mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 add7c65ca4
			
		
	
	
		add7c65ca4
		
	
	
	
	
		
			
			=========================================================
[ INFO: possible irq lock inversion dependency detected ]
4.10.0-rc2-00024-g4aecec9-dirty #118 Tainted: G        W
---------------------------------------------------------
swapper/1/0 just changed the state of lock:
 (&(&sighand->siglock)->rlock){-.....}, at: [<ffffffffbd0a1bc6>] __lock_task_sighand+0xb6/0x2c0
but this lock took another, HARDIRQ-unsafe lock in the past:
 (ucounts_lock){+.+...}
and interrupts could create inverse lock ordering between them.
other info that might help us debug this:
Chain exists of:                 &(&sighand->siglock)->rlock --> &(&tty->ctrl_lock)->rlock --> ucounts_lock
 Possible interrupt unsafe locking scenario:
       CPU0                    CPU1
       ----                    ----
  lock(ucounts_lock);
                               local_irq_disable();
                               lock(&(&sighand->siglock)->rlock);
                               lock(&(&tty->ctrl_lock)->rlock);
  <Interrupt>
    lock(&(&sighand->siglock)->rlock);
 *** DEADLOCK ***
This patch removes a dependency between rlock and ucount_lock.
Fixes: f333c700c6 ("pidns: Add a limit on the number of pid namespaces")
Cc: stable@vger.kernel.org
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Acked-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
		
	
			
		
			
				
	
	
		
