - We have an immutable reference by the function signature.
 | ||
|         unsafe { Self::to_key_value(self.current) }
 | ||
|     }
 | ||
| 
 | ||
|     /// The current node, with a mutable value
 | ||
|     pub fn current_mut(&mut self) -> (&K, &mut V) {
 | ||
|         // SAFETY:
 | ||
|         // - `self.current` is a valid node by the type invariants.
 | ||
|         // - We have an mutable reference by the function signature.
 | ||
|         unsafe { Self::to_key_value_mut(self.current) }
 | ||
|     }
 | ||
| 
 | ||
|     /// Remove the current node from the tree.
 | ||
|     ///
 | ||
|     /// Returns a tuple where the first element is a cursor to the next node, if it exists,
 | ||
|     /// else the previous node, else [`None`] (if the tree becomes empty). The second element
 | ||
|     /// is the removed node.
 | ||
|     pub fn remove_current(self) -> (Option<Self>, RBTreeNode<K, V>) {
 | ||
|         let prev = self.get_neighbor_raw(Direction::Prev);
 | ||
|         let next = self.get_neighbor_raw(Direction::Next);
 | ||
|         // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
 | ||
|         // point to the links field of `Node<K, V>` objects.
 | ||
|         let this = unsafe { container_of!(self.current.as_ptr(), Node<K, V>, links) };
 | ||
|         // SAFETY: `this` is valid by the type invariants as described above.
 | ||
|         let node = unsafe { KBox::from_raw(this) };
 | ||
|         let node = RBTreeNode { node };
 | ||
|         // SAFETY: The reference to the tree used to create the cursor outlives the cursor, so
 | ||
|         // the tree cannot change. By the tree invariant, all nodes are valid.
 | ||
|         unsafe { bindings::rb_erase(&mut (*this).links, addr_of_mut!(self.tree.root)) };
 | ||
| 
 | ||
|         // INVARIANT:
 | ||
|         // - `current` is a valid node in the [`RBTree`] pointed to by `self.tree`.
 | ||
|         let cursor = next.or(prev).map(|current| Self {
 | ||
|             current,
 | ||
|             tree: self.tree,
 | ||
|         });
 | ||
| 
 | ||
|         (cursor, node)
 | ||
|     }
 | ||
| 
 | ||
|     /// Remove the previous node, returning it if it exists.
 | ||
|     pub fn remove_prev(&mut self) -> Option<RBTreeNode<K, V>> {
 | ||
|         self.remove_neighbor(Direction::Prev)
 | ||
|     }
 | ||
| 
 | ||
|     /// Remove the next node, returning it if it exists.
 | ||
|     pub fn remove_next(&mut self) -> Option<RBTreeNode<K, V>> {
 | ||
|         self.remove_neighbor(Direction::Next)
 | ||
|     }
 | ||
| 
 | ||
|     fn remove_neighbor(&mut self, direction: Direction) -> Option<RBTreeNode<K, V>> {
 | ||
|         if let Some(neighbor) = self.get_neighbor_raw(direction) {
 | ||
|             let neighbor = neighbor.as_ptr();
 | ||
|             // SAFETY: The reference to the tree used to create the cursor outlives the cursor, so
 | ||
|             // the tree cannot change. By the tree invariant, all nodes are valid.
 | ||
|             unsafe { bindings::rb_erase(neighbor, addr_of_mut!(self.tree.root)) };
 | ||
|             // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
 | ||
|             // point to the links field of `Node<K, V>` objects.
 | ||
|             let this = unsafe { container_of!(neighbor, Node<K, V>, links) };
 | ||
|             // SAFETY: `this` is valid by the type invariants as described above.
 | ||
|             let node = unsafe { KBox::from_raw(this) };
 | ||
|             return Some(RBTreeNode { node });
 | ||
|         }
 | ||
|         None
 | ||
|     }
 | ||
| 
 | ||
|     /// Move the cursor to the previous node, returning [`None`] if it doesn't exist.
 | ||
|     pub fn move_prev(self) -> Option<Self> {
 | ||
|         self.mv(Direction::Prev)
 | ||
|     }
 | ||
| 
 | ||
|     /// Move the cursor to the next node, returning [`None`] if it doesn't exist.
