mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			925 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			925 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * CPUFreq governor based on scheduler-provided CPU utilization data.
 | |
|  *
 | |
|  * Copyright (C) 2016, Intel Corporation
 | |
|  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include "sched.h"
 | |
| 
 | |
| #include <linux/sched/cpufreq.h>
 | |
| #include <trace/events/power.h>
 | |
| 
 | |
| #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
 | |
| 
 | |
| struct sugov_tunables {
 | |
| 	struct gov_attr_set	attr_set;
 | |
| 	unsigned int		rate_limit_us;
 | |
| };
 | |
| 
 | |
| struct sugov_policy {
 | |
| 	struct cpufreq_policy	*policy;
 | |
| 
 | |
| 	struct sugov_tunables	*tunables;
 | |
| 	struct list_head	tunables_hook;
 | |
| 
 | |
| 	raw_spinlock_t		update_lock;	/* For shared policies */
 | |
| 	u64			last_freq_update_time;
 | |
| 	s64			freq_update_delay_ns;
 | |
| 	unsigned int		next_freq;
 | |
| 	unsigned int		cached_raw_freq;
 | |
| 
 | |
| 	/* The next fields are only needed if fast switch cannot be used: */
 | |
| 	struct			irq_work irq_work;
 | |
| 	struct			kthread_work work;
 | |
| 	struct			mutex work_lock;
 | |
| 	struct			kthread_worker worker;
 | |
| 	struct task_struct	*thread;
 | |
| 	bool			work_in_progress;
 | |
| 
 | |
| 	bool			limits_changed;
 | |
| 	bool			need_freq_update;
 | |
| };
 | |
| 
 | |
| struct sugov_cpu {
 | |
| 	struct update_util_data	update_util;
 | |
| 	struct sugov_policy	*sg_policy;
 | |
| 	unsigned int		cpu;
 | |
| 
 | |
| 	bool			iowait_boost_pending;
 | |
| 	unsigned int		iowait_boost;
 | |
| 	u64			last_update;
 | |
| 
 | |
| 	unsigned long		bw_dl;
 | |
| 	unsigned long		max;
 | |
| 
 | |
| 	/* The field below is for single-CPU policies only: */
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| 	unsigned long		saved_idle_calls;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
 | |
| 
 | |
| /************************ Governor internals ***********************/
 | |
| 
 | |
| static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
 | |
| {
 | |
| 	s64 delta_ns;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since cpufreq_update_util() is called with rq->lock held for
 | |
| 	 * the @target_cpu, our per-CPU data is fully serialized.
 | |
| 	 *
 | |
| 	 * However, drivers cannot in general deal with cross-CPU
 | |
| 	 * requests, so while get_next_freq() will work, our
 | |
| 	 * sugov_update_commit() call may not for the fast switching platforms.
 | |
| 	 *
 | |
| 	 * Hence stop here for remote requests if they aren't supported
 | |
| 	 * by the hardware, as calculating the frequency is pointless if
 | |
| 	 * we cannot in fact act on it.
 | |
| 	 *
 | |
| 	 * This is needed on the slow switching platforms too to prevent CPUs
 | |
| 	 * going offline from leaving stale IRQ work items behind.
 | |
| 	 */
 | |
| 	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
 | |
| 		return false;
 | |
| 
 | |
| 	if (unlikely(sg_policy->limits_changed)) {
 | |
| 		sg_policy->limits_changed = false;
 | |
| 		sg_policy->need_freq_update = true;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	delta_ns = time - sg_policy->last_freq_update_time;
 | |
| 
 | |
| 	return delta_ns >= sg_policy->freq_update_delay_ns;
 | |
| }
 | |
| 
 | |
| static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
 | |
| 				   unsigned int next_freq)
 | |
| {
 | |
| 	if (!sg_policy->need_freq_update) {
 | |
| 		if (sg_policy->next_freq == next_freq)
 | |
| 			return false;
 | |
| 	} else {
 | |
| 		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
 | |
| 	}
 | |
| 
 | |
| 	sg_policy->next_freq = next_freq;
 | |
| 	sg_policy->last_freq_update_time = time;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
 | |
| 			      unsigned int next_freq)
 | |
| {
 | |
| 	if (sugov_update_next_freq(sg_policy, time, next_freq))
 | |
| 		cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
 | |
| }
 | |
| 
 | |
| static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
 | |
| 				  unsigned int next_freq)
 | |
| {
 | |
| 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
 | |
| 		return;
 | |
| 
 | |
| 	if (!sg_policy->work_in_progress) {
 | |
| 		sg_policy->work_in_progress = true;
 | |
| 		irq_work_queue(&sg_policy->irq_work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_next_freq - Compute a new frequency for a given cpufreq policy.
