mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 545b8c8df4
			
		
	
	
		545b8c8df4
		
	
	
	
	
		
			
			Get rid of the __call_single_node union and cleanup the API a little to avoid external code relying on the structure layout as much. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
		
			
				
	
	
		
			709 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			709 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  *
 | |
|  * Copyright (C) 2000, 2001 Kanoj Sarcar
 | |
|  * Copyright (C) 2000, 2001 Ralf Baechle
 | |
|  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 | |
|  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 | |
|  */
 | |
| #include <linux/cache.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/irqdomain.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_irq.h>
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/ginvt.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/idle.h>
 | |
| #include <asm/r4k-timer.h>
 | |
| #include <asm/mips-cps.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/time.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/maar.h>
 | |
| 
 | |
| int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
 | |
| EXPORT_SYMBOL(__cpu_number_map);
 | |
| 
 | |
| int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 | |
| EXPORT_SYMBOL(__cpu_logical_map);
 | |
| 
 | |
| /* Number of TCs (or siblings in Intel speak) per CPU core */
 | |
| int smp_num_siblings = 1;
 | |
| EXPORT_SYMBOL(smp_num_siblings);
 | |
| 
 | |
| /* representing the TCs (or siblings in Intel speak) of each logical CPU */
 | |
| cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 | |
| EXPORT_SYMBOL(cpu_sibling_map);
 | |
| 
 | |
| /* representing the core map of multi-core chips of each logical CPU */
 | |
| cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 | |
| EXPORT_SYMBOL(cpu_core_map);
 | |
| 
 | |
| static DECLARE_COMPLETION(cpu_starting);
 | |
| static DECLARE_COMPLETION(cpu_running);
 | |
| 
 | |
| /*
 | |
|  * A logcal cpu mask containing only one VPE per core to
 | |
|  * reduce the number of IPIs on large MT systems.
 | |
|  */
 | |
| cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
 | |
| EXPORT_SYMBOL(cpu_foreign_map);
 | |
| 
 | |
| /* representing cpus for which sibling maps can be computed */
 | |
| static cpumask_t cpu_sibling_setup_map;
 | |
| 
 | |
| /* representing cpus for which core maps can be computed */
 | |
| static cpumask_t cpu_core_setup_map;
 | |
| 
 | |
| cpumask_t cpu_coherent_mask;
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_IRQ_IPI
 | |
| static struct irq_desc *call_desc;
 | |
| static struct irq_desc *sched_desc;
 | |
| #endif
 | |
| 
 | |
| static inline void set_cpu_sibling_map(int cpu)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
 | |
| 
 | |
| 	if (smp_num_siblings > 1) {
 | |
| 		for_each_cpu(i, &cpu_sibling_setup_map) {
 | |
| 			if (cpus_are_siblings(cpu, i)) {
 | |
| 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
 | |
| 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
 | |
| 			}
 | |
| 		}
 | |
| 	} else
 | |
| 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
 | |
| }
 | |
| 
 | |
| static inline void set_cpu_core_map(int cpu)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
 | |
| 
 | |
| 	for_each_cpu(i, &cpu_core_setup_map) {
 | |
| 		if (cpu_data[cpu].package == cpu_data[i].package) {
 | |
| 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
 | |
| 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate a new cpu_foreign_map mask whenever a
 | |
|  * new cpu appears or disappears.
 | |
|  */
 | |
| void calculate_cpu_foreign_map(void)
 | |
| {
 | |
| 	int i, k, core_present;
 | |
| 	cpumask_t temp_foreign_map;
 | |
| 
 | |
| 	/* Re-calculate the mask */
 | |
| 	cpumask_clear(&temp_foreign_map);
 | |
| 	for_each_online_cpu(i) {
 | |
| 		core_present = 0;
 | |
| 		for_each_cpu(k, &temp_foreign_map)
 | |
| 			if (cpus_are_siblings(i, k))
 | |
| 				core_present = 1;
 | |
| 		if (!core_present)
 | |
| 			cpumask_set_cpu(i, &temp_foreign_map);
