mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Although we have several data csum verification code, we never have a
function really just to verify checksum for one sector.
Function check_data_csum() do extra work for error reporting, thus it
requires a lot of extra things like file offset, bio_offset etc.
Function btrfs_verify_data_csum() is even worse, it will utilize page
checked flag, which means it can not be utilized for direct IO pages.
Here we introduce a new helper, btrfs_check_sector_csum(), which really
only accept a sector in page, and expected checksum pointer.
We use this function to implement check_data_csum(), and export it for
incoming patch.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[hch: keep passing the csum array as an arguments, as the callers want
      to print it, rename per request]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
		
	
			
		
			
				
	
	
		
			11498 lines
		
	
	
	
		
			325 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			11498 lines
		
	
	
	
		
			325 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (C) 2007 Oracle.  All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
#include <crypto/hash.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/bio.h>
 | 
						|
#include <linux/blk-cgroup.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/writeback.h>
 | 
						|
#include <linux/compat.h>
 | 
						|
#include <linux/xattr.h>
 | 
						|
#include <linux/posix_acl.h>
 | 
						|
#include <linux/falloc.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/ratelimit.h>
 | 
						|
#include <linux/btrfs.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/posix_acl_xattr.h>
 | 
						|
#include <linux/uio.h>
 | 
						|
#include <linux/magic.h>
 | 
						|
#include <linux/iversion.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/migrate.h>
 | 
						|
#include <linux/sched/mm.h>
 | 
						|
#include <linux/iomap.h>
 | 
						|
#include <asm/unaligned.h>
 | 
						|
#include <linux/fsverity.h>
 | 
						|
#include "misc.h"
 | 
						|
#include "ctree.h"
 | 
						|
#include "disk-io.h"
 | 
						|
#include "transaction.h"
 | 
						|
#include "btrfs_inode.h"
 | 
						|
#include "print-tree.h"
 | 
						|
#include "ordered-data.h"
 | 
						|
#include "xattr.h"
 | 
						|
#include "tree-log.h"
 | 
						|
#include "volumes.h"
 | 
						|
#include "compression.h"
 | 
						|
#include "locking.h"
 | 
						|
#include "free-space-cache.h"
 | 
						|
#include "props.h"
 | 
						|
#include "qgroup.h"
 | 
						|
#include "delalloc-space.h"
 | 
						|
#include "block-group.h"
 | 
						|
#include "space-info.h"
 | 
						|
#include "zoned.h"
 | 
						|
#include "subpage.h"
 | 
						|
#include "inode-item.h"
 | 
						|
 | 
						|
struct btrfs_iget_args {
 | 
						|
	u64 ino;
 | 
						|
	struct btrfs_root *root;
 | 
						|
};
 | 
						|
 | 
						|
struct btrfs_dio_data {
 | 
						|
	ssize_t submitted;
 | 
						|
	struct extent_changeset *data_reserved;
 | 
						|
	bool data_space_reserved;
 | 
						|
	bool nocow_done;
 | 
						|
};
 | 
						|
 | 
						|
struct btrfs_dio_private {
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since DIO can use anonymous page, we cannot use page_offset() to
 | 
						|
	 * grab the file offset, thus need a dedicated member for file offset.
 | 
						|
	 */
 | 
						|
	u64 file_offset;
 | 
						|
	/* Used for bio::bi_size */
 | 
						|
	u32 bytes;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * References to this structure. There is one reference per in-flight
 | 
						|
	 * bio plus one while we're still setting up.
 | 
						|
	 */
 | 
						|
	refcount_t refs;
 | 
						|
 | 
						|
	/* Array of checksums */
 | 
						|
	u8 *csums;
 | 
						|
 | 
						|
	/* This must be last */
 | 
						|
	struct bio bio;
 | 
						|
};
 | 
						|
 | 
						|
static struct bio_set btrfs_dio_bioset;
 | 
						|
 | 
						|
struct btrfs_rename_ctx {
 | 
						|
	/* Output field. Stores the index number of the old directory entry. */
 | 
						|
	u64 index;
 | 
						|
};
 | 
						|
 | 
						|
static const struct inode_operations btrfs_dir_inode_operations;
 | 
						|
static const struct inode_operations btrfs_symlink_inode_operations;
 | 
						|
static const struct inode_operations btrfs_special_inode_operations;
 | 
						|
static const struct inode_operations btrfs_file_inode_operations;
 | 
						|
static const struct address_space_operations btrfs_aops;
 | 
						|
static const struct file_operations btrfs_dir_file_operations;
 | 
						|
 | 
						|
static struct kmem_cache *btrfs_inode_cachep;
 | 
						|
struct kmem_cache *btrfs_trans_handle_cachep;
 | 
						|
struct kmem_cache *btrfs_path_cachep;
 | 
						|
struct kmem_cache *btrfs_free_space_cachep;
 | 
						|
struct kmem_cache *btrfs_free_space_bitmap_cachep;
 | 
						|
 | 
						|
static int btrfs_setsize(struct inode *inode, struct iattr *attr);
 | 
						|
static int btrfs_truncate(struct inode *inode, bool skip_writeback);
 | 
						|
static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
 | 
						|
static noinline int cow_file_range(struct btrfs_inode *inode,
 | 
						|
				   struct page *locked_page,
 | 
						|
				   u64 start, u64 end, int *page_started,
 | 
						|
				   unsigned long *nr_written, int unlock);
 | 
						|
static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
 | 
						|
				       u64 len, u64 orig_start, u64 block_start,
 | 
						|
				       u64 block_len, u64 orig_block_len,
 | 
						|
				       u64 ram_bytes, int compress_type,
 | 
						|
				       int type);
 | 
						|
 | 
						|
static void __endio_write_update_ordered(struct btrfs_inode *inode,
 | 
						|
					 const u64 offset, const u64 bytes,
 | 
						|
					 const bool uptodate);
 | 
						|
 | 
						|
/*
 | 
						|
 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
 | 
						|
 *
 | 
						|
 * ilock_flags can have the following bit set:
 | 
						|
 *
 | 
						|
 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
 | 
						|
 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
 | 
						|
 *		     return -EAGAIN
 | 
						|
 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
 | 
						|
 */
 | 
						|
int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
 | 
						|
{
 | 
						|
	if (ilock_flags & BTRFS_ILOCK_SHARED) {
 | 
						|
		if (ilock_flags & BTRFS_ILOCK_TRY) {
 | 
						|
			if (!inode_trylock_shared(inode))
 | 
						|
				return -EAGAIN;
 | 
						|
			else
 | 
						|
				return 0;
 | 
						|
		}
 | 
						|
		inode_lock_shared(inode);
 | 
						|
	} else {
 | 
						|
		if (ilock_flags & BTRFS_ILOCK_TRY) {
 | 
						|
			if (!inode_trylock(inode))
 | 
						|
				return -EAGAIN;
 | 
						|
			else
 | 
						|
				return 0;
 | 
						|
		}
 | 
						|
		inode_lock(inode);
 | 
						|
	}
 | 
						|
	if (ilock_flags & BTRFS_ILOCK_MMAP)
 | 
						|
		down_write(&BTRFS_I(inode)->i_mmap_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * btrfs_inode_unlock - unock inode i_rwsem
 | 
						|
 *
 | 
						|
 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
 | 
						|
 * to decide whether the lock acquired is shared or exclusive.
 | 
						|
 */
 | 
						|
void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
 | 
						|
{
 | 
						|
	if (ilock_flags & BTRFS_ILOCK_MMAP)
 | 
						|
		up_write(&BTRFS_I(inode)->i_mmap_lock);
 | 
						|
	if (ilock_flags & BTRFS_ILOCK_SHARED)
 | 
						|
		inode_unlock_shared(inode);
 | 
						|
	else
 | 
						|
		inode_unlock(inode);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Cleanup all submitted ordered extents in specified range to handle errors
 | 
						|
 * from the btrfs_run_delalloc_range() callback.
 | 
						|
 *
 | 
						|
 * NOTE: caller must ensure that when an error happens, it can not call
 | 
						|
 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
 | 
						|
 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
 | 
						|
 * to be released, which we want to happen only when finishing the ordered
 | 
						|
 * extent (btrfs_finish_ordered_io()).
 | 
						|
 */
 | 
						|
static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
 | 
						|
						 struct page *locked_page,
 | 
						|
						 u64 offset, u64 bytes)
 | 
						|
{
 | 
						|
	unsigned long index = offset >> PAGE_SHIFT;
 | 
						|
	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
 | 
						|
	u64 page_start = page_offset(locked_page);
 | 
						|
	u64 page_end = page_start + PAGE_SIZE - 1;
 | 
						|
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	while (index <= end_index) {
 | 
						|
		/*
 | 
						|
		 * For locked page, we will call end_extent_writepage() on it
 | 
						|
		 * in run_delalloc_range() for the error handling.  That
 | 
						|
		 * end_extent_writepage() function will call
 | 
						|
		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
 | 
						|
		 * run the ordered extent accounting.
 | 
						|
		 *
 | 
						|
		 * Here we can't just clear the Ordered bit, or
 | 
						|
		 * btrfs_mark_ordered_io_finished() would skip the accounting
 | 
						|
		 * for the page range, and the ordered extent will never finish.
 | 
						|
		 */
 | 
						|
		if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
 | 
						|
			index++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		page = find_get_page(inode->vfs_inode.i_mapping, index);
 | 
						|
		index++;
 | 
						|
		if (!page)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Here we just clear all Ordered bits for every page in the
 | 
						|
		 * range, then __endio_write_update_ordered() will handle
 | 
						|
		 * the ordered extent accounting for the range.
 | 
						|
		 */
 | 
						|
		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
 | 
						|
					       offset, bytes);
 | 
						|
		put_page(page);
 | 
						|
	}
 | 
						|
 | 
						|
	/* The locked page covers the full range, nothing needs to be done */
 | 
						|
	if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * In case this page belongs to the delalloc range being instantiated
 | 
						|
	 * then skip it, since the first page of a range is going to be
 | 
						|
	 * properly cleaned up by the caller of run_delalloc_range
 | 
						|
	 */
 | 
						|
	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
 | 
						|
		bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
 | 
						|
		offset = page_offset(locked_page) + PAGE_SIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	return __endio_write_update_ordered(inode, offset, bytes, false);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_dirty_inode(struct inode *inode);
 | 
						|
 | 
						|
static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 | 
						|
				     struct btrfs_new_inode_args *args)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (args->default_acl) {
 | 
						|
		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
 | 
						|
				      ACL_TYPE_DEFAULT);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
	}
 | 
						|
	if (args->acl) {
 | 
						|
		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
	}
 | 
						|
	if (!args->default_acl && !args->acl)
 | 
						|
		cache_no_acl(args->inode);
 | 
						|
	return btrfs_xattr_security_init(trans, args->inode, args->dir,
 | 
						|
					 &args->dentry->d_name);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this does all the hard work for inserting an inline extent into
 | 
						|
 * the btree.  The caller should have done a btrfs_drop_extents so that
 | 
						|
 * no overlapping inline items exist in the btree
 | 
						|
 */
 | 
						|
static int insert_inline_extent(struct btrfs_trans_handle *trans,
 | 
						|
				struct btrfs_path *path,
 | 
						|
				struct btrfs_inode *inode, bool extent_inserted,
 | 
						|
				size_t size, size_t compressed_size,
 | 
						|
				int compress_type,
 | 
						|
				struct page **compressed_pages,
 | 
						|
				bool update_i_size)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct page *page = NULL;
 | 
						|
	char *kaddr;
 | 
						|
	unsigned long ptr;
 | 
						|
	struct btrfs_file_extent_item *ei;
 | 
						|
	int ret;
 | 
						|
	size_t cur_size = size;
 | 
						|
	u64 i_size;
 | 
						|
 | 
						|
	ASSERT((compressed_size > 0 && compressed_pages) ||
 | 
						|
	       (compressed_size == 0 && !compressed_pages));
 | 
						|
 | 
						|
	if (compressed_size && compressed_pages)
 | 
						|
		cur_size = compressed_size;
 | 
						|
 | 
						|
	if (!extent_inserted) {
 | 
						|
		struct btrfs_key key;
 | 
						|
		size_t datasize;
 | 
						|
 | 
						|
		key.objectid = btrfs_ino(inode);
 | 
						|
		key.offset = 0;
 | 
						|
		key.type = BTRFS_EXTENT_DATA_KEY;
 | 
						|
 | 
						|
		datasize = btrfs_file_extent_calc_inline_size(cur_size);
 | 
						|
		ret = btrfs_insert_empty_item(trans, root, path, &key,
 | 
						|
					      datasize);
 | 
						|
		if (ret)
 | 
						|
			goto fail;
 | 
						|
	}
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	ei = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
			    struct btrfs_file_extent_item);
 | 
						|
	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 | 
						|
	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 | 
						|
	btrfs_set_file_extent_encryption(leaf, ei, 0);
 | 
						|
	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 | 
						|
	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 | 
						|
	ptr = btrfs_file_extent_inline_start(ei);
 | 
						|
 | 
						|
	if (compress_type != BTRFS_COMPRESS_NONE) {
 | 
						|
		struct page *cpage;
 | 
						|
		int i = 0;
 | 
						|
		while (compressed_size > 0) {
 | 
						|
			cpage = compressed_pages[i];
 | 
						|
			cur_size = min_t(unsigned long, compressed_size,
 | 
						|
				       PAGE_SIZE);
 | 
						|
 | 
						|
			kaddr = kmap_atomic(cpage);
 | 
						|
			write_extent_buffer(leaf, kaddr, ptr, cur_size);
 | 
						|
			kunmap_atomic(kaddr);
 | 
						|
 | 
						|
			i++;
 | 
						|
			ptr += cur_size;
 | 
						|
			compressed_size -= cur_size;
 | 
						|
		}
 | 
						|
		btrfs_set_file_extent_compression(leaf, ei,
 | 
						|
						  compress_type);
 | 
						|
	} else {
 | 
						|
		page = find_get_page(inode->vfs_inode.i_mapping, 0);
 | 
						|
		btrfs_set_file_extent_compression(leaf, ei, 0);
 | 
						|
		kaddr = kmap_atomic(page);
 | 
						|
		write_extent_buffer(leaf, kaddr, ptr, size);
 | 
						|
		kunmap_atomic(kaddr);
 | 
						|
		put_page(page);
 | 
						|
	}
 | 
						|
	btrfs_mark_buffer_dirty(leaf);
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We align size to sectorsize for inline extents just for simplicity
 | 
						|
	 * sake.
 | 
						|
	 */
 | 
						|
	ret = btrfs_inode_set_file_extent_range(inode, 0,
 | 
						|
					ALIGN(size, root->fs_info->sectorsize));
 | 
						|
	if (ret)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're an inline extent, so nobody can extend the file past i_size
 | 
						|
	 * without locking a page we already have locked.
 | 
						|
	 *
 | 
						|
	 * We must do any i_size and inode updates before we unlock the pages.
 | 
						|
	 * Otherwise we could end up racing with unlink.
 | 
						|
	 */
 | 
						|
	i_size = i_size_read(&inode->vfs_inode);
 | 
						|
	if (update_i_size && size > i_size) {
 | 
						|
		i_size_write(&inode->vfs_inode, size);
 | 
						|
		i_size = size;
 | 
						|
	}
 | 
						|
	inode->disk_i_size = i_size;
 | 
						|
 | 
						|
fail:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * conditionally insert an inline extent into the file.  This
 | 
						|
 * does the checks required to make sure the data is small enough
 | 
						|
 * to fit as an inline extent.
 | 
						|
 */
 | 
						|
static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
 | 
						|
					  size_t compressed_size,
 | 
						|
					  int compress_type,
 | 
						|
					  struct page **compressed_pages,
 | 
						|
					  bool update_i_size)
 | 
						|
{
 | 
						|
	struct btrfs_drop_extents_args drop_args = { 0 };
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	u64 data_len = (compressed_size ?: size);
 | 
						|
	int ret;
 | 
						|
	struct btrfs_path *path;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can create an inline extent if it ends at or beyond the current
 | 
						|
	 * i_size, is no larger than a sector (decompressed), and the (possibly
 | 
						|
	 * compressed) data fits in a leaf and the configured maximum inline
 | 
						|
	 * size.
 | 
						|
	 */
 | 
						|
	if (size < i_size_read(&inode->vfs_inode) ||
 | 
						|
	    size > fs_info->sectorsize ||
 | 
						|
	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
 | 
						|
	    data_len > fs_info->max_inline)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	trans = btrfs_join_transaction(root);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		btrfs_free_path(path);
 | 
						|
		return PTR_ERR(trans);
 | 
						|
	}
 | 
						|
	trans->block_rsv = &inode->block_rsv;
 | 
						|
 | 
						|
	drop_args.path = path;
 | 
						|
	drop_args.start = 0;
 | 
						|
	drop_args.end = fs_info->sectorsize;
 | 
						|
	drop_args.drop_cache = true;
 | 
						|
	drop_args.replace_extent = true;
 | 
						|
	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
 | 
						|
	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
 | 
						|
				   size, compressed_size, compress_type,
 | 
						|
				   compressed_pages, update_i_size);
 | 
						|
	if (ret && ret != -ENOSPC) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	} else if (ret == -ENOSPC) {
 | 
						|
		ret = 1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
 | 
						|
	ret = btrfs_update_inode(trans, root, inode);
 | 
						|
	if (ret && ret != -ENOSPC) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	} else if (ret == -ENOSPC) {
 | 
						|
		ret = 1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_set_inode_full_sync(inode);
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * Don't forget to free the reserved space, as for inlined extent
 | 
						|
	 * it won't count as data extent, free them directly here.
 | 
						|
	 * And at reserve time, it's always aligned to page size, so
 | 
						|
	 * just free one page here.
 | 
						|
	 */
 | 
						|
	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
 | 
						|
	btrfs_free_path(path);
 | 
						|
	btrfs_end_transaction(trans);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
struct async_extent {
 | 
						|
	u64 start;
 | 
						|
	u64 ram_size;
 | 
						|
	u64 compressed_size;
 | 
						|
	struct page **pages;
 | 
						|
	unsigned long nr_pages;
 | 
						|
	int compress_type;
 | 
						|
	struct list_head list;
 | 
						|
};
 | 
						|
 | 
						|
struct async_chunk {
 | 
						|
	struct inode *inode;
 | 
						|
	struct page *locked_page;
 | 
						|
	u64 start;
 | 
						|
	u64 end;
 | 
						|
	unsigned int write_flags;
 | 
						|
	struct list_head extents;
 | 
						|
	struct cgroup_subsys_state *blkcg_css;
 | 
						|
	struct btrfs_work work;
 | 
						|
	struct async_cow *async_cow;
 | 
						|
};
 | 
						|
 | 
						|
struct async_cow {
 | 
						|
	atomic_t num_chunks;
 | 
						|
	struct async_chunk chunks[];
 | 
						|
};
 | 
						|
 | 
						|
static noinline int add_async_extent(struct async_chunk *cow,
 | 
						|
				     u64 start, u64 ram_size,
 | 
						|
				     u64 compressed_size,
 | 
						|
				     struct page **pages,
 | 
						|
				     unsigned long nr_pages,
 | 
						|
				     int compress_type)
 | 
						|
{
 | 
						|
	struct async_extent *async_extent;
 | 
						|
 | 
						|
	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 | 
						|
	BUG_ON(!async_extent); /* -ENOMEM */
 | 
						|
	async_extent->start = start;
 | 
						|
	async_extent->ram_size = ram_size;
 | 
						|
	async_extent->compressed_size = compressed_size;
 | 
						|
	async_extent->pages = pages;
 | 
						|
	async_extent->nr_pages = nr_pages;
 | 
						|
	async_extent->compress_type = compress_type;
 | 
						|
	list_add_tail(&async_extent->list, &cow->extents);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if the inode needs to be submitted to compression, based on mount
 | 
						|
 * options, defragmentation, properties or heuristics.