			453 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			453 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Pid namespaces
 | |
|  *
 | |
|  * Authors:
 | |
|  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 | |
|  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 | |
|  *     Many thanks to Oleg Nesterov for comments and help
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/pid.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/user_namespace.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/acct.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/proc_ns.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/export.h>
 | |
| 
 | |
| struct pid_cache {
 | |
| 	int nr_ids;
 | |
| 	char name[16];
 | |
| 	struct kmem_cache *cachep;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(pid_caches_lh);
 | |
| static DEFINE_MUTEX(pid_caches_mutex);
 | |
| static struct kmem_cache *pid_ns_cachep;
 | |
| 
 | |
| /*
 | |
|  * creates the kmem cache to allocate pids from.
 | |
|  * @nr_ids: the number of numerical ids this pid will have to carry
 | |
|  */
 | |
| 
 | |
| static struct kmem_cache *create_pid_cachep(int nr_ids)
 | |
| {
 | |
| 	struct pid_cache *pcache;
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	mutex_lock(&pid_caches_mutex);
 | |
| 	list_for_each_entry(pcache, &pid_caches_lh, list)
 | |
| 		if (pcache->nr_ids == nr_ids)
 | |
| 			goto out;
 | |
| 
 | |
| 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
 | |
| 	if (pcache == NULL)
 | |
| 		goto err_alloc;
 | |
| 
 | |
| 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
 | |
| 	cachep = kmem_cache_create(pcache->name,
 | |
| 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
 | |
| 			0, SLAB_HWCACHE_ALIGN, NULL);
 | |
| 	if (cachep == NULL)
 | |
| 		goto err_cachep;
 | |
| 
 | |
| 	pcache->nr_ids = nr_ids;
 | |
| 	pcache->cachep = cachep;
 | |
| 	list_add(&pcache->list, &pid_caches_lh);
 | |
| out:
 | |
| 	mutex_unlock(&pid_caches_mutex);
 | |
| 	return pcache->cachep;
 | |
| 
 | |
| err_cachep:
 | |
| 	kfree(pcache);
 | |
| err_alloc:
 | |
| 	mutex_unlock(&pid_caches_mutex);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void proc_cleanup_work(struct work_struct *work)
 | |
| {
 | |
| 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
 | |
| 	pid_ns_release_proc(ns);
 | |
| }
 | |
| 
 | |
| /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
 | |
| #define MAX_PID_NS_LEVEL 32
 | |
| 
 | |
| static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
 | |
| {
 | |
| 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
 | |
| }
 | |
| 
 | |
| static void dec_pid_namespaces(struct ucounts *ucounts)
 | |
| {
 | |
| 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
 | |
| }
 | |
| 
 | |
| static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
 | |
| 	struct pid_namespace *parent_pid_ns)
 | |
| {
 | |
| 	struct pid_namespace *ns;
 | |
| 	unsigned int level = parent_pid_ns->level + 1;
 | |
| 	struct ucounts *ucounts;
 | |
| 	int i;
 | |
| 	int err;
 | |
| 
 | |
| 	err = -ENOSPC;
 | |
| 	if (level > MAX_PID_NS_LEVEL)
 | |
| 		goto out;
 | |
| 	ucounts = inc_pid_namespaces(user_ns);
 | |
| 	if (!ucounts)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 | |
| 	if (ns == NULL)
 | |
| 		goto out_dec;
 | |
| 
 | |
| 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	if (!ns->pidmap[0].page)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	ns->pid_cachep = create_pid_cachep(level + 1);
 | |
| 	if (ns->pid_cachep == NULL)
 | |
| 		goto out_free_map;
 | |
| 
 | |
| 	err = ns_alloc_inum(&ns->ns);
 | |
| 	if (err)
 | |
| 		goto out_free_map;
 | |
| 	ns->ns.ops = &pidns_operations;
 | |
| 
 | |
| 	kref_init(&ns->kref);
 | |
| 	ns->level = level;
 | |
| 	ns->parent = get_pid_ns(parent_pid_ns);
 | |
| 	ns->user_ns = get_user_ns(user_ns);
 | |
| 	ns->ucounts = ucounts;
 | |
| 	ns->nr_hashed = PIDNS_HASH_ADDING;
 | |
| 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
 | |
| 
 | |
| 	set_bit(0, ns->pidmap[0].page);
 | |
| 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
 | |
| 
 | |
| 	for (i = 1; i < PIDMAP_ENTRIES; i++)
 | |
| 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
 | |
| 
 | |
| 	return ns;
 | |
| 
 | |
| out_free_map:
 | |
| 	kfree(ns->pidmap[0].page);
 | |
| out_free:
 | |
| 	kmem_cache_free(pid_ns_cachep, ns);
 | |
| out_dec:
 | |
| 	dec_pid_namespaces(ucounts);
 | |
| out:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static void delayed_free_pidns(struct rcu_head *p)
 | |
| {
 | |
| 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
