mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 60580e0bd5
			
		
	
	
		60580e0bd5
		
	
	
	
	
		
			
			The cma_declare_contiguous_nid code was refactored by commitc009da4258("mm, cma: support multiple contiguous ranges, if requested"), so that it could use an internal function to attempt a single range area first, and then try a multi-range one. However, that meant that the actual base address used for the !fixed case (base == 0) wasn't available one level up to be printed in the informational message, and it would always end up printing a base address of 0 in the boot message. Make the internal function take a phys_addr_t pointer to the base address, so that the value is available to the caller. [fvdl@google.com: v2] Link: https://lkml.kernel.org/r/20250408164000.3215690-1-fvdl@google.com Link: https://lkml.kernel.org/r/20250407165435.2567898-1-fvdl@google.com Fixes:c009da4258("mm, cma: support multiple contiguous ranges, if requested") Signed-off-by: Frank van der Linden <fvdl@google.com> Reported-by: Geert Uytterhoeven <geert@linux-m68k.org> Closes: https://lore.kernel.org/linux-mm/CAMuHMdVWviQ7O9yBFE3f=ev0eVb1CnsQvR6SKtEROBbM6z7g3w@mail.gmail.com/ Tested-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			1109 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1109 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Contiguous Memory Allocator
 | |
|  *
 | |
|  * Copyright (c) 2010-2011 by Samsung Electronics.
 | |
|  * Copyright IBM Corporation, 2013
 | |
|  * Copyright LG Electronics Inc., 2014
 | |
|  * Written by:
 | |
|  *	Marek Szyprowski <m.szyprowski@samsung.com>
 | |
|  *	Michal Nazarewicz <mina86@mina86.com>
 | |
|  *	Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
 | |
|  *	Joonsoo Kim <iamjoonsoo.kim@lge.com>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "cma: " fmt
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| 
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/cma.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <trace/events/cma.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "cma.h"
 | |
| 
 | |
| struct cma cma_areas[MAX_CMA_AREAS];
 | |
| unsigned int cma_area_count;
 | |
| 
 | |
| static int __init __cma_declare_contiguous_nid(phys_addr_t *basep,
 | |
| 			phys_addr_t size, phys_addr_t limit,
 | |
| 			phys_addr_t alignment, unsigned int order_per_bit,
 | |
| 			bool fixed, const char *name, struct cma **res_cma,
 | |
| 			int nid);
 | |
| 
 | |
| phys_addr_t cma_get_base(const struct cma *cma)
 | |
| {
 | |
| 	WARN_ON_ONCE(cma->nranges != 1);
 | |
| 	return PFN_PHYS(cma->ranges[0].base_pfn);
 | |
| }
 | |
| 
 | |
| unsigned long cma_get_size(const struct cma *cma)
 | |
| {
 | |
| 	return cma->count << PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| const char *cma_get_name(const struct cma *cma)
 | |
| {
 | |
| 	return cma->name;
 | |
| }
 | |
| 
 | |
| static unsigned long cma_bitmap_aligned_mask(const struct cma *cma,
 | |
| 					     unsigned int align_order)
 | |
| {
 | |
| 	if (align_order <= cma->order_per_bit)
 | |
| 		return 0;
 | |
| 	return (1UL << (align_order - cma->order_per_bit)) - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the offset of the base PFN from the specified align_order.
 | |
|  * The value returned is represented in order_per_bits.
 | |
|  */
 | |
| static unsigned long cma_bitmap_aligned_offset(const struct cma *cma,
 | |
| 					       const struct cma_memrange *cmr,
 | |
| 					       unsigned int align_order)
 | |
| {
 | |
| 	return (cmr->base_pfn & ((1UL << align_order) - 1))
 | |
| 		>> cma->order_per_bit;
 | |
| }
 | |
| 
 | |
| static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma,
 | |
| 					      unsigned long pages)
 | |
| {
 | |
| 	return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
 | |
| }
 | |
| 
 | |
| static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr,
 | |
| 			     unsigned long pfn, unsigned long count)
 | |
| {
 | |
| 	unsigned long bitmap_no, bitmap_count;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit;
 | |
| 	bitmap_count = cma_bitmap_pages_to_bits(cma, count);
 | |
| 
 | |
| 	spin_lock_irqsave(&cma->lock, flags);
 | |
| 	bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count);
 | |
| 	cma->available_count += count;
 | |
| 	spin_unlock_irqrestore(&cma->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if a CMA area contains no ranges that intersect with
 | |
|  * multiple zones. Store the result in the flags in case
 | |
|  * this gets called more than once.
 | |
|  */
 | |
| bool cma_validate_zones(struct cma *cma)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned long base_pfn;
 | |
| 	struct cma_memrange *cmr;
 | |
| 	bool valid_bit_set;
 | |
| 
 | |
| 	/*
 | |
| 	 * If already validated, return result of previous check.
 | |
| 	 * Either the valid or invalid bit will be set if this
 | |
| 	 * check has already been done. If neither is set, the
 | |
| 	 * check has not been performed yet.