 | 
						|
 */
 | 
						|
static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
 | 
						|
				      u64 end)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
 | 
						|
	if (!btrfs_inode_can_compress(inode)) {
 | 
						|
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 | 
						|
			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
 | 
						|
			btrfs_ino(inode));
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Special check for subpage.
 | 
						|
	 *
 | 
						|
	 * We lock the full page then run each delalloc range in the page, thus
 | 
						|
	 * for the following case, we will hit some subpage specific corner case:
 | 
						|
	 *
 | 
						|
	 * 0		32K		64K
 | 
						|
	 * |	|///////|	|///////|
 | 
						|
	 *		\- A		\- B
 | 
						|
	 *
 | 
						|
	 * In above case, both range A and range B will try to unlock the full
 | 
						|
	 * page [0, 64K), causing the one finished later will have page
 | 
						|
	 * unlocked already, triggering various page lock requirement BUG_ON()s.
 | 
						|
	 *
 | 
						|
	 * So here we add an artificial limit that subpage compression can only
 | 
						|
	 * if the range is fully page aligned.
 | 
						|
	 *
 | 
						|
	 * In theory we only need to ensure the first page is fully covered, but
 | 
						|
	 * the tailing partial page will be locked until the full compression
 | 
						|
	 * finishes, delaying the write of other range.
 | 
						|
	 *
 | 
						|
	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
 | 
						|
	 * first to prevent any submitted async extent to unlock the full page.
 | 
						|
	 * By this, we can ensure for subpage case that only the last async_cow
 | 
						|
	 * will unlock the full page.
 | 
						|
	 */
 | 
						|
	if (fs_info->sectorsize < PAGE_SIZE) {
 | 
						|
		if (!PAGE_ALIGNED(start) ||
 | 
						|
		    !PAGE_ALIGNED(end + 1))
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* force compress */
 | 
						|
	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
 | 
						|
		return 1;
 | 
						|
	/* defrag ioctl */
 | 
						|
	if (inode->defrag_compress)
 | 
						|
		return 1;
 | 
						|
	/* bad compression ratios */
 | 
						|
	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
 | 
						|
		return 0;
 | 
						|
	if (btrfs_test_opt(fs_info, COMPRESS) ||
 | 
						|
	    inode->flags & BTRFS_INODE_COMPRESS ||
 | 
						|
	    inode->prop_compress)
 | 
						|
		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void inode_should_defrag(struct btrfs_inode *inode,
 | 
						|
		u64 start, u64 end, u64 num_bytes, u32 small_write)
 | 
						|
{
 | 
						|
	/* If this is a small write inside eof, kick off a defrag */
 | 
						|
	if (num_bytes < small_write &&
 | 
						|
	    (start > 0 || end + 1 < inode->disk_i_size))
 | 
						|
		btrfs_add_inode_defrag(NULL, inode, small_write);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * we create compressed extents in two phases.  The first
 | 
						|
 * phase compresses a range of pages that have already been
 | 
						|
 * locked (both pages and state bits are locked).
 | 
						|
 *
 | 
						|
 * This is done inside an ordered work queue, and the compression
 | 
						|
 * is spread across many cpus.  The actual IO submission is step
 | 
						|
 * two, and the ordered work queue takes care of making sure that
 | 
						|
 * happens in the same order things were put onto the queue by
 | 
						|
 * writepages and friends.
 | 
						|
 *
 | 
						|
 * If this code finds it can't get good compression, it puts an
 | 
						|
 * entry onto the work queue to write the uncompressed bytes.  This
 | 
						|
 * makes sure that both compressed inodes and uncompressed inodes
 | 
						|
 * are written in the same order that the flusher thread sent them
 | 
						|
 * down.
 | 
						|
 */
 | 
						|
static noinline int compress_file_range(struct async_chunk *async_chunk)
 | 
						|
{
 | 
						|
	struct inode *inode = async_chunk->inode;
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	u64 blocksize = fs_info->sectorsize;
 | 
						|
	u64 start = async_chunk->start;
 | 
						|
	u64 end = async_chunk->end;
 | 
						|
	u64 actual_end;
 | 
						|
	u64 i_size;
 | 
						|
	int ret = 0;
 | 
						|
	struct page **pages = NULL;
 | 
						|
	unsigned long nr_pages;
 | 
						|
	unsigned long total_compressed = 0;
 | 
						|
	unsigned long total_in = 0;
 | 
						|
	int i;
 | 
						|
	int will_compress;
 | 
						|
	int compress_type = fs_info->compress_type;
 | 
						|
	int compressed_extents = 0;
 | 
						|
	int redirty = 0;
 | 
						|
 | 
						|
	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
 | 
						|
			SZ_16K);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need to save i_size before now because it could change in between
 | 
						|
	 * us evaluating the size and assigning it.  This is because we lock and
 | 
						|
	 * unlock the page in truncate and fallocate, and then modify the i_size
 | 
						|
	 * later on.
 | 
						|
	 *
 | 
						|
	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
 | 
						|
	 * does that for us.
 | 
						|
	 */
 | 
						|
	barrier();
 | 
						|
	i_size = i_size_read(inode);
 | 
						|
	barrier();
 | 
						|
	actual_end = min_t(u64, i_size, end + 1);
 | 
						|
again:
 | 
						|
	will_compress = 0;
 | 
						|
	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
 | 
						|
	nr_pages = min_t(unsigned long, nr_pages,
 | 
						|
			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we don't want to send crud past the end of i_size through
 | 
						|
	 * compression, that's just a waste of CPU time.  So, if the
 | 
						|
	 * end of the file is before the start of our current
 | 
						|
	 * requested range of bytes, we bail out to the uncompressed
 | 
						|
	 * cleanup code that can deal with all of this.
 | 
						|
	 *
 | 
						|
	 * It isn't really the fastest way to fix things, but this is a
 | 
						|
	 * very uncommon corner.
 | 
						|
	 */
 | 
						|
	if (actual_end <= start)
 | 
						|
		goto cleanup_and_bail_uncompressed;
 | 
						|
 | 
						|
	total_compressed = actual_end - start;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Skip compression for a small file range(<=blocksize) that
 | 
						|
	 * isn't an inline extent, since it doesn't save disk space at all.
 | 
						|
	 */
 | 
						|
	if (total_compressed <= blocksize &&
 | 
						|
	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 | 
						|
		goto cleanup_and_bail_uncompressed;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For subpage case, we require full page alignment for the sector
 | 
						|
	 * aligned range.
 | 
						|
	 * Thus we must also check against @actual_end, not just @end.
 | 
						|
	 */
 | 
						|
	if (blocksize < PAGE_SIZE) {
 | 
						|
		if (!PAGE_ALIGNED(start) ||
 | 
						|
		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
 | 
						|
			goto cleanup_and_bail_uncompressed;
 | 
						|
	}
 | 
						|
 | 
						|
	total_compressed = min_t(unsigned long, total_compressed,
 | 
						|
			BTRFS_MAX_UNCOMPRESSED);
 | 
						|
	total_in = 0;
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we do compression for mount -o compress and when the
 | 
						|
	 * inode has not been flagged as nocompress.  This flag can
 | 
						|
	 * change at any time if we discover bad compression ratios.
 | 
						|
	 */
 | 
						|
	if (inode_need_compress(BTRFS_I(inode), start, end)) {
 | 
						|
		WARN_ON(pages);
 | 
						|
		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
 | 
						|
		if (!pages) {
 | 
						|
			/* just bail out to the uncompressed code */
 | 
						|
			nr_pages = 0;
 | 
						|
			goto cont;
 | 
						|
		}
 | 
						|
 | 
						|
		if (BTRFS_I(inode)->defrag_compress)
 | 
						|
			compress_type = BTRFS_I(inode)->defrag_compress;
 | 
						|
		else if (BTRFS_I(inode)->prop_compress)
 | 
						|
			compress_type = BTRFS_I(inode)->prop_compress;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * we need to call clear_page_dirty_for_io on each
 | 
						|
		 * page in the range.  Otherwise applications with the file
 | 
						|
		 * mmap'd can wander in and change the page contents while
 | 
						|
		 * we are compressing them.
 | 
						|
		 *
 | 
						|
		 * If the compression fails for any reason, we set the pages
 | 
						|
		 * dirty again later on.
 | 
						|
		 *
 | 
						|
		 * Note that the remaining part is redirtied, the start pointer
 | 
						|
		 * has moved, the end is the original one.
 | 
						|
		 */
 | 
						|
		if (!redirty) {
 | 
						|
			extent_range_clear_dirty_for_io(inode, start, end);
 | 
						|
			redirty = 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Compression level is applied here and only here */
 | 
						|
		ret = btrfs_compress_pages(
 | 
						|
			compress_type | (fs_info->compress_level << 4),
 | 
						|
					   inode->i_mapping, start,
 | 
						|
					   pages,
 | 
						|
					   &nr_pages,
 | 
						|
					   &total_in,
 | 
						|
					   &total_compressed);
 | 
						|
 | 
						|
		if (!ret) {
 | 
						|
			unsigned long offset = offset_in_page(total_compressed);
 | 
						|
			struct page *page = pages[nr_pages - 1];
 | 
						|
 | 
						|
			/* zero the tail end of the last page, we might be
 | 
						|
			 * sending it down to disk
 | 
						|
			 */
 | 
						|
			if (offset)
 | 
						|
				memzero_page(page, offset, PAGE_SIZE - offset);
 | 
						|
			will_compress = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
cont:
 | 
						|
	/*
 | 
						|
	 * Check cow_file_range() for why we don't even try to create inline
 | 
						|
	 * extent for subpage case.
 | 
						|
	 */
 | 
						|
	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
 | 
						|
		/* lets try to make an inline extent */
 | 
						|
		if (ret || total_in < actual_end) {
 | 
						|
			/* we didn't compress the entire range, try
 | 
						|
			 * to make an uncompressed inline extent.
 | 
						|
			 */
 | 
						|
			ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
 | 
						|
						    0, BTRFS_COMPRESS_NONE,
 | 
						|
						    NULL, false);
 | 
						|
		} else {
 | 
						|
			/* try making a compressed inline extent */
 | 
						|
			ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
 | 
						|
						    total_compressed,
 | 
						|
						    compress_type, pages,
 | 
						|
						    false);
 | 
						|
		}
 | 
						|
		if (ret <= 0) {
 | 
						|
			unsigned long clear_flags = EXTENT_DELALLOC |
 | 
						|
				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 | 
						|
				EXTENT_DO_ACCOUNTING;
 | 
						|
			unsigned long page_error_op;
 | 
						|
 | 
						|
			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * inline extent creation worked or returned error,
 | 
						|
			 * we don't need to create any more async work items.
 | 
						|
			 * Unlock and free up our temp pages.
 | 
						|
			 *
 | 
						|
			 * We use DO_ACCOUNTING here because we need the
 | 
						|
			 * delalloc_release_metadata to be done _after_ we drop
 | 
						|
			 * our outstanding extent for clearing delalloc for this
 | 
						|
			 * range.
 | 
						|
			 */
 | 
						|
			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
 | 
						|
						     NULL,
 | 
						|
						     clear_flags,
 | 
						|
						     PAGE_UNLOCK |
 | 
						|
						     PAGE_START_WRITEBACK |
 | 
						|
						     page_error_op |
 | 
						|
						     PAGE_END_WRITEBACK);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Ensure we only free the compressed pages if we have
 | 
						|
			 * them allocated, as we can still reach here with
 | 
						|
			 * inode_need_compress() == false.
 | 
						|
			 */
 | 
						|
			if (pages) {
 | 
						|
				for (i = 0; i < nr_pages; i++) {
 | 
						|
					WARN_ON(pages[i]->mapping);
 | 
						|
					put_page(pages[i]);
 | 
						|
				}
 | 
						|
				kfree(pages);
 | 
						|
			}
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (will_compress) {
 | 
						|
		/*
 | 
						|
		 * we aren't doing an inline extent round the compressed size
 | 
						|
		 * up to a block size boundary so the allocator does sane
 | 
						|
		 * things
 | 
						|
		 */
 | 
						|
		total_compressed = ALIGN(total_compressed, blocksize);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * one last check to make sure the compression is really a
 | 
						|
		 * win, compare the page count read with the blocks on disk,
 | 
						|
		 * compression must free at least one sector size
 | 
						|
		 */
 | 
						|
		total_in = round_up(total_in, fs_info->sectorsize);
 | 
						|
		if (total_compressed + blocksize <= total_in) {
 | 
						|
			compressed_extents++;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * The async work queues will take care of doing actual
 | 
						|
			 * allocation on disk for these compressed pages, and
 | 
						|
			 * will submit them to the elevator.
 | 
						|
			 */
 | 
						|
			add_async_extent(async_chunk, start, total_in,
 | 
						|
					total_compressed, pages, nr_pages,
 | 
						|
					compress_type);
 | 
						|
 | 
						|
			if (start + total_in < end) {
 | 
						|
				start += total_in;
 | 
						|
				pages = NULL;
 | 
						|
				cond_resched();
 | 
						|
				goto again;
 | 
						|
			}
 | 
						|
			return compressed_extents;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (pages) {
 | 
						|
		/*
 | 
						|
		 * the compression code ran but failed to make things smaller,
 | 
						|
		 * free any pages it allocated and our page pointer array
 | 
						|
		 */
 | 
						|
		for (i = 0; i < nr_pages; i++) {
 | 
						|
			WARN_ON(pages[i]->mapping);
 | 
						|
			put_page(pages[i]);
 | 
						|
		}
 | 
						|
		kfree(pages);
 | 
						|
		pages = NULL;
 | 
						|
		total_compressed = 0;
 | 
						|
		nr_pages = 0;
 | 
						|
 | 
						|
		/* flag the file so we don't compress in the future */
 | 
						|
		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
 | 
						|
		    !(BTRFS_I(inode)->prop_compress)) {
 | 
						|
			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 | 
						|
		}
 | 
						|
	}
 | 
						|
cleanup_and_bail_uncompressed:
 | 
						|
	/*
 | 
						|
	 * No compression, but we still need to write the pages in the file
 | 
						|
	 * we've been given so far.  redirty the locked page if it corresponds
 | 
						|
	 * to our extent and set things up for the async work queue to run
 | 
						|
	 * cow_file_range to do the normal delalloc dance.
 | 
						|
	 */
 | 
						|
	if (async_chunk->locked_page &&
 | 
						|
	    (page_offset(async_chunk->locked_page) >= start &&
 | 
						|
	     page_offset(async_chunk->locked_page)) <= end) {
 | 
						|
		__set_page_dirty_nobuffers(async_chunk->locked_page);
 | 
						|
		/* unlocked later on in the async handlers */
 | 
						|
	}
 | 
						|
 | 
						|
	if (redirty)
 | 
						|
		extent_range_redirty_for_io(inode, start, end);
 | 
						|
	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
 | 
						|
			 BTRFS_COMPRESS_NONE);
 | 
						|
	compressed_extents++;
 | 
						|
 | 
						|
	return compressed_extents;
 | 
						|
}
 | 
						|
 | 
						|
static void free_async_extent_pages(struct async_extent *async_extent)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!async_extent->pages)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (i = 0; i < async_extent->nr_pages; i++) {
 | 
						|
		WARN_ON(async_extent->pages[i]->mapping);
 | 
						|
		put_page(async_extent->pages[i]);
 | 
						|
	}
 | 
						|
	kfree(async_extent->pages);
 | 
						|
	async_extent->nr_pages = 0;
 | 
						|
	async_extent->pages = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int submit_uncompressed_range(struct btrfs_inode *inode,
 | 
						|
				     struct async_extent *async_extent,
 | 
						|
				     struct page *locked_page)
 | 
						|
{
 | 
						|
	u64 start = async_extent->start;
 | 
						|
	u64 end = async_extent->start + async_extent->ram_size - 1;
 | 
						|
	unsigned long nr_written = 0;
 | 
						|
	int page_started = 0;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Call cow_file_range() to run the delalloc range directly, since we
 | 
						|
	 * won't go to NOCOW or async path again.
 | 
						|
	 *
 | 
						|
	 * Also we call cow_file_range() with @unlock_page == 0, so that we
 | 
						|
	 * can directly submit them without interruption.
 | 
						|
	 */
 | 
						|
	ret = cow_file_range(inode, locked_page, start, end, &page_started,
 | 
						|
			     &nr_written, 0);
 | 
						|
	/* Inline extent inserted, page gets unlocked and everything is done */
 | 
						|
	if (page_started) {
 | 
						|
		ret = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (ret < 0) {
 | 
						|
		if (locked_page)
 | 
						|
			unlock_page(locked_page);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = extent_write_locked_range(&inode->vfs_inode, start, end);
 | 
						|
	/* All pages will be unlocked, including @locked_page */
 | 
						|
out:
 | 
						|
	kfree(async_extent);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int submit_one_async_extent(struct btrfs_inode *inode,
 | 
						|
				   struct async_chunk *async_chunk,
 | 
						|
				   struct async_extent *async_extent,
 | 
						|
				   u64 *alloc_hint)
 | 
						|
{
 | 
						|
	struct extent_io_tree *io_tree = &inode->io_tree;
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_key ins;
 | 
						|
	struct page *locked_page = NULL;
 | 
						|
	struct extent_map *em;
 | 
						|
	int ret = 0;
 | 
						|
	u64 start = async_extent->start;
 | 
						|
	u64 end = async_extent->start + async_extent->ram_size - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If async_chunk->locked_page is in the async_extent range, we need to
 | 
						|
	 * handle it.
 | 
						|
	 */
 | 
						|
	if (async_chunk->locked_page) {
 | 
						|
		u64 locked_page_start = page_offset(async_chunk->locked_page);
 | 
						|
		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
 | 
						|
 | 
						|
		if (!(start >= locked_page_end || end <= locked_page_start))
 | 
						|
			locked_page = async_chunk->locked_page;
 | 
						|
	}
 | 
						|
	lock_extent(io_tree, start, end);
 | 
						|
 | 
						|
	/* We have fall back to uncompressed write */
 | 
						|
	if (!async_extent->pages)
 | 
						|
		return submit_uncompressed_range(inode, async_extent, locked_page);
 | 
						|
 | 
						|
	ret = btrfs_reserve_extent(root, async_extent->ram_size,
 | 
						|
				   async_extent->compressed_size,
 | 
						|
				   async_extent->compressed_size,
 | 
						|
				   0, *alloc_hint, &ins, 1, 1);
 | 
						|
	if (ret) {
 | 
						|
		free_async_extent_pages(async_extent);
 | 
						|
		/*
 | 
						|
		 * Here we used to try again by going back to non-compressed
 | 
						|
		 * path for ENOSPC.  But we can't reserve space even for
 | 
						|
		 * compressed size, how could it work for uncompressed size
 | 
						|
		 * which requires larger size?  So here we directly go error
 | 
						|
		 * path.
