mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 eb6a9339ef
			
		
	
	
		eb6a9339ef
		
	
	
	
	
		
			
			Notable series include:
 
 - Some maintenance and performance work for ocfs2 in Heming Zhao's
   series "improve write IO performance when fragmentation is high".
 
 - Some ocfs2 bugfixes from Su Yue in the series "ocfs2 bugs fixes
   exposed by fstests".
 
 - kfifo header rework from Andy Shevchenko in the series "kfifo: Clean
   up kfifo.h".
 
 - GDB script fixes from Florian Rommel in the series "scripts/gdb: Fixes
   for $lx_current and $lx_per_cpu".
 
 - After much discussion, a coding-style update from Barry Song
   explaining one reason why inline functions are preferred over macros.
   The series is "codingstyle: avoid unused parameters for a function-like
   macro".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkpLYQAKCRDdBJ7gKXxA
 jo9NAQDctSD3TMXqxqCHLaEpCaYTYzi6TGAVHjgkqGzOt7tYjAD/ZIzgcmRwthjP
 R7SSiSgZ7UnP9JRn16DQILmFeaoG1gs=
 =lYhr
 -----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2024-05-19-11-56' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-mm updates from Andrew Morton:
 "Mainly singleton patches, documented in their respective changelogs.
  Notable series include:
   - Some maintenance and performance work for ocfs2 in Heming Zhao's
     series "improve write IO performance when fragmentation is high".
   - Some ocfs2 bugfixes from Su Yue in the series "ocfs2 bugs fixes
     exposed by fstests".
   - kfifo header rework from Andy Shevchenko in the series "kfifo:
     Clean up kfifo.h".
   - GDB script fixes from Florian Rommel in the series "scripts/gdb:
     Fixes for $lx_current and $lx_per_cpu".
   - After much discussion, a coding-style update from Barry Song
     explaining one reason why inline functions are preferred over
     macros. The series is "codingstyle: avoid unused parameters for a
     function-like macro""
* tag 'mm-nonmm-stable-2024-05-19-11-56' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (62 commits)
  fs/proc: fix softlockup in __read_vmcore
  nilfs2: convert BUG_ON() in nilfs_finish_roll_forward() to WARN_ON()
  scripts: checkpatch: check unused parameters for function-like macro
  Documentation: coding-style: ask function-like macros to evaluate parameters
  nilfs2: use __field_struct() for a bitwise field
  selftests/kcmp: remove unused open mode
  nilfs2: remove calls to folio_set_error() and folio_clear_error()
  kernel/watchdog_perf.c: tidy up kerneldoc
  watchdog: allow nmi watchdog to use raw perf event
  watchdog: handle comma separated nmi_watchdog command line
  nilfs2: make superblock data array index computation sparse friendly
  squashfs: remove calls to set the folio error flag
  squashfs: convert squashfs_symlink_read_folio to use folio APIs
  scripts/gdb: fix detection of current CPU in KGDB
  scripts/gdb: make get_thread_info accept pointers
  scripts/gdb: fix parameter handling in $lx_per_cpu
  scripts/gdb: fix failing KGDB detection during probe
  kfifo: don't use "proxy" headers
  media: stih-cec: add missing io.h
  media: rc: add missing io.h
  ...
		
	
			
		
			
				
	
	
		