 | |
| 	 */
 | |
| 	valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags);
 | |
| 	if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags))
 | |
| 		return valid_bit_set;
 | |
| 
 | |
| 	for (r = 0; r < cma->nranges; r++) {
 | |
| 		cmr = &cma->ranges[r];
 | |
| 		base_pfn = cmr->base_pfn;
 | |
| 
 | |
| 		/*
 | |
| 		 * alloc_contig_range() requires the pfn range specified
 | |
| 		 * to be in the same zone. Simplify by forcing the entire
 | |
| 		 * CMA resv range to be in the same zone.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(!pfn_valid(base_pfn));
 | |
| 		if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) {
 | |
| 			set_bit(CMA_ZONES_INVALID, &cma->flags);
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	set_bit(CMA_ZONES_VALID, &cma->flags);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __init cma_activate_area(struct cma *cma)
 | |
| {
 | |
| 	unsigned long pfn, end_pfn;
 | |
| 	int allocrange, r;
 | |
| 	struct cma_memrange *cmr;
 | |
| 	unsigned long bitmap_count, count;
 | |
| 
 | |
| 	for (allocrange = 0; allocrange < cma->nranges; allocrange++) {
 | |
| 		cmr = &cma->ranges[allocrange];
 | |
| 		cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr),
 | |
| 					    GFP_KERNEL);
 | |
| 		if (!cmr->bitmap)
 | |
| 			goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	if (!cma_validate_zones(cma))
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	for (r = 0; r < cma->nranges; r++) {
 | |
| 		cmr = &cma->ranges[r];
 | |
| 		if (cmr->early_pfn != cmr->base_pfn) {
 | |
| 			count = cmr->early_pfn - cmr->base_pfn;
 | |
| 			bitmap_count = cma_bitmap_pages_to_bits(cma, count);
 | |
| 			bitmap_set(cmr->bitmap, 0, bitmap_count);
 | |
| 		}
 | |
| 
 | |
| 		for (pfn = cmr->early_pfn; pfn < cmr->base_pfn + cmr->count;
 | |
| 		     pfn += pageblock_nr_pages)
 | |
| 			init_cma_reserved_pageblock(pfn_to_page(pfn));
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&cma->lock);
 | |
| 
 | |
| 	mutex_init(&cma->alloc_mutex);
 | |
| 
 | |
| #ifdef CONFIG_CMA_DEBUGFS
 | |
| 	INIT_HLIST_HEAD(&cma->mem_head);
 | |
| 	spin_lock_init(&cma->mem_head_lock);
 | |
| #endif
 | |
| 	set_bit(CMA_ACTIVATED, &cma->flags);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| cleanup:
 | |
| 	for (r = 0; r < allocrange; r++)
 | |
| 		bitmap_free(cma->ranges[r].bitmap);
 | |
| 
 | |
| 	/* Expose all pages to the buddy, they are useless for CMA. */
 | |
| 	if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) {
 | |
| 		for (r = 0; r < allocrange; r++) {
 | |
| 			cmr = &cma->ranges[r];
 | |
| 			end_pfn = cmr->base_pfn + cmr->count;
 | |
| 			for (pfn = cmr->early_pfn; pfn < end_pfn; pfn++)
 | |
| 				free_reserved_page(pfn_to_page(pfn));
 | |
| 		}
 | |
| 	}
 | |
| 	totalcma_pages -= cma->count;
 | |
| 	cma->available_count = cma->count = 0;
 | |
| 	pr_err("CMA area %s could not be activated\n", cma->name);
 | |
| }
 | |
| 
 | |
| static int __init cma_init_reserved_areas(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cma_area_count; i++)
 | |
| 		cma_activate_area(&cma_areas[i]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(cma_init_reserved_areas);
 | |
| 
 | |
| void __init cma_reserve_pages_on_error(struct cma *cma)
 | |
| {
 | |
| 	set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags);
 | |
| }
 | |
| 
 | |
| static int __init cma_new_area(const char *name, phys_addr_t size,
 | |
| 			       unsigned int order_per_bit,
 | |
| 			       struct cma **res_cma)
 | |
| {
 | |
| 	struct cma *cma;
 | |
| 
 | |
| 	if (cma_area_count == ARRAY_SIZE(cma_areas)) {
 | |
| 		pr_err("Not enough slots for CMA reserved regions!\n");
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Each reserved area must be initialised later, when more kernel
 | |
| 	 * subsystems (like slab allocator) are available.
 | |
| 	 */
 | |
| 	cma = &cma_areas[cma_area_count];
 | |
| 	cma_area_count++;
 | |
| 
 | |
| 	if (name)
 | |
| 		snprintf(cma->name, CMA_MAX_NAME, "%s", name);
 | |
| 	else
 | |
| 		snprintf(cma->name, CMA_MAX_NAME,  "cma%d\n", cma_area_count);
 | |
| 
 | |
| 	cma->available_count = cma->count = size >> PAGE_SHIFT;
 | |
| 	cma->order_per_bit = order_per_bit;
 | |
| 	*res_cma = cma;
 | |
| 	totalcma_pages += cma->count;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init cma_drop_area(struct cma *cma)
 | |
| {
 | |
| 	totalcma_pages -= cma->count;
 | |
| 	cma_area_count--;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cma_init_reserved_mem() - create custom contiguous area from reserved memory
 | |
|  * @base: Base address of the reserved area
 | |
|  * @size: Size of the reserved area (in bytes),
 | |
|  * @order_per_bit: Order of pages represented by one bit on bitmap.