 | 
						|
		 */
 | 
						|
		goto out_free;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Here we're doing allocation and writeback of the compressed pages */
 | 
						|
	em = create_io_em(inode, start,
 | 
						|
			  async_extent->ram_size,	/* len */
 | 
						|
			  start,			/* orig_start */
 | 
						|
			  ins.objectid,			/* block_start */
 | 
						|
			  ins.offset,			/* block_len */
 | 
						|
			  ins.offset,			/* orig_block_len */
 | 
						|
			  async_extent->ram_size,	/* ram_bytes */
 | 
						|
			  async_extent->compress_type,
 | 
						|
			  BTRFS_ORDERED_COMPRESSED);
 | 
						|
	if (IS_ERR(em)) {
 | 
						|
		ret = PTR_ERR(em);
 | 
						|
		goto out_free_reserve;
 | 
						|
	}
 | 
						|
	free_extent_map(em);
 | 
						|
 | 
						|
	ret = btrfs_add_ordered_extent(inode, start,		/* file_offset */
 | 
						|
				       async_extent->ram_size,	/* num_bytes */
 | 
						|
				       async_extent->ram_size,	/* ram_bytes */
 | 
						|
				       ins.objectid,		/* disk_bytenr */
 | 
						|
				       ins.offset,		/* disk_num_bytes */
 | 
						|
				       0,			/* offset */
 | 
						|
				       1 << BTRFS_ORDERED_COMPRESSED,
 | 
						|
				       async_extent->compress_type);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_drop_extent_cache(inode, start, end, 0);
 | 
						|
		goto out_free_reserve;
 | 
						|
	}
 | 
						|
	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 | 
						|
 | 
						|
	/* Clear dirty, set writeback and unlock the pages. */
 | 
						|
	extent_clear_unlock_delalloc(inode, start, end,
 | 
						|
			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
 | 
						|
			PAGE_UNLOCK | PAGE_START_WRITEBACK);
 | 
						|
	if (btrfs_submit_compressed_write(inode, start,	/* file_offset */
 | 
						|
			    async_extent->ram_size,	/* num_bytes */
 | 
						|
			    ins.objectid,		/* disk_bytenr */
 | 
						|
			    ins.offset,			/* compressed_len */
 | 
						|
			    async_extent->pages,	/* compressed_pages */
 | 
						|
			    async_extent->nr_pages,
 | 
						|
			    async_chunk->write_flags,
 | 
						|
			    async_chunk->blkcg_css, true)) {
 | 
						|
		const u64 start = async_extent->start;
 | 
						|
		const u64 end = start + async_extent->ram_size - 1;
 | 
						|
 | 
						|
		btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
 | 
						|
 | 
						|
		extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
 | 
						|
					     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
 | 
						|
		free_async_extent_pages(async_extent);
 | 
						|
	}
 | 
						|
	*alloc_hint = ins.objectid + ins.offset;
 | 
						|
	kfree(async_extent);
 | 
						|
	return ret;
 | 
						|
 | 
						|
out_free_reserve:
 | 
						|
	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 | 
						|
	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
 | 
						|
out_free:
 | 
						|
	extent_clear_unlock_delalloc(inode, start, end,
 | 
						|
				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
 | 
						|
				     EXTENT_DELALLOC_NEW |
 | 
						|
				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
 | 
						|
				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
 | 
						|
				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
 | 
						|
	free_async_extent_pages(async_extent);
 | 
						|
	kfree(async_extent);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Phase two of compressed writeback.  This is the ordered portion of the code,
 | 
						|
 * which only gets called in the order the work was queued.  We walk all the
 | 
						|
 * async extents created by compress_file_range and send them down to the disk.
 | 
						|
 */
 | 
						|
static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
 | 
						|
{
 | 
						|
	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	struct async_extent *async_extent;
 | 
						|
	u64 alloc_hint = 0;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	while (!list_empty(&async_chunk->extents)) {
 | 
						|
		u64 extent_start;
 | 
						|
		u64 ram_size;
 | 
						|
 | 
						|
		async_extent = list_entry(async_chunk->extents.next,
 | 
						|
					  struct async_extent, list);
 | 
						|
		list_del(&async_extent->list);
 | 
						|
		extent_start = async_extent->start;
 | 
						|
		ram_size = async_extent->ram_size;
 | 
						|
 | 
						|
		ret = submit_one_async_extent(inode, async_chunk, async_extent,
 | 
						|
					      &alloc_hint);
 | 
						|
		btrfs_debug(fs_info,
 | 
						|
"async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
 | 
						|
			    inode->root->root_key.objectid,
 | 
						|
			    btrfs_ino(inode), extent_start, ram_size, ret);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
 | 
						|
				      u64 num_bytes)
 | 
						|
{
 | 
						|
	struct extent_map_tree *em_tree = &inode->extent_tree;
 | 
						|
	struct extent_map *em;
 | 
						|
	u64 alloc_hint = 0;
 | 
						|
 | 
						|
	read_lock(&em_tree->lock);
 | 
						|
	em = search_extent_mapping(em_tree, start, num_bytes);
 | 
						|
	if (em) {
 | 
						|
		/*
 | 
						|
		 * if block start isn't an actual block number then find the
 | 
						|
		 * first block in this inode and use that as a hint.  If that
 | 
						|
		 * block is also bogus then just don't worry about it.
 | 
						|
		 */
 | 
						|
		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 | 
						|
			free_extent_map(em);
 | 
						|
			em = search_extent_mapping(em_tree, 0, 0);
 | 
						|
			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 | 
						|
				alloc_hint = em->block_start;
 | 
						|
			if (em)
 | 
						|
				free_extent_map(em);
 | 
						|
		} else {
 | 
						|
			alloc_hint = em->block_start;
 | 
						|
			free_extent_map(em);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	read_unlock(&em_tree->lock);
 | 
						|
 | 
						|
	return alloc_hint;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * when extent_io.c finds a delayed allocation range in the file,
 | 
						|
 * the call backs end up in this code.  The basic idea is to
 | 
						|
 * allocate extents on disk for the range, and create ordered data structs
 | 
						|
 * in ram to track those extents.
 | 
						|
 *
 | 
						|
 * locked_page is the page that writepage had locked already.  We use
 | 
						|
 * it to make sure we don't do extra locks or unlocks.
 | 
						|
 *
 | 
						|
 * *page_started is set to one if we unlock locked_page and do everything
 | 
						|
 * required to start IO on it.  It may be clean and already done with
 | 
						|
 * IO when we return.
 | 
						|
 */
 | 
						|
static noinline int cow_file_range(struct btrfs_inode *inode,
 | 
						|
				   struct page *locked_page,
 | 
						|
				   u64 start, u64 end, int *page_started,
 | 
						|
				   unsigned long *nr_written, int unlock)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	u64 alloc_hint = 0;
 | 
						|
	u64 num_bytes;
 | 
						|
	unsigned long ram_size;
 | 
						|
	u64 cur_alloc_size = 0;
 | 
						|
	u64 min_alloc_size;
 | 
						|
	u64 blocksize = fs_info->sectorsize;
 | 
						|
	struct btrfs_key ins;
 | 
						|
	struct extent_map *em;
 | 
						|
	unsigned clear_bits;
 | 
						|
	unsigned long page_ops;
 | 
						|
	bool extent_reserved = false;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (btrfs_is_free_space_inode(inode)) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	num_bytes = ALIGN(end - start + 1, blocksize);
 | 
						|
	num_bytes = max(blocksize,  num_bytes);
 | 
						|
	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
 | 
						|
 | 
						|
	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Due to the page size limit, for subpage we can only trigger the
 | 
						|
	 * writeback for the dirty sectors of page, that means data writeback
 | 
						|
	 * is doing more writeback than what we want.
 | 
						|
	 *
 | 
						|
	 * This is especially unexpected for some call sites like fallocate,
 | 
						|
	 * where we only increase i_size after everything is done.
 | 
						|
	 * This means we can trigger inline extent even if we didn't want to.
 | 
						|
	 * So here we skip inline extent creation completely.
 | 
						|
	 */
 | 
						|
	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
 | 
						|
		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
 | 
						|
				       end + 1);
 | 
						|
 | 
						|
		/* lets try to make an inline extent */
 | 
						|
		ret = cow_file_range_inline(inode, actual_end, 0,
 | 
						|
					    BTRFS_COMPRESS_NONE, NULL, false);
 | 
						|
		if (ret == 0) {
 | 
						|
			/*
 | 
						|
			 * We use DO_ACCOUNTING here because we need the
 | 
						|
			 * delalloc_release_metadata to be run _after_ we drop
 | 
						|
			 * our outstanding extent for clearing delalloc for this
 | 
						|
			 * range.
 | 
						|
			 */
 | 
						|
			extent_clear_unlock_delalloc(inode, start, end,
 | 
						|
				     locked_page,
 | 
						|
				     EXTENT_LOCKED | EXTENT_DELALLOC |
 | 
						|
				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 | 
						|
				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
 | 
						|
				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
 | 
						|
			*nr_written = *nr_written +
 | 
						|
			     (end - start + PAGE_SIZE) / PAGE_SIZE;
 | 
						|
			*page_started = 1;
 | 
						|
			/*
 | 
						|
			 * locked_page is locked by the caller of
 | 
						|
			 * writepage_delalloc(), not locked by
 | 
						|
			 * __process_pages_contig().
 | 
						|
			 *
 | 
						|
			 * We can't let __process_pages_contig() to unlock it,
 | 
						|
			 * as it doesn't have any subpage::writers recorded.
 | 
						|
			 *
 | 
						|
			 * Here we manually unlock the page, since the caller
 | 
						|
			 * can't use page_started to determine if it's an
 | 
						|
			 * inline extent or a compressed extent.
 | 
						|
			 */
 | 
						|
			unlock_page(locked_page);
 | 
						|
			goto out;
 | 
						|
		} else if (ret < 0) {
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
 | 
						|
	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Relocation relies on the relocated extents to have exactly the same
 | 
						|
	 * size as the original extents. Normally writeback for relocation data
 | 
						|
	 * extents follows a NOCOW path because relocation preallocates the
 | 
						|
	 * extents. However, due to an operation such as scrub turning a block
 | 
						|
	 * group to RO mode, it may fallback to COW mode, so we must make sure
 | 
						|
	 * an extent allocated during COW has exactly the requested size and can
 | 
						|
	 * not be split into smaller extents, otherwise relocation breaks and
 | 
						|
	 * fails during the stage where it updates the bytenr of file extent
 | 
						|
	 * items.
 | 
						|
	 */
 | 
						|
	if (btrfs_is_data_reloc_root(root))
 | 
						|
		min_alloc_size = num_bytes;
 | 
						|
	else
 | 
						|
		min_alloc_size = fs_info->sectorsize;
 | 
						|
 | 
						|
	while (num_bytes > 0) {
 | 
						|
		cur_alloc_size = num_bytes;
 | 
						|
		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
 | 
						|
					   min_alloc_size, 0, alloc_hint,
 | 
						|
					   &ins, 1, 1);
 | 
						|
		if (ret < 0)
 | 
						|
			goto out_unlock;
 | 
						|
		cur_alloc_size = ins.offset;
 | 
						|
		extent_reserved = true;
 | 
						|
 | 
						|
		ram_size = ins.offset;
 | 
						|
		em = create_io_em(inode, start, ins.offset, /* len */
 | 
						|
				  start, /* orig_start */
 | 
						|
				  ins.objectid, /* block_start */
 | 
						|
				  ins.offset, /* block_len */
 | 
						|
				  ins.offset, /* orig_block_len */
 | 
						|
				  ram_size, /* ram_bytes */
 | 
						|
				  BTRFS_COMPRESS_NONE, /* compress_type */
 | 
						|
				  BTRFS_ORDERED_REGULAR /* type */);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			ret = PTR_ERR(em);
 | 
						|
			goto out_reserve;
 | 
						|
		}
 | 
						|
		free_extent_map(em);
 | 
						|
 | 
						|
		ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
 | 
						|
					       ins.objectid, cur_alloc_size, 0,
 | 
						|
					       1 << BTRFS_ORDERED_REGULAR,
 | 
						|
					       BTRFS_COMPRESS_NONE);
 | 
						|
		if (ret)
 | 
						|
			goto out_drop_extent_cache;
 | 
						|
 | 
						|
		if (btrfs_is_data_reloc_root(root)) {
 | 
						|
			ret = btrfs_reloc_clone_csums(inode, start,
 | 
						|
						      cur_alloc_size);
 | 
						|
			/*
 | 
						|
			 * Only drop cache here, and process as normal.
 | 
						|
			 *
 | 
						|
			 * We must not allow extent_clear_unlock_delalloc()
 | 
						|
			 * at out_unlock label to free meta of this ordered
 | 
						|
			 * extent, as its meta should be freed by
 | 
						|
			 * btrfs_finish_ordered_io().
 | 
						|
			 *
 | 
						|
			 * So we must continue until @start is increased to
 | 
						|
			 * skip current ordered extent.
 | 
						|
			 */
 | 
						|
			if (ret)
 | 
						|
				btrfs_drop_extent_cache(inode, start,
 | 
						|
						start + ram_size - 1, 0);
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We're not doing compressed IO, don't unlock the first page
 | 
						|
		 * (which the caller expects to stay locked), don't clear any
 | 
						|
		 * dirty bits and don't set any writeback bits
 | 
						|
		 *
 | 
						|
		 * Do set the Ordered (Private2) bit so we know this page was
 | 
						|
		 * properly setup for writepage.
 | 
						|
		 */
 | 
						|
		page_ops = unlock ? PAGE_UNLOCK : 0;
 | 
						|
		page_ops |= PAGE_SET_ORDERED;
 | 
						|
 | 
						|
		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
 | 
						|
					     locked_page,
 | 
						|
					     EXTENT_LOCKED | EXTENT_DELALLOC,
 | 
						|
					     page_ops);
 | 
						|
		if (num_bytes < cur_alloc_size)
 | 
						|
			num_bytes = 0;
 | 
						|
		else
 | 
						|
			num_bytes -= cur_alloc_size;
 | 
						|
		alloc_hint = ins.objectid + ins.offset;
 | 
						|
		start += cur_alloc_size;
 | 
						|
		extent_reserved = false;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * btrfs_reloc_clone_csums() error, since start is increased
 | 
						|
		 * extent_clear_unlock_delalloc() at out_unlock label won't
 | 
						|
		 * free metadata of current ordered extent, we're OK to exit.
 | 
						|
		 */
 | 
						|
		if (ret)
 | 
						|
			goto out_unlock;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
 | 
						|
out_drop_extent_cache:
 | 
						|
	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
 | 
						|
out_reserve:
 | 
						|
	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 | 
						|
	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
 | 
						|
out_unlock:
 | 
						|
	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
 | 
						|
		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
 | 
						|
	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
 | 
						|
	/*
 | 
						|
	 * If we reserved an extent for our delalloc range (or a subrange) and
 | 
						|
	 * failed to create the respective ordered extent, then it means that
 | 
						|
	 * when we reserved the extent we decremented the extent's size from
 | 
						|
	 * the data space_info's bytes_may_use counter and incremented the
 | 
						|
	 * space_info's bytes_reserved counter by the same amount. We must make
 | 
						|
	 * sure extent_clear_unlock_delalloc() does not try to decrement again
 | 
						|
	 * the data space_info's bytes_may_use counter, therefore we do not pass
 | 
						|
	 * it the flag EXTENT_CLEAR_DATA_RESV.
 | 
						|
	 */
 | 
						|
	if (extent_reserved) {
 | 
						|
		extent_clear_unlock_delalloc(inode, start,
 | 
						|
					     start + cur_alloc_size - 1,
 | 
						|
					     locked_page,
 | 
						|
					     clear_bits,
 | 
						|
					     page_ops);
 | 
						|
		start += cur_alloc_size;
 | 
						|
		if (start >= end)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
	extent_clear_unlock_delalloc(inode, start, end, locked_page,
 | 
						|
				     clear_bits | EXTENT_CLEAR_DATA_RESV,
 | 
						|
				     page_ops);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * work queue call back to started compression on a file and pages
 | 
						|
 */
 | 
						|
static noinline void async_cow_start(struct btrfs_work *work)
 | 
						|
{
 | 
						|
	struct async_chunk *async_chunk;
 | 
						|
	int compressed_extents;
 | 
						|
 | 
						|
	async_chunk = container_of(work, struct async_chunk, work);
 | 
						|
 | 
						|
	compressed_extents = compress_file_range(async_chunk);
 | 
						|
	if (compressed_extents == 0) {
 | 
						|
		btrfs_add_delayed_iput(async_chunk->inode);
 | 
						|
		async_chunk->inode = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * work queue call back to submit previously compressed pages
 | 
						|
 */
 | 
						|
static noinline void async_cow_submit(struct btrfs_work *work)
 | 
						|
{
 | 
						|
	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
 | 
						|
						     work);
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
 | 
						|
	unsigned long nr_pages;
 | 
						|
 | 
						|
	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
 | 
						|
		PAGE_SHIFT;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * ->inode could be NULL if async_chunk_start has failed to compress,
 | 
						|
	 * in which case we don't have anything to submit, yet we need to
 | 
						|
	 * always adjust ->async_delalloc_pages as its paired with the init
 | 
						|
	 * happening in cow_file_range_async
 | 
						|
	 */
 | 
						|
	if (async_chunk->inode)
 | 
						|
		submit_compressed_extents(async_chunk);
 | 
						|
 | 
						|
	/* atomic_sub_return implies a barrier */
 | 
						|
	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
 | 
						|
	    5 * SZ_1M)
 | 
						|
		cond_wake_up_nomb(&fs_info->async_submit_wait);
 | 
						|
}
 | 
						|
 | 
						|
static noinline void async_cow_free(struct btrfs_work *work)
 | 
						|
{
 | 
						|
	struct async_chunk *async_chunk;
 | 
						|
	struct async_cow *async_cow;
 | 
						|
 | 
						|
	async_chunk = container_of(work, struct async_chunk, work);
 | 
						|
	if (async_chunk->inode)
 | 
						|
		btrfs_add_delayed_iput(async_chunk->inode);
 | 
						|
	if (async_chunk->blkcg_css)
 | 
						|
		css_put(async_chunk->blkcg_css);
 | 
						|
 | 
						|
	async_cow = async_chunk->async_cow;
 | 
						|
	if (atomic_dec_and_test(&async_cow->num_chunks))
 | 
						|
		kvfree(async_cow);
 | 
						|
}
 | 
						|
 | 
						|
static int cow_file_range_async(struct btrfs_inode *inode,
 | 
						|
				struct writeback_control *wbc,
 | 
						|
				struct page *locked_page,
 | 
						|
				u64 start, u64 end, int *page_started,
 | 
						|
				unsigned long *nr_written)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
 | 
						|
	struct async_cow *ctx;
 | 
						|
	struct async_chunk *async_chunk;
 | 
						|
	unsigned long nr_pages;
 | 
						|
	u64 cur_end;
 | 
						|
	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
 | 
						|
	int i;
 | 
						|
	bool should_compress;
 | 
						|
	unsigned nofs_flag;
 | 
						|
	const unsigned int write_flags = wbc_to_write_flags(wbc);
 | 
						|
 | 
						|
	unlock_extent(&inode->io_tree, start, end);
 | 
						|
 | 
						|
	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
 | 
						|
	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
 | 
						|
		num_chunks = 1;
 | 
						|
		should_compress = false;
 | 
						|
	} else {
 | 
						|
		should_compress = true;
 | 
						|
	}
 | 
						|
 | 
						|
	nofs_flag = memalloc_nofs_save();
 | 
						|
	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
 | 
						|
	memalloc_nofs_restore(nofs_flag);
 | 
						|
 | 
						|
	if (!ctx) {
 | 
						|
		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
 | 
						|
			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 | 
						|
			EXTENT_DO_ACCOUNTING;
 | 
						|
		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
 | 
						|
					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
 | 
						|
 | 
						|
		extent_clear_unlock_delalloc(inode, start, end, locked_page,
 | 
						|
					     clear_bits, page_ops);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	async_chunk = ctx->chunks;
 | 
						|
	atomic_set(&ctx->num_chunks, num_chunks);
 | 
						|
 | 
						|
	for (i = 0; i < num_chunks; i++) {
 | 
						|
		if (should_compress)
 | 
						|
			cur_end = min(end, start + SZ_512K - 1);
 | 
						|
		else
 | 
						|
			cur_end = end;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * igrab is called higher up in the call chain, take only the
 | 
						|
		 * lightweight reference for the callback lifetime
 | 
						|
		 */
 | 
						|
		ihold(&inode->vfs_inode);
 | 
						|
		async_chunk[i].async_cow = ctx;
 | 
						|
		async_chunk[i].inode = &inode->vfs_inode;
 | 
						|
		async_chunk[i].start = start;
 | 
						|
		async_chunk[i].end = cur_end;
 | 
						|
		async_chunk[i].write_flags = write_flags;
 | 
						|
		INIT_LIST_HEAD(&async_chunk[i].extents);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The locked_page comes all the way from writepage and its
 | 
						|
		 * the original page we were actually given.  As we spread
 | 
						|
		 * this large delalloc region across multiple async_chunk
 | 
						|
		 * structs, only the first struct needs a pointer to locked_page
 | 
						|
		 *
 | 
						|
		 * This way we don't need racey decisions about who is supposed
 | 
						|
		 * to unlock it.