 | |
| 	}
 | |
| 
 | |
| 	for_each_online_cpu(i)
 | |
| 		cpumask_andnot(&cpu_foreign_map[i],
 | |
| 			       &temp_foreign_map, &cpu_sibling_map[i]);
 | |
| }
 | |
| 
 | |
| const struct plat_smp_ops *mp_ops;
 | |
| EXPORT_SYMBOL(mp_ops);
 | |
| 
 | |
| void register_smp_ops(const struct plat_smp_ops *ops)
 | |
| {
 | |
| 	if (mp_ops)
 | |
| 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 | |
| 
 | |
| 	mp_ops = ops;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_IRQ_IPI
 | |
| void mips_smp_send_ipi_single(int cpu, unsigned int action)
 | |
| {
 | |
| 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
 | |
| }
 | |
| 
 | |
| void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned int core;
 | |
| 	int cpu;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case SMP_CALL_FUNCTION:
 | |
| 		__ipi_send_mask(call_desc, mask);
 | |
| 		break;
 | |
| 
 | |
| 	case SMP_RESCHEDULE_YOURSELF:
 | |
| 		__ipi_send_mask(sched_desc, mask);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (mips_cpc_present()) {
 | |
| 		for_each_cpu(cpu, mask) {
 | |
| 			if (cpus_are_siblings(cpu, smp_processor_id()))
 | |
| 				continue;
 | |
| 
 | |
| 			core = cpu_core(&cpu_data[cpu]);
 | |
| 
 | |
| 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
 | |
| 				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 | |
| 				mips_cpc_lock_other(core);
 | |
| 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
 | |
| 				mips_cpc_unlock_other();
 | |
| 				mips_cm_unlock_other();
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| 
 | |
| static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	scheduler_ipi();
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	generic_smp_call_function_interrupt();
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void smp_ipi_init_one(unsigned int virq, const char *name,
 | |
| 			     irq_handler_t handler)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	irq_set_handler(virq, handle_percpu_irq);
 | |
| 	ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
 | |
| 	BUG_ON(ret);
 | |
| }
 | |
| 
 | |
| static unsigned int call_virq, sched_virq;
 | |
| 
 | |
| int mips_smp_ipi_allocate(const struct cpumask *mask)
 | |
| {
 | |
| 	int virq;
 | |
| 	struct irq_domain *ipidomain;
 | |
| 	struct device_node *node;
 | |
| 
 | |
| 	node = of_irq_find_parent(of_root);
 | |
| 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some platforms have half DT setup. So if we found irq node but
 | |
| 	 * didn't find an ipidomain, try to search for one that is not in the
 | |
| 	 * DT.
 | |
| 	 */
 | |
| 	if (node && !ipidomain)
 | |
| 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
 | |
| 
 | |
| 	/*
 | |
| 	 * There are systems which use IPI IRQ domains, but only have one
 | |
| 	 * registered when some runtime condition is met. For example a Malta
 | |
| 	 * kernel may include support for GIC & CPU interrupt controller IPI
 | |
| 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
 | |
| 	 * neither will be supported or registered.
 | |
| 	 *
 | |
| 	 * We only have a problem if we're actually using multiple CPUs so fail
 | |
| 	 * loudly if that is the case. Otherwise simply return, skipping IPI
 | |
| 	 * setup, if we're running with only a single CPU.
 | |
| 	 */
 | |
| 	if (!ipidomain) {
 | |
| 		BUG_ON(num_present_cpus() > 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	virq = irq_reserve_ipi(ipidomain, mask);
 | |
| 	BUG_ON(!virq);
 | |
| 	if (!call_virq)
 | |
| 		call_virq = virq;
 | |
| 
 | |
| 	virq = irq_reserve_ipi(ipidomain, mask);
 | |
| 	BUG_ON(!virq);
 | |
| 	if (!sched_virq)
 | |
| 		sched_virq = virq;
 | |
| 
 | |
| 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		for_each_cpu(cpu, mask) {
 | |
| 			smp_ipi_init_one(call_virq + cpu, "IPI call",
 | |
| 					 ipi_call_interrupt);
 | |
| 			smp_ipi_init_one(sched_virq + cpu, "IPI resched",
 | |
| 					 ipi_resched_interrupt);
 | |
| 		}
 | |
| 	} else {
 | |
| 		smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
 | |
| 		smp_ipi_init_one(sched_virq, "IPI resched",