			663 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			663 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * crash.c - kernel crash support code.
 | |
|  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/buildid.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/cpuhotplug.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/crash_core.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/btf.h>
 | |
| #include <linux/objtool.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/sections.h>
 | |
| 
 | |
| #include <crypto/sha1.h>
 | |
| 
 | |
| #include "kallsyms_internal.h"
 | |
| #include "kexec_internal.h"
 | |
| 
 | |
| /* Per cpu memory for storing cpu states in case of system crash. */
 | |
| note_buf_t __percpu *crash_notes;
 | |
| 
 | |
| #ifdef CONFIG_CRASH_DUMP
 | |
| 
 | |
| int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 | |
| {
 | |
| 	struct page *vmcoreinfo_page;
 | |
| 	void *safecopy;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 | |
| 		return 0;
 | |
| 	if (image->type != KEXEC_TYPE_CRASH)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For kdump, allocate one vmcoreinfo safe copy from the
 | |
| 	 * crash memory. as we have arch_kexec_protect_crashkres()
 | |
| 	 * after kexec syscall, we naturally protect it from write
 | |
| 	 * (even read) access under kernel direct mapping. But on
 | |
| 	 * the other hand, we still need to operate it when crash
 | |
| 	 * happens to generate vmcoreinfo note, hereby we rely on
 | |
| 	 * vmap for this purpose.
 | |
| 	 */
 | |
| 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 | |
| 	if (!vmcoreinfo_page) {
 | |
| 		pr_warn("Could not allocate vmcoreinfo buffer\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 | |
| 	if (!safecopy) {
 | |
| 		pr_warn("Could not vmap vmcoreinfo buffer\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	image->vmcoreinfo_data_copy = safecopy;
 | |
| 	crash_update_vmcoreinfo_safecopy(safecopy);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| int kexec_should_crash(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * If crash_kexec_post_notifiers is enabled, don't run
 | |
| 	 * crash_kexec() here yet, which must be run after panic
 | |
| 	 * notifiers in panic().
 | |
| 	 */
 | |
| 	if (crash_kexec_post_notifiers)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * There are 4 panic() calls in make_task_dead() path, each of which
 | |
| 	 * corresponds to each of these 4 conditions.
 | |
| 	 */
 | |
| 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kexec_crash_loaded(void)
 | |
| {
 | |
| 	return !!kexec_crash_image;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kexec_crash_loaded);
 | |
| 
 | |
| /*
 | |
|  * No panic_cpu check version of crash_kexec().  This function is called
 | |
|  * only when panic_cpu holds the current CPU number; this is the only CPU
 | |
|  * which processes crash_kexec routines.
 | |
|  */
 | |
| void __noclone __crash_kexec(struct pt_regs *regs)
 | |
| {
 | |
| 	/* Take the kexec_lock here to prevent sys_kexec_load
 | |
| 	 * running on one cpu from replacing the crash kernel
 | |
| 	 * we are using after a panic on a different cpu.
 | |
| 	 *
 | |
| 	 * If the crash kernel was not located in a fixed area
 | |
| 	 * of memory the xchg(&kexec_crash_image) would be
 | |
| 	 * sufficient.  But since I reuse the memory...
 | |
| 	 */
 | |
| 	if (kexec_trylock()) {
 | |
| 		if (kexec_crash_image) {
 | |
| 			struct pt_regs fixed_regs;
 | |
| 
 | |
| 			crash_setup_regs(&fixed_regs, regs);
 | |
| 			crash_save_vmcoreinfo();
 | |
| 			machine_crash_shutdown(&fixed_regs);
 | |
| 			machine_kexec(kexec_crash_image);
 | |
| 		}
 | |
| 		kexec_unlock();
 | |
| 	}
 | |
| }
 | |
| STACK_FRAME_NON_STANDARD(__crash_kexec);
 | |
| 
 | |
| __bpf_kfunc void crash_kexec(struct pt_regs *regs)
 | |
| {
 | |
| 	int old_cpu, this_cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only one CPU is allowed to execute the crash_kexec() code as with
 | |
| 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
 | |
| 	 * may stop each other.  To exclude them, we use panic_cpu here too.
 | |
| 	 */
 | |
| 	old_cpu = PANIC_CPU_INVALID;
 | |
| 	this_cpu = raw_smp_processor_id();
 | |
| 
 | |
| 	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
 | |