 | |
| 
 | |
| 	dec_pid_namespaces(ns->ucounts);
 | |
| 	put_user_ns(ns->user_ns);
 | |
| 
 | |
| 	kmem_cache_free(pid_ns_cachep, ns);
 | |
| }
 | |
| 
 | |
| static void destroy_pid_namespace(struct pid_namespace *ns)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	ns_free_inum(&ns->ns);
 | |
| 	for (i = 0; i < PIDMAP_ENTRIES; i++)
 | |
| 		kfree(ns->pidmap[i].page);
 | |
| 	call_rcu(&ns->rcu, delayed_free_pidns);
 | |
| }
 | |
| 
 | |
| struct pid_namespace *copy_pid_ns(unsigned long flags,
 | |
| 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
 | |
| {
 | |
| 	if (!(flags & CLONE_NEWPID))
 | |
| 		return get_pid_ns(old_ns);
 | |
| 	if (task_active_pid_ns(current) != old_ns)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	return create_pid_namespace(user_ns, old_ns);
 | |
| }
 | |
| 
 | |
| static void free_pid_ns(struct kref *kref)
 | |
| {
 | |
| 	struct pid_namespace *ns;
 | |
| 
 | |
| 	ns = container_of(kref, struct pid_namespace, kref);
 | |
| 	destroy_pid_namespace(ns);
 | |
| }
 | |
| 
 | |
| void put_pid_ns(struct pid_namespace *ns)
 | |
| {
 | |
| 	struct pid_namespace *parent;
 | |
| 
 | |
| 	while (ns != &init_pid_ns) {
 | |
| 		parent = ns->parent;
 | |
| 		if (!kref_put(&ns->kref, free_pid_ns))
 | |
| 			break;
 | |
| 		ns = parent;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(put_pid_ns);
 | |
| 
 | |
| void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 | |
| {
 | |
| 	int nr;
 | |
| 	int rc;
 | |
| 	struct task_struct *task, *me = current;
 | |
| 	int init_pids = thread_group_leader(me) ? 1 : 2;
 | |
| 
 | |
| 	/* Don't allow any more processes into the pid namespace */
 | |
| 	disable_pid_allocation(pid_ns);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore SIGCHLD causing any terminated children to autoreap.
 | |
| 	 * This speeds up the namespace shutdown, plus see the comment
 | |
| 	 * below.
 | |
| 	 */
 | |
| 	spin_lock_irq(&me->sighand->siglock);
 | |
| 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 | |
| 	spin_unlock_irq(&me->sighand->siglock);
 | |
| 
 | |
| 	/*
 | |
| 	 * The last thread in the cgroup-init thread group is terminating.
 | |
| 	 * Find remaining pid_ts in the namespace, signal and wait for them
 | |
| 	 * to exit.
 | |
| 	 *
 | |
| 	 * Note:  This signals each threads in the namespace - even those that
 | |
| 	 * 	  belong to the same thread group, To avoid this, we would have
 | |
| 	 * 	  to walk the entire tasklist looking a processes in this
 | |
| 	 * 	  namespace, but that could be unnecessarily expensive if the
 | |
| 	 * 	  pid namespace has just a few processes. Or we need to
 | |
| 	 * 	  maintain a tasklist for each pid namespace.
 | |
| 	 *
 | |
| 	 */
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	nr = next_pidmap(pid_ns, 1);
 | |
| 	while (nr > 0) {
 | |
| 		rcu_read_lock();
 | |
| 
 | |
| 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
 | |
| 		if (task && !__fatal_signal_pending(task))
 | |
| 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
 | |
| 
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		nr = next_pidmap(pid_ns, nr);
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
 | |
| 	 * sys_wait4() will also block until our children traced from the
 | |
| 	 * parent namespace are detached and become EXIT_DEAD.
 | |
| 	 */
 | |
| 	do {
 | |
| 		clear_thread_flag(TIF_SIGPENDING);
 | |
| 		rc = sys_wait4(-1, NULL, __WALL, NULL);
 | |
| 	} while (rc != -ECHILD);
 | |
| 
 | |
| 	/*
 | |
| 	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
 | |
| 	 * really care, we could reparent them to the global init. We could
 | |
| 	 * exit and reap ->child_reaper even if it is not the last thread in
 | |
| 	 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
 | |
| 	 * pid_ns can not go away until proc_kill_sb() drops the reference.
 | |
| 	 *
 | |
| 	 * But this ns can also have other tasks injected by setns()+fork().
 | |
| 	 * Again, ignoring the user visible semantics we do not really need
 | |
| 	 * to wait until they are all reaped, but they can be reparented to
 | |
| 	 * us and thus we need to ensure that pid->child_reaper stays valid
 | |
| 	 * until they all go away. See free_pid()->wake_up_process().
 | |
| 	 *
 | |
| 	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
 | |
| 	 * if reparented.
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		if (pid_ns->nr_hashed == init_pids)
 | |
| 			break;
 | |
| 		schedule();
 | |
| 	}
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 	if (pid_ns->reboot)
 | |
| 		current->signal->group_exit_code = pid_ns->reboot;