 | |
| 				 ipi_resched_interrupt);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int mips_smp_ipi_free(const struct cpumask *mask)
 | |
| {
 | |
| 	struct irq_domain *ipidomain;
 | |
| 	struct device_node *node;
 | |
| 
 | |
| 	node = of_irq_find_parent(of_root);
 | |
| 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some platforms have half DT setup. So if we found irq node but
 | |
| 	 * didn't find an ipidomain, try to search for one that is not in the
 | |
| 	 * DT.
 | |
| 	 */
 | |
| 	if (node && !ipidomain)
 | |
| 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
 | |
| 
 | |
| 	BUG_ON(!ipidomain);
 | |
| 
 | |
| 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		for_each_cpu(cpu, mask) {
 | |
| 			free_irq(call_virq + cpu, NULL);
 | |
| 			free_irq(sched_virq + cpu, NULL);
 | |
| 		}
 | |
| 	}
 | |
| 	irq_destroy_ipi(call_virq, mask);
 | |
| 	irq_destroy_ipi(sched_virq, mask);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __init mips_smp_ipi_init(void)
 | |
| {
 | |
| 	if (num_possible_cpus() == 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	mips_smp_ipi_allocate(cpu_possible_mask);
 | |
| 
 | |
| 	call_desc = irq_to_desc(call_virq);
 | |
| 	sched_desc = irq_to_desc(sched_virq);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(mips_smp_ipi_init);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * First C code run on the secondary CPUs after being started up by
 | |
|  * the master.
 | |
|  */
 | |
| asmlinkage void start_secondary(void)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu_probe();
 | |
| 	per_cpu_trap_init(false);
 | |
| 	mips_clockevent_init();
 | |
| 	mp_ops->init_secondary();
 | |
| 	cpu_report();
 | |
| 	maar_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX parity protection should be folded in here when it's converted
 | |
| 	 * to an option instead of something based on .cputype
 | |
| 	 */
 | |
| 
 | |
| 	calibrate_delay();
 | |
| 	preempt_disable();
 | |
| 	cpu = smp_processor_id();
 | |
| 	cpu_data[cpu].udelay_val = loops_per_jiffy;
 | |
| 
 | |
| 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
 | |
| 	notify_cpu_starting(cpu);
 | |
| 
 | |
| 	/* Notify boot CPU that we're starting & ready to sync counters */
 | |
| 	complete(&cpu_starting);
 | |
| 
 | |
| 	synchronise_count_slave(cpu);
 | |
| 
 | |
| 	/* The CPU is running and counters synchronised, now mark it online */
 | |
| 	set_cpu_online(cpu, true);
 | |
| 
 | |
| 	set_cpu_sibling_map(cpu);
 | |
| 	set_cpu_core_map(cpu);
 | |
| 
 | |
| 	calculate_cpu_foreign_map();
 | |
| 
 | |
| 	/*
 | |
| 	 * Notify boot CPU that we're up & online and it can safely return
 | |
| 	 * from __cpu_up
 | |
| 	 */
 | |
| 	complete(&cpu_running);
 | |
| 
 | |
| 	/*
 | |
| 	 * irq will be enabled in ->smp_finish(), enabling it too early
 | |
| 	 * is dangerous.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!irqs_disabled());
 | |
| 	mp_ops->smp_finish();
 | |
| 
 | |
| 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 | |
| }
 | |
| 
 | |
| static void stop_this_cpu(void *dummy)
 | |
| {
 | |
| 	/*
 | |
| 	 * Remove this CPU:
 | |
| 	 */
 | |
| 
 | |
| 	set_cpu_online(smp_processor_id(), false);
 | |
| 	calculate_cpu_foreign_map();
 | |
| 	local_irq_disable();
 | |
| 	while (1);
 | |
| }
 | |
| 
 | |
| void smp_send_stop(void)
 | |
| {
 | |
| 	smp_call_function(stop_this_cpu, NULL, 0);
 | |
| }
 | |
| 
 | |
| void __init smp_cpus_done(unsigned int max_cpus)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* called from main before smp_init() */
 | |
| void __init smp_prepare_cpus(unsigned int max_cpus)
 | |
| {
 | |
| 	init_new_context(current, &init_mm);
 | |
| 	current_thread_info()->cpu = 0;
 | |
| 	mp_ops->prepare_cpus(max_cpus);
 | |
| 	set_cpu_sibling_map(0);
 | |
| 	set_cpu_core_map(0);
 | |
| 	calculate_cpu_foreign_map();
 | |
| #ifndef CONFIG_HOTPLUG_CPU
 | |
| 	init_cpu_present(cpu_possible_mask);
 | |
| #endif
 | |
| 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
 | |
| }
 | |
| 
 | |
| /* preload SMP state for boot cpu */
 | |