 | |
|  * @name: The name of the area. If this parameter is NULL, the name of
 | |
|  *        the area will be set to "cmaN", where N is a running counter of
 | |
|  *        used areas.
 | |
|  * @res_cma: Pointer to store the created cma region.
 | |
|  *
 | |
|  * This function creates custom contiguous area from already reserved memory.
 | |
|  */
 | |
| int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
 | |
| 				 unsigned int order_per_bit,
 | |
| 				 const char *name,
 | |
| 				 struct cma **res_cma)
 | |
| {
 | |
| 	struct cma *cma;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Sanity checks */
 | |
| 	if (!size || !memblock_is_region_reserved(base, size))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which
 | |
| 	 * needs pageblock_order to be initialized. Let's enforce it.
 | |
| 	 */
 | |
| 	if (!pageblock_order) {
 | |
| 		pr_err("pageblock_order not yet initialized. Called during early boot?\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* ensure minimal alignment required by mm core */
 | |
| 	if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = cma_new_area(name, size, order_per_bit, &cma);
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	cma->ranges[0].base_pfn = PFN_DOWN(base);
 | |
| 	cma->ranges[0].early_pfn = PFN_DOWN(base);
 | |
| 	cma->ranges[0].count = cma->count;
 | |
| 	cma->nranges = 1;
 | |
| 	cma->nid = NUMA_NO_NODE;
 | |
| 
 | |
| 	*res_cma = cma;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Structure used while walking physical memory ranges and finding out
 | |
|  * which one(s) to use for a CMA area.
 | |
|  */
 | |
| struct cma_init_memrange {
 | |
| 	phys_addr_t base;
 | |
| 	phys_addr_t size;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Work array used during CMA initialization.
 | |
|  */
 | |
| static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata;
 | |
| 
 | |
| static bool __init revsizecmp(struct cma_init_memrange *mlp,
 | |
| 			      struct cma_init_memrange *mrp)
 | |
| {
 | |
| 	return mlp->size > mrp->size;
 | |
| }
 | |
| 
 | |
| static bool __init basecmp(struct cma_init_memrange *mlp,
 | |
| 			   struct cma_init_memrange *mrp)
 | |
| {
 | |
| 	return mlp->base < mrp->base;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function to create sorted lists.
 | |
|  */
 | |
| static void __init list_insert_sorted(
 | |
| 	struct list_head *ranges,
 | |
| 	struct cma_init_memrange *mrp,
 | |
| 	bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh))
 | |
| {
 | |
| 	struct list_head *mp;
 | |
| 	struct cma_init_memrange *mlp;
 | |
| 
 | |
| 	if (list_empty(ranges))
 | |
| 		list_add(&mrp->list, ranges);
 | |
| 	else {
 | |
| 		list_for_each(mp, ranges) {
 | |
| 			mlp = list_entry(mp, struct cma_init_memrange, list);
 | |
| 			if (cmp(mlp, mrp))
 | |
| 				break;
 | |
| 		}
 | |
| 		__list_add(&mrp->list, mlp->list.prev, &mlp->list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create CMA areas with a total size of @total_size. A normal allocation
 | |
|  * for one area is tried first. If that fails, the biggest memblock
 | |
|  * ranges above 4G are selected, and allocated bottom up.
 | |
|  *
 | |
|  * The complexity here is not great, but this function will only be
 | |
|  * called during boot, and the lists operated on have fewer than
 | |
|  * CMA_MAX_RANGES elements (default value: 8).
 | |
|  */
 | |
| int __init cma_declare_contiguous_multi(phys_addr_t total_size,
 | |
| 			phys_addr_t align, unsigned int order_per_bit,
 | |
| 			const char *name, struct cma **res_cma, int nid)
 | |
| {
 | |
| 	phys_addr_t start = 0, end;
 | |
| 	phys_addr_t size, sizesum, sizeleft;
 | |
| 	struct cma_init_memrange *mrp, *mlp, *failed;
 | |
| 	struct cma_memrange *cmrp;
 | |
| 	LIST_HEAD(ranges);
 | |
| 	LIST_HEAD(final_ranges);
 | |
| 	struct list_head *mp, *next;
 | |
| 	int ret, nr = 1;
 | |
| 	u64 i;
 | |
| 	struct cma *cma;
 | |
| 
 | |
| 	/*
 | |
| 	 * First, try it the normal way, producing just one range.
 | |
| 	 */
 | |
| 	ret = __cma_declare_contiguous_nid(&start, total_size, 0, align,
 | |
| 			order_per_bit, false, name, res_cma, nid);
 | |
| 	if (ret != -ENOMEM)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Couldn't find one range that fits our needs, so try multiple
 | |
| 	 * ranges.
 | |
| 	 *
 | |
| 	 * No need to do the alignment checks here, the call to
 | |
| 	 * cma_declare_contiguous_nid above would have caught
 | |
| 	 * any issues. With the checks, we know that:
 | |
| 	 *
 | |
| 	 * - @align is a power of 2
 | |
| 	 * - @align is >= pageblock alignment
 | |
| 	 * - @size is aligned to @align and to @order_per_bit
 | |
| 	 *
 | |
| 	 * So, as long as we create ranges that have a base
 | |
| 	 * aligned to @align, and a size that is aligned to
 | |
| 	 * both @align and @order_to_bit, things will work out.