 | ||
|     pub fn move_next(self) -> Option<Self> {
 | ||
|         self.mv(Direction::Next)
 | ||
|     }
 | ||
| 
 | ||
|     fn mv(self, direction: Direction) -> Option<Self> {
 | ||
|         // INVARIANT:
 | ||
|         // - `neighbor` is a valid node in the [`RBTree`] pointed to by `self.tree`.
 | ||
|         self.get_neighbor_raw(direction).map(|neighbor| Self {
 | ||
|             tree: self.tree,
 | ||
|             current: neighbor,
 | ||
|         })
 | ||
|     }
 | ||
| 
 | ||
|     /// Access the previous node without moving the cursor.
 | ||
|     pub fn peek_prev(&self) -> Option<(&K, &V)> {
 | ||
|         self.peek(Direction::Prev)
 | ||
|     }
 | ||
| 
 | ||
|     /// Access the previous node without moving the cursor.
 | ||
|     pub fn peek_next(&self) -> Option<(&K, &V)> {
 | ||
|         self.peek(Direction::Next)
 | ||
|     }
 | ||
| 
 | ||
|     fn peek(&self, direction: Direction) -> Option<(&K, &V)> {
 | ||
|         self.get_neighbor_raw(direction).map(|neighbor| {
 | ||
|             // SAFETY:
 | ||
|             // - `neighbor` is a valid tree node.
 | ||
|             // - By the function signature, we have an immutable reference to `self`.
 | ||
|             unsafe { Self::to_key_value(neighbor) }
 | ||
|         })
 | ||
|     }
 | ||
| 
 | ||
|     /// Access the previous node mutably without moving the cursor.
 | ||
|     pub fn peek_prev_mut(&mut self) -> Option<(&K, &mut V)> {
 | ||
|         self.peek_mut(Direction::Prev)
 | ||
|     }
 | ||
| 
 | ||
|     /// Access the next node mutably without moving the cursor.
 | ||
|     pub fn peek_next_mut(&mut self) -> Option<(&K, &mut V)> {
 | ||
|         self.peek_mut(Direction::Next)
 | ||
|     }
 | ||
| 
 | ||
|     fn peek_mut(&mut self, direction: Direction) -> Option<(&K, &mut V)> {
 | ||
|         self.get_neighbor_raw(direction).map(|neighbor| {
 | ||
|             // SAFETY:
 | ||
|             // - `neighbor` is a valid tree node.
 | ||
|             // - By the function signature, we have a mutable reference to `self`.
 | ||
|             unsafe { Self::to_key_value_mut(neighbor) }
 | ||
|         })
 | ||
|     }
 | ||
| 
 | ||
|     fn get_neighbor_raw(&self, direction: Direction) -> Option<NonNull<bindings::rb_node>> {
 | ||
|         // SAFETY: `self.current` is valid by the type invariants.
 | ||
|         let neighbor = unsafe {
 | ||
|             match direction {
 | ||
|                 Direction::Prev => bindings::rb_prev(self.current.as_ptr()),
 | ||
|                 Direction::Next => bindings::rb_next(self.current.as_ptr()),
 | ||
|             }
 | ||
|         };
 | ||
| 
 | ||
|         NonNull::new(neighbor)
 | ||
|     }
 | ||
| 
 | ||
|     /// # Safety
 | ||
|     ///
 | ||
|     /// - `node` must be a valid pointer to a node in an [`RBTree`].
 | ||
|     /// - The caller has immutable access to `node` for the duration of `'b`.
 | ||
|     unsafe fn to_key_value<'b>(node: NonNull<bindings::rb_node>) -> (&'b K, &'b V) {
 | ||
|         // SAFETY: the caller guarantees that `node` is a valid pointer in an `RBTree`.
 | ||
|         let (k, v) = unsafe { Self::to_key_value_raw(node) };
 | ||
|         // SAFETY: the caller guarantees immutable access to `node`.
 | ||
|         (k, unsafe { &*v })
 | ||
|     }
 | ||
| 
 | ||
|     /// # Safety
 | ||
|     ///
 | ||
|     /// - `node` must be a valid pointer to a node in an [`RBTree`].