| 		/* This is the 1st CPU which comes here, so go ahead. */
 | |
| 		__crash_kexec(regs);
 | |
| 
 | |
| 		/*
 | |
| 		 * Reset panic_cpu to allow another panic()/crash_kexec()
 | |
| 		 * call.
 | |
| 		 */
 | |
| 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline resource_size_t crash_resource_size(const struct resource *res)
 | |
| {
 | |
| 	return !res->end ? 0 : resource_size(res);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
 | |
| 			  void **addr, unsigned long *sz)
 | |
| {
 | |
| 	Elf64_Ehdr *ehdr;
 | |
| 	Elf64_Phdr *phdr;
 | |
| 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
 | |
| 	unsigned char *buf;
 | |
| 	unsigned int cpu, i;
 | |
| 	unsigned long long notes_addr;
 | |
| 	unsigned long mstart, mend;
 | |
| 
 | |
| 	/* extra phdr for vmcoreinfo ELF note */
 | |
| 	nr_phdr = nr_cpus + 1;
 | |
| 	nr_phdr += mem->nr_ranges;
 | |
| 
 | |
| 	/*
 | |
| 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
 | |
| 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
 | |
| 	 * I think this is required by tools like gdb. So same physical
 | |
| 	 * memory will be mapped in two ELF headers. One will contain kernel
 | |
| 	 * text virtual addresses and other will have __va(physical) addresses.
 | |
| 	 */
 | |
| 
 | |
| 	nr_phdr++;
 | |
| 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
 | |
| 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
 | |
| 
 | |
| 	buf = vzalloc(elf_sz);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ehdr = (Elf64_Ehdr *)buf;
 | |
| 	phdr = (Elf64_Phdr *)(ehdr + 1);
 | |
| 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
 | |
| 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
 | |
| 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
 | |
| 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 | |
| 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
 | |
| 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
 | |
| 	ehdr->e_type = ET_CORE;
 | |
| 	ehdr->e_machine = ELF_ARCH;
 | |
| 	ehdr->e_version = EV_CURRENT;
 | |
| 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
 | |
| 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
 | |
| 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
 | |
| 
 | |
| 	/* Prepare one phdr of type PT_NOTE for each possible CPU */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		phdr->p_type = PT_NOTE;
 | |
| 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
 | |
| 		phdr->p_offset = phdr->p_paddr = notes_addr;
 | |
| 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
 | |
| 		(ehdr->e_phnum)++;
 | |
| 		phdr++;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare one PT_NOTE header for vmcoreinfo */
 | |
| 	phdr->p_type = PT_NOTE;
 | |
| 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
 | |
| 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
 | |
| 	(ehdr->e_phnum)++;
 | |
| 	phdr++;
 | |
| 
 | |
| 	/* Prepare PT_LOAD type program header for kernel text region */
 | |
| 	if (need_kernel_map) {
 | |
| 		phdr->p_type = PT_LOAD;
 | |
| 		phdr->p_flags = PF_R|PF_W|PF_X;
 | |
| 		phdr->p_vaddr = (unsigned long) _text;
 | |
| 		phdr->p_filesz = phdr->p_memsz = _end - _text;
 | |
| 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
 | |
| 		ehdr->e_phnum++;
 | |
| 		phdr++;
 | |
| 	}
 | |
| 
 | |
| 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
 | |
| 	for (i = 0; i < mem->nr_ranges; i++) {
 | |
| 		mstart = mem->ranges[i].start;
 | |
| 		mend = mem->ranges[i].end;
 | |
| 
 | |
| 		phdr->p_type = PT_LOAD;
 | |
| 		phdr->p_flags = PF_R|PF_W|PF_X;
 | |
| 		phdr->p_offset  = mstart;
 | |
| 
 | |
| 		phdr->p_paddr = mstart;
 | |
| 		phdr->p_vaddr = (unsigned long) __va(mstart);
 | |
| 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
 | |
| 		phdr->p_align = 0;
 | |
| 		ehdr->e_phnum++;
 | |
| #ifdef CONFIG_KEXEC_FILE
 | |
| 		kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
 | |
| 			      phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
 | |
| 			      ehdr->e_phnum, phdr->p_offset);
 | |
| #endif
 | |
| 		phdr++;
 | |
| 	}
 | |
| 
 | |
| 	*addr = buf;
 | |
| 	*sz = elf_sz;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int crash_exclude_mem_range(struct crash_mem *mem,
 | |
| 			    unsigned long long mstart, unsigned long long mend)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long long start, end, p_start, p_end;