 | |
| 	 */
 | |
| 	nr = 0;
 | |
| 	sizesum = 0;
 | |
| 	failed = NULL;
 | |
| 
 | |
| 	ret = cma_new_area(name, total_size, order_per_bit, &cma);
 | |
| 	if (ret != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
 | |
| 	/*
 | |
| 	 * Create a list of ranges above 4G, largest range first.
 | |
| 	 */
 | |
| 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) {
 | |
| 		if (upper_32_bits(start) == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		start = ALIGN(start, align);
 | |
| 		if (start >= end)
 | |
| 			continue;
 | |
| 
 | |
| 		end = ALIGN_DOWN(end, align);
 | |
| 		if (end <= start)
 | |
| 			continue;
 | |
| 
 | |
| 		size = end - start;
 | |
| 		size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit));
 | |
| 		if (!size)
 | |
| 			continue;
 | |
| 		sizesum += size;
 | |
| 
 | |
| 		pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we don't yet have used the maximum number of
 | |
| 		 * areas, grab a new one.
 | |
| 		 *
 | |
| 		 * If we can't use anymore, see if this range is not
 | |
| 		 * smaller than the smallest one already recorded. If
 | |
| 		 * not, re-use the smallest element.
 | |
| 		 */
 | |
| 		if (nr < CMA_MAX_RANGES)
 | |
| 			mrp = &memranges[nr++];
 | |
| 		else {
 | |
| 			mrp = list_last_entry(&ranges,
 | |
| 					      struct cma_init_memrange, list);
 | |
| 			if (size < mrp->size)
 | |
| 				continue;
 | |
| 			list_del(&mrp->list);
 | |
| 			sizesum -= mrp->size;
 | |
| 			pr_debug("deleted %016llx - %016llx from the list\n",
 | |
| 				(u64)mrp->base, (u64)mrp->base + size);
 | |
| 		}
 | |
| 		mrp->base = start;
 | |
| 		mrp->size = size;
 | |
| 
 | |
| 		/*
 | |
| 		 * Now do a sorted insert.
 | |
| 		 */
 | |
| 		list_insert_sorted(&ranges, mrp, revsizecmp);
 | |
| 		pr_debug("added %016llx - %016llx to the list\n",
 | |
| 		    (u64)mrp->base, (u64)mrp->base + size);
 | |
| 		pr_debug("total size now %llu\n", (u64)sizesum);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * There is not enough room in the CMA_MAX_RANGES largest
 | |
| 	 * ranges, so bail out.
 | |
| 	 */
 | |
| 	if (sizesum < total_size) {
 | |
| 		cma_drop_area(cma);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Found ranges that provide enough combined space.
 | |
| 	 * Now, sorted them by address, smallest first, because we
 | |
| 	 * want to mimic a bottom-up memblock allocation.
 | |
| 	 */
 | |
| 	sizesum = 0;
 | |
| 	list_for_each_safe(mp, next, &ranges) {
 | |
| 		mlp = list_entry(mp, struct cma_init_memrange, list);
 | |
| 		list_del(mp);
 | |
| 		list_insert_sorted(&final_ranges, mlp, basecmp);
 | |
| 		sizesum += mlp->size;
 | |
| 		if (sizesum >= total_size)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk the final list, and add a CMA range for
 | |
| 	 * each range, possibly not using the last one fully.
 | |
| 	 */
 | |
| 	nr = 0;
 | |
| 	sizeleft = total_size;
 | |
| 	list_for_each(mp, &final_ranges) {
 | |
| 		mlp = list_entry(mp, struct cma_init_memrange, list);
 | |
| 		size = min(sizeleft, mlp->size);
 | |
| 		if (memblock_reserve(mlp->base, size)) {
 | |
| 			/*
 | |
| 			 * Unexpected error. Could go on to
 | |
| 			 * the next one, but just abort to
 | |
| 			 * be safe.
 | |
| 			 */
 | |
| 			failed = mlp;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pr_debug("created region %d: %016llx - %016llx\n",
 | |
| 		    nr, (u64)mlp->base, (u64)mlp->base + size);
 | |
| 		cmrp = &cma->ranges[nr++];
 | |
| 		cmrp->base_pfn = PHYS_PFN(mlp->base);
 | |
| 		cmrp->early_pfn = cmrp->base_pfn;
 | |
| 		cmrp->count = size >> PAGE_SHIFT;
 | |
| 
 | |
| 		sizeleft -= size;
 | |
| 		if (sizeleft == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (failed) {
 | |
| 		list_for_each(mp, &final_ranges) {
 | |
| 			mlp = list_entry(mp, struct cma_init_memrange, list);
 | |
| 			if (mlp == failed)
 | |
| 				break;
 | |
| 			memblock_phys_free(mlp->base, mlp->size);
 | |
| 		}
 | |
| 		cma_drop_area(cma);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	cma->nranges = nr;
 | |
| 	cma->nid = nid;
 | |
| 	*res_cma = cma;
 | |
| 
 | |
| out:
 | |
| 	if (ret != 0)
 | |
| 		pr_err("Failed to reserve %lu MiB\n",
 | |
| 			(unsigned long)total_size / SZ_1M);
 | |
| 	else
 | |
| 		pr_info("Reserved %lu MiB in %d range%s\n",
 | |
| 			(unsigned long)total_size / SZ_1M, nr,
 | |
| 			nr > 1 ? "s" : "");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cma_declare_contiguous_nid() - reserve custom contiguous area
 | |
|  * @base: Base address of the reserved area optional, use 0 for any
 | |
|  * @size: Size of the reserved area (in bytes),
 | |
|  * @limit: End address of the reserved memory (optional, 0 for any).