 | |
|  * @sg_policy: schedutil policy object to compute the new frequency for.
 | |
|  * @util: Current CPU utilization.
 | |
|  * @max: CPU capacity.
 | |
|  *
 | |
|  * If the utilization is frequency-invariant, choose the new frequency to be
 | |
|  * proportional to it, that is
 | |
|  *
 | |
|  * next_freq = C * max_freq * util / max
 | |
|  *
 | |
|  * Otherwise, approximate the would-be frequency-invariant utilization by
 | |
|  * util_raw * (curr_freq / max_freq) which leads to
 | |
|  *
 | |
|  * next_freq = C * curr_freq * util_raw / max
 | |
|  *
 | |
|  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
 | |
|  *
 | |
|  * The lowest driver-supported frequency which is equal or greater than the raw
 | |
|  * next_freq (as calculated above) is returned, subject to policy min/max and
 | |
|  * cpufreq driver limitations.
 | |
|  */
 | |
| static unsigned int get_next_freq(struct sugov_policy *sg_policy,
 | |
| 				  unsigned long util, unsigned long max)
 | |
| {
 | |
| 	struct cpufreq_policy *policy = sg_policy->policy;
 | |
| 	unsigned int freq = arch_scale_freq_invariant() ?
 | |
| 				policy->cpuinfo.max_freq : policy->cur;
 | |
| 
 | |
| 	freq = map_util_freq(util, freq, max);
 | |
| 
 | |
| 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
 | |
| 		return sg_policy->next_freq;
 | |
| 
 | |
| 	sg_policy->cached_raw_freq = freq;
 | |
| 	return cpufreq_driver_resolve_freq(policy, freq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function computes an effective utilization for the given CPU, to be
 | |
|  * used for frequency selection given the linear relation: f = u * f_max.
 | |
|  *
 | |
|  * The scheduler tracks the following metrics:
 | |
|  *
 | |
|  *   cpu_util_{cfs,rt,dl,irq}()
 | |
|  *   cpu_bw_dl()
 | |
|  *
 | |
|  * Where the cfs,rt and dl util numbers are tracked with the same metric and
 | |
|  * synchronized windows and are thus directly comparable.
 | |
|  *
 | |
|  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
 | |
|  * which excludes things like IRQ and steal-time. These latter are then accrued
 | |
|  * in the irq utilization.
 | |
|  *
 | |
|  * The DL bandwidth number otoh is not a measured metric but a value computed
 | |
|  * based on the task model parameters and gives the minimal utilization
 | |
|  * required to meet deadlines.
 | |
|  */
 | |
| unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
 | |
| 				 unsigned long max, enum schedutil_type type,
 | |
| 				 struct task_struct *p)
 | |
| {
 | |
| 	unsigned long dl_util, util, irq;
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	if (!uclamp_is_used() &&
 | |
| 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
 | |
| 		return max;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Early check to see if IRQ/steal time saturates the CPU, can be
 | |
| 	 * because of inaccuracies in how we track these -- see
 | |
| 	 * update_irq_load_avg().
 | |
| 	 */
 | |
| 	irq = cpu_util_irq(rq);
 | |
| 	if (unlikely(irq >= max))
 | |
| 		return max;
 | |
| 
 | |
| 	/*
 | |
| 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
 | |
| 	 * CFS tasks and we use the same metric to track the effective
 | |
| 	 * utilization (PELT windows are synchronized) we can directly add them
 | |
| 	 * to obtain the CPU's actual utilization.