 | 
						|
		 */
 | 
						|
		if (locked_page) {
 | 
						|
			/*
 | 
						|
			 * Depending on the compressibility, the pages might or
 | 
						|
			 * might not go through async.  We want all of them to
 | 
						|
			 * be accounted against wbc once.  Let's do it here
 | 
						|
			 * before the paths diverge.  wbc accounting is used
 | 
						|
			 * only for foreign writeback detection and doesn't
 | 
						|
			 * need full accuracy.  Just account the whole thing
 | 
						|
			 * against the first page.
 | 
						|
			 */
 | 
						|
			wbc_account_cgroup_owner(wbc, locked_page,
 | 
						|
						 cur_end - start);
 | 
						|
			async_chunk[i].locked_page = locked_page;
 | 
						|
			locked_page = NULL;
 | 
						|
		} else {
 | 
						|
			async_chunk[i].locked_page = NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		if (blkcg_css != blkcg_root_css) {
 | 
						|
			css_get(blkcg_css);
 | 
						|
			async_chunk[i].blkcg_css = blkcg_css;
 | 
						|
		} else {
 | 
						|
			async_chunk[i].blkcg_css = NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_init_work(&async_chunk[i].work, async_cow_start,
 | 
						|
				async_cow_submit, async_cow_free);
 | 
						|
 | 
						|
		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
 | 
						|
		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
 | 
						|
 | 
						|
		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
 | 
						|
 | 
						|
		*nr_written += nr_pages;
 | 
						|
		start = cur_end + 1;
 | 
						|
	}
 | 
						|
	*page_started = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
 | 
						|
				       struct page *locked_page, u64 start,
 | 
						|
				       u64 end, int *page_started,
 | 
						|
				       unsigned long *nr_written)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = cow_file_range(inode, locked_page, start, end, page_started,
 | 
						|
			     nr_written, 0);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (*page_started)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	__set_page_dirty_nobuffers(locked_page);
 | 
						|
	account_page_redirty(locked_page);
 | 
						|
	extent_write_locked_range(&inode->vfs_inode, start, end);
 | 
						|
	*page_started = 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
 | 
						|
					u64 bytenr, u64 num_bytes)
 | 
						|
{
 | 
						|
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
 | 
						|
	struct btrfs_ordered_sum *sums;
 | 
						|
	int ret;
 | 
						|
	LIST_HEAD(list);
 | 
						|
 | 
						|
	ret = btrfs_lookup_csums_range(csum_root, bytenr,
 | 
						|
				       bytenr + num_bytes - 1, &list, 0);
 | 
						|
	if (ret == 0 && list_empty(&list))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	while (!list_empty(&list)) {
 | 
						|
		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
 | 
						|
		list_del(&sums->list);
 | 
						|
		kfree(sums);
 | 
						|
	}
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
 | 
						|
			   const u64 start, const u64 end,
 | 
						|
			   int *page_started, unsigned long *nr_written)
 | 
						|
{
 | 
						|
	const bool is_space_ino = btrfs_is_free_space_inode(inode);
 | 
						|
	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
 | 
						|
	const u64 range_bytes = end + 1 - start;
 | 
						|
	struct extent_io_tree *io_tree = &inode->io_tree;
 | 
						|
	u64 range_start = start;
 | 
						|
	u64 count;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If EXTENT_NORESERVE is set it means that when the buffered write was
 | 
						|
	 * made we had not enough available data space and therefore we did not
 | 
						|
	 * reserve data space for it, since we though we could do NOCOW for the
 | 
						|
	 * respective file range (either there is prealloc extent or the inode
 | 
						|
	 * has the NOCOW bit set).
 | 
						|
	 *
 | 
						|
	 * However when we need to fallback to COW mode (because for example the
 | 
						|
	 * block group for the corresponding extent was turned to RO mode by a
 | 
						|
	 * scrub or relocation) we need to do the following:
 | 
						|
	 *
 | 
						|
	 * 1) We increment the bytes_may_use counter of the data space info.
 | 
						|
	 *    If COW succeeds, it allocates a new data extent and after doing
 | 
						|
	 *    that it decrements the space info's bytes_may_use counter and
 | 
						|
	 *    increments its bytes_reserved counter by the same amount (we do
 | 
						|
	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
 | 
						|
	 *    bytes_may_use counter to compensate (when space is reserved at
 | 
						|
	 *    buffered write time, the bytes_may_use counter is incremented);
 | 
						|
	 *
 | 
						|
	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
 | 
						|
	 *    that if the COW path fails for any reason, it decrements (through
 | 
						|
	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
 | 
						|
	 *    data space info, which we incremented in the step above.
 | 
						|
	 *
 | 
						|
	 * If we need to fallback to cow and the inode corresponds to a free
 | 
						|
	 * space cache inode or an inode of the data relocation tree, we must
 | 
						|
	 * also increment bytes_may_use of the data space_info for the same
 | 
						|
	 * reason. Space caches and relocated data extents always get a prealloc
 | 
						|
	 * extent for them, however scrub or balance may have set the block
 | 
						|
	 * group that contains that extent to RO mode and therefore force COW
 | 
						|
	 * when starting writeback.
 | 
						|
	 */
 | 
						|
	count = count_range_bits(io_tree, &range_start, end, range_bytes,
 | 
						|
				 EXTENT_NORESERVE, 0);
 | 
						|
	if (count > 0 || is_space_ino || is_reloc_ino) {
 | 
						|
		u64 bytes = count;
 | 
						|
		struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
 | 
						|
 | 
						|
		if (is_space_ino || is_reloc_ino)
 | 
						|
			bytes = range_bytes;
 | 
						|
 | 
						|
		spin_lock(&sinfo->lock);
 | 
						|
		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
 | 
						|
		spin_unlock(&sinfo->lock);
 | 
						|
 | 
						|
		if (count > 0)
 | 
						|
			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
 | 
						|
					 0, 0, NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	return cow_file_range(inode, locked_page, start, end, page_started,
 | 
						|
			      nr_written, 1);
 | 
						|
}
 | 
						|
 | 
						|
struct can_nocow_file_extent_args {
 | 
						|
	/* Input fields. */
 | 
						|
 | 
						|
	/* Start file offset of the range we want to NOCOW. */
 | 
						|
	u64 start;
 | 
						|
	/* End file offset (inclusive) of the range we want to NOCOW. */
 | 
						|
	u64 end;
 | 
						|
	bool writeback_path;
 | 
						|
	bool strict;
 | 
						|
	/*
 | 
						|
	 * Free the path passed to can_nocow_file_extent() once it's not needed
 | 
						|
	 * anymore.
 | 
						|
	 */
 | 
						|
	bool free_path;
 | 
						|
 | 
						|
	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
 | 
						|
 | 
						|
	u64 disk_bytenr;
 | 
						|
	u64 disk_num_bytes;
 | 
						|
	u64 extent_offset;
 | 
						|
	/* Number of bytes that can be written to in NOCOW mode. */
 | 
						|
	u64 num_bytes;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if we can NOCOW the file extent that the path points to.
 | 
						|
 * This function may return with the path released, so the caller should check
 | 
						|
 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
 | 
						|
 *
 | 
						|
 * Returns: < 0 on error
 | 
						|
 *            0 if we can not NOCOW
 | 
						|
 *            1 if we can NOCOW
 | 
						|
 */
 | 
						|
static int can_nocow_file_extent(struct btrfs_path *path,
 | 
						|
				 struct btrfs_key *key,
 | 
						|
				 struct btrfs_inode *inode,
 | 
						|
				 struct can_nocow_file_extent_args *args)
 | 
						|
{
 | 
						|
	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
 | 
						|
	struct extent_buffer *leaf = path->nodes[0];
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_file_extent_item *fi;
 | 
						|
	u64 extent_end;
 | 
						|
	u8 extent_type;
 | 
						|
	int can_nocow = 0;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
 | 
						|
	extent_type = btrfs_file_extent_type(leaf, fi);
 | 
						|
 | 
						|
	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Can't access these fields unless we know it's not an inline extent. */
 | 
						|
	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 | 
						|
	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 | 
						|
	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
 | 
						|
 | 
						|
	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
 | 
						|
	    extent_type == BTRFS_FILE_EXTENT_REG)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the extent was created before the generation where the last snapshot
 | 
						|
	 * for its subvolume was created, then this implies the extent is shared,
 | 
						|
	 * hence we must COW.
 | 
						|
	 */
 | 
						|
	if (!args->strict &&
 | 
						|
	    btrfs_file_extent_generation(leaf, fi) <=
 | 
						|
	    btrfs_root_last_snapshot(&root->root_item))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* An explicit hole, must COW. */
 | 
						|
	if (args->disk_bytenr == 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Compressed/encrypted/encoded extents must be COWed. */
 | 
						|
	if (btrfs_file_extent_compression(leaf, fi) ||
 | 
						|
	    btrfs_file_extent_encryption(leaf, fi) ||
 | 
						|
	    btrfs_file_extent_other_encoding(leaf, fi))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	extent_end = btrfs_file_extent_end(path);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The following checks can be expensive, as they need to take other
 | 
						|
	 * locks and do btree or rbtree searches, so release the path to avoid
 | 
						|
	 * blocking other tasks for too long.
 | 
						|
	 */
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
 | 
						|
				    key->offset - args->extent_offset,
 | 
						|
				    args->disk_bytenr, false, path);
 | 
						|
	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
 | 
						|
	if (ret != 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (args->free_path) {
 | 
						|
		/*
 | 
						|
		 * We don't need the path anymore, plus through the
 | 
						|
		 * csum_exist_in_range() call below we will end up allocating
 | 
						|
		 * another path. So free the path to avoid unnecessary extra
 | 
						|
		 * memory usage.
 | 
						|
		 */
 | 
						|
		btrfs_free_path(path);
 | 
						|
		path = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If there are pending snapshots for this root, we must COW. */
 | 
						|
	if (args->writeback_path && !is_freespace_inode &&
 | 
						|
	    atomic_read(&root->snapshot_force_cow))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	args->disk_bytenr += args->extent_offset;
 | 
						|
	args->disk_bytenr += args->start - key->offset;
 | 
						|
	args->num_bytes = min(args->end + 1, extent_end) - args->start;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Force COW if csums exist in the range. This ensures that csums for a
 | 
						|
	 * given extent are either valid or do not exist.
 | 
						|
	 */
 | 
						|
	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes);
 | 
						|
	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
 | 
						|
	if (ret != 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	can_nocow = 1;
 | 
						|
 out:
 | 
						|
	if (args->free_path && path)
 | 
						|
		btrfs_free_path(path);
 | 
						|
 | 
						|
	return ret < 0 ? ret : can_nocow;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * when nowcow writeback call back.  This checks for snapshots or COW copies
 | 
						|
 * of the extents that exist in the file, and COWs the file as required.
 | 
						|
 *
 | 
						|
 * If no cow copies or snapshots exist, we write directly to the existing
 | 
						|
 * blocks on disk
 | 
						|
 */
 | 
						|
static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
 | 
						|
				       struct page *locked_page,
 | 
						|
				       const u64 start, const u64 end,
 | 
						|
				       int *page_started,
 | 
						|
				       unsigned long *nr_written)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	u64 cow_start = (u64)-1;
 | 
						|
	u64 cur_offset = start;
 | 
						|
	int ret;
 | 
						|
	bool check_prev = true;
 | 
						|
	u64 ino = btrfs_ino(inode);
 | 
						|
	struct btrfs_block_group *bg;
 | 
						|
	bool nocow = false;
 | 
						|
	struct can_nocow_file_extent_args nocow_args = { 0 };
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path) {
 | 
						|
		extent_clear_unlock_delalloc(inode, start, end, locked_page,
 | 
						|
					     EXTENT_LOCKED | EXTENT_DELALLOC |
 | 
						|
					     EXTENT_DO_ACCOUNTING |
 | 
						|
					     EXTENT_DEFRAG, PAGE_UNLOCK |
 | 
						|
					     PAGE_START_WRITEBACK |
 | 
						|
					     PAGE_END_WRITEBACK);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	nocow_args.end = end;
 | 
						|
	nocow_args.writeback_path = true;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		struct btrfs_key found_key;
 | 
						|
		struct btrfs_file_extent_item *fi;
 | 
						|
		struct extent_buffer *leaf;
 | 
						|
		u64 extent_end;
 | 
						|
		u64 ram_bytes;
 | 
						|
		u64 nocow_end;
 | 
						|
		int extent_type;
 | 
						|
 | 
						|
		nocow = false;
 | 
						|
 | 
						|
		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
 | 
						|
					       cur_offset, 0);
 | 
						|
		if (ret < 0)
 | 
						|
			goto error;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If there is no extent for our range when doing the initial
 | 
						|
		 * search, then go back to the previous slot as it will be the
 | 
						|
		 * one containing the search offset
 | 
						|
		 */
 | 
						|
		if (ret > 0 && path->slots[0] > 0 && check_prev) {
 | 
						|
			leaf = path->nodes[0];
 | 
						|
			btrfs_item_key_to_cpu(leaf, &found_key,
 | 
						|
					      path->slots[0] - 1);
 | 
						|
			if (found_key.objectid == ino &&
 | 
						|
			    found_key.type == BTRFS_EXTENT_DATA_KEY)
 | 
						|
				path->slots[0]--;
 | 
						|
		}
 | 
						|
		check_prev = false;
 | 
						|
next_slot:
 | 
						|
		/* Go to next leaf if we have exhausted the current one */
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | 
						|
			ret = btrfs_next_leaf(root, path);
 | 
						|
			if (ret < 0) {
 | 
						|
				if (cow_start != (u64)-1)
 | 
						|
					cur_offset = cow_start;
 | 
						|
				goto error;
 | 
						|
			}
 | 
						|
			if (ret > 0)
 | 
						|
				break;
 | 
						|
			leaf = path->nodes[0];
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | 
						|
 | 
						|
		/* Didn't find anything for our INO */
 | 
						|
		if (found_key.objectid > ino)
 | 
						|
			break;
 | 
						|
		/*
 | 
						|
		 * Keep searching until we find an EXTENT_ITEM or there are no
 | 
						|
		 * more extents for this inode
 | 
						|
		 */
 | 
						|
		if (WARN_ON_ONCE(found_key.objectid < ino) ||
 | 
						|
		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
 | 
						|
			path->slots[0]++;
 | 
						|
			goto next_slot;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Found key is not EXTENT_DATA_KEY or starts after req range */
 | 
						|
		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
 | 
						|
		    found_key.offset > end)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the found extent starts after requested offset, then
 | 
						|
		 * adjust extent_end to be right before this extent begins
 | 
						|
		 */
 | 
						|
		if (found_key.offset > cur_offset) {
 | 
						|
			extent_end = found_key.offset;
 | 
						|
			extent_type = 0;
 | 
						|
			goto out_check;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Found extent which begins before our range and potentially
 | 
						|
		 * intersect it
 | 
						|
		 */
 | 
						|
		fi = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
				    struct btrfs_file_extent_item);
 | 
						|
		extent_type = btrfs_file_extent_type(leaf, fi);
 | 
						|
		/* If this is triggered then we have a memory corruption. */
 | 
						|
		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
 | 
						|
		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
 | 
						|
			ret = -EUCLEAN;
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
 | 
						|
		extent_end = btrfs_file_extent_end(path);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the extent we got ends before our current offset, skip to
 | 
						|
		 * the next extent.
 | 
						|
		 */
 | 
						|
		if (extent_end <= cur_offset) {
 | 
						|
			path->slots[0]++;
 | 
						|
			goto next_slot;
 | 
						|
		}
 | 
						|
 | 
						|
		nocow_args.start = cur_offset;
 | 
						|
		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
 | 
						|
		if (ret < 0) {
 | 
						|
			if (cow_start != (u64)-1)
 | 
						|
				cur_offset = cow_start;
 | 
						|
			goto error;
 | 
						|
		} else if (ret == 0) {
 | 
						|
			goto out_check;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = 0;
 | 
						|
		bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
 | 
						|
		if (bg)
 | 
						|
			nocow = true;
 | 
						|
out_check:
 | 
						|
		/*
 | 
						|
		 * If nocow is false then record the beginning of the range
 | 
						|
		 * that needs to be COWed
 | 
						|
		 */
 | 
						|
		if (!nocow) {
 | 
						|
			if (cow_start == (u64)-1)
 | 
						|
				cow_start = cur_offset;
 | 
						|
			cur_offset = extent_end;
 | 
						|
			if (cur_offset > end)
 | 
						|
				break;
 | 
						|
			if (!path->nodes[0])
 | 
						|
				continue;
 | 
						|
			path->slots[0]++;
 | 
						|
			goto next_slot;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * COW range from cow_start to found_key.offset - 1. As the key
 | 
						|
		 * will contain the beginning of the first extent that can be
 | 
						|
		 * NOCOW, following one which needs to be COW'ed
 | 
						|
		 */
 | 
						|
		if (cow_start != (u64)-1) {
 | 
						|
			ret = fallback_to_cow(inode, locked_page,
 | 
						|
					      cow_start, found_key.offset - 1,
 | 
						|
					      page_started, nr_written);
 | 
						|
			if (ret)
 | 
						|
				goto error;
 | 
						|
			cow_start = (u64)-1;
 | 
						|
		}
 | 
						|
 | 
						|
		nocow_end = cur_offset + nocow_args.num_bytes - 1;
 | 
						|
 | 
						|
		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | 
						|
			u64 orig_start = found_key.offset - nocow_args.extent_offset;
 | 
						|
			struct extent_map *em;
 | 
						|
 | 
						|
			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
 | 
						|
					  orig_start,
 | 
						|
					  nocow_args.disk_bytenr, /* block_start */
 | 
						|
					  nocow_args.num_bytes, /* block_len */
 | 
						|
					  nocow_args.disk_num_bytes, /* orig_block_len */
 | 
						|
					  ram_bytes, BTRFS_COMPRESS_NONE,
 | 
						|
					  BTRFS_ORDERED_PREALLOC);
 | 
						|
			if (IS_ERR(em)) {
 | 
						|
				ret = PTR_ERR(em);
 | 
						|
				goto error;
 | 
						|
			}
 | 
						|
			free_extent_map(em);
 | 
						|
			ret = btrfs_add_ordered_extent(inode,
 | 
						|
					cur_offset, nocow_args.num_bytes,
 | 
						|
					nocow_args.num_bytes,
 | 
						|
					nocow_args.disk_bytenr,
 | 
						|
					nocow_args.num_bytes, 0,
 | 
						|
					1 << BTRFS_ORDERED_PREALLOC,
 | 
						|
					BTRFS_COMPRESS_NONE);
 | 
						|
			if (ret) {
 | 
						|
				btrfs_drop_extent_cache(inode, cur_offset,
 | 
						|
							nocow_end, 0);
 | 
						|
				goto error;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			ret = btrfs_add_ordered_extent(inode, cur_offset,
 | 
						|
						       nocow_args.num_bytes,
 | 
						|
						       nocow_args.num_bytes,
 | 
						|
						       nocow_args.disk_bytenr,
 | 
						|
						       nocow_args.num_bytes,
 | 
						|
						       0,
 | 
						|
						       1 << BTRFS_ORDERED_NOCOW,
 | 
						|
						       BTRFS_COMPRESS_NONE);
 | 
						|
			if (ret)
 | 
						|
				goto error;
 | 
						|
		}
 | 
						|
 | 
						|
		if (nocow) {
 | 
						|
			btrfs_dec_nocow_writers(bg);
 | 
						|
			nocow = false;
 | 
						|
		}
 | 
						|
 | 
						|
		if (btrfs_is_data_reloc_root(root))
 | 
						|
			/*
 | 
						|
			 * Error handled later, as we must prevent
 | 
						|
			 * extent_clear_unlock_delalloc() in error handler
 | 
						|
			 * from freeing metadata of created ordered extent.