 | |
|  * @alignment: Alignment for the CMA area, should be power of 2 or zero
 | |
|  * @order_per_bit: Order of pages represented by one bit on bitmap.
 | |
|  * @fixed: hint about where to place the reserved area
 | |
|  * @name: The name of the area. See function cma_init_reserved_mem()
 | |
|  * @res_cma: Pointer to store the created cma region.
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * This function reserves memory from early allocator. It should be
 | |
|  * called by arch specific code once the early allocator (memblock or bootmem)
 | |
|  * has been activated and all other subsystems have already allocated/reserved
 | |
|  * memory. This function allows to create custom reserved areas.
 | |
|  *
 | |
|  * If @fixed is true, reserve contiguous area at exactly @base.  If false,
 | |
|  * reserve in range from @base to @limit.
 | |
|  */
 | |
| int __init cma_declare_contiguous_nid(phys_addr_t base,
 | |
| 			phys_addr_t size, phys_addr_t limit,
 | |
| 			phys_addr_t alignment, unsigned int order_per_bit,
 | |
| 			bool fixed, const char *name, struct cma **res_cma,
 | |
| 			int nid)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __cma_declare_contiguous_nid(&base, size, limit, alignment,
 | |
| 			order_per_bit, fixed, name, res_cma, nid);
 | |
| 	if (ret != 0)
 | |
| 		pr_err("Failed to reserve %ld MiB\n",
 | |
| 				(unsigned long)size / SZ_1M);
 | |
| 	else
 | |
| 		pr_info("Reserved %ld MiB at %pa\n",
 | |
| 				(unsigned long)size / SZ_1M, &base);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __init __cma_declare_contiguous_nid(phys_addr_t *basep,
 | |
| 			phys_addr_t size, phys_addr_t limit,
 | |
| 			phys_addr_t alignment, unsigned int order_per_bit,
 | |
| 			bool fixed, const char *name, struct cma **res_cma,
 | |
| 			int nid)
 | |
| {
 | |
| 	phys_addr_t memblock_end = memblock_end_of_DRAM();
 | |
| 	phys_addr_t highmem_start, base = *basep;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't use __pa(high_memory) directly, since high_memory
 | |
| 	 * isn't a valid direct map VA, and DEBUG_VIRTUAL will (validly)
 | |
| 	 * complain. Find the boundary by adding one to the last valid
 | |
| 	 * address.
 | |
| 	 */
 | |
| 	highmem_start = __pa(high_memory - 1) + 1;
 | |
| 	pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n",
 | |
| 		__func__, &size, &base, &limit, &alignment);
 | |
| 
 | |
| 	if (cma_area_count == ARRAY_SIZE(cma_areas)) {
 | |
| 		pr_err("Not enough slots for CMA reserved regions!\n");
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	if (!size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (alignment && !is_power_of_2(alignment))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_NUMA))
 | |
| 		nid = NUMA_NO_NODE;
 | |
| 
 | |
| 	/* Sanitise input arguments. */
 | |
| 	alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES);
 | |
| 	if (fixed && base & (alignment - 1)) {
 | |
| 		pr_err("Region at %pa must be aligned to %pa bytes\n",
 | |
| 			&base, &alignment);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	base = ALIGN(base, alignment);
 | |
| 	size = ALIGN(size, alignment);
 | |
| 	limit &= ~(alignment - 1);
 | |
| 
 | |
| 	if (!base)
 | |
| 		fixed = false;
 | |
| 
 | |
| 	/* size should be aligned with order_per_bit */
 | |
| 	if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If allocating at a fixed base the request region must not cross the
 | |
| 	 * low/high memory boundary.
 | |
| 	 */
 | |
| 	if (fixed && base < highmem_start && base + size > highmem_start) {
 | |
| 		pr_err("Region at %pa defined on low/high memory boundary (%pa)\n",
 | |
| 			&base, &highmem_start);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the limit is unspecified or above the memblock end, its effective
 | |
| 	 * value will be the memblock end. Set it explicitly to simplify further
 | |
| 	 * checks.
 | |
| 	 */
 | |
| 	if (limit == 0 || limit > memblock_end)
 | |
| 		limit = memblock_end;
 | |
| 
 | |
| 	if (base + size > limit) {
 | |
| 		pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n",
 | |
| 			&size, &base, &limit);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Reserve memory */
 | |
| 	if (fixed) {
 | |
| 		if (memblock_is_region_reserved(base, size) ||
 | |
| 		    memblock_reserve(base, size) < 0) {
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 	} else {
 | |
| 		phys_addr_t addr = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there is enough memory, try a bottom-up allocation first.