 | |
| 	 *
 | |
| 	 * CFS and RT utilization can be boosted or capped, depending on
 | |
| 	 * utilization clamp constraints requested by currently RUNNABLE
 | |
| 	 * tasks.
 | |
| 	 * When there are no CFS RUNNABLE tasks, clamps are released and
 | |
| 	 * frequency will be gracefully reduced with the utilization decay.
 | |
| 	 */
 | |
| 	util = util_cfs + cpu_util_rt(rq);
 | |
| 	if (type == FREQUENCY_UTIL)
 | |
| 		util = uclamp_rq_util_with(rq, util, p);
 | |
| 
 | |
| 	dl_util = cpu_util_dl(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * For frequency selection we do not make cpu_util_dl() a permanent part
 | |
| 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
 | |
| 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
 | |
| 	 * that we select f_max when there is no idle time.
 | |
| 	 *
 | |
| 	 * NOTE: numerical errors or stop class might cause us to not quite hit
 | |
| 	 * saturation when we should -- something for later.
 | |
| 	 */
 | |
| 	if (util + dl_util >= max)
 | |
| 		return max;
 | |
| 
 | |
| 	/*
 | |
| 	 * OTOH, for energy computation we need the estimated running time, so
 | |
| 	 * include util_dl and ignore dl_bw.
 | |
| 	 */
 | |
| 	if (type == ENERGY_UTIL)
 | |
| 		util += dl_util;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is still idle time; further improve the number by using the
 | |
| 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
 | |
| 	 * need to scale the task numbers:
 | |
| 	 *
 | |
| 	 *              max - irq
 | |
| 	 *   U' = irq + --------- * U
 | |
| 	 *                 max
 | |
| 	 */
 | |
| 	util = scale_irq_capacity(util, irq, max);
 | |
| 	util += irq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Bandwidth required by DEADLINE must always be granted while, for
 | |
| 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
 | |
| 	 * to gracefully reduce the frequency when no tasks show up for longer
 | |
| 	 * periods of time.
 | |
| 	 *
 | |
| 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
 | |
| 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
 | |
| 	 * an interface. So, we only do the latter for now.
 | |
| 	 */
 | |
| 	if (type == FREQUENCY_UTIL)
 | |
| 		util += cpu_bw_dl(rq);
 | |
| 
 | |
| 	return min(max, util);
 | |
| }
 | |
| 
 | |
| static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(sg_cpu->cpu);
 | |
| 	unsigned long util = cpu_util_cfs(rq);
 | |
| 	unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
 | |
| 
 | |
| 	sg_cpu->max = max;
 | |
| 	sg_cpu->bw_dl = cpu_bw_dl(rq);
 | |
| 
 | |
| 	return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
 | |
|  * @sg_cpu: the sugov data for the CPU to boost
 | |
|  * @time: the update time from the caller
 | |
|  * @set_iowait_boost: true if an IO boost has been requested
 | |
|  *
 | |
|  * The IO wait boost of a task is disabled after a tick since the last update
 | |
|  * of a CPU. If a new IO wait boost is requested after more then a tick, then
 | |
|  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
 | |
|  * efficiency by ignoring sporadic wakeups from IO.
 | |
|  */
 | |
| static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
 | |
| 			       bool set_iowait_boost)
 | |
| {
 | |
| 	s64 delta_ns = time - sg_cpu->last_update;
 | |
| 
 | |
| 	/* Reset boost only if a tick has elapsed since last request */
 | |
| 	if (delta_ns <= TICK_NSEC)
 | |
| 		return false;
 | |
| 
 | |
| 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
 | |
| 	sg_cpu->iowait_boost_pending = set_iowait_boost;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
 | |
|  * @sg_cpu: the sugov data for the CPU to boost
 | |
|  * @time: the update time from the caller
 | |
|  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
 | |
|  *
 | |
|  * Each time a task wakes up after an IO operation, the CPU utilization can be
 | |
|  * boosted to a certain utilization which doubles at each "frequent and
 | |
|  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
 | |
|  * of the maximum OPP.