 | ||
|     /// - The caller has mutable access to `node` for the duration of `'b`.
 | ||
|     unsafe fn to_key_value_mut<'b>(node: NonNull<bindings::rb_node>) -> (&'b K, &'b mut V) {
 | ||
|         // SAFETY: the caller guarantees that `node` is a valid pointer in an `RBTree`.
 | ||
|         let (k, v) = unsafe { Self::to_key_value_raw(node) };
 | ||
|         // SAFETY: the caller guarantees mutable access to `node`.
 | ||
|         (k, unsafe { &mut *v })
 | ||
|     }
 | ||
| 
 | ||
|     /// # Safety
 | ||
|     ///
 | ||
|     /// - `node` must be a valid pointer to a node in an [`RBTree`].
 | ||
|     /// - The caller has immutable access to the key for the duration of `'b`.
 | ||
|     unsafe fn to_key_value_raw<'b>(node: NonNull<bindings::rb_node>) -> (&'b K, *mut V) {
 | ||
|         // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
 | ||
|         // point to the links field of `Node<K, V>` objects.
 | ||
|         let this = unsafe { container_of!(node.as_ptr(), Node<K, V>, links) };
 | ||
|         // SAFETY: The passed `node` is the current node or a non-null neighbor,
 | ||
|         // thus `this` is valid by the type invariants.
 | ||
|         let k = unsafe { &(*this).key };
 | ||
|         // SAFETY: The passed `node` is the current node or a non-null neighbor,
 | ||
|         // thus `this` is valid by the type invariants.
 | ||
|         let v = unsafe { addr_of_mut!((*this).value) };
 | ||
|         (k, v)
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// Direction for [`Cursor`] operations.
 | ||
| enum Direction {
 | ||
|     /// the node immediately before, in sort order
 | ||
|     Prev,
 | ||
|     /// the node immediately after, in sort order
 | ||
|     Next,
 | ||
| }
 | ||
| 
 | ||
| impl<'a, K, V> IntoIterator for &'a RBTree<K, V> {
 | ||
|     type Item = (&'a K, &'a V);
 | ||
|     type IntoIter = Iter<'a, K, V>;
 | ||
| 
 | ||
|     fn into_iter(self) -> Self::IntoIter {
 | ||
|         self.iter()
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// An iterator over the nodes of a [`RBTree`].
 | ||
| ///
 | ||
| /// Instances are created by calling [`RBTree::iter`].
 | ||
| pub struct Iter<'a, K, V> {
 | ||
|     _tree: PhantomData<&'a RBTree<K, V>>,
 | ||
|     iter_raw: IterRaw<K, V>,
 | ||
| }
 | ||
| 
 | ||
| // SAFETY: The [`Iter`] gives out immutable references to K and V, so it has the same
 | ||
| // thread safety requirements as immutable references.
 | ||
| unsafe impl<'a, K: Sync, V: Sync> Send for Iter<'a, K, V> {}
 | ||
| 
 | ||
| // SAFETY: The [`Iter`] gives out immutable references to K and V, so it has the same
 | ||
| // thread safety requirements as immutable references.
 | ||
| unsafe impl<'a, K: Sync, V: Sync> Sync for Iter<'a, K, V> {}
 | ||
| 
 | ||
| impl<'a, K, V> Iterator for Iter<'a, K, V> {
 | ||
|     type Item = (&'a K, &'a V);
 | ||
| 
 | ||
|     fn next(&mut self) -> Option<Self::Item> {
 | ||
|         // SAFETY: Due to `self._tree`, `k` and `v` are valid for the lifetime of `'a`.
 | ||
|         self.iter_raw.next().map(|(k, v)| unsafe { (&*k, &*v) })
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<'a, K, V> IntoIterator for &'a mut RBTree<K, V> {
 | ||
|     type Item = (&'a K, &'a mut V);
 | ||
|     type IntoIter = IterMut<'a, K, V>;
 | ||
| 
 | ||
|     fn into_iter(self) -> Self::IntoIter {
 | ||
|         self.iter_mut()
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// A mutable iterator over the nodes of a [`RBTree`].