 | |
| 		 * It will place the new cma area close to the start of the node
 | |
| 		 * and guarantee that the compaction is moving pages out of the
 | |
| 		 * cma area and not into it.
 | |
| 		 * Avoid using first 4GB to not interfere with constrained zones
 | |
| 		 * like DMA/DMA32.
 | |
| 		 */
 | |
| #ifdef CONFIG_PHYS_ADDR_T_64BIT
 | |
| 		if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) {
 | |
| 			memblock_set_bottom_up(true);
 | |
| 			addr = memblock_alloc_range_nid(size, alignment, SZ_4G,
 | |
| 							limit, nid, true);
 | |
| 			memblock_set_bottom_up(false);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * All pages in the reserved area must come from the same zone.
 | |
| 		 * If the requested region crosses the low/high memory boundary,
 | |
| 		 * try allocating from high memory first and fall back to low
 | |
| 		 * memory in case of failure.
 | |
| 		 */
 | |
| 		if (!addr && base < highmem_start && limit > highmem_start) {
 | |
| 			addr = memblock_alloc_range_nid(size, alignment,
 | |
| 					highmem_start, limit, nid, true);
 | |
| 			limit = highmem_start;
 | |
| 		}
 | |
| 
 | |
| 		if (!addr) {
 | |
| 			addr = memblock_alloc_range_nid(size, alignment, base,
 | |
| 					limit, nid, true);
 | |
| 			if (!addr)
 | |
| 				return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * kmemleak scans/reads tracked objects for pointers to other
 | |
| 		 * objects but this address isn't mapped and accessible
 | |
| 		 */
 | |
| 		kmemleak_ignore_phys(addr);
 | |
| 		base = addr;
 | |
| 	}
 | |
| 
 | |
| 	ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma);
 | |
| 	if (ret) {
 | |
| 		memblock_phys_free(base, size);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	(*res_cma)->nid = nid;
 | |
| 	*basep = base;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cma_debug_show_areas(struct cma *cma)
 | |
| {
 | |
| 	unsigned long next_zero_bit, next_set_bit, nr_zero;
 | |
| 	unsigned long start;
 | |
| 	unsigned long nr_part;
 | |
| 	unsigned long nbits;
 | |
| 	int r;
 | |
| 	struct cma_memrange *cmr;
 | |
| 
 | |
| 	spin_lock_irq(&cma->lock);
 | |
| 	pr_info("number of available pages: ");
 | |
| 	for (r = 0; r < cma->nranges; r++) {
 | |
| 		cmr = &cma->ranges[r];
 | |
| 
 | |
| 		start = 0;
 | |
| 		nbits = cma_bitmap_maxno(cma, cmr);
 | |
| 
 | |
| 		pr_info("range %d: ", r);
 | |
| 		for (;;) {
 | |
| 			next_zero_bit = find_next_zero_bit(cmr->bitmap,
 | |
| 							   nbits, start);
 | |
| 			if (next_zero_bit >= nbits)
 | |
| 				break;
 | |
| 			next_set_bit = find_next_bit(cmr->bitmap, nbits,
 | |
| 						     next_zero_bit);
 | |
| 			nr_zero = next_set_bit - next_zero_bit;
 | |
| 			nr_part = nr_zero << cma->order_per_bit;
 | |
| 			pr_cont("%s%lu@%lu", start ? "+" : "", nr_part,
 | |
| 				next_zero_bit);
 | |
| 			start = next_zero_bit + nr_zero;
 | |
| 		}
 | |
| 		pr_info("\n");
 | |
| 	}
 | |
| 	pr_cont("=> %lu free of %lu total pages\n", cma->available_count,
 | |
| 			cma->count);
 | |
| 	spin_unlock_irq(&cma->lock);
 | |
| }
 | |
| 
 | |
| static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr,
 | |
| 				unsigned long count, unsigned int align,
 | |
| 				struct page **pagep, gfp_t gfp)
 | |
| {
 | |
| 	unsigned long mask, offset;
 | |
| 	unsigned long pfn = -1;
 | |
| 	unsigned long start = 0;
 | |
| 	unsigned long bitmap_maxno, bitmap_no, bitmap_count;
 | |
| 	int ret = -EBUSY;
 | |
| 	struct page *page = NULL;
 | |
| 
 | |
| 	mask = cma_bitmap_aligned_mask(cma, align);
 | |
| 	offset = cma_bitmap_aligned_offset(cma, cmr, align);
 | |
| 	bitmap_maxno = cma_bitmap_maxno(cma, cmr);
 | |
| 	bitmap_count = cma_bitmap_pages_to_bits(cma, count);
 | |
| 
 | |
| 	if (bitmap_count > bitmap_maxno)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		spin_lock_irq(&cma->lock);
 | |
| 		/*
 | |
| 		 * If the request is larger than the available number
 | |
| 		 * of pages, stop right away.