 | |
|  *
 | |
|  * To keep doubling, an IO boost has to be requested at least once per tick,
 | |
|  * otherwise we restart from the utilization of the minimum OPP.
 | |
|  */
 | |
| static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
 | |
| 			       unsigned int flags)
 | |
| {
 | |
| 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
 | |
| 
 | |
| 	/* Reset boost if the CPU appears to have been idle enough */
 | |
| 	if (sg_cpu->iowait_boost &&
 | |
| 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
 | |
| 		return;
 | |
| 
 | |
| 	/* Boost only tasks waking up after IO */
 | |
| 	if (!set_iowait_boost)
 | |
| 		return;
 | |
| 
 | |
| 	/* Ensure boost doubles only one time at each request */
 | |
| 	if (sg_cpu->iowait_boost_pending)
 | |
| 		return;
 | |
| 	sg_cpu->iowait_boost_pending = true;
 | |
| 
 | |
| 	/* Double the boost at each request */
 | |
| 	if (sg_cpu->iowait_boost) {
 | |
| 		sg_cpu->iowait_boost =
 | |
| 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* First wakeup after IO: start with minimum boost */
 | |
| 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sugov_iowait_apply() - Apply the IO boost to a CPU.
 | |
|  * @sg_cpu: the sugov data for the cpu to boost
 | |
|  * @time: the update time from the caller
 | |
|  * @util: the utilization to (eventually) boost
 | |
|  * @max: the maximum value the utilization can be boosted to
 | |
|  *
 | |
|  * A CPU running a task which woken up after an IO operation can have its
 | |
|  * utilization boosted to speed up the completion of those IO operations.
 | |
|  * The IO boost value is increased each time a task wakes up from IO, in
 | |
|  * sugov_iowait_apply(), and it's instead decreased by this function,
 | |
|  * each time an increase has not been requested (!iowait_boost_pending).
 | |
|  *
 | |
|  * A CPU which also appears to have been idle for at least one tick has also
 | |
|  * its IO boost utilization reset.
 | |
|  *
 | |
|  * This mechanism is designed to boost high frequently IO waiting tasks, while
 | |
|  * being more conservative on tasks which does sporadic IO operations.
 | |
|  */
 | |
| static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
 | |
| 					unsigned long util, unsigned long max)
 | |
| {
 | |
| 	unsigned long boost;
 | |
| 
 | |
| 	/* No boost currently required */
 | |
| 	if (!sg_cpu->iowait_boost)
 | |
| 		return util;
 | |
| 
 | |
| 	/* Reset boost if the CPU appears to have been idle enough */
 | |
| 	if (sugov_iowait_reset(sg_cpu, time, false))
 | |
| 		return util;
 | |
| 
 | |
| 	if (!sg_cpu->iowait_boost_pending) {
 | |
| 		/*
 | |
| 		 * No boost pending; reduce the boost value.
 | |
| 		 */
 | |
| 		sg_cpu->iowait_boost >>= 1;
 | |
| 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
 | |
| 			sg_cpu->iowait_boost = 0;
 | |
| 			return util;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sg_cpu->iowait_boost_pending = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * @util is already in capacity scale; convert iowait_boost
 | |
| 	 * into the same scale so we can compare.
 | |
| 	 */
 | |
| 	boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
 | |
| 	return max(boost, util);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_COMMON
 | |
| static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
 | |
| {
 | |
| 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
 | |
| 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
 | |
| 
 | |
| 	sg_cpu->saved_idle_calls = idle_calls;
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
 | |
| #endif /* CONFIG_NO_HZ_COMMON */
 | |
| 
 | |
| /*
 | |
|  * Make sugov_should_update_freq() ignore the rate limit when DL
 | |
|  * has increased the utilization.