 | ||
| ///
 | ||
| /// Instances are created by calling [`RBTree::iter_mut`].
 | ||
| pub struct IterMut<'a, K, V> {
 | ||
|     _tree: PhantomData<&'a mut RBTree<K, V>>,
 | ||
|     iter_raw: IterRaw<K, V>,
 | ||
| }
 | ||
| 
 | ||
| // SAFETY: The [`IterMut`] has exclusive access to both `K` and `V`, so it is sufficient to require them to be `Send`.
 | ||
| // The iterator only gives out immutable references to the keys, but since the iterator has excusive access to those same
 | ||
| // keys, `Send` is sufficient. `Sync` would be okay, but it is more restrictive to the user.
 | ||
| unsafe impl<'a, K: Send, V: Send> Send for IterMut<'a, K, V> {}
 | ||
| 
 | ||
| // SAFETY: The [`IterMut`] gives out immutable references to K and mutable references to V, so it has the same
 | ||
| // thread safety requirements as mutable references.
 | ||
| unsafe impl<'a, K: Sync, V: Sync> Sync for IterMut<'a, K, V> {}
 | ||
| 
 | ||
| impl<'a, K, V> Iterator for IterMut<'a, K, V> {
 | ||
|     type Item = (&'a K, &'a mut V);
 | ||
| 
 | ||
|     fn next(&mut self) -> Option<Self::Item> {
 | ||
|         self.iter_raw.next().map(|(k, v)|
 | ||
|             // SAFETY: Due to `&mut self`, we have exclusive access to `k` and `v`, for the lifetime of `'a`.
 | ||
|             unsafe { (&*k, &mut *v) })
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// A raw iterator over the nodes of a [`RBTree`].
 | ||
| ///
 | ||
| /// # Invariants
 | ||
| /// - `self.next` is a valid pointer.
 | ||
| /// - `self.next` points to a node stored inside of a valid `RBTree`.
 | ||
| struct IterRaw<K, V> {
 | ||
|     next: *mut bindings::rb_node,
 | ||
|     _phantom: PhantomData<fn() -> (K, V)>,
 | ||
| }
 | ||
| 
 | ||
| impl<K, V> Iterator for IterRaw<K, V> {
 | ||
|     type Item = (*mut K, *mut V);
 | ||
| 
 | ||
|     fn next(&mut self) -> Option<Self::Item> {
 | ||
|         if self.next.is_null() {
 | ||
|             return None;
 | ||
|         }
 | ||
| 
 | ||
|         // SAFETY: By the type invariant of `IterRaw`, `self.next` is a valid node in an `RBTree`,
 | ||
|         // and by the type invariant of `RBTree`, all nodes point to the links field of `Node<K, V>` objects.
 | ||
|         let cur = unsafe { container_of!(self.next, Node<K, V>, links) };
 | ||
| 
 | ||
|         // SAFETY: `self.next` is a valid tree node by the type invariants.
 | ||
|         self.next = unsafe { bindings::rb_next(self.next) };
 | ||
| 
 | ||
|         // SAFETY: By the same reasoning above, it is safe to dereference the node.
 | ||
|         Some(unsafe { (addr_of_mut!((*cur).key), addr_of_mut!((*cur).value)) })
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// A memory reservation for a red-black tree node.
 | ||
| ///
 | ||
| ///
 | ||
| /// It contains the memory needed to hold a node that can be inserted into a red-black tree. One
 | ||
| /// can be obtained by directly allocating it ([`RBTreeNodeReservation::new`]).
 | ||
| pub struct RBTreeNodeReservation<K, V> {
 | ||
|     node: KBox<MaybeUninit<Node<K, V>>>,
 | ||
| }
 | ||
| 
 | ||
| impl<K, V> RBTreeNodeReservation<K, V> {
 | ||
|     /// Allocates memory for a node to be eventually initialised and inserted into the tree via a
 | ||
|     /// call to [`RBTree::insert`].
 | ||
|     pub fn new(flags: Flags) -> Result<RBTreeNodeReservation<K, V>> {
 | ||
|         Ok(RBTreeNodeReservation {
 | ||
|             node: KBox::new_uninit(flags)?,
 | ||
|         })
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // SAFETY: This doesn't actually contain K or V, and is just a memory allocation. Those can always
 | ||
| // be moved across threads.