 | |
| 
 | |
| 	for (i = 0; i < mem->nr_ranges; i++) {
 | |
| 		start = mem->ranges[i].start;
 | |
| 		end = mem->ranges[i].end;
 | |
| 		p_start = mstart;
 | |
| 		p_end = mend;
 | |
| 
 | |
| 		if (p_start > end)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Because the memory ranges in mem->ranges are stored in
 | |
| 		 * ascending order, when we detect `p_end < start`, we can
 | |
| 		 * immediately exit the for loop, as the subsequent memory
 | |
| 		 * ranges will definitely be outside the range we are looking
 | |
| 		 * for.
 | |
| 		 */
 | |
| 		if (p_end < start)
 | |
| 			break;
 | |
| 
 | |
| 		/* Truncate any area outside of range */
 | |
| 		if (p_start < start)
 | |
| 			p_start = start;
 | |
| 		if (p_end > end)
 | |
| 			p_end = end;
 | |
| 
 | |
| 		/* Found completely overlapping range */
 | |
| 		if (p_start == start && p_end == end) {
 | |
| 			memmove(&mem->ranges[i], &mem->ranges[i + 1],
 | |
| 				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
 | |
| 			i--;
 | |
| 			mem->nr_ranges--;
 | |
| 		} else if (p_start > start && p_end < end) {
 | |
| 			/* Split original range */
 | |
| 			if (mem->nr_ranges >= mem->max_nr_ranges)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
 | |
| 				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
 | |
| 
 | |
| 			mem->ranges[i].end = p_start - 1;
 | |
| 			mem->ranges[i + 1].start = p_end + 1;
 | |
| 			mem->ranges[i + 1].end = end;
 | |
| 
 | |
| 			i++;
 | |
| 			mem->nr_ranges++;
 | |
| 		} else if (p_start != start)
 | |
| 			mem->ranges[i].end = p_start - 1;
 | |
| 		else
 | |
| 			mem->ranges[i].start = p_end + 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| ssize_t crash_get_memory_size(void)
 | |
| {
 | |
| 	ssize_t size = 0;
 | |
| 
 | |
| 	if (!kexec_trylock())
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	size += crash_resource_size(&crashk_res);
 | |
| 	size += crash_resource_size(&crashk_low_res);
 | |
| 
 | |
| 	kexec_unlock();
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static int __crash_shrink_memory(struct resource *old_res,
 | |
| 				 unsigned long new_size)
 | |
| {
 | |
| 	struct resource *ram_res;
 | |
| 
 | |
| 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
 | |
| 	if (!ram_res)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ram_res->start = old_res->start + new_size;
 | |
| 	ram_res->end   = old_res->end;
 | |
| 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
 | |
| 	ram_res->name  = "System RAM";
 | |
| 
 | |
| 	if (!new_size) {
 | |
| 		release_resource(old_res);
 | |
| 		old_res->start = 0;
 | |
| 		old_res->end   = 0;
 | |
| 	} else {
 | |
| 		crashk_res.end = ram_res->start - 1;
 | |
| 	}
 | |
| 
 | |
| 	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
 | |
| 	insert_resource(&iomem_resource, ram_res);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int crash_shrink_memory(unsigned long new_size)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned long old_size, low_size;
 | |
| 
 | |
| 	if (!kexec_trylock())
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (kexec_crash_image) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	low_size = crash_resource_size(&crashk_low_res);
 | |
| 	old_size = crash_resource_size(&crashk_res) + low_size;
 | |
| 	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
 | |
| 	if (new_size >= old_size) {
 | |
| 		ret = (new_size == old_size) ? 0 : -EINVAL;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * (low_size > new_size) implies that low_size is greater than zero.
 | |
| 	 * This also means that if low_size is zero, the else branch is taken.
 | |
| 	 *
 | |
| 	 * If low_size is greater than 0, (low_size > new_size) indicates that
 | |
| 	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
 | |
| 	 * needs to be shrunken.
 | |
| 	 */
 | |
| 	if (low_size > new_size) {
 | |
| 		ret = __crash_shrink_memory(&crashk_res, 0);
 | |
| 		if (ret)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		ret = __crash_shrink_memory(&crashk_low_res, new_size);
 | |
| 	} else {
 | |
| 		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
 | |
| 	}
 | |
| 
 | |
| 	/* Swap crashk_res and crashk_low_res if needed */
 | |
| 	if (!crashk_res.end && crashk_low_res.end) {
 | |
| 		crashk_res.start = crashk_low_res.start;