 | 
						|
			 */
 | 
						|
			ret = btrfs_reloc_clone_csums(inode, cur_offset,
 | 
						|
						      nocow_args.num_bytes);
 | 
						|
 | 
						|
		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
 | 
						|
					     locked_page, EXTENT_LOCKED |
 | 
						|
					     EXTENT_DELALLOC |
 | 
						|
					     EXTENT_CLEAR_DATA_RESV,
 | 
						|
					     PAGE_UNLOCK | PAGE_SET_ORDERED);
 | 
						|
 | 
						|
		cur_offset = extent_end;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * btrfs_reloc_clone_csums() error, now we're OK to call error
 | 
						|
		 * handler, as metadata for created ordered extent will only
 | 
						|
		 * be freed by btrfs_finish_ordered_io().
 | 
						|
		 */
 | 
						|
		if (ret)
 | 
						|
			goto error;
 | 
						|
		if (cur_offset > end)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	if (cur_offset <= end && cow_start == (u64)-1)
 | 
						|
		cow_start = cur_offset;
 | 
						|
 | 
						|
	if (cow_start != (u64)-1) {
 | 
						|
		cur_offset = end;
 | 
						|
		ret = fallback_to_cow(inode, locked_page, cow_start, end,
 | 
						|
				      page_started, nr_written);
 | 
						|
		if (ret)
 | 
						|
			goto error;
 | 
						|
	}
 | 
						|
 | 
						|
error:
 | 
						|
	if (nocow)
 | 
						|
		btrfs_dec_nocow_writers(bg);
 | 
						|
 | 
						|
	if (ret && cur_offset < end)
 | 
						|
		extent_clear_unlock_delalloc(inode, cur_offset, end,
 | 
						|
					     locked_page, EXTENT_LOCKED |
 | 
						|
					     EXTENT_DELALLOC | EXTENT_DEFRAG |
 | 
						|
					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
 | 
						|
					     PAGE_START_WRITEBACK |
 | 
						|
					     PAGE_END_WRITEBACK);
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
 | 
						|
{
 | 
						|
	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
 | 
						|
		if (inode->defrag_bytes &&
 | 
						|
		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
 | 
						|
				   0, NULL))
 | 
						|
			return false;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Function to process delayed allocation (create CoW) for ranges which are
 | 
						|
 * being touched for the first time.
 | 
						|
 */
 | 
						|
int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
 | 
						|
		u64 start, u64 end, int *page_started, unsigned long *nr_written,
 | 
						|
		struct writeback_control *wbc)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The range must cover part of the @locked_page, or the returned
 | 
						|
	 * @page_started can confuse the caller.
 | 
						|
	 */
 | 
						|
	ASSERT(!(end <= page_offset(locked_page) ||
 | 
						|
		 start >= page_offset(locked_page) + PAGE_SIZE));
 | 
						|
 | 
						|
	if (should_nocow(inode, start, end)) {
 | 
						|
		/*
 | 
						|
		 * Normally on a zoned device we're only doing COW writes, but
 | 
						|
		 * in case of relocation on a zoned filesystem we have taken
 | 
						|
		 * precaution, that we're only writing sequentially. It's safe
 | 
						|
		 * to use run_delalloc_nocow() here, like for  regular
 | 
						|
		 * preallocated inodes.
 | 
						|
		 */
 | 
						|
		ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
 | 
						|
		ret = run_delalloc_nocow(inode, locked_page, start, end,
 | 
						|
					 page_started, nr_written);
 | 
						|
	} else if (!btrfs_inode_can_compress(inode) ||
 | 
						|
		   !inode_need_compress(inode, start, end)) {
 | 
						|
		if (zoned)
 | 
						|
			ret = run_delalloc_zoned(inode, locked_page, start, end,
 | 
						|
						 page_started, nr_written);
 | 
						|
		else
 | 
						|
			ret = cow_file_range(inode, locked_page, start, end,
 | 
						|
					     page_started, nr_written, 1);
 | 
						|
	} else {
 | 
						|
		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
 | 
						|
		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
 | 
						|
					   page_started, nr_written);
 | 
						|
	}
 | 
						|
	ASSERT(ret <= 0);
 | 
						|
	if (ret)
 | 
						|
		btrfs_cleanup_ordered_extents(inode, locked_page, start,
 | 
						|
					      end - start + 1);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_split_delalloc_extent(struct inode *inode,
 | 
						|
				 struct extent_state *orig, u64 split)
 | 
						|
{
 | 
						|
	u64 size;
 | 
						|
 | 
						|
	/* not delalloc, ignore it */
 | 
						|
	if (!(orig->state & EXTENT_DELALLOC))
 | 
						|
		return;
 | 
						|
 | 
						|
	size = orig->end - orig->start + 1;
 | 
						|
	if (size > BTRFS_MAX_EXTENT_SIZE) {
 | 
						|
		u32 num_extents;
 | 
						|
		u64 new_size;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * See the explanation in btrfs_merge_delalloc_extent, the same
 | 
						|
		 * applies here, just in reverse.
 | 
						|
		 */
 | 
						|
		new_size = orig->end - split + 1;
 | 
						|
		num_extents = count_max_extents(new_size);
 | 
						|
		new_size = split - orig->start;
 | 
						|
		num_extents += count_max_extents(new_size);
 | 
						|
		if (count_max_extents(size) >= num_extents)
 | 
						|
			return;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&BTRFS_I(inode)->lock);
 | 
						|
	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
 | 
						|
	spin_unlock(&BTRFS_I(inode)->lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Handle merged delayed allocation extents so we can keep track of new extents
 | 
						|
 * that are just merged onto old extents, such as when we are doing sequential
 | 
						|
 * writes, so we can properly account for the metadata space we'll need.
 | 
						|
 */
 | 
						|
void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
 | 
						|
				 struct extent_state *other)
 | 
						|
{
 | 
						|
	u64 new_size, old_size;
 | 
						|
	u32 num_extents;
 | 
						|
 | 
						|
	/* not delalloc, ignore it */
 | 
						|
	if (!(other->state & EXTENT_DELALLOC))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (new->start > other->start)
 | 
						|
		new_size = new->end - other->start + 1;
 | 
						|
	else
 | 
						|
		new_size = other->end - new->start + 1;
 | 
						|
 | 
						|
	/* we're not bigger than the max, unreserve the space and go */
 | 
						|
	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
 | 
						|
		spin_lock(&BTRFS_I(inode)->lock);
 | 
						|
		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
 | 
						|
		spin_unlock(&BTRFS_I(inode)->lock);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have to add up either side to figure out how many extents were
 | 
						|
	 * accounted for before we merged into one big extent.  If the number of
 | 
						|
	 * extents we accounted for is <= the amount we need for the new range
 | 
						|
	 * then we can return, otherwise drop.  Think of it like this
 | 
						|
	 *
 | 
						|
	 * [ 4k][MAX_SIZE]
 | 
						|
	 *
 | 
						|
	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
 | 
						|
	 * need 2 outstanding extents, on one side we have 1 and the other side
 | 
						|
	 * we have 1 so they are == and we can return.  But in this case
 | 
						|
	 *
 | 
						|
	 * [MAX_SIZE+4k][MAX_SIZE+4k]
 | 
						|
	 *
 | 
						|
	 * Each range on their own accounts for 2 extents, but merged together
 | 
						|
	 * they are only 3 extents worth of accounting, so we need to drop in
 | 
						|
	 * this case.
 | 
						|
	 */
 | 
						|
	old_size = other->end - other->start + 1;
 | 
						|
	num_extents = count_max_extents(old_size);
 | 
						|
	old_size = new->end - new->start + 1;
 | 
						|
	num_extents += count_max_extents(old_size);
 | 
						|
	if (count_max_extents(new_size) >= num_extents)
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock(&BTRFS_I(inode)->lock);
 | 
						|
	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
 | 
						|
	spin_unlock(&BTRFS_I(inode)->lock);
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
 | 
						|
				      struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
 | 
						|
	spin_lock(&root->delalloc_lock);
 | 
						|
	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
 | 
						|
		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
 | 
						|
			      &root->delalloc_inodes);
 | 
						|
		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
 | 
						|
			&BTRFS_I(inode)->runtime_flags);
 | 
						|
		root->nr_delalloc_inodes++;
 | 
						|
		if (root->nr_delalloc_inodes == 1) {
 | 
						|
			spin_lock(&fs_info->delalloc_root_lock);
 | 
						|
			BUG_ON(!list_empty(&root->delalloc_root));
 | 
						|
			list_add_tail(&root->delalloc_root,
 | 
						|
				      &fs_info->delalloc_roots);
 | 
						|
			spin_unlock(&fs_info->delalloc_root_lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock(&root->delalloc_lock);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void __btrfs_del_delalloc_inode(struct btrfs_root *root,
 | 
						|
				struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
 | 
						|
	if (!list_empty(&inode->delalloc_inodes)) {
 | 
						|
		list_del_init(&inode->delalloc_inodes);
 | 
						|
		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
 | 
						|
			  &inode->runtime_flags);
 | 
						|
		root->nr_delalloc_inodes--;
 | 
						|
		if (!root->nr_delalloc_inodes) {
 | 
						|
			ASSERT(list_empty(&root->delalloc_inodes));
 | 
						|
			spin_lock(&fs_info->delalloc_root_lock);
 | 
						|
			BUG_ON(list_empty(&root->delalloc_root));
 | 
						|
			list_del_init(&root->delalloc_root);
 | 
						|
			spin_unlock(&fs_info->delalloc_root_lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_del_delalloc_inode(struct btrfs_root *root,
 | 
						|
				     struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	spin_lock(&root->delalloc_lock);
 | 
						|
	__btrfs_del_delalloc_inode(root, inode);
 | 
						|
	spin_unlock(&root->delalloc_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Properly track delayed allocation bytes in the inode and to maintain the
 | 
						|
 * list of inodes that have pending delalloc work to be done.
 | 
						|
 */
 | 
						|
void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
 | 
						|
			       unsigned *bits)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
 | 
						|
	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
 | 
						|
		WARN_ON(1);
 | 
						|
	/*
 | 
						|
	 * set_bit and clear bit hooks normally require _irqsave/restore
 | 
						|
	 * but in this case, we are only testing for the DELALLOC
 | 
						|
	 * bit, which is only set or cleared with irqs on
 | 
						|
	 */
 | 
						|
	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
 | 
						|
		struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
		u64 len = state->end + 1 - state->start;
 | 
						|
		u32 num_extents = count_max_extents(len);
 | 
						|
		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
 | 
						|
 | 
						|
		spin_lock(&BTRFS_I(inode)->lock);
 | 
						|
		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
 | 
						|
		spin_unlock(&BTRFS_I(inode)->lock);
 | 
						|
 | 
						|
		/* For sanity tests */
 | 
						|
		if (btrfs_is_testing(fs_info))
 | 
						|
			return;
 | 
						|
 | 
						|
		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
 | 
						|
					 fs_info->delalloc_batch);
 | 
						|
		spin_lock(&BTRFS_I(inode)->lock);
 | 
						|
		BTRFS_I(inode)->delalloc_bytes += len;
 | 
						|
		if (*bits & EXTENT_DEFRAG)
 | 
						|
			BTRFS_I(inode)->defrag_bytes += len;
 | 
						|
		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
 | 
						|
					 &BTRFS_I(inode)->runtime_flags))
 | 
						|
			btrfs_add_delalloc_inodes(root, inode);
 | 
						|
		spin_unlock(&BTRFS_I(inode)->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(state->state & EXTENT_DELALLOC_NEW) &&
 | 
						|
	    (*bits & EXTENT_DELALLOC_NEW)) {
 | 
						|
		spin_lock(&BTRFS_I(inode)->lock);
 | 
						|
		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
 | 
						|
			state->start;
 | 
						|
		spin_unlock(&BTRFS_I(inode)->lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Once a range is no longer delalloc this function ensures that proper
 | 
						|
 * accounting happens.
 | 
						|
 */
 | 
						|
void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
 | 
						|
				 struct extent_state *state, unsigned *bits)
 | 
						|
{
 | 
						|
	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
 | 
						|
	u64 len = state->end + 1 - state->start;
 | 
						|
	u32 num_extents = count_max_extents(len);
 | 
						|
 | 
						|
	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
 | 
						|
		spin_lock(&inode->lock);
 | 
						|
		inode->defrag_bytes -= len;
 | 
						|
		spin_unlock(&inode->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * set_bit and clear bit hooks normally require _irqsave/restore
 | 
						|
	 * but in this case, we are only testing for the DELALLOC
 | 
						|
	 * bit, which is only set or cleared with irqs on
 | 
						|
	 */
 | 
						|
	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
 | 
						|
		struct btrfs_root *root = inode->root;
 | 
						|
		bool do_list = !btrfs_is_free_space_inode(inode);
 | 
						|
 | 
						|
		spin_lock(&inode->lock);
 | 
						|
		btrfs_mod_outstanding_extents(inode, -num_extents);
 | 
						|
		spin_unlock(&inode->lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We don't reserve metadata space for space cache inodes so we
 | 
						|
		 * don't need to call delalloc_release_metadata if there is an
 | 
						|
		 * error.
 | 
						|
		 */
 | 
						|
		if (*bits & EXTENT_CLEAR_META_RESV &&
 | 
						|
		    root != fs_info->tree_root)
 | 
						|
			btrfs_delalloc_release_metadata(inode, len, false);
 | 
						|
 | 
						|
		/* For sanity tests. */
 | 
						|
		if (btrfs_is_testing(fs_info))
 | 
						|
			return;
 | 
						|
 | 
						|
		if (!btrfs_is_data_reloc_root(root) &&
 | 
						|
		    do_list && !(state->state & EXTENT_NORESERVE) &&
 | 
						|
		    (*bits & EXTENT_CLEAR_DATA_RESV))
 | 
						|
			btrfs_free_reserved_data_space_noquota(fs_info, len);
 | 
						|
 | 
						|
		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
 | 
						|
					 fs_info->delalloc_batch);
 | 
						|
		spin_lock(&inode->lock);
 | 
						|
		inode->delalloc_bytes -= len;
 | 
						|
		if (do_list && inode->delalloc_bytes == 0 &&
 | 
						|
		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
 | 
						|
					&inode->runtime_flags))
 | 
						|
			btrfs_del_delalloc_inode(root, inode);
 | 
						|
		spin_unlock(&inode->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if ((state->state & EXTENT_DELALLOC_NEW) &&
 | 
						|
	    (*bits & EXTENT_DELALLOC_NEW)) {
 | 
						|
		spin_lock(&inode->lock);
 | 
						|
		ASSERT(inode->new_delalloc_bytes >= len);
 | 
						|
		inode->new_delalloc_bytes -= len;
 | 
						|
		if (*bits & EXTENT_ADD_INODE_BYTES)
 | 
						|
			inode_add_bytes(&inode->vfs_inode, len);
 | 
						|
		spin_unlock(&inode->lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * in order to insert checksums into the metadata in large chunks,
 | 
						|
 * we wait until bio submission time.   All the pages in the bio are
 | 
						|
 * checksummed and sums are attached onto the ordered extent record.
 | 
						|
 *
 | 
						|
 * At IO completion time the cums attached on the ordered extent record
 | 
						|
 * are inserted into the btree
 | 
						|
 */
 | 
						|
static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
 | 
						|
					   u64 dio_file_offset)
 | 
						|
{
 | 
						|
	return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Split an extent_map at [start, start + len]
 | 
						|
 *
 | 
						|
 * This function is intended to be used only for extract_ordered_extent().
 | 
						|
 */
 | 
						|
static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
 | 
						|
			  u64 pre, u64 post)
 | 
						|
{
 | 
						|
	struct extent_map_tree *em_tree = &inode->extent_tree;
 | 
						|
	struct extent_map *em;
 | 
						|
	struct extent_map *split_pre = NULL;
 | 
						|
	struct extent_map *split_mid = NULL;
 | 
						|
	struct extent_map *split_post = NULL;
 | 
						|
	int ret = 0;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/* Sanity check */
 | 
						|
	if (pre == 0 && post == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	split_pre = alloc_extent_map();
 | 
						|
	if (pre)
 | 
						|
		split_mid = alloc_extent_map();
 | 
						|
	if (post)
 | 
						|
		split_post = alloc_extent_map();
 | 
						|
	if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(pre + post < len);
 | 
						|
 | 
						|
	lock_extent(&inode->io_tree, start, start + len - 1);
 | 
						|
	write_lock(&em_tree->lock);
 | 
						|
	em = lookup_extent_mapping(em_tree, start, len);
 | 
						|
	if (!em) {
 | 
						|
		ret = -EIO;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(em->len == len);
 | 
						|
	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
 | 
						|
	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
 | 
						|
	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
 | 
						|
	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
 | 
						|
	ASSERT(!list_empty(&em->list));
 | 
						|
 | 
						|
	flags = em->flags;
 | 
						|
	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 | 
						|
 | 
						|
	/* First, replace the em with a new extent_map starting from * em->start */
 | 
						|
	split_pre->start = em->start;
 | 
						|
	split_pre->len = (pre ? pre : em->len - post);
 | 
						|
	split_pre->orig_start = split_pre->start;
 | 
						|
	split_pre->block_start = em->block_start;
 | 
						|
	split_pre->block_len = split_pre->len;
 | 
						|
	split_pre->orig_block_len = split_pre->block_len;
 | 
						|
	split_pre->ram_bytes = split_pre->len;
 | 
						|
	split_pre->flags = flags;
 | 
						|
	split_pre->compress_type = em->compress_type;
 | 
						|
	split_pre->generation = em->generation;
 | 
						|
 | 
						|
	replace_extent_mapping(em_tree, em, split_pre, 1);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now we only have an extent_map at:
 | 
						|
	 *     [em->start, em->start + pre] if pre != 0
 | 
						|
	 *     [em->start, em->start + em->len - post] if pre == 0
 | 
						|
	 */
 | 
						|
 | 
						|
	if (pre) {
 | 
						|
		/* Insert the middle extent_map */
 | 
						|
		split_mid->start = em->start + pre;
 | 
						|
		split_mid->len = em->len - pre - post;
 | 
						|
		split_mid->orig_start = split_mid->start;
 | 
						|
		split_mid->block_start = em->block_start + pre;
 | 
						|
		split_mid->block_len = split_mid->len;
 | 
						|
		split_mid->orig_block_len = split_mid->block_len;
 | 
						|
		split_mid->ram_bytes = split_mid->len;
 | 
						|
		split_mid->flags = flags;
 | 
						|
		split_mid->compress_type = em->compress_type;
 | 
						|
		split_mid->generation = em->generation;
 | 
						|
		add_extent_mapping(em_tree, split_mid, 1);
 | 
						|
	}
 | 
						|
 | 
						|
	if (post) {
 | 
						|
		split_post->start = em->start + em->len - post;
 | 
						|
		split_post->len = post;
 | 
						|
		split_post->orig_start = split_post->start;
 | 
						|
		split_post->block_start = em->block_start + em->len - post;
 | 
						|
		split_post->block_len = split_post->len;
 | 
						|
		split_post->orig_block_len = split_post->block_len;
 | 
						|
		split_post->ram_bytes = split_post->len;
 | 
						|
		split_post->flags = flags;
 | 
						|
		split_post->compress_type = em->compress_type;
 | 
						|
		split_post->generation = em->generation;
 | 
						|
		add_extent_mapping(em_tree, split_post, 1);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Once for us */
 | 
						|
	free_extent_map(em);
 | 
						|
	/* Once for the tree */
 | 
						|
	free_extent_map(em);
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	write_unlock(&em_tree->lock);
 | 
						|
	unlock_extent(&inode->io_tree, start, start + len - 1);
 | 
						|
out:
 | 
						|
	free_extent_map(split_pre);
 | 
						|
	free_extent_map(split_mid);
 | 
						|
	free_extent_map(split_post);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
 | 
						|
					   struct bio *bio, loff_t file_offset)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
 | 
						|
	u64 file_len;
 | 
						|
	u64 len = bio->bi_iter.bi_size;
 | 
						|
	u64 end = start + len;
 | 
						|
	u64 ordered_end;
 | 
						|
	u64 pre, post;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
 | 
						|
	if (WARN_ON_ONCE(!ordered))
 | 
						|
		return BLK_STS_IOERR;
 | 
						|
 | 
						|
	/* No need to split */
 | 
						|
	if (ordered->disk_num_bytes == len)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* We cannot split once end_bio'd ordered extent */
 | 
						|
	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We cannot split a compressed ordered extent */
 | 
						|
	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
 | 
						|
	/* bio must be in one ordered extent */
 | 
						|
	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Checksum list should be empty */
 | 
						|
	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	file_len = ordered->num_bytes;
 | 
						|
	pre = start - ordered->disk_bytenr;
 | 
						|
	post = ordered_end - end;
 | 
						|
 | 
						|
	ret = btrfs_split_ordered_extent(ordered, pre, post);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
	ret = split_zoned_em(inode, file_offset, file_len, pre, post);
 | 
						|
 | 
						|
out:
 | 
						|
	btrfs_put_ordered_extent(ordered);
 | 
						|
 | 
						|
	return errno_to_blk_status(ret);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * extent_io.c submission hook. This does the right thing for csum calculation
 | 
						|
 * on write, or reading the csums from the tree before a read.