 | ||
| unsafe impl<K, V> Send for RBTreeNodeReservation<K, V> {}
 | ||
| 
 | ||
| // SAFETY: This doesn't actually contain K or V, and is just a memory allocation.
 | ||
| unsafe impl<K, V> Sync for RBTreeNodeReservation<K, V> {}
 | ||
| 
 | ||
| impl<K, V> RBTreeNodeReservation<K, V> {
 | ||
|     /// Initialises a node reservation.
 | ||
|     ///
 | ||
|     /// It then becomes an [`RBTreeNode`] that can be inserted into a tree.
 | ||
|     pub fn into_node(self, key: K, value: V) -> RBTreeNode<K, V> {
 | ||
|         let node = KBox::write(
 | ||
|             self.node,
 | ||
|             Node {
 | ||
|                 key,
 | ||
|                 value,
 | ||
|                 links: bindings::rb_node::default(),
 | ||
|             },
 | ||
|         );
 | ||
|         RBTreeNode { node }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// A red-black tree node.
 | ||
| ///
 | ||
| /// The node is fully initialised (with key and value) and can be inserted into a tree without any
 | ||
| /// extra allocations or failure paths.
 | ||
| pub struct RBTreeNode<K, V> {
 | ||
|     node: KBox<Node<K, V>>,
 | ||
| }
 | ||
| 
 | ||
| impl<K, V> RBTreeNode<K, V> {
 | ||
|     /// Allocates and initialises a node that can be inserted into the tree via
 | ||
|     /// [`RBTree::insert`].
 | ||
|     pub fn new(key: K, value: V, flags: Flags) -> Result<RBTreeNode<K, V>> {
 | ||
|         Ok(RBTreeNodeReservation::new(flags)?.into_node(key, value))
 | ||
|     }
 | ||
| 
 | ||
|     /// Get the key and value from inside the node.
 | ||
|     pub fn to_key_value(self) -> (K, V) {
 | ||
|         let node = KBox::into_inner(self.node);
 | ||
| 
 | ||
|         (node.key, node.value)
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // SAFETY: If K and V can be sent across threads, then it's also okay to send [`RBTreeNode`] across
 | ||
| // threads.
 | ||
| unsafe impl<K: Send, V: Send> Send for RBTreeNode<K, V> {}
 | ||
| 
 | ||
| // SAFETY: If K and V can be accessed without synchronization, then it's also okay to access
 | ||
| // [`RBTreeNode`] without synchronization.
 | ||
| unsafe impl<K: Sync, V: Sync> Sync for RBTreeNode<K, V> {}
 | ||
| 
 | ||
| impl<K, V> RBTreeNode<K, V> {
 | ||
|     /// Drop the key and value, but keep the allocation.
 | ||
|     ///
 | ||
|     /// It then becomes a reservation that can be re-initialised into a different node (i.e., with
 | ||
|     /// a different key and/or value).
 | ||
|     ///
 | ||
|     /// The existing key and value are dropped in-place as part of this operation, that is, memory
 | ||
|     /// may be freed (but only for the key/value; memory for the node itself is kept for reuse).
 | ||
|     pub fn into_reservation(self) -> RBTreeNodeReservation<K, V> {
 | ||
|         RBTreeNodeReservation {
 | ||
|             node: KBox::drop_contents(self.node),
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// A view into a single entry in a map, which may either be vacant or occupied.
 | ||
| ///
 | ||
| /// This enum is constructed from the [`RBTree::entry`].
 | ||
| ///
 | ||
| /// [`entry`]: fn@RBTree::entry
 | ||
| pub enum Entry<'a, K, V> {
 | ||
|     /// This [`RBTree`] does not have a node with this key.
 | ||
|     Vacant(VacantEntry<'a, K, V>),
 | ||
|     /// This [`RBTree`] already has a node with this key.
 | ||
|     Occupied(OccupiedEntry<'a, K, V>),
 | ||
| }
 | ||
| 
 | ||
| /// Like [`Entry`], except that it doesn't have ownership of the key.