 | |
| 		 */
 | |
| 		if (count > cma->available_count) {
 | |
| 			spin_unlock_irq(&cma->lock);
 | |
| 			break;
 | |
| 		}
 | |
| 		bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap,
 | |
| 				bitmap_maxno, start, bitmap_count, mask,
 | |
| 				offset);
 | |
| 		if (bitmap_no >= bitmap_maxno) {
 | |
| 			spin_unlock_irq(&cma->lock);
 | |
| 			break;
 | |
| 		}
 | |
| 		bitmap_set(cmr->bitmap, bitmap_no, bitmap_count);
 | |
| 		cma->available_count -= count;
 | |
| 		/*
 | |
| 		 * It's safe to drop the lock here. We've marked this region for
 | |
| 		 * our exclusive use. If the migration fails we will take the
 | |
| 		 * lock again and unmark it.
 | |
| 		 */
 | |
| 		spin_unlock_irq(&cma->lock);
 | |
| 
 | |
| 		pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit);
 | |
| 		mutex_lock(&cma->alloc_mutex);
 | |
| 		ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, gfp);
 | |
| 		mutex_unlock(&cma->alloc_mutex);
 | |
| 		if (ret == 0) {
 | |
| 			page = pfn_to_page(pfn);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cma_clear_bitmap(cma, cmr, pfn, count);
 | |
| 		if (ret != -EBUSY)
 | |
| 			break;
 | |
| 
 | |
| 		pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n",
 | |
| 			 __func__, pfn, pfn_to_page(pfn));
 | |
| 
 | |
| 		trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn),
 | |
| 					   count, align);
 | |
| 		/* try again with a bit different memory target */
 | |
| 		start = bitmap_no + mask + 1;
 | |
| 	}
 | |
| out:
 | |
| 	*pagep = page;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct page *__cma_alloc(struct cma *cma, unsigned long count,
 | |
| 		       unsigned int align, gfp_t gfp)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	int ret = -ENOMEM, r;
 | |
| 	unsigned long i;
 | |
| 	const char *name = cma ? cma->name : NULL;
 | |
| 
 | |
| 	trace_cma_alloc_start(name, count, align);
 | |
| 
 | |
| 	if (!cma || !cma->count)
 | |
| 		return page;
 | |
| 
 | |
| 	pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__,
 | |
| 		(void *)cma, cma->name, count, align);
 | |
| 
 | |
| 	if (!count)
 | |
| 		return page;
 | |
| 
 | |
| 	for (r = 0; r < cma->nranges; r++) {
 | |
| 		page = NULL;
 | |
| 
 | |
| 		ret = cma_range_alloc(cma, &cma->ranges[r], count, align,
 | |
| 				       &page, gfp);
 | |
| 		if (ret != -EBUSY || page)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * CMA can allocate multiple page blocks, which results in different
 | |
| 	 * blocks being marked with different tags. Reset the tags to ignore
 | |
| 	 * those page blocks.
 | |
| 	 */
 | |
| 	if (page) {
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			page_kasan_tag_reset(nth_page(page, i));
 | |
| 	}
 | |
| 
 | |
| 	if (ret && !(gfp & __GFP_NOWARN)) {
 | |
| 		pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n",
 | |
| 				   __func__, cma->name, count, ret);
 | |
| 		cma_debug_show_areas(cma);
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("%s(): returned %p\n", __func__, page);
 | |
| 	trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0,
 | |
| 			       page, count, align, ret);
 | |
| 	if (page) {
 | |
| 		count_vm_event(CMA_ALLOC_SUCCESS);
 | |
| 		cma_sysfs_account_success_pages(cma, count);
 | |
| 	} else {
 | |
| 		count_vm_event(CMA_ALLOC_FAIL);
 | |
| 		cma_sysfs_account_fail_pages(cma, count);
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cma_alloc() - allocate pages from contiguous area
 | |
|  * @cma:   Contiguous memory region for which the allocation is performed.
 | |
|  * @count: Requested number of pages.
 | |
|  * @align: Requested alignment of pages (in PAGE_SIZE order).
 | |
|  * @no_warn: Avoid printing message about failed allocation
 | |
|  *
 | |
|  * This function allocates part of contiguous memory on specific
 | |
|  * contiguous memory area.
 | |
|  */
 | |
| struct page *cma_alloc(struct cma *cma, unsigned long count,
 | |
| 		       unsigned int align, bool no_warn)
 | |
| {
 | |
| 	return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0));
 | |
| }
 | |
| 
 | |
| struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (WARN_ON(!order || !(gfp & __GFP_COMP)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	page = __cma_alloc(cma, 1 << order, order, gfp);
 | |
| 
 | |
| 	return page ? page_folio(page) : NULL;
 | |
| }
 | |
| 
 | |
| bool cma_pages_valid(struct cma *cma, const struct page *pages,
 | |
| 		     unsigned long count)
 | |
| {
 | |
| 	unsigned long pfn, end;
 | |
| 	int r;
 | |
| 	struct cma_memrange *cmr;
 | |
| 	bool ret;
 | |
| 
 | |
| 	if (!cma || !pages || count > cma->count)
 | |
| 		return false;
 | |
| 
 | |
| 	pfn = page_to_pfn(pages);
 | |
| 	ret = false;
 | |
| 
 | |
| 	for (r = 0; r < cma->nranges; r++) {
 | |
| 		cmr = &cma->ranges[r];
 | |
| 		end = cmr->base_pfn + cmr->count;
 | |
| 		if (pfn >= cmr->base_pfn && pfn < end) {
 | |
| 			ret = pfn + count <= end;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		pr_debug("%s(page %p, count %lu)\n",
 | |
| 				__func__, (void *)pages, count);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cma_release() - release allocated pages
 | |
|  * @cma:   Contiguous memory region for which the allocation is performed.