 | 
						|
 *
 | 
						|
 * Rules about async/sync submit,
 | 
						|
 * a) read:				sync submit
 | 
						|
 *
 | 
						|
 * b) write without checksum:		sync submit
 | 
						|
 *
 | 
						|
 * c) write with checksum:
 | 
						|
 *    c-1) if bio is issued by fsync:	sync submit
 | 
						|
 *         (sync_writers != 0)
 | 
						|
 *
 | 
						|
 *    c-2) if root is reloc root:	sync submit
 | 
						|
 *         (only in case of buffered IO)
 | 
						|
 *
 | 
						|
 *    c-3) otherwise:			async submit
 | 
						|
 */
 | 
						|
void btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
 | 
						|
			   int mirror_num, enum btrfs_compression_type compress_type)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
 | 
						|
	blk_status_t ret = 0;
 | 
						|
	int skip_sum;
 | 
						|
	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
 | 
						|
 | 
						|
	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
 | 
						|
		test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
 | 
						|
 | 
						|
	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
 | 
						|
		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
 | 
						|
 | 
						|
	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
 | 
						|
		struct page *page = bio_first_bvec_all(bio)->bv_page;
 | 
						|
		loff_t file_offset = page_offset(page);
 | 
						|
 | 
						|
		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
 | 
						|
		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		if (compress_type != BTRFS_COMPRESS_NONE) {
 | 
						|
			/*
 | 
						|
			 * btrfs_submit_compressed_read will handle completing
 | 
						|
			 * the bio if there were any errors, so just return
 | 
						|
			 * here.
 | 
						|
			 */
 | 
						|
			btrfs_submit_compressed_read(inode, bio, mirror_num);
 | 
						|
			return;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Lookup bio sums does extra checks around whether we
 | 
						|
			 * need to csum or not, which is why we ignore skip_sum
 | 
						|
			 * here.
 | 
						|
			 */
 | 
						|
			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
		goto mapit;
 | 
						|
	} else if (async && !skip_sum) {
 | 
						|
		/* csum items have already been cloned */
 | 
						|
		if (btrfs_is_data_reloc_root(root))
 | 
						|
			goto mapit;
 | 
						|
		/* we're doing a write, do the async checksumming */
 | 
						|
		ret = btrfs_wq_submit_bio(inode, bio, mirror_num,
 | 
						|
					  0, btrfs_submit_bio_start);
 | 
						|
		goto out;
 | 
						|
	} else if (!skip_sum) {
 | 
						|
		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
mapit:
 | 
						|
	ret = btrfs_map_bio(fs_info, bio, mirror_num);
 | 
						|
 | 
						|
out:
 | 
						|
	if (ret) {
 | 
						|
		bio->bi_status = ret;
 | 
						|
		bio_endio(bio);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * given a list of ordered sums record them in the inode.  This happens
 | 
						|
 * at IO completion time based on sums calculated at bio submission time.
 | 
						|
 */
 | 
						|
static int add_pending_csums(struct btrfs_trans_handle *trans,
 | 
						|
			     struct list_head *list)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_sum *sum;
 | 
						|
	struct btrfs_root *csum_root = NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	list_for_each_entry(sum, list, list) {
 | 
						|
		trans->adding_csums = true;
 | 
						|
		if (!csum_root)
 | 
						|
			csum_root = btrfs_csum_root(trans->fs_info,
 | 
						|
						    sum->bytenr);
 | 
						|
		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
 | 
						|
		trans->adding_csums = false;
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
 | 
						|
					 const u64 start,
 | 
						|
					 const u64 len,
 | 
						|
					 struct extent_state **cached_state)
 | 
						|
{
 | 
						|
	u64 search_start = start;
 | 
						|
	const u64 end = start + len - 1;
 | 
						|
 | 
						|
	while (search_start < end) {
 | 
						|
		const u64 search_len = end - search_start + 1;
 | 
						|
		struct extent_map *em;
 | 
						|
		u64 em_len;
 | 
						|
		int ret = 0;
 | 
						|
 | 
						|
		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
 | 
						|
		if (IS_ERR(em))
 | 
						|
			return PTR_ERR(em);
 | 
						|
 | 
						|
		if (em->block_start != EXTENT_MAP_HOLE)
 | 
						|
			goto next;
 | 
						|
 | 
						|
		em_len = em->len;
 | 
						|
		if (em->start < search_start)
 | 
						|
			em_len -= search_start - em->start;
 | 
						|
		if (em_len > search_len)
 | 
						|
			em_len = search_len;
 | 
						|
 | 
						|
		ret = set_extent_bit(&inode->io_tree, search_start,
 | 
						|
				     search_start + em_len - 1,
 | 
						|
				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
 | 
						|
				     GFP_NOFS, NULL);
 | 
						|
next:
 | 
						|
		search_start = extent_map_end(em);
 | 
						|
		free_extent_map(em);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 | 
						|
			      unsigned int extra_bits,
 | 
						|
			      struct extent_state **cached_state)
 | 
						|
{
 | 
						|
	WARN_ON(PAGE_ALIGNED(end));
 | 
						|
 | 
						|
	if (start >= i_size_read(&inode->vfs_inode) &&
 | 
						|
	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
 | 
						|
		/*
 | 
						|
		 * There can't be any extents following eof in this case so just
 | 
						|
		 * set the delalloc new bit for the range directly.
 | 
						|
		 */
 | 
						|
		extra_bits |= EXTENT_DELALLOC_NEW;
 | 
						|
	} else {
 | 
						|
		int ret;
 | 
						|
 | 
						|
		ret = btrfs_find_new_delalloc_bytes(inode, start,
 | 
						|
						    end + 1 - start,
 | 
						|
						    cached_state);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
 | 
						|
				   cached_state);
 | 
						|
}
 | 
						|
 | 
						|
/* see btrfs_writepage_start_hook for details on why this is required */
 | 
						|
struct btrfs_writepage_fixup {
 | 
						|
	struct page *page;
 | 
						|
	struct inode *inode;
 | 
						|
	struct btrfs_work work;
 | 
						|
};
 | 
						|
 | 
						|
static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
 | 
						|
{
 | 
						|
	struct btrfs_writepage_fixup *fixup;
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct extent_changeset *data_reserved = NULL;
 | 
						|
	struct page *page;
 | 
						|
	struct btrfs_inode *inode;
 | 
						|
	u64 page_start;
 | 
						|
	u64 page_end;
 | 
						|
	int ret = 0;
 | 
						|
	bool free_delalloc_space = true;
 | 
						|
 | 
						|
	fixup = container_of(work, struct btrfs_writepage_fixup, work);
 | 
						|
	page = fixup->page;
 | 
						|
	inode = BTRFS_I(fixup->inode);
 | 
						|
	page_start = page_offset(page);
 | 
						|
	page_end = page_offset(page) + PAGE_SIZE - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is similar to page_mkwrite, we need to reserve the space before
 | 
						|
	 * we take the page lock.
 | 
						|
	 */
 | 
						|
	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
 | 
						|
					   PAGE_SIZE);
 | 
						|
again:
 | 
						|
	lock_page(page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Before we queued this fixup, we took a reference on the page.
 | 
						|
	 * page->mapping may go NULL, but it shouldn't be moved to a different
 | 
						|
	 * address space.
 | 
						|
	 */
 | 
						|
	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
 | 
						|
		/*
 | 
						|
		 * Unfortunately this is a little tricky, either
 | 
						|
		 *
 | 
						|
		 * 1) We got here and our page had already been dealt with and
 | 
						|
		 *    we reserved our space, thus ret == 0, so we need to just
 | 
						|
		 *    drop our space reservation and bail.  This can happen the
 | 
						|
		 *    first time we come into the fixup worker, or could happen
 | 
						|
		 *    while waiting for the ordered extent.
 | 
						|
		 * 2) Our page was already dealt with, but we happened to get an
 | 
						|
		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
 | 
						|
		 *    this case we obviously don't have anything to release, but
 | 
						|
		 *    because the page was already dealt with we don't want to
 | 
						|
		 *    mark the page with an error, so make sure we're resetting
 | 
						|
		 *    ret to 0.  This is why we have this check _before_ the ret
 | 
						|
		 *    check, because we do not want to have a surprise ENOSPC
 | 
						|
		 *    when the page was already properly dealt with.
 | 
						|
		 */
 | 
						|
		if (!ret) {
 | 
						|
			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
 | 
						|
			btrfs_delalloc_release_space(inode, data_reserved,
 | 
						|
						     page_start, PAGE_SIZE,
 | 
						|
						     true);
 | 
						|
		}
 | 
						|
		ret = 0;
 | 
						|
		goto out_page;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can't mess with the page state unless it is locked, so now that
 | 
						|
	 * it is locked bail if we failed to make our space reservation.
 | 
						|
	 */
 | 
						|
	if (ret)
 | 
						|
		goto out_page;
 | 
						|
 | 
						|
	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
 | 
						|
 | 
						|
	/* already ordered? We're done */
 | 
						|
	if (PageOrdered(page))
 | 
						|
		goto out_reserved;
 | 
						|
 | 
						|
	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
 | 
						|
	if (ordered) {
 | 
						|
		unlock_extent_cached(&inode->io_tree, page_start, page_end,
 | 
						|
				     &cached_state);
 | 
						|
		unlock_page(page);
 | 
						|
		btrfs_start_ordered_extent(ordered, 1);
 | 
						|
		btrfs_put_ordered_extent(ordered);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
 | 
						|
					&cached_state);
 | 
						|
	if (ret)
 | 
						|
		goto out_reserved;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Everything went as planned, we're now the owner of a dirty page with
 | 
						|
	 * delayed allocation bits set and space reserved for our COW
 | 
						|
	 * destination.
 | 
						|
	 *
 | 
						|
	 * The page was dirty when we started, nothing should have cleaned it.
 | 
						|
	 */
 | 
						|
	BUG_ON(!PageDirty(page));
 | 
						|
	free_delalloc_space = false;
 | 
						|
out_reserved:
 | 
						|
	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
 | 
						|
	if (free_delalloc_space)
 | 
						|
		btrfs_delalloc_release_space(inode, data_reserved, page_start,
 | 
						|
					     PAGE_SIZE, true);
 | 
						|
	unlock_extent_cached(&inode->io_tree, page_start, page_end,
 | 
						|
			     &cached_state);
 | 
						|
out_page:
 | 
						|
	if (ret) {
 | 
						|
		/*
 | 
						|
		 * We hit ENOSPC or other errors.  Update the mapping and page
 | 
						|
		 * to reflect the errors and clean the page.
 | 
						|
		 */
 | 
						|
		mapping_set_error(page->mapping, ret);
 | 
						|
		end_extent_writepage(page, ret, page_start, page_end);
 | 
						|
		clear_page_dirty_for_io(page);
 | 
						|
		SetPageError(page);
 | 
						|
	}
 | 
						|
	btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
 | 
						|
	unlock_page(page);
 | 
						|
	put_page(page);
 | 
						|
	kfree(fixup);
 | 
						|
	extent_changeset_free(data_reserved);
 | 
						|
	/*
 | 
						|
	 * As a precaution, do a delayed iput in case it would be the last iput
 | 
						|
	 * that could need flushing space. Recursing back to fixup worker would
 | 
						|
	 * deadlock.
 | 
						|
	 */
 | 
						|
	btrfs_add_delayed_iput(&inode->vfs_inode);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * There are a few paths in the higher layers of the kernel that directly
 | 
						|
 * set the page dirty bit without asking the filesystem if it is a
 | 
						|
 * good idea.  This causes problems because we want to make sure COW
 | 
						|
 * properly happens and the data=ordered rules are followed.
 | 
						|
 *
 | 
						|
 * In our case any range that doesn't have the ORDERED bit set
 | 
						|
 * hasn't been properly setup for IO.  We kick off an async process
 | 
						|
 * to fix it up.  The async helper will wait for ordered extents, set
 | 
						|
 * the delalloc bit and make it safe to write the page.
 | 
						|
 */
 | 
						|
int btrfs_writepage_cow_fixup(struct page *page)
 | 
						|
{
 | 
						|
	struct inode *inode = page->mapping->host;
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_writepage_fixup *fixup;
 | 
						|
 | 
						|
	/* This page has ordered extent covering it already */
 | 
						|
	if (PageOrdered(page))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * PageChecked is set below when we create a fixup worker for this page,
 | 
						|
	 * don't try to create another one if we're already PageChecked()
 | 
						|
	 *
 | 
						|
	 * The extent_io writepage code will redirty the page if we send back
 | 
						|
	 * EAGAIN.
 | 
						|
	 */
 | 
						|
	if (PageChecked(page))
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
 | 
						|
	if (!fixup)
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We are already holding a reference to this inode from
 | 
						|
	 * write_cache_pages.  We need to hold it because the space reservation
 | 
						|
	 * takes place outside of the page lock, and we can't trust
 | 
						|
	 * page->mapping outside of the page lock.
 | 
						|
	 */
 | 
						|
	ihold(inode);
 | 
						|
	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
 | 
						|
	get_page(page);
 | 
						|
	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
 | 
						|
	fixup->page = page;
 | 
						|
	fixup->inode = inode;
 | 
						|
	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
 | 
						|
 | 
						|
	return -EAGAIN;
 | 
						|
}
 | 
						|
 | 
						|
static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
 | 
						|
				       struct btrfs_inode *inode, u64 file_pos,
 | 
						|
				       struct btrfs_file_extent_item *stack_fi,
 | 
						|
				       const bool update_inode_bytes,
 | 
						|
				       u64 qgroup_reserved)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	const u64 sectorsize = root->fs_info->sectorsize;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_key ins;
 | 
						|
	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
 | 
						|
	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
 | 
						|
	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
 | 
						|
	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
 | 
						|
	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
 | 
						|
	struct btrfs_drop_extents_args drop_args = { 0 };
 | 
						|
	int ret;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we may be replacing one extent in the tree with another.
 | 
						|
	 * The new extent is pinned in the extent map, and we don't want
 | 
						|
	 * to drop it from the cache until it is completely in the btree.
 | 
						|
	 *
 | 
						|
	 * So, tell btrfs_drop_extents to leave this extent in the cache.
 | 
						|
	 * the caller is expected to unpin it and allow it to be merged
 | 
						|
	 * with the others.
 | 
						|
	 */
 | 
						|
	drop_args.path = path;
 | 
						|
	drop_args.start = file_pos;
 | 
						|
	drop_args.end = file_pos + num_bytes;
 | 
						|
	drop_args.replace_extent = true;
 | 
						|
	drop_args.extent_item_size = sizeof(*stack_fi);
 | 
						|
	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (!drop_args.extent_inserted) {
 | 
						|
		ins.objectid = btrfs_ino(inode);
 | 
						|
		ins.offset = file_pos;
 | 
						|
		ins.type = BTRFS_EXTENT_DATA_KEY;
 | 
						|
 | 
						|
		ret = btrfs_insert_empty_item(trans, root, path, &ins,
 | 
						|
					      sizeof(*stack_fi));
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
 | 
						|
	write_extent_buffer(leaf, stack_fi,
 | 
						|
			btrfs_item_ptr_offset(leaf, path->slots[0]),
 | 
						|
			sizeof(struct btrfs_file_extent_item));
 | 
						|
 | 
						|
	btrfs_mark_buffer_dirty(leaf);
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we dropped an inline extent here, we know the range where it is
 | 
						|
	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
 | 
						|
	 * number of bytes only for that range containing the inline extent.
 | 
						|
	 * The remaining of the range will be processed when clearning the
 | 
						|
	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
 | 
						|
	 */
 | 
						|
	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
 | 
						|
		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
 | 
						|
 | 
						|
		inline_size = drop_args.bytes_found - inline_size;
 | 
						|
		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
 | 
						|
		drop_args.bytes_found -= inline_size;
 | 
						|
		num_bytes -= sectorsize;
 | 
						|
	}
 | 
						|
 | 
						|
	if (update_inode_bytes)
 | 
						|
		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
 | 
						|
 | 
						|
	ins.objectid = disk_bytenr;
 | 
						|
	ins.offset = disk_num_bytes;
 | 
						|
	ins.type = BTRFS_EXTENT_ITEM_KEY;
 | 
						|
 | 
						|
	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
 | 
						|
					       file_pos - offset,
 | 
						|
					       qgroup_reserved, &ins);
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
 | 
						|
					 u64 start, u64 len)
 | 
						|
{
 | 
						|
	struct btrfs_block_group *cache;
 | 
						|
 | 
						|
	cache = btrfs_lookup_block_group(fs_info, start);
 | 
						|
	ASSERT(cache);
 | 
						|
 | 
						|
	spin_lock(&cache->lock);
 | 
						|
	cache->delalloc_bytes -= len;
 | 
						|
	spin_unlock(&cache->lock);
 | 
						|
 | 
						|
	btrfs_put_block_group(cache);
 | 
						|
}
 | 
						|
 | 
						|
static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
 | 
						|
					     struct btrfs_ordered_extent *oe)
 | 
						|
{
 | 
						|
	struct btrfs_file_extent_item stack_fi;
 | 
						|
	bool update_inode_bytes;
 | 
						|
	u64 num_bytes = oe->num_bytes;
 | 
						|
	u64 ram_bytes = oe->ram_bytes;
 | 
						|
 | 
						|
	memset(&stack_fi, 0, sizeof(stack_fi));
 | 
						|
	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
 | 
						|
	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
 | 
						|
	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
 | 
						|
						   oe->disk_num_bytes);
 | 
						|
	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
 | 
						|
	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
 | 
						|
		num_bytes = ram_bytes = oe->truncated_len;
 | 
						|
	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
 | 
						|
	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
 | 
						|
	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
 | 
						|
	/* Encryption and other encoding is reserved and all 0 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For delalloc, when completing an ordered extent we update the inode's
 | 
						|
	 * bytes when clearing the range in the inode's io tree, so pass false
 | 
						|
	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
 | 
						|
	 * except if the ordered extent was truncated.