 | |
| 		crashk_res.end   = crashk_low_res.end;
 | |
| 		release_resource(&crashk_low_res);
 | |
| 		crashk_low_res.start = 0;
 | |
| 		crashk_low_res.end   = 0;
 | |
| 		insert_resource(&iomem_resource, &crashk_res);
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	kexec_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void crash_save_cpu(struct pt_regs *regs, int cpu)
 | |
| {
 | |
| 	struct elf_prstatus prstatus;
 | |
| 	u32 *buf;
 | |
| 
 | |
| 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
 | |
| 		return;
 | |
| 
 | |
| 	/* Using ELF notes here is opportunistic.
 | |
| 	 * I need a well defined structure format
 | |
| 	 * for the data I pass, and I need tags
 | |
| 	 * on the data to indicate what information I have
 | |
| 	 * squirrelled away.  ELF notes happen to provide
 | |
| 	 * all of that, so there is no need to invent something new.
 | |
| 	 */
 | |
| 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
 | |
| 	if (!buf)
 | |
| 		return;
 | |
| 	memset(&prstatus, 0, sizeof(prstatus));
 | |
| 	prstatus.common.pr_pid = current->pid;
 | |
| 	elf_core_copy_regs(&prstatus.pr_reg, regs);
 | |
| 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
 | |
| 			      &prstatus, sizeof(prstatus));
 | |
| 	final_note(buf);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static int __init crash_notes_memory_init(void)
 | |
| {
 | |
| 	/* Allocate memory for saving cpu registers. */
 | |
| 	size_t size, align;
 | |
| 
 | |
| 	/*
 | |
| 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
 | |
| 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
 | |
| 	 * pages are also on 2 continuous physical pages. In this case the
 | |
| 	 * 2nd part of crash_notes in 2nd page could be lost since only the
 | |
| 	 * starting address and size of crash_notes are exported through sysfs.
 | |
| 	 * Here round up the size of crash_notes to the nearest power of two
 | |
| 	 * and pass it to __alloc_percpu as align value. This can make sure
 | |
| 	 * crash_notes is allocated inside one physical page.
 | |
| 	 */
 | |
| 	size = sizeof(note_buf_t);
 | |
| 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
 | |
| 	 * definitely will be in 2 pages with that.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(size > PAGE_SIZE);
 | |
| 
 | |
| 	crash_notes = __alloc_percpu(size, align);
 | |
| 	if (!crash_notes) {
 | |
| 		pr_warn("Memory allocation for saving cpu register states failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(crash_notes_memory_init);
 | |
| 
 | |
| #endif /*CONFIG_CRASH_DUMP*/
 | |
| 
 | |
| #ifdef CONFIG_CRASH_HOTPLUG
 | |
| #undef pr_fmt
 | |
| #define pr_fmt(fmt) "crash hp: " fmt
 | |
| 
 | |
| /*
 | |
|  * Different than kexec/kdump loading/unloading/jumping/shrinking which
 | |
|  * usually rarely happen, there will be many crash hotplug events notified
 | |
|  * during one short period, e.g one memory board is hot added and memory
 | |
|  * regions are online. So mutex lock  __crash_hotplug_lock is used to
 | |
|  * serialize the crash hotplug handling specifically.
 | |
|  */
 | |
| static DEFINE_MUTEX(__crash_hotplug_lock);
 | |
| #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
 | |
| #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
 | |
| 
 | |
| /*
 | |
|  * This routine utilized when the crash_hotplug sysfs node is read.
 | |
|  * It reflects the kernel's ability/permission to update the kdump
 | |
|  * image directly.
 | |
|  */
 | |
| int crash_check_hotplug_support(void)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	crash_hotplug_lock();
 | |
| 	/* Obtain lock while reading crash information */
 | |
| 	if (!kexec_trylock()) {
 | |
| 		pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
 | |
| 		crash_hotplug_unlock();
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (kexec_crash_image) {
 | |
| 		rc = kexec_crash_image->hotplug_support;
 | |
| 	}
 | |
| 	/* Release lock now that update complete */
 | |
| 	kexec_unlock();
 | |
| 	crash_hotplug_unlock();
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To accurately reflect hot un/plug changes of cpu and memory resources
 | |
|  * (including onling and offlining of those resources), the elfcorehdr
 | |
|  * (which is passed to the crash kernel via the elfcorehdr= parameter)
 | |