 | |
|  */
 | |
| static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
 | |
| {
 | |
| 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
 | |
| 		sg_policy->limits_changed = true;
 | |
| }
 | |
| 
 | |
| static void sugov_update_single(struct update_util_data *hook, u64 time,
 | |
| 				unsigned int flags)
 | |
| {
 | |
| 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
 | |
| 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
 | |
| 	unsigned long util, max;
 | |
| 	unsigned int next_f;
 | |
| 	unsigned int cached_freq = sg_policy->cached_raw_freq;
 | |
| 
 | |
| 	sugov_iowait_boost(sg_cpu, time, flags);
 | |
| 	sg_cpu->last_update = time;
 | |
| 
 | |
| 	ignore_dl_rate_limit(sg_cpu, sg_policy);
 | |
| 
 | |
| 	if (!sugov_should_update_freq(sg_policy, time))
 | |
| 		return;
 | |
| 
 | |
| 	util = sugov_get_util(sg_cpu);
 | |
| 	max = sg_cpu->max;
 | |
| 	util = sugov_iowait_apply(sg_cpu, time, util, max);
 | |
| 	next_f = get_next_freq(sg_policy, util, max);
 | |
| 	/*
 | |
| 	 * Do not reduce the frequency if the CPU has not been idle
 | |
| 	 * recently, as the reduction is likely to be premature then.
 | |
| 	 */
 | |
| 	if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
 | |
| 		next_f = sg_policy->next_freq;
 | |
| 
 | |
| 		/* Restore cached freq as next_freq has changed */
 | |
| 		sg_policy->cached_raw_freq = cached_freq;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This code runs under rq->lock for the target CPU, so it won't run
 | |
| 	 * concurrently on two different CPUs for the same target and it is not
 | |
| 	 * necessary to acquire the lock in the fast switch case.
 | |
| 	 */
 | |
| 	if (sg_policy->policy->fast_switch_enabled) {
 | |
| 		sugov_fast_switch(sg_policy, time, next_f);
 | |
| 	} else {
 | |
| 		raw_spin_lock(&sg_policy->update_lock);
 | |
| 		sugov_deferred_update(sg_policy, time, next_f);
 | |
| 		raw_spin_unlock(&sg_policy->update_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
 | |
| {
 | |
| 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
 | |
| 	struct cpufreq_policy *policy = sg_policy->policy;
 | |
| 	unsigned long util = 0, max = 1;
 | |
| 	unsigned int j;
 | |
| 
 | |
| 	for_each_cpu(j, policy->cpus) {
 | |
| 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
 | |
| 		unsigned long j_util, j_max;
 | |
| 
 | |
| 		j_util = sugov_get_util(j_sg_cpu);
 | |
| 		j_max = j_sg_cpu->max;
 | |
| 		j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
 | |
| 
 | |
| 		if (j_util * max > j_max * util) {
 | |
| 			util = j_util;
 | |
| 			max = j_max;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return get_next_freq(sg_policy, util, max);
 | |
| }
 | |
| 
 | |
| static void
 | |
| sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
 | |
| {
 | |
| 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
 | |
| 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
 | |
| 	unsigned int next_f;
 | |
| 
 | |
| 	raw_spin_lock(&sg_policy->update_lock);
 | |
| 
 | |
| 	sugov_iowait_boost(sg_cpu, time, flags);
 | |
| 	sg_cpu->last_update = time;
 | |
| 
 | |
| 	ignore_dl_rate_limit(sg_cpu, sg_policy);
 | |
| 
 | |
| 	if (sugov_should_update_freq(sg_policy, time)) {
 | |
| 		next_f = sugov_next_freq_shared(sg_cpu, time);
 | |
| 
 | |
| 		if (sg_policy->policy->fast_switch_enabled)
 | |
| 			sugov_fast_switch(sg_policy, time, next_f);
 | |
| 		else
 | |
| 			sugov_deferred_update(sg_policy, time, next_f);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock(&sg_policy->update_lock);
 | |
| }
 | |
| 
 | |
| static void sugov_work(struct kthread_work *work)
 | |
| {
 | |
| 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
 | |
| 	unsigned int freq;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Hold sg_policy->update_lock shortly to handle the case where:
 | |
| 	 * incase sg_policy->next_freq is read here, and then updated by
 | |
| 	 * sugov_deferred_update() just before work_in_progress is set to false
 | |
| 	 * here, we may miss queueing the new update.
 | |
| 	 *
 | |
| 	 * Note: If a work was queued after the update_lock is released,
 | |
| 	 * sugov_work() will just be called again by kthread_work code; and the
 | |
| 	 * request will be proceed before the sugov thread sleeps.