 | ||
| enum RawEntry<'a, K, V> {
 | ||
|     Vacant(RawVacantEntry<'a, K, V>),
 | ||
|     Occupied(OccupiedEntry<'a, K, V>),
 | ||
| }
 | ||
| 
 | ||
| /// A view into a vacant entry in a [`RBTree`]. It is part of the [`Entry`] enum.
 | ||
| pub struct VacantEntry<'a, K, V> {
 | ||
|     key: K,
 | ||
|     raw: RawVacantEntry<'a, K, V>,
 | ||
| }
 | ||
| 
 | ||
| /// Like [`VacantEntry`], but doesn't hold on to the key.
 | ||
| ///
 | ||
| /// # Invariants
 | ||
| /// - `parent` may be null if the new node becomes the root.
 | ||
| /// - `child_field_of_parent` is a valid pointer to the left-child or right-child of `parent`. If `parent` is
 | ||
| ///   null, it is a pointer to the root of the [`RBTree`].
 | ||
| struct RawVacantEntry<'a, K, V> {
 | ||
|     rbtree: *mut RBTree<K, V>,
 | ||
|     /// The node that will become the parent of the new node if we insert one.
 | ||
|     parent: *mut bindings::rb_node,
 | ||
|     /// This points to the left-child or right-child field of `parent`, or `root` if `parent` is
 | ||
|     /// null.
 | ||
|     child_field_of_parent: *mut *mut bindings::rb_node,
 | ||
|     _phantom: PhantomData<&'a mut RBTree<K, V>>,
 | ||
| }
 | ||
| 
 | ||
| impl<'a, K, V> RawVacantEntry<'a, K, V> {
 | ||
|     /// Inserts the given node into the [`RBTree`] at this entry.
 | ||
|     ///
 | ||
|     /// The `node` must have a key such that inserting it here does not break the ordering of this
 | ||
|     /// [`RBTree`].
 | ||
|     fn insert(self, node: RBTreeNode<K, V>) -> &'a mut V {
 | ||
|         let node = KBox::into_raw(node.node);
 | ||
| 
 | ||
|         // SAFETY: `node` is valid at least until we call `KBox::from_raw`, which only happens when
 | ||
|         // the node is removed or replaced.
 | ||
|         let node_links = unsafe { addr_of_mut!((*node).links) };
 | ||
| 
 | ||
|         // INVARIANT: We are linking in a new node, which is valid. It remains valid because we
 | ||
|         // "forgot" it with `KBox::into_raw`.
 | ||
|         // SAFETY: The type invariants of `RawVacantEntry` are exactly the safety requirements of `rb_link_node`.
 | ||
|         unsafe { bindings::rb_link_node(node_links, self.parent, self.child_field_of_parent) };
 | ||
| 
 | ||
|         // SAFETY: All pointers are valid. `node` has just been inserted into the tree.
 | ||
|         unsafe { bindings::rb_insert_color(node_links, addr_of_mut!((*self.rbtree).root)) };
 | ||
| 
 | ||
|         // SAFETY: The node is valid until we remove it from the tree.
 | ||
|         unsafe { &mut (*node).value }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| impl<'a, K, V> VacantEntry<'a, K, V> {
 | ||
|     /// Inserts the given node into the [`RBTree`] at this entry.
 | ||
|     pub fn insert(self, value: V, reservation: RBTreeNodeReservation<K, V>) -> &'a mut V {
 | ||
|         self.raw.insert(reservation.into_node(self.key, value))
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /// A view into an occupied entry in a [`RBTree`]. It is part of the [`Entry`] enum.
 | ||
| ///
 | ||
| /// # Invariants
 | ||
| /// - `node_links` is a valid, non-null pointer to a tree node in `self.rbtree`
 | ||
| pub struct OccupiedEntry<'a, K, V> {
 | ||
|     rbtree: &'a mut RBTree<K, V>,
 | ||
|     /// The node that this entry corresponds to.
 | ||
|     node_links: *mut bindings::rb_node,
 | ||
| }
 | ||
| 
 | ||
| impl<'a, K, V> OccupiedEntry<'a, K, V> {
 | ||
|     /// Gets a reference to the value in the entry.