| void smp_prepare_boot_cpu(void)
 | |
| {
 | |
| 	if (mp_ops->prepare_boot_cpu)
 | |
| 		mp_ops->prepare_boot_cpu();
 | |
| 	set_cpu_possible(0, true);
 | |
| 	set_cpu_online(0, true);
 | |
| }
 | |
| 
 | |
| int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = mp_ops->boot_secondary(cpu, tidle);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Wait for CPU to start and be ready to sync counters */
 | |
| 	if (!wait_for_completion_timeout(&cpu_starting,
 | |
| 					 msecs_to_jiffies(1000))) {
 | |
| 		pr_crit("CPU%u: failed to start\n", cpu);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	synchronise_count_master(cpu);
 | |
| 
 | |
| 	/* Wait for CPU to finish startup & mark itself online before return */
 | |
| 	wait_for_completion(&cpu_running);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Not really SMP stuff ... */
 | |
| int setup_profiling_timer(unsigned int multiplier)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void flush_tlb_all_ipi(void *info)
 | |
| {
 | |
| 	local_flush_tlb_all();
 | |
| }
 | |
| 
 | |
| void flush_tlb_all(void)
 | |
| {
 | |
| 	if (cpu_has_mmid) {
 | |
| 		htw_stop();
 | |
| 		ginvt_full();
 | |
| 		sync_ginv();
 | |
| 		instruction_hazard();
 | |
| 		htw_start();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
 | |
| }
 | |
| 
 | |
| static void flush_tlb_mm_ipi(void *mm)
 | |
| {
 | |
| 	drop_mmu_context((struct mm_struct *)mm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Special Variant of smp_call_function for use by TLB functions:
 | |
|  *
 | |
|  *  o No return value
 | |
|  *  o collapses to normal function call on UP kernels
 | |
|  *  o collapses to normal function call on systems with a single shared
 | |
|  *    primary cache.
 | |
|  */
 | |
| static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
 | |
| {
 | |
| 	smp_call_function(func, info, 1);
 | |
| }
 | |
| 
 | |
| static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	smp_on_other_tlbs(func, info);
 | |
| 	func(info);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following tlb flush calls are invoked when old translations are
 | |
|  * being torn down, or pte attributes are changing. For single threaded
 | |
|  * address spaces, a new context is obtained on the current cpu, and tlb
 | |
|  * context on other cpus are invalidated to force a new context allocation
 | |
|  * at switch_mm time, should the mm ever be used on other cpus. For
 | |
|  * multithreaded address spaces, intercpu interrupts have to be sent.
 | |
|  * Another case where intercpu interrupts are required is when the target
 | |
|  * mm might be active on another cpu (eg debuggers doing the flushes on
 | |
|  * behalf of debugees, kswapd stealing pages from another process etc).
 | |
|  * Kanoj 07/00.
 | |
|  */
 | |
| 
 | |
| void flush_tlb_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	if (cpu_has_mmid) {
 | |
| 		/*
 | |
| 		 * No need to worry about other CPUs - the ginvt in
 | |
| 		 * drop_mmu_context() will be globalized.
 | |
| 		 */
 | |
| 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 | |
| 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
 | |
| 	} else {
 | |
| 		unsigned int cpu;
 | |
| 
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
 | |
| 				set_cpu_context(cpu, mm, 0);
 | |
| 		}
 | |
| 	}
 | |
| 	drop_mmu_context(mm);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| struct flush_tlb_data {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long addr1;
 | |
| 	unsigned long addr2;
 | |
| };
 | |
| 
 | |
| static void flush_tlb_range_ipi(void *info)
 | |
| {
 | |
| 	struct flush_tlb_data *fd = info;
 | |
| 
 | |
| 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
 | |
| }
 | |
| 
 | |
| void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long addr;
 | |
| 	u32 old_mmid;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	if (cpu_has_mmid) {
 | |
| 		htw_stop();
 | |
| 		old_mmid = read_c0_memorymapid();
 | |
| 		write_c0_memorymapid(cpu_asid(0, mm));
 | |
| 		mtc0_tlbw_hazard();
 | |
| 		addr = round_down(start, PAGE_SIZE * 2);