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
 | |
| 	freq = sg_policy->next_freq;
 | |
| 	sg_policy->work_in_progress = false;
 | |
| 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
 | |
| 
 | |
| 	mutex_lock(&sg_policy->work_lock);
 | |
| 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
 | |
| 	mutex_unlock(&sg_policy->work_lock);
 | |
| }
 | |
| 
 | |
| static void sugov_irq_work(struct irq_work *irq_work)
 | |
| {
 | |
| 	struct sugov_policy *sg_policy;
 | |
| 
 | |
| 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
 | |
| 
 | |
| 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
 | |
| }
 | |
| 
 | |
| /************************** sysfs interface ************************/
 | |
| 
 | |
| static struct sugov_tunables *global_tunables;
 | |
| static DEFINE_MUTEX(global_tunables_lock);
 | |
| 
 | |
| static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
 | |
| {
 | |
| 	return container_of(attr_set, struct sugov_tunables, attr_set);
 | |
| }
 | |
| 
 | |
| static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
 | |
| {
 | |
| 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
 | |
| 
 | |
| 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
 | |
| {
 | |
| 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
 | |
| 	struct sugov_policy *sg_policy;
 | |
| 	unsigned int rate_limit_us;
 | |
| 
 | |
| 	if (kstrtouint(buf, 10, &rate_limit_us))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	tunables->rate_limit_us = rate_limit_us;
 | |
| 
 | |
| 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
 | |
| 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
 | |
| 
 | |
| static struct attribute *sugov_attrs[] = {
 | |
| 	&rate_limit_us.attr,
 | |
| 	NULL
 | |
| };
 | |
| ATTRIBUTE_GROUPS(sugov);
 | |
| 
 | |
| static struct kobj_type sugov_tunables_ktype = {
 | |
| 	.default_groups = sugov_groups,
 | |
| 	.sysfs_ops = &governor_sysfs_ops,
 | |
| };
 | |
| 
 | |
| /********************** cpufreq governor interface *********************/
 | |
| 
 | |
| struct cpufreq_governor schedutil_gov;
 | |
| 
 | |
| static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct sugov_policy *sg_policy;
 | |
| 
 | |
| 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
 | |
| 	if (!sg_policy)
 | |
| 		return NULL;
 | |
| 
 | |
| 	sg_policy->policy = policy;
 | |
| 	raw_spin_lock_init(&sg_policy->update_lock);
 | |
| 	return sg_policy;
 | |
| }
 | |
| 
 | |
| static void sugov_policy_free(struct sugov_policy *sg_policy)
 | |
| {
 | |
| 	kfree(sg_policy);
 | |
| }
 | |
| 
 | |
| static int sugov_kthread_create(struct sugov_policy *sg_policy)
 | |
| {
 | |
| 	struct task_struct *thread;
 | |
| 	struct sched_attr attr = {
 | |
| 		.size		= sizeof(struct sched_attr),
 | |
| 		.sched_policy	= SCHED_DEADLINE,
 | |
| 		.sched_flags	= SCHED_FLAG_SUGOV,
 | |
| 		.sched_nice	= 0,
 | |
| 		.sched_priority	= 0,
 | |
| 		/*
 | |
| 		 * Fake (unused) bandwidth; workaround to "fix"
 | |
| 		 * priority inheritance.