 | |
| 
 | |
| 	acct_exit_ns(pid_ns);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CHECKPOINT_RESTORE
 | |
| static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
 | |
| 	struct ctl_table tmp = *table;
 | |
| 
 | |
| 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Writing directly to ns' last_pid field is OK, since this field
 | |
| 	 * is volatile in a living namespace anyway and a code writing to
 | |
| 	 * it should synchronize its usage with external means.
 | |
| 	 */
 | |
| 
 | |
| 	tmp.data = &pid_ns->last_pid;
 | |
| 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 | |
| }
 | |
| 
 | |
| extern int pid_max;
 | |
| static int zero = 0;
 | |
| static struct ctl_table pid_ns_ctl_table[] = {
 | |
| 	{
 | |
| 		.procname = "ns_last_pid",
 | |
| 		.maxlen = sizeof(int),
 | |
| 		.mode = 0666, /* permissions are checked in the handler */
 | |
| 		.proc_handler = pid_ns_ctl_handler,
 | |
| 		.extra1 = &zero,
 | |
| 		.extra2 = &pid_max,
 | |
| 	},
 | |
| 	{ }
 | |
| };
 | |
| static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
 | |
| #endif	/* CONFIG_CHECKPOINT_RESTORE */
 | |
| 
 | |
| int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 | |
| {
 | |
| 	if (pid_ns == &init_pid_ns)
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case LINUX_REBOOT_CMD_RESTART2:
 | |
| 	case LINUX_REBOOT_CMD_RESTART:
 | |
| 		pid_ns->reboot = SIGHUP;
 | |
| 		break;
 | |
| 
 | |
| 	case LINUX_REBOOT_CMD_POWER_OFF:
 | |
| 	case LINUX_REBOOT_CMD_HALT:
 | |
| 		pid_ns->reboot = SIGINT;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	force_sig(SIGKILL, pid_ns->child_reaper);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	do_exit(0);
 | |
| 
 | |
| 	/* Not reached */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
 | |
| {
 | |
| 	return container_of(ns, struct pid_namespace, ns);
 | |
| }
 | |
| 
 | |
| static struct ns_common *pidns_get(struct task_struct *task)
 | |
| {
 | |
| 	struct pid_namespace *ns;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ns = task_active_pid_ns(task);
 | |
| 	if (ns)
 | |
| 		get_pid_ns(ns);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ns ? &ns->ns : NULL;
 | |
| }
 | |
| 
 | |
| static void pidns_put(struct ns_common *ns)
 | |
| {
 | |
| 	put_pid_ns(to_pid_ns(ns));
 | |
| }
 | |
| 
 | |
| static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
 | |
| {
 | |
| 	struct pid_namespace *active = task_active_pid_ns(current);
 | |
| 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
 | |
| 
 | |
| 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 | |
| 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only allow entering the current active pid namespace
 | |
| 	 * or a child of the current active pid namespace.
 | |
| 	 *
 | |
| 	 * This is required for fork to return a usable pid value and
 | |
| 	 * this maintains the property that processes and their
 | |
| 	 * children can not escape their current pid namespace.
 | |
| 	 */
 | |
| 	if (new->level < active->level)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ancestor = new;
 | |
| 	while (ancestor->level > active->level)
 | |
| 		ancestor = ancestor->parent;
 | |
| 	if (ancestor != active)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	put_pid_ns(nsproxy->pid_ns_for_children);
 | |
| 	nsproxy->pid_ns_for_children = get_pid_ns(new);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct ns_common *pidns_get_parent(struct ns_common *ns)
 | |
| {
 | |
| 	struct pid_namespace *active = task_active_pid_ns(current);
 | |
| 	struct pid_namespace *pid_ns, *p;
 | |
| 
 | |
| 	/* See if the parent is in the current namespace */
 | |
| 	pid_ns = p = to_pid_ns(ns)->parent;
 | |
| 	for (;;) {
 | |
| 		if (!p)
 | |
| 			return ERR_PTR(-EPERM);
 | |
| 		if (p == active)
 | |
| 			break;
 | |
| 		p = p->parent;
 | |
| 	}
 | |
| 
 | |
| 	return &get_pid_ns(pid_ns)->ns;
 | |
| }
 | |
| 
 | |
| static struct user_namespace *pidns_owner(struct ns_common *ns)
 | |
| {
 | |
| 	return to_pid_ns(ns)->user_ns;
 | |
| }
 | |
| 
 | |
| const struct proc_ns_operations pidns_operations = {
 | |
| 	.name		= "pid",
 | |
| 	.type		= CLONE_NEWPID,
 | |
| 	.get		= pidns_get,
 | |
| 	.put		= pidns_put,
 | |
| 	.install	= pidns_install,
 | |
| 	.owner		= pidns_owner,
 | |
| 	.get_parent	= pidns_get_parent,
 | |
| };
 | |
| 
 | |
| static __init int pid_namespaces_init(void)
 | |
| {
 | |
| 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
 | |
| 
 | |
| #ifdef CONFIG_CHECKPOINT_RESTORE
 | |
| 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __initcall(pid_namespaces_init);
 |