 | |
|  * @pages: Allocated pages.
 | |
|  * @count: Number of allocated pages.
 | |
|  *
 | |
|  * This function releases memory allocated by cma_alloc().
 | |
|  * It returns false when provided pages do not belong to contiguous area and
 | |
|  * true otherwise.
 | |
|  */
 | |
| bool cma_release(struct cma *cma, const struct page *pages,
 | |
| 		 unsigned long count)
 | |
| {
 | |
| 	struct cma_memrange *cmr;
 | |
| 	unsigned long pfn, end_pfn;
 | |
| 	int r;
 | |
| 
 | |
| 	pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count);
 | |
| 
 | |
| 	if (!cma_pages_valid(cma, pages, count))
 | |
| 		return false;
 | |
| 
 | |
| 	pfn = page_to_pfn(pages);
 | |
| 	end_pfn = pfn + count;
 | |
| 
 | |
| 	for (r = 0; r < cma->nranges; r++) {
 | |
| 		cmr = &cma->ranges[r];
 | |
| 		if (pfn >= cmr->base_pfn &&
 | |
| 		    pfn < (cmr->base_pfn + cmr->count)) {
 | |
| 			VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (r == cma->nranges)
 | |
| 		return false;
 | |
| 
 | |
| 	free_contig_range(pfn, count);
 | |
| 	cma_clear_bitmap(cma, cmr, pfn, count);
 | |
| 	cma_sysfs_account_release_pages(cma, count);
 | |
| 	trace_cma_release(cma->name, pfn, pages, count);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool cma_free_folio(struct cma *cma, const struct folio *folio)
 | |
| {
 | |
| 	if (WARN_ON(!folio_test_large(folio)))
 | |
| 		return false;
 | |
| 
 | |
| 	return cma_release(cma, &folio->page, folio_nr_pages(folio));
 | |
| }
 | |
| 
 | |
| int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cma_area_count; i++) {
 | |
| 		int ret = it(&cma_areas[i], data);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	int r;
 | |
| 	struct cma_memrange *cmr;
 | |
| 	unsigned long rstart, rend;
 | |
| 
 | |
| 	for (r = 0; r < cma->nranges; r++) {
 | |
| 		cmr = &cma->ranges[r];
 | |
| 
 | |
| 		rstart = PFN_PHYS(cmr->base_pfn);
 | |
| 		rend = PFN_PHYS(cmr->base_pfn + cmr->count);
 | |
| 		if (end < rstart)
 | |
| 			continue;
 | |
| 		if (start >= rend)
 | |
| 			continue;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Very basic function to reserve memory from a CMA area that has not
 | |
|  * yet been activated. This is expected to be called early, when the
 | |
|  * system is single-threaded, so there is no locking. The alignment
 | |
|  * checking is restrictive - only pageblock-aligned areas
 | |
|  * (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function.
 | |
|  * This keeps things simple, and is enough for the current use case.
 | |
|  *
 | |
|  * The CMA bitmaps have not yet been allocated, so just start
 | |
|  * reserving from the bottom up, using a PFN to keep track
 | |
|  * of what has been reserved. Unreserving is not possible.
 | |
|  *
 | |
|  * The caller is responsible for initializing the page structures
 | |
|  * in the area properly, since this just points to memblock-allocated
 | |
|  * memory. The caller should subsequently use init_cma_pageblock to
 | |
|  * set the migrate type and CMA stats  the pageblocks that were reserved.
 | |
|  *
 | |
|  * If the CMA area fails to activate later, memory obtained through
 | |
|  * this interface is not handed to the page allocator, this is
 | |
|  * the responsibility of the caller (e.g. like normal memblock-allocated
 | |
|  * memory).
 | |
|  */
 | |
| void __init *cma_reserve_early(struct cma *cma, unsigned long size)
 | |
| {
 | |
| 	int r;
 | |
| 	struct cma_memrange *cmr;
 | |
| 	unsigned long available;
 | |
| 	void *ret = NULL;
 | |
| 
 | |
| 	if (!cma || !cma->count)
 | |
| 		return NULL;
 | |
| 	/*
 | |
| 	 * Can only be called early in init.
 | |
| 	 */
 | |
| 	if (test_bit(CMA_ACTIVATED, &cma->flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	size >>= PAGE_SHIFT;
 | |
| 
 | |
| 	if (size > cma->available_count)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (r = 0; r < cma->nranges; r++) {
 | |
| 		cmr = &cma->ranges[r];
 | |
| 		available = cmr->count - (cmr->early_pfn - cmr->base_pfn);
 | |
| 		if (size <= available) {
 | |
| 			ret = phys_to_virt(PFN_PHYS(cmr->early_pfn));
 | |
| 			cmr->early_pfn += size;
 | |
| 			cma->available_count -= size;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 |