 | |
| 		 */
 | |
| 		.sched_runtime	=  1000000,
 | |
| 		.sched_deadline = 10000000,
 | |
| 		.sched_period	= 10000000,
 | |
| 	};
 | |
| 	struct cpufreq_policy *policy = sg_policy->policy;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* kthread only required for slow path */
 | |
| 	if (policy->fast_switch_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	kthread_init_work(&sg_policy->work, sugov_work);
 | |
| 	kthread_init_worker(&sg_policy->worker);
 | |
| 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
 | |
| 				"sugov:%d",
 | |
| 				cpumask_first(policy->related_cpus));
 | |
| 	if (IS_ERR(thread)) {
 | |
| 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
 | |
| 		return PTR_ERR(thread);
 | |
| 	}
 | |
| 
 | |
| 	ret = sched_setattr_nocheck(thread, &attr);
 | |
| 	if (ret) {
 | |
| 		kthread_stop(thread);
 | |
| 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	sg_policy->thread = thread;
 | |
| 	kthread_bind_mask(thread, policy->related_cpus);
 | |
| 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
 | |
| 	mutex_init(&sg_policy->work_lock);
 | |
| 
 | |
| 	wake_up_process(thread);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sugov_kthread_stop(struct sugov_policy *sg_policy)
 | |
| {
 | |
| 	/* kthread only required for slow path */
 | |
| 	if (sg_policy->policy->fast_switch_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	kthread_flush_worker(&sg_policy->worker);
 | |
| 	kthread_stop(sg_policy->thread);
 | |
| 	mutex_destroy(&sg_policy->work_lock);
 | |
| }
 | |
| 
 | |
| static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
 | |
| {
 | |
| 	struct sugov_tunables *tunables;
 | |
| 
 | |
| 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
 | |
| 	if (tunables) {
 | |
| 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
 | |
| 		if (!have_governor_per_policy())
 | |
| 			global_tunables = tunables;
 | |
| 	}
 | |
| 	return tunables;
 | |
| }
 | |
| 
 | |
| static void sugov_tunables_free(struct sugov_tunables *tunables)
 | |
| {
 | |
| 	if (!have_governor_per_policy())
 | |
| 		global_tunables = NULL;
 | |
| 
 | |
| 	kfree(tunables);
 | |
| }
 | |
| 
 | |
| static int sugov_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct sugov_policy *sg_policy;
 | |
| 	struct sugov_tunables *tunables;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* State should be equivalent to EXIT */
 | |
| 	if (policy->governor_data)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	cpufreq_enable_fast_switch(policy);
 | |
| 
 | |
| 	sg_policy = sugov_policy_alloc(policy);
 | |
| 	if (!sg_policy) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto disable_fast_switch;
 | |
| 	}
 | |
| 
 | |
| 	ret = sugov_kthread_create(sg_policy);
 | |
| 	if (ret)
 | |
| 		goto free_sg_policy;
 | |
| 
 | |
| 	mutex_lock(&global_tunables_lock);
 | |
| 
 | |
| 	if (global_tunables) {
 | |
| 		if (WARN_ON(have_governor_per_policy())) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto stop_kthread;
 | |
| 		}
 | |
| 		policy->governor_data = sg_policy;
 | |
| 		sg_policy->tunables = global_tunables;
 | |
| 
 | |
| 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	tunables = sugov_tunables_alloc(sg_policy);
 | |
| 	if (!tunables) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto stop_kthread;
 | |
| 	}
 | |
| 
 | |
| 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
 | |
| 
 | |
| 	policy->governor_data = sg_policy;
 | |
| 	sg_policy->tunables = tunables;
 | |
| 
 | |
| 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
 | |
| 				   get_governor_parent_kobj(policy), "%s",
 | |
| 				   schedutil_gov.name);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&global_tunables_lock);
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	kobject_put(&tunables->attr_set.kobj);
 | |
| 	policy->governor_data = NULL;
 | |
| 	sugov_tunables_free(tunables);
 | |
| 
 | |
| stop_kthread:
 | |
| 	sugov_kthread_stop(sg_policy);
 | |
| 	mutex_unlock(&global_tunables_lock);
 | |
| 
 | |
| free_sg_policy:
 | |
| 	sugov_policy_free(sg_policy);
 | |
| 
 | |
| disable_fast_switch:
 | |
| 	cpufreq_disable_fast_switch(policy);