 | |
| 		end = round_up(end, PAGE_SIZE * 2);
 | |
| 		do {
 | |
| 			ginvt_va_mmid(addr);
 | |
| 			sync_ginv();
 | |
| 			addr += PAGE_SIZE * 2;
 | |
| 		} while (addr < end);
 | |
| 		write_c0_memorymapid(old_mmid);
 | |
| 		instruction_hazard();
 | |
| 		htw_start();
 | |
| 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 | |
| 		struct flush_tlb_data fd = {
 | |
| 			.vma = vma,
 | |
| 			.addr1 = start,
 | |
| 			.addr2 = end,
 | |
| 		};
 | |
| 
 | |
| 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
 | |
| 		local_flush_tlb_range(vma, start, end);
 | |
| 	} else {
 | |
| 		unsigned int cpu;
 | |
| 		int exec = vma->vm_flags & VM_EXEC;
 | |
| 
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			/*
 | |
| 			 * flush_cache_range() will only fully flush icache if
 | |
| 			 * the VMA is executable, otherwise we must invalidate
 | |
| 			 * ASID without it appearing to has_valid_asid() as if
 | |
| 			 * mm has been completely unused by that CPU.
 | |
| 			 */
 | |
| 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
 | |
| 				set_cpu_context(cpu, mm, !exec);
 | |
| 		}
 | |
| 		local_flush_tlb_range(vma, start, end);
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void flush_tlb_kernel_range_ipi(void *info)
 | |
| {
 | |
| 	struct flush_tlb_data *fd = info;
 | |
| 
 | |
| 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
 | |
| }
 | |
| 
 | |
| void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	struct flush_tlb_data fd = {
 | |
| 		.addr1 = start,
 | |
| 		.addr2 = end,
 | |
| 	};
 | |
| 
 | |
| 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
 | |
| }
 | |
| 
 | |
| static void flush_tlb_page_ipi(void *info)
 | |
| {
 | |
| 	struct flush_tlb_data *fd = info;
 | |
| 
 | |
| 	local_flush_tlb_page(fd->vma, fd->addr1);
 | |
| }
 | |
| 
 | |
| void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 | |
| {
 | |
| 	u32 old_mmid;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	if (cpu_has_mmid) {
 | |
| 		htw_stop();
 | |
| 		old_mmid = read_c0_memorymapid();
 | |
| 		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
 | |
| 		mtc0_tlbw_hazard();
 | |
| 		ginvt_va_mmid(page);
 | |
| 		sync_ginv();
 | |
| 		write_c0_memorymapid(old_mmid);
 | |
| 		instruction_hazard();
 | |
| 		htw_start();
 | |
| 	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
 | |
| 		   (current->mm != vma->vm_mm)) {
 | |
| 		struct flush_tlb_data fd = {
 | |
| 			.vma = vma,
 | |
| 			.addr1 = page,
 | |
| 		};
 | |
| 
 | |
| 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
 | |
| 		local_flush_tlb_page(vma, page);
 | |
| 	} else {
 | |
| 		unsigned int cpu;
 | |
| 
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			/*
 | |
| 			 * flush_cache_page() only does partial flushes, so
 | |
| 			 * invalidate ASID without it appearing to
 | |
| 			 * has_valid_asid() as if mm has been completely unused
 | |
| 			 * by that CPU.
 | |
| 			 */
 | |
| 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
 | |
| 				set_cpu_context(cpu, vma->vm_mm, 1);
 | |
| 		}
 | |
| 		local_flush_tlb_page(vma, page);
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void flush_tlb_one_ipi(void *info)
 | |
| {
 | |
| 	unsigned long vaddr = (unsigned long) info;
 | |
| 
 | |
| 	local_flush_tlb_one(vaddr);
 | |
| }
 | |
| 
 | |
| void flush_tlb_one(unsigned long vaddr)
 | |
| {
 | |
| 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(flush_tlb_page);
 | |
| EXPORT_SYMBOL(flush_tlb_one);
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 | |
| 
 | |
| static void tick_broadcast_callee(void *info)
 | |
| {
 | |
| 	tick_receive_broadcast();
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
 | |
| 	CSD_INIT(tick_broadcast_callee, NULL);
 | |
| 
 | |
| void tick_broadcast(const struct cpumask *mask)
 | |
| {
 | |
| 	call_single_data_t *csd;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, mask) {
 | |
| 		csd = &per_cpu(tick_broadcast_csd, cpu);
 | |
| 		smp_call_function_single_async(cpu, csd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
 |