 | 
						|
	 */
 | 
						|
	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
 | 
						|
			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
 | 
						|
			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
 | 
						|
 | 
						|
	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
 | 
						|
					   oe->file_offset, &stack_fi,
 | 
						|
					   update_inode_bytes, oe->qgroup_rsv);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * As ordered data IO finishes, this gets called so we can finish
 | 
						|
 * an ordered extent if the range of bytes in the file it covers are
 | 
						|
 * fully written.
 | 
						|
 */
 | 
						|
static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
 | 
						|
{
 | 
						|
	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_trans_handle *trans = NULL;
 | 
						|
	struct extent_io_tree *io_tree = &inode->io_tree;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	u64 start, end;
 | 
						|
	int compress_type = 0;
 | 
						|
	int ret = 0;
 | 
						|
	u64 logical_len = ordered_extent->num_bytes;
 | 
						|
	bool freespace_inode;
 | 
						|
	bool truncated = false;
 | 
						|
	bool clear_reserved_extent = true;
 | 
						|
	unsigned int clear_bits = EXTENT_DEFRAG;
 | 
						|
 | 
						|
	start = ordered_extent->file_offset;
 | 
						|
	end = start + ordered_extent->num_bytes - 1;
 | 
						|
 | 
						|
	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
 | 
						|
	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
 | 
						|
	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
 | 
						|
	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
 | 
						|
		clear_bits |= EXTENT_DELALLOC_NEW;
 | 
						|
 | 
						|
	freespace_inode = btrfs_is_free_space_inode(inode);
 | 
						|
 | 
						|
	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
 | 
						|
		ret = -EIO;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* A valid bdev implies a write on a sequential zone */
 | 
						|
	if (ordered_extent->bdev) {
 | 
						|
		btrfs_rewrite_logical_zoned(ordered_extent);
 | 
						|
		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
 | 
						|
					ordered_extent->disk_num_bytes);
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_free_io_failure_record(inode, start, end);
 | 
						|
 | 
						|
	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
 | 
						|
		truncated = true;
 | 
						|
		logical_len = ordered_extent->truncated_len;
 | 
						|
		/* Truncated the entire extent, don't bother adding */
 | 
						|
		if (!logical_len)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
 | 
						|
		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
 | 
						|
 | 
						|
		btrfs_inode_safe_disk_i_size_write(inode, 0);
 | 
						|
		if (freespace_inode)
 | 
						|
			trans = btrfs_join_transaction_spacecache(root);
 | 
						|
		else
 | 
						|
			trans = btrfs_join_transaction(root);
 | 
						|
		if (IS_ERR(trans)) {
 | 
						|
			ret = PTR_ERR(trans);
 | 
						|
			trans = NULL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		trans->block_rsv = &inode->block_rsv;
 | 
						|
		ret = btrfs_update_inode_fallback(trans, root, inode);
 | 
						|
		if (ret) /* -ENOMEM or corruption */
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	clear_bits |= EXTENT_LOCKED;
 | 
						|
	lock_extent_bits(io_tree, start, end, &cached_state);
 | 
						|
 | 
						|
	if (freespace_inode)
 | 
						|
		trans = btrfs_join_transaction_spacecache(root);
 | 
						|
	else
 | 
						|
		trans = btrfs_join_transaction(root);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		ret = PTR_ERR(trans);
 | 
						|
		trans = NULL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	trans->block_rsv = &inode->block_rsv;
 | 
						|
 | 
						|
	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
 | 
						|
		compress_type = ordered_extent->compress_type;
 | 
						|
	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
 | 
						|
		BUG_ON(compress_type);
 | 
						|
		ret = btrfs_mark_extent_written(trans, inode,
 | 
						|
						ordered_extent->file_offset,
 | 
						|
						ordered_extent->file_offset +
 | 
						|
						logical_len);
 | 
						|
		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
 | 
						|
						  ordered_extent->disk_num_bytes);
 | 
						|
	} else {
 | 
						|
		BUG_ON(root == fs_info->tree_root);
 | 
						|
		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
 | 
						|
		if (!ret) {
 | 
						|
			clear_reserved_extent = false;
 | 
						|
			btrfs_release_delalloc_bytes(fs_info,
 | 
						|
						ordered_extent->disk_bytenr,
 | 
						|
						ordered_extent->disk_num_bytes);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
 | 
						|
			   ordered_extent->num_bytes, trans->transid);
 | 
						|
	if (ret < 0) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = add_pending_csums(trans, &ordered_extent->list);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this is a new delalloc range, clear its new delalloc flag to
 | 
						|
	 * update the inode's number of bytes. This needs to be done first
 | 
						|
	 * before updating the inode item.
 | 
						|
	 */
 | 
						|
	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
 | 
						|
	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
 | 
						|
		clear_extent_bit(&inode->io_tree, start, end,
 | 
						|
				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
 | 
						|
				 0, 0, &cached_state);
 | 
						|
 | 
						|
	btrfs_inode_safe_disk_i_size_write(inode, 0);
 | 
						|
	ret = btrfs_update_inode_fallback(trans, root, inode);
 | 
						|
	if (ret) { /* -ENOMEM or corruption */
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
 | 
						|
			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
 | 
						|
			 &cached_state);
 | 
						|
 | 
						|
	if (trans)
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
 | 
						|
	if (ret || truncated) {
 | 
						|
		u64 unwritten_start = start;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we failed to finish this ordered extent for any reason we
 | 
						|
		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
 | 
						|
		 * extent, and mark the inode with the error if it wasn't
 | 
						|
		 * already set.  Any error during writeback would have already
 | 
						|
		 * set the mapping error, so we need to set it if we're the ones
 | 
						|
		 * marking this ordered extent as failed.
 | 
						|
		 */
 | 
						|
		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
 | 
						|
					     &ordered_extent->flags))
 | 
						|
			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
 | 
						|
 | 
						|
		if (truncated)
 | 
						|
			unwritten_start += logical_len;
 | 
						|
		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
 | 
						|
 | 
						|
		/* Drop the cache for the part of the extent we didn't write. */
 | 
						|
		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the ordered extent had an IOERR or something else went
 | 
						|
		 * wrong we need to return the space for this ordered extent
 | 
						|
		 * back to the allocator.  We only free the extent in the
 | 
						|
		 * truncated case if we didn't write out the extent at all.
 | 
						|
		 *
 | 
						|
		 * If we made it past insert_reserved_file_extent before we
 | 
						|
		 * errored out then we don't need to do this as the accounting
 | 
						|
		 * has already been done.
 | 
						|
		 */
 | 
						|
		if ((ret || !logical_len) &&
 | 
						|
		    clear_reserved_extent &&
 | 
						|
		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
 | 
						|
		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
 | 
						|
			/*
 | 
						|
			 * Discard the range before returning it back to the
 | 
						|
			 * free space pool
 | 
						|
			 */
 | 
						|
			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
 | 
						|
				btrfs_discard_extent(fs_info,
 | 
						|
						ordered_extent->disk_bytenr,
 | 
						|
						ordered_extent->disk_num_bytes,
 | 
						|
						NULL);
 | 
						|
			btrfs_free_reserved_extent(fs_info,
 | 
						|
					ordered_extent->disk_bytenr,
 | 
						|
					ordered_extent->disk_num_bytes, 1);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This needs to be done to make sure anybody waiting knows we are done
 | 
						|
	 * updating everything for this ordered extent.
 | 
						|
	 */
 | 
						|
	btrfs_remove_ordered_extent(inode, ordered_extent);
 | 
						|
 | 
						|
	/* once for us */
 | 
						|
	btrfs_put_ordered_extent(ordered_extent);
 | 
						|
	/* once for the tree */
 | 
						|
	btrfs_put_ordered_extent(ordered_extent);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void finish_ordered_fn(struct btrfs_work *work)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_extent *ordered_extent;
 | 
						|
	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
 | 
						|
	btrfs_finish_ordered_io(ordered_extent);
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
 | 
						|
					  struct page *page, u64 start,
 | 
						|
					  u64 end, bool uptodate)
 | 
						|
{
 | 
						|
	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
 | 
						|
 | 
						|
	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
 | 
						|
				       finish_ordered_fn, uptodate);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Verify the checksum for a single sector without any extra action that depend
 | 
						|
 * on the type of I/O.
 | 
						|
 */
 | 
						|
int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
 | 
						|
			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
 | 
						|
{
 | 
						|
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 | 
						|
	char *kaddr;
 | 
						|
 | 
						|
	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
 | 
						|
 | 
						|
	shash->tfm = fs_info->csum_shash;
 | 
						|
 | 
						|
	kaddr = kmap_local_page(page) + pgoff;
 | 
						|
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
 | 
						|
	kunmap_local(kaddr);
 | 
						|
 | 
						|
	if (memcmp(csum, csum_expected, fs_info->csum_size))
 | 
						|
		return -EIO;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * check_data_csum - verify checksum of one sector of uncompressed data
 | 
						|
 * @inode:	inode
 | 
						|
 * @io_bio:	btrfs_io_bio which contains the csum
 | 
						|
 * @bio_offset:	offset to the beginning of the bio (in bytes)
 | 
						|
 * @page:	page where is the data to be verified
 | 
						|
 * @pgoff:	offset inside the page
 | 
						|
 * @start:	logical offset in the file
 | 
						|
 *
 | 
						|
 * The length of such check is always one sector size.
 | 
						|
 *
 | 
						|
 * When csum mismatch is detected, we will also report the error and fill the
 | 
						|
 * corrupted range with zero. (Thus it needs the extra parameters)
 | 
						|
 */
 | 
						|
static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
 | 
						|
			   u32 bio_offset, struct page *page, u32 pgoff,
 | 
						|
			   u64 start)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	u32 len = fs_info->sectorsize;
 | 
						|
	const u32 csum_size = fs_info->csum_size;
 | 
						|
	unsigned int offset_sectors;
 | 
						|
	u8 *csum_expected;
 | 
						|
	u8 csum[BTRFS_CSUM_SIZE];
 | 
						|
 | 
						|
	ASSERT(pgoff + len <= PAGE_SIZE);
 | 
						|
 | 
						|
	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
 | 
						|
	csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
 | 
						|
 | 
						|
	if (btrfs_check_sector_csum(fs_info, page, pgoff, csum, csum_expected))
 | 
						|
		goto zeroit;
 | 
						|
	return 0;
 | 
						|
 | 
						|
zeroit:
 | 
						|
	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
 | 
						|
				    bbio->mirror_num);
 | 
						|
	if (bbio->device)
 | 
						|
		btrfs_dev_stat_inc_and_print(bbio->device,
 | 
						|
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 | 
						|
	memzero_page(page, pgoff, len);
 | 
						|
	return -EIO;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When reads are done, we need to check csums to verify the data is correct.
 | 
						|
 * if there's a match, we allow the bio to finish.  If not, the code in
 | 
						|
 * extent_io.c will try to find good copies for us.
 | 
						|
 *
 | 
						|
 * @bio_offset:	offset to the beginning of the bio (in bytes)
 | 
						|
 * @start:	file offset of the range start
 | 
						|
 * @end:	file offset of the range end (inclusive)
 | 
						|
 *
 | 
						|
 * Return a bitmap where bit set means a csum mismatch, and bit not set means
 | 
						|
 * csum match.
 | 
						|
 */
 | 
						|
unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
 | 
						|
				    u32 bio_offset, struct page *page,
 | 
						|
				    u64 start, u64 end)
 | 
						|
{
 | 
						|
	struct inode *inode = page->mapping->host;
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	const u32 sectorsize = root->fs_info->sectorsize;
 | 
						|
	u32 pg_off;
 | 
						|
	unsigned int result = 0;
 | 
						|
 | 
						|
	if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
 | 
						|
		btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This only happens for NODATASUM or compressed read.
 | 
						|
	 * Normally this should be covered by above check for compressed read
 | 
						|
	 * or the next check for NODATASUM.  Just do a quicker exit here.
 | 
						|
	 */
 | 
						|
	if (bbio->csum == NULL)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ASSERT(page_offset(page) <= start &&
 | 
						|
	       end <= page_offset(page) + PAGE_SIZE - 1);
 | 
						|
	for (pg_off = offset_in_page(start);
 | 
						|
	     pg_off < offset_in_page(end);
 | 
						|
	     pg_off += sectorsize, bio_offset += sectorsize) {
 | 
						|
		u64 file_offset = pg_off + page_offset(page);
 | 
						|
		int ret;
 | 
						|
 | 
						|
		if (btrfs_is_data_reloc_root(root) &&
 | 
						|
		    test_range_bit(io_tree, file_offset,
 | 
						|
				   file_offset + sectorsize - 1,
 | 
						|
				   EXTENT_NODATASUM, 1, NULL)) {
 | 
						|
			/* Skip the range without csum for data reloc inode */
 | 
						|
			clear_extent_bits(io_tree, file_offset,
 | 
						|
					  file_offset + sectorsize - 1,
 | 
						|
					  EXTENT_NODATASUM);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
 | 
						|
				      page_offset(page) + pg_off);
 | 
						|
		if (ret < 0) {
 | 
						|
			const int nr_bit = (pg_off - offset_in_page(start)) >>
 | 
						|
				     root->fs_info->sectorsize_bits;
 | 
						|
 | 
						|
			result |= (1U << nr_bit);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * btrfs_add_delayed_iput - perform a delayed iput on @inode
 | 
						|
 *
 | 
						|
 * @inode: The inode we want to perform iput on
 | 
						|
 *
 | 
						|
 * This function uses the generic vfs_inode::i_count to track whether we should
 | 
						|
 * just decrement it (in case it's > 1) or if this is the last iput then link
 | 
						|
 * the inode to the delayed iput machinery. Delayed iputs are processed at
 | 
						|
 * transaction commit time/superblock commit/cleaner kthread.
 | 
						|
 */
 | 
						|
void btrfs_add_delayed_iput(struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_inode *binode = BTRFS_I(inode);
 | 
						|
 | 
						|
	if (atomic_add_unless(&inode->i_count, -1, 1))
 | 
						|
		return;
 | 
						|
 | 
						|
	atomic_inc(&fs_info->nr_delayed_iputs);
 | 
						|
	spin_lock(&fs_info->delayed_iput_lock);
 | 
						|
	ASSERT(list_empty(&binode->delayed_iput));
 | 
						|
	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
 | 
						|
	spin_unlock(&fs_info->delayed_iput_lock);
 | 
						|
	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
 | 
						|
		wake_up_process(fs_info->cleaner_kthread);
 | 
						|
}
 | 
						|
 | 
						|
static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
 | 
						|
				    struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	list_del_init(&inode->delayed_iput);
 | 
						|
	spin_unlock(&fs_info->delayed_iput_lock);
 | 
						|
	iput(&inode->vfs_inode);
 | 
						|
	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
 | 
						|
		wake_up(&fs_info->delayed_iputs_wait);
 | 
						|
	spin_lock(&fs_info->delayed_iput_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
 | 
						|
				   struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	if (!list_empty(&inode->delayed_iput)) {
 | 
						|
		spin_lock(&fs_info->delayed_iput_lock);
 | 
						|
		if (!list_empty(&inode->delayed_iput))
 | 
						|
			run_delayed_iput_locked(fs_info, inode);
 | 
						|
		spin_unlock(&fs_info->delayed_iput_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
 | 
						|
{
 | 
						|
 | 
						|
	spin_lock(&fs_info->delayed_iput_lock);
 | 
						|
	while (!list_empty(&fs_info->delayed_iputs)) {
 | 
						|
		struct btrfs_inode *inode;
 | 
						|
 | 
						|
		inode = list_first_entry(&fs_info->delayed_iputs,
 | 
						|
				struct btrfs_inode, delayed_iput);
 | 
						|
		run_delayed_iput_locked(fs_info, inode);
 | 
						|
		cond_resched_lock(&fs_info->delayed_iput_lock);
 | 
						|
	}
 | 
						|
	spin_unlock(&fs_info->delayed_iput_lock);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Wait for flushing all delayed iputs
 | 
						|
 *
 | 
						|
 * @fs_info:  the filesystem
 | 
						|
 *
 | 
						|
 * This will wait on any delayed iputs that are currently running with KILLABLE
 | 
						|
 * set.  Once they are all done running we will return, unless we are killed in
 | 
						|
 * which case we return EINTR. This helps in user operations like fallocate etc
 | 
						|
 * that might get blocked on the iputs.
 | 
						|
 *
 | 
						|
 * Return EINTR if we were killed, 0 if nothing's pending
 | 
						|
 */
 | 
						|
int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
 | 
						|
{
 | 
						|
	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
 | 
						|
			atomic_read(&fs_info->nr_delayed_iputs) == 0);
 | 
						|
	if (ret)
 | 
						|
		return -EINTR;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This creates an orphan entry for the given inode in case something goes wrong
 | 
						|
 * in the middle of an unlink.
 | 
						|
 */
 | 
						|
int btrfs_orphan_add(struct btrfs_trans_handle *trans,
 | 
						|
		     struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
 | 
						|
	if (ret && ret != -EEXIST) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We have done the delete so we can go ahead and remove the orphan item for
 | 
						|
 * this particular inode.
 | 
						|
 */
 | 
						|
static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
 | 
						|
			    struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this cleans up any orphans that may be left on the list from the last use
 | 
						|
 * of this root.
 | 
						|
 */
 | 
						|
int btrfs_orphan_cleanup(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_key key, found_key;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct inode *inode;
 | 
						|
	u64 last_objectid = 0;
 | 
						|
	int ret = 0, nr_unlink = 0;
 | 
						|
 | 
						|
	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	path->reada = READA_BACK;
 | 
						|
 | 
						|
	key.objectid = BTRFS_ORPHAN_OBJECTID;
 | 
						|
	key.type = BTRFS_ORPHAN_ITEM_KEY;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
		if (ret < 0)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * if ret == 0 means we found what we were searching for, which
 | 
						|
		 * is weird, but possible, so only screw with path if we didn't
 | 
						|
		 * find the key and see if we have stuff that matches
 | 
						|
		 */
 | 
						|
		if (ret > 0) {
 | 
						|
			ret = 0;
 | 
						|
			if (path->slots[0] == 0)
 | 
						|
				break;
 | 
						|
			path->slots[0]--;
 | 
						|
		}
 | 
						|
 | 
						|
		/* pull out the item */
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | 
						|
 | 
						|
		/* make sure the item matches what we want */
 | 
						|
		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
 | 
						|
			break;
 | 
						|
		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
 | 
						|
			break;
 | 
						|
 | 
						|
		/* release the path since we're done with it */
 | 
						|
		btrfs_release_path(path);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * this is where we are basically btrfs_lookup, without the
 | 
						|
		 * crossing root thing.  we store the inode number in the
 | 
						|
		 * offset of the orphan item.