|  * must be updated with the new list of CPUs and memories.
 | |
|  *
 | |
|  * In order to make changes to elfcorehdr, two conditions are needed:
 | |
|  * First, the segment containing the elfcorehdr must be large enough
 | |
|  * to permit a growing number of resources; the elfcorehdr memory size
 | |
|  * is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES.
 | |
|  * Second, purgatory must explicitly exclude the elfcorehdr from the
 | |
|  * list of segments it checks (since the elfcorehdr changes and thus
 | |
|  * would require an update to purgatory itself to update the digest).
 | |
|  */
 | |
| static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
 | |
| {
 | |
| 	struct kimage *image;
 | |
| 
 | |
| 	crash_hotplug_lock();
 | |
| 	/* Obtain lock while changing crash information */
 | |
| 	if (!kexec_trylock()) {
 | |
| 		pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
 | |
| 		crash_hotplug_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check kdump is not loaded */
 | |
| 	if (!kexec_crash_image)
 | |
| 		goto out;
 | |
| 
 | |
| 	image = kexec_crash_image;
 | |
| 
 | |
| 	/* Check that kexec segments update is permitted */
 | |
| 	if (!image->hotplug_support)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
 | |
| 		hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
 | |
| 		pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
 | |
| 	else
 | |
| 		pr_debug("hp_action %u\n", hp_action);
 | |
| 
 | |
| 	/*
 | |
| 	 * The elfcorehdr_index is set to -1 when the struct kimage
 | |
| 	 * is allocated. Find the segment containing the elfcorehdr,
 | |
| 	 * if not already found.
 | |
| 	 */
 | |
| 	if (image->elfcorehdr_index < 0) {
 | |
| 		unsigned long mem;
 | |
| 		unsigned char *ptr;
 | |
| 		unsigned int n;
 | |
| 
 | |
| 		for (n = 0; n < image->nr_segments; n++) {
 | |
| 			mem = image->segment[n].mem;
 | |
| 			ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
 | |
| 			if (ptr) {
 | |
| 				/* The segment containing elfcorehdr */
 | |
| 				if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
 | |
| 					image->elfcorehdr_index = (int)n;
 | |
| 				kunmap_local(ptr);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (image->elfcorehdr_index < 0) {
 | |
| 		pr_err("unable to locate elfcorehdr segment");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Needed in order for the segments to be updated */
 | |
| 	arch_kexec_unprotect_crashkres();
 | |
| 
 | |
| 	/* Differentiate between normal load and hotplug update */
 | |
| 	image->hp_action = hp_action;
 | |
| 
 | |
| 	/* Now invoke arch-specific update handler */
 | |
| 	arch_crash_handle_hotplug_event(image, arg);
 | |
| 
 | |
| 	/* No longer handling a hotplug event */
 | |
| 	image->hp_action = KEXEC_CRASH_HP_NONE;
 | |
| 	image->elfcorehdr_updated = true;
 | |
| 
 | |
| 	/* Change back to read-only */
 | |
| 	arch_kexec_protect_crashkres();
 | |
| 
 | |
| 	/* Errors in the callback is not a reason to rollback state */
 | |
| out:
 | |
| 	/* Release lock now that update complete */
 | |
| 	kexec_unlock();
 | |
| 	crash_hotplug_unlock();
 | |
| }
 | |
| 
 | |
| static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
 | |
| {
 | |
| 	switch (val) {
 | |
| 	case MEM_ONLINE:
 | |
| 		crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
 | |
| 			KEXEC_CRASH_HP_INVALID_CPU, arg);
 | |
| 		break;
 | |
| 
 | |
| 	case MEM_OFFLINE:
 | |
| 		crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
 | |
| 			KEXEC_CRASH_HP_INVALID_CPU, arg);
 | |
| 		break;
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block crash_memhp_nb = {
 | |
| 	.notifier_call = crash_memhp_notifier,
 | |
| 	.priority = 0
 | |
| };
 | |
| 
 | |
| static int crash_cpuhp_online(unsigned int cpu)
 | |
| {
 | |
| 	crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int crash_cpuhp_offline(unsigned int cpu)
 | |
| {
 | |
| 	crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init crash_hotplug_init(void)
 | |
| {
 | |
| 	int result = 0;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
 | |
| 		register_memory_notifier(&crash_memhp_nb);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
 | |
| 		result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
 | |
| 			"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| subsys_initcall(crash_hotplug_init);
 | |
| #endif
 |