 | ||
|     pub fn get(&self) -> &V {
 | ||
|         // SAFETY:
 | ||
|         // - `self.node_links` is a valid pointer to a node in the tree.
 | ||
|         // - We have shared access to the underlying tree, and can thus give out a shared reference.
 | ||
|         unsafe { &(*container_of!(self.node_links, Node<K, V>, links)).value }
 | ||
|     }
 | ||
| 
 | ||
|     /// Gets a mutable reference to the value in the entry.
 | ||
|     pub fn get_mut(&mut self) -> &mut V {
 | ||
|         // SAFETY:
 | ||
|         // - `self.node_links` is a valid pointer to a node in the tree.
 | ||
|         // - We have exclusive access to the underlying tree, and can thus give out a mutable reference.
 | ||
|         unsafe { &mut (*(container_of!(self.node_links, Node<K, V>, links))).value }
 | ||
|     }
 | ||
| 
 | ||
|     /// Converts the entry into a mutable reference to its value.
 | ||
|     ///
 | ||
|     /// If you need multiple references to the `OccupiedEntry`, see [`self#get_mut`].
 | ||
|     pub fn into_mut(self) -> &'a mut V {
 | ||
|         // SAFETY:
 | ||
|         // - `self.node_links` is a valid pointer to a node in the tree.
 | ||
|         // - This consumes the `&'a mut RBTree<K, V>`, therefore it can give out a mutable reference that lives for `'a`.
 | ||
|         unsafe { &mut (*(container_of!(self.node_links, Node<K, V>, links))).value }
 | ||
|     }
 | ||
| 
 | ||
|     /// Remove this entry from the [`RBTree`].
 | ||
|     pub fn remove_node(self) -> RBTreeNode<K, V> {
 | ||
|         // SAFETY: The node is a node in the tree, so it is valid.
 | ||
|         unsafe { bindings::rb_erase(self.node_links, &mut self.rbtree.root) };
 | ||
| 
 | ||
|         // INVARIANT: The node is being returned and the caller may free it, however, it was
 | ||
|         // removed from the tree. So the invariants still hold.
 | ||
|         RBTreeNode {
 | ||
|             // SAFETY: The node was a node in the tree, but we removed it, so we can convert it
 | ||
|             // back into a box.
 | ||
|             node: unsafe { KBox::from_raw(container_of!(self.node_links, Node<K, V>, links)) },
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /// Takes the value of the entry out of the map, and returns it.
 | ||
|     pub fn remove(self) -> V {
 | ||
|         let rb_node = self.remove_node();
 | ||
|         let node = KBox::into_inner(rb_node.node);
 | ||
| 
 | ||
|         node.value
 | ||
|     }
 | ||
| 
 | ||
|     /// Swap the current node for the provided node.
 | ||
|     ///
 | ||
|     /// The key of both nodes must be equal.
 | ||
|     fn replace(self, node: RBTreeNode<K, V>) -> RBTreeNode<K, V> {
 | ||
|         let node = KBox::into_raw(node.node);
 | ||
| 
 | ||
|         // SAFETY: `node` is valid at least until we call `KBox::from_raw`, which only happens when
 | ||
|         // the node is removed or replaced.
 | ||
|         let new_node_links = unsafe { addr_of_mut!((*node).links) };
 | ||
| 
 | ||
|         // SAFETY: This updates the pointers so that `new_node_links` is in the tree where
 | ||
|         // `self.node_links` used to be.
 | ||
|         unsafe {
 | ||
|             bindings::rb_replace_node(self.node_links, new_node_links, &mut self.rbtree.root)
 | ||
|         };
 | ||
| 
 | ||
|         // SAFETY:
 | ||
|         // - `self.node_ptr` produces a valid pointer to a node in the tree.
 | ||
|         // - Now that we removed this entry from the tree, we can convert the node to a box.
 | ||
|         let old_node = unsafe { KBox::from_raw(container_of!(self.node_links, Node<K, V>, links)) };
 | ||
| 
 | ||
|         RBTreeNode { node: old_node }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| struct Node<K, V> {
 | ||
|     links: bindings::rb_node,
 | ||
|     key: K,
 | ||
|     value: V,
 | ||
| }
 |