 | |
| 
 | |
| 	pr_err("initialization failed (error %d)\n", ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sugov_exit(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct sugov_policy *sg_policy = policy->governor_data;
 | |
| 	struct sugov_tunables *tunables = sg_policy->tunables;
 | |
| 	unsigned int count;
 | |
| 
 | |
| 	mutex_lock(&global_tunables_lock);
 | |
| 
 | |
| 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
 | |
| 	policy->governor_data = NULL;
 | |
| 	if (!count)
 | |
| 		sugov_tunables_free(tunables);
 | |
| 
 | |
| 	mutex_unlock(&global_tunables_lock);
 | |
| 
 | |
| 	sugov_kthread_stop(sg_policy);
 | |
| 	sugov_policy_free(sg_policy);
 | |
| 	cpufreq_disable_fast_switch(policy);
 | |
| }
 | |
| 
 | |
| static int sugov_start(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct sugov_policy *sg_policy = policy->governor_data;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
 | |
| 	sg_policy->last_freq_update_time	= 0;
 | |
| 	sg_policy->next_freq			= 0;
 | |
| 	sg_policy->work_in_progress		= false;
 | |
| 	sg_policy->limits_changed		= false;
 | |
| 	sg_policy->cached_raw_freq		= 0;
 | |
| 
 | |
| 	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
 | |
| 
 | |
| 	for_each_cpu(cpu, policy->cpus) {
 | |
| 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
 | |
| 
 | |
| 		memset(sg_cpu, 0, sizeof(*sg_cpu));
 | |
| 		sg_cpu->cpu			= cpu;
 | |
| 		sg_cpu->sg_policy		= sg_policy;
 | |
| 	}
 | |
| 
 | |
| 	for_each_cpu(cpu, policy->cpus) {
 | |
| 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
 | |
| 
 | |
| 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
 | |
| 					     policy_is_shared(policy) ?
 | |
| 							sugov_update_shared :
 | |
| 							sugov_update_single);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sugov_stop(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct sugov_policy *sg_policy = policy->governor_data;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, policy->cpus)
 | |
| 		cpufreq_remove_update_util_hook(cpu);
 | |
| 
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	if (!policy->fast_switch_enabled) {
 | |
| 		irq_work_sync(&sg_policy->irq_work);
 | |
| 		kthread_cancel_work_sync(&sg_policy->work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sugov_limits(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct sugov_policy *sg_policy = policy->governor_data;
 | |
| 
 | |
| 	if (!policy->fast_switch_enabled) {
 | |
| 		mutex_lock(&sg_policy->work_lock);
 | |
| 		cpufreq_policy_apply_limits(policy);
 | |
| 		mutex_unlock(&sg_policy->work_lock);
 | |
| 	}
 | |
| 
 | |
| 	sg_policy->limits_changed = true;
 | |
| }
 | |
| 
 | |
| struct cpufreq_governor schedutil_gov = {
 | |
| 	.name			= "schedutil",
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
 | |
| 	.init			= sugov_init,
 | |
| 	.exit			= sugov_exit,
 | |
| 	.start			= sugov_start,
 | |
| 	.stop			= sugov_stop,
 | |
| 	.limits			= sugov_limits,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
 | |
| struct cpufreq_governor *cpufreq_default_governor(void)
 | |
| {
 | |
| 	return &schedutil_gov;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| cpufreq_governor_init(schedutil_gov);
 | |
| 
 | |
| #ifdef CONFIG_ENERGY_MODEL
 | |
| static void rebuild_sd_workfn(struct work_struct *work)
 | |
| {
 | |
| 	rebuild_sched_domains_energy();
 | |
| }
 | |
| static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
 | |
| 
 | |
| /*
 | |
|  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
 | |
|  * on governor changes to make sure the scheduler knows about it.
 | |
|  */
 | |
| void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
 | |
| 				  struct cpufreq_governor *old_gov)
 | |
| {
 | |
| 	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
 | |
| 		/*
 | |
| 		 * When called from the cpufreq_register_driver() path, the
 | |
| 		 * cpu_hotplug_lock is already held, so use a work item to
 | |
| 		 * avoid nested locking in rebuild_sched_domains().
 | |
| 		 */
 | |
| 		schedule_work(&rebuild_sd_work);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| #endif
 | 