 | 
						|
		 */
 | 
						|
 | 
						|
		if (found_key.offset == last_objectid) {
 | 
						|
			btrfs_err(fs_info,
 | 
						|
				  "Error removing orphan entry, stopping orphan cleanup");
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		last_objectid = found_key.offset;
 | 
						|
 | 
						|
		found_key.objectid = found_key.offset;
 | 
						|
		found_key.type = BTRFS_INODE_ITEM_KEY;
 | 
						|
		found_key.offset = 0;
 | 
						|
		inode = btrfs_iget(fs_info->sb, last_objectid, root);
 | 
						|
		ret = PTR_ERR_OR_ZERO(inode);
 | 
						|
		if (ret && ret != -ENOENT)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		if (ret == -ENOENT && root == fs_info->tree_root) {
 | 
						|
			struct btrfs_root *dead_root;
 | 
						|
			int is_dead_root = 0;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * This is an orphan in the tree root. Currently these
 | 
						|
			 * could come from 2 sources:
 | 
						|
			 *  a) a root (snapshot/subvolume) deletion in progress
 | 
						|
			 *  b) a free space cache inode
 | 
						|
			 * We need to distinguish those two, as the orphan item
 | 
						|
			 * for a root must not get deleted before the deletion
 | 
						|
			 * of the snapshot/subvolume's tree completes.
 | 
						|
			 *
 | 
						|
			 * btrfs_find_orphan_roots() ran before us, which has
 | 
						|
			 * found all deleted roots and loaded them into
 | 
						|
			 * fs_info->fs_roots_radix. So here we can find if an
 | 
						|
			 * orphan item corresponds to a deleted root by looking
 | 
						|
			 * up the root from that radix tree.
 | 
						|
			 */
 | 
						|
 | 
						|
			spin_lock(&fs_info->fs_roots_radix_lock);
 | 
						|
			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
 | 
						|
							 (unsigned long)found_key.objectid);
 | 
						|
			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
 | 
						|
				is_dead_root = 1;
 | 
						|
			spin_unlock(&fs_info->fs_roots_radix_lock);
 | 
						|
 | 
						|
			if (is_dead_root) {
 | 
						|
				/* prevent this orphan from being found again */
 | 
						|
				key.offset = found_key.objectid - 1;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we have an inode with links, there are a couple of
 | 
						|
		 * possibilities:
 | 
						|
		 *
 | 
						|
		 * 1. We were halfway through creating fsverity metadata for the
 | 
						|
		 * file. In that case, the orphan item represents incomplete
 | 
						|
		 * fsverity metadata which must be cleaned up with
 | 
						|
		 * btrfs_drop_verity_items and deleting the orphan item.
 | 
						|
 | 
						|
		 * 2. Old kernels (before v3.12) used to create an
 | 
						|
		 * orphan item for truncate indicating that there were possibly
 | 
						|
		 * extent items past i_size that needed to be deleted. In v3.12,
 | 
						|
		 * truncate was changed to update i_size in sync with the extent
 | 
						|
		 * items, but the (useless) orphan item was still created. Since
 | 
						|
		 * v4.18, we don't create the orphan item for truncate at all.
 | 
						|
		 *
 | 
						|
		 * So, this item could mean that we need to do a truncate, but
 | 
						|
		 * only if this filesystem was last used on a pre-v3.12 kernel
 | 
						|
		 * and was not cleanly unmounted. The odds of that are quite
 | 
						|
		 * slim, and it's a pain to do the truncate now, so just delete
 | 
						|
		 * the orphan item.
 | 
						|
		 *
 | 
						|
		 * It's also possible that this orphan item was supposed to be
 | 
						|
		 * deleted but wasn't. The inode number may have been reused,
 | 
						|
		 * but either way, we can delete the orphan item.
 | 
						|
		 */
 | 
						|
		if (ret == -ENOENT || inode->i_nlink) {
 | 
						|
			if (!ret) {
 | 
						|
				ret = btrfs_drop_verity_items(BTRFS_I(inode));
 | 
						|
				iput(inode);
 | 
						|
				if (ret)
 | 
						|
					goto out;
 | 
						|
			}
 | 
						|
			trans = btrfs_start_transaction(root, 1);
 | 
						|
			if (IS_ERR(trans)) {
 | 
						|
				ret = PTR_ERR(trans);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			btrfs_debug(fs_info, "auto deleting %Lu",
 | 
						|
				    found_key.objectid);
 | 
						|
			ret = btrfs_del_orphan_item(trans, root,
 | 
						|
						    found_key.objectid);
 | 
						|
			btrfs_end_transaction(trans);
 | 
						|
			if (ret)
 | 
						|
				goto out;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		nr_unlink++;
 | 
						|
 | 
						|
		/* this will do delete_inode and everything for us */
 | 
						|
		iput(inode);
 | 
						|
	}
 | 
						|
	/* release the path since we're done with it */
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
 | 
						|
		trans = btrfs_join_transaction(root);
 | 
						|
		if (!IS_ERR(trans))
 | 
						|
			btrfs_end_transaction(trans);
 | 
						|
	}
 | 
						|
 | 
						|
	if (nr_unlink)
 | 
						|
		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
 | 
						|
 | 
						|
out:
 | 
						|
	if (ret)
 | 
						|
		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * very simple check to peek ahead in the leaf looking for xattrs.  If we
 | 
						|
 * don't find any xattrs, we know there can't be any acls.
 | 
						|
 *
 | 
						|
 * slot is the slot the inode is in, objectid is the objectid of the inode
 | 
						|
 */
 | 
						|
static noinline int acls_after_inode_item(struct extent_buffer *leaf,
 | 
						|
					  int slot, u64 objectid,
 | 
						|
					  int *first_xattr_slot)
 | 
						|
{
 | 
						|
	u32 nritems = btrfs_header_nritems(leaf);
 | 
						|
	struct btrfs_key found_key;
 | 
						|
	static u64 xattr_access = 0;
 | 
						|
	static u64 xattr_default = 0;
 | 
						|
	int scanned = 0;
 | 
						|
 | 
						|
	if (!xattr_access) {
 | 
						|
		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
 | 
						|
					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
 | 
						|
		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
 | 
						|
					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
 | 
						|
	}
 | 
						|
 | 
						|
	slot++;
 | 
						|
	*first_xattr_slot = -1;
 | 
						|
	while (slot < nritems) {
 | 
						|
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
 | 
						|
 | 
						|
		/* we found a different objectid, there must not be acls */
 | 
						|
		if (found_key.objectid != objectid)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		/* we found an xattr, assume we've got an acl */
 | 
						|
		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
 | 
						|
			if (*first_xattr_slot == -1)
 | 
						|
				*first_xattr_slot = slot;
 | 
						|
			if (found_key.offset == xattr_access ||
 | 
						|
			    found_key.offset == xattr_default)
 | 
						|
				return 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * we found a key greater than an xattr key, there can't
 | 
						|
		 * be any acls later on
 | 
						|
		 */
 | 
						|
		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		slot++;
 | 
						|
		scanned++;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * it goes inode, inode backrefs, xattrs, extents,
 | 
						|
		 * so if there are a ton of hard links to an inode there can
 | 
						|
		 * be a lot of backrefs.  Don't waste time searching too hard,
 | 
						|
		 * this is just an optimization
 | 
						|
		 */
 | 
						|
		if (scanned >= 8)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	/* we hit the end of the leaf before we found an xattr or
 | 
						|
	 * something larger than an xattr.  We have to assume the inode
 | 
						|
	 * has acls
 | 
						|
	 */
 | 
						|
	if (*first_xattr_slot == -1)
 | 
						|
		*first_xattr_slot = slot;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * read an inode from the btree into the in-memory inode
 | 
						|
 */
 | 
						|
static int btrfs_read_locked_inode(struct inode *inode,
 | 
						|
				   struct btrfs_path *in_path)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_path *path = in_path;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_inode_item *inode_item;
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_key location;
 | 
						|
	unsigned long ptr;
 | 
						|
	int maybe_acls;
 | 
						|
	u32 rdev;
 | 
						|
	int ret;
 | 
						|
	bool filled = false;
 | 
						|
	int first_xattr_slot;
 | 
						|
 | 
						|
	ret = btrfs_fill_inode(inode, &rdev);
 | 
						|
	if (!ret)
 | 
						|
		filled = true;
 | 
						|
 | 
						|
	if (!path) {
 | 
						|
		path = btrfs_alloc_path();
 | 
						|
		if (!path)
 | 
						|
			return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
 | 
						|
 | 
						|
	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
 | 
						|
	if (ret) {
 | 
						|
		if (path != in_path)
 | 
						|
			btrfs_free_path(path);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
 | 
						|
	if (filled)
 | 
						|
		goto cache_index;
 | 
						|
 | 
						|
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
				    struct btrfs_inode_item);
 | 
						|
	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
 | 
						|
	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
 | 
						|
	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
 | 
						|
	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
 | 
						|
	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
 | 
						|
	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
 | 
						|
			round_up(i_size_read(inode), fs_info->sectorsize));
 | 
						|
 | 
						|
	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
 | 
						|
	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
 | 
						|
 | 
						|
	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
 | 
						|
	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
 | 
						|
 | 
						|
	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
 | 
						|
	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
 | 
						|
 | 
						|
	BTRFS_I(inode)->i_otime.tv_sec =
 | 
						|
		btrfs_timespec_sec(leaf, &inode_item->otime);
 | 
						|
	BTRFS_I(inode)->i_otime.tv_nsec =
 | 
						|
		btrfs_timespec_nsec(leaf, &inode_item->otime);
 | 
						|
 | 
						|
	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
 | 
						|
	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
 | 
						|
	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
 | 
						|
 | 
						|
	inode_set_iversion_queried(inode,
 | 
						|
				   btrfs_inode_sequence(leaf, inode_item));
 | 
						|
	inode->i_generation = BTRFS_I(inode)->generation;
 | 
						|
	inode->i_rdev = 0;
 | 
						|
	rdev = btrfs_inode_rdev(leaf, inode_item);
 | 
						|
 | 
						|
	BTRFS_I(inode)->index_cnt = (u64)-1;
 | 
						|
	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
 | 
						|
				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
 | 
						|
 | 
						|
cache_index:
 | 
						|
	/*
 | 
						|
	 * If we were modified in the current generation and evicted from memory
 | 
						|
	 * and then re-read we need to do a full sync since we don't have any
 | 
						|
	 * idea about which extents were modified before we were evicted from
 | 
						|
	 * cache.
 | 
						|
	 *
 | 
						|
	 * This is required for both inode re-read from disk and delayed inode
 | 
						|
	 * in delayed_nodes_tree.
 | 
						|
	 */
 | 
						|
	if (BTRFS_I(inode)->last_trans == fs_info->generation)
 | 
						|
		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | 
						|
			&BTRFS_I(inode)->runtime_flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't persist the id of the transaction where an unlink operation
 | 
						|
	 * against the inode was last made. So here we assume the inode might
 | 
						|
	 * have been evicted, and therefore the exact value of last_unlink_trans
 | 
						|
	 * lost, and set it to last_trans to avoid metadata inconsistencies
 | 
						|
	 * between the inode and its parent if the inode is fsync'ed and the log
 | 
						|
	 * replayed. For example, in the scenario:
 | 
						|
	 *
 | 
						|
	 * touch mydir/foo
 | 
						|
	 * ln mydir/foo mydir/bar
 | 
						|
	 * sync
 | 
						|
	 * unlink mydir/bar
 | 
						|
	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
 | 
						|
	 * xfs_io -c fsync mydir/foo
 | 
						|
	 * <power failure>
 | 
						|
	 * mount fs, triggers fsync log replay
 | 
						|
	 *
 | 
						|
	 * We must make sure that when we fsync our inode foo we also log its
 | 
						|
	 * parent inode, otherwise after log replay the parent still has the
 | 
						|
	 * dentry with the "bar" name but our inode foo has a link count of 1
 | 
						|
	 * and doesn't have an inode ref with the name "bar" anymore.
 | 
						|
	 *
 | 
						|
	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
 | 
						|
	 * but it guarantees correctness at the expense of occasional full
 | 
						|
	 * transaction commits on fsync if our inode is a directory, or if our
 | 
						|
	 * inode is not a directory, logging its parent unnecessarily.
 | 
						|
	 */
 | 
						|
	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Same logic as for last_unlink_trans. We don't persist the generation
 | 
						|
	 * of the last transaction where this inode was used for a reflink
 | 
						|
	 * operation, so after eviction and reloading the inode we must be
 | 
						|
	 * pessimistic and assume the last transaction that modified the inode.
 | 
						|
	 */
 | 
						|
	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
 | 
						|
 | 
						|
	path->slots[0]++;
 | 
						|
	if (inode->i_nlink != 1 ||
 | 
						|
	    path->slots[0] >= btrfs_header_nritems(leaf))
 | 
						|
		goto cache_acl;
 | 
						|
 | 
						|
	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
 | 
						|
	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
 | 
						|
		goto cache_acl;
 | 
						|
 | 
						|
	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | 
						|
	if (location.type == BTRFS_INODE_REF_KEY) {
 | 
						|
		struct btrfs_inode_ref *ref;
 | 
						|
 | 
						|
		ref = (struct btrfs_inode_ref *)ptr;
 | 
						|
		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
 | 
						|
	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
 | 
						|
		struct btrfs_inode_extref *extref;
 | 
						|
 | 
						|
		extref = (struct btrfs_inode_extref *)ptr;
 | 
						|
		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
 | 
						|
								     extref);
 | 
						|
	}
 | 
						|
cache_acl:
 | 
						|
	/*
 | 
						|
	 * try to precache a NULL acl entry for files that don't have
 | 
						|
	 * any xattrs or acls
 | 
						|
	 */
 | 
						|
	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
 | 
						|
			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
 | 
						|
	if (first_xattr_slot != -1) {
 | 
						|
		path->slots[0] = first_xattr_slot;
 | 
						|
		ret = btrfs_load_inode_props(inode, path);
 | 
						|
		if (ret)
 | 
						|
			btrfs_err(fs_info,
 | 
						|
				  "error loading props for ino %llu (root %llu): %d",
 | 
						|
				  btrfs_ino(BTRFS_I(inode)),
 | 
						|
				  root->root_key.objectid, ret);
 | 
						|
	}
 | 
						|
	if (path != in_path)
 | 
						|
		btrfs_free_path(path);
 | 
						|
 | 
						|
	if (!maybe_acls)
 | 
						|
		cache_no_acl(inode);
 | 
						|
 | 
						|
	switch (inode->i_mode & S_IFMT) {
 | 
						|
	case S_IFREG:
 | 
						|
		inode->i_mapping->a_ops = &btrfs_aops;
 | 
						|
		inode->i_fop = &btrfs_file_operations;
 | 
						|
		inode->i_op = &btrfs_file_inode_operations;
 | 
						|
		break;
 | 
						|
	case S_IFDIR:
 | 
						|
		inode->i_fop = &btrfs_dir_file_operations;
 | 
						|
		inode->i_op = &btrfs_dir_inode_operations;
 | 
						|
		break;
 | 
						|
	case S_IFLNK:
 | 
						|
		inode->i_op = &btrfs_symlink_inode_operations;
 | 
						|
		inode_nohighmem(inode);
 | 
						|
		inode->i_mapping->a_ops = &btrfs_aops;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		inode->i_op = &btrfs_special_inode_operations;
 | 
						|
		init_special_inode(inode, inode->i_mode, rdev);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_sync_inode_flags_to_i_flags(inode);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * given a leaf and an inode, copy the inode fields into the leaf
 | 
						|
 */
 | 
						|
static void fill_inode_item(struct btrfs_trans_handle *trans,
 | 
						|
			    struct extent_buffer *leaf,
 | 
						|
			    struct btrfs_inode_item *item,
 | 
						|
			    struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_map_token token;
 | 
						|
	u64 flags;
 | 
						|
 | 
						|
	btrfs_init_map_token(&token, leaf);
 | 
						|
 | 
						|
	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
 | 
						|
	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
 | 
						|
	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
 | 
						|
	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
 | 
						|
	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
 | 
						|
 | 
						|
	btrfs_set_token_timespec_sec(&token, &item->atime,
 | 
						|
				     inode->i_atime.tv_sec);
 | 
						|
	btrfs_set_token_timespec_nsec(&token, &item->atime,
 | 
						|
				      inode->i_atime.tv_nsec);
 | 
						|
 | 
						|
	btrfs_set_token_timespec_sec(&token, &item->mtime,
 | 
						|
				     inode->i_mtime.tv_sec);
 | 
						|
	btrfs_set_token_timespec_nsec(&token, &item->mtime,
 | 
						|
				      inode->i_mtime.tv_nsec);
 | 
						|
 | 
						|
	btrfs_set_token_timespec_sec(&token, &item->ctime,
 | 
						|
				     inode->i_ctime.tv_sec);
 | 
						|
	btrfs_set_token_timespec_nsec(&token, &item->ctime,
 | 
						|
				      inode->i_ctime.tv_nsec);
 | 
						|
 | 
						|
	btrfs_set_token_timespec_sec(&token, &item->otime,
 | 
						|
				     BTRFS_I(inode)->i_otime.tv_sec);
 | 
						|
	btrfs_set_token_timespec_nsec(&token, &item->otime,
 | 
						|
				      BTRFS_I(inode)->i_otime.tv_nsec);
 | 
						|
 | 
						|
	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
 | 
						|
	btrfs_set_token_inode_generation(&token, item,
 | 
						|
					 BTRFS_I(inode)->generation);
 | 
						|
	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
 | 
						|
	btrfs_set_token_inode_transid(&token, item, trans->transid);
 | 
						|
	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
 | 
						|
	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
 | 
						|
					  BTRFS_I(inode)->ro_flags);
 | 
						|
	btrfs_set_token_inode_flags(&token, item, flags);
 | 
						|
	btrfs_set_token_inode_block_group(&token, item, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * copy everything in the in-memory inode into the btree.
 | 
						|
 */
 | 
						|
static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
 | 
						|
				struct btrfs_root *root,
 | 
						|
				struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_inode_item *inode_item;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
 | 
						|
	if (ret) {
 | 
						|
		if (ret > 0)
 | 
						|
			ret = -ENOENT;
 | 
						|
		goto failed;
 | 
						|
	}
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
				    struct btrfs_inode_item);
 | 
						|
 | 
						|
	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
 | 
						|
	btrfs_mark_buffer_dirty(leaf);
 | 
						|
	btrfs_set_inode_last_trans(trans, inode);
 | 
						|
	ret = 0;
 | 
						|
failed:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * copy everything in the in-memory inode into the btree.
 | 
						|
 */
 | 
						|
noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
 | 
						|
				struct btrfs_root *root,
 | 
						|
				struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the inode is a free space inode, we can deadlock during commit
 | 
						|
	 * if we put it into the delayed code.
 | 
						|
	 *
 | 
						|
	 * The data relocation inode should also be directly updated
 | 
						|
	 * without delay
 | 
						|
	 */
 | 
						|
	if (!btrfs_is_free_space_inode(inode)
 | 
						|
	    && !btrfs_is_data_reloc_root(root)
 | 
						|
	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
 | 
						|
		btrfs_update_root_times(trans, root);
 | 
						|
 | 
						|
		ret = btrfs_delayed_update_inode(trans, root, inode);
 | 
						|
		if (!ret)
 | 
						|
			btrfs_set_inode_last_trans(trans, inode);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return btrfs_update_inode_item(trans, root, inode);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
 | 
						|
				struct btrfs_root *root, struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = btrfs_update_inode(trans, root, inode);
 | 
						|
	if (ret == -ENOSPC)
 | 
						|
		return btrfs_update_inode_item(trans, root, inode);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * unlink helper that gets used here in inode.c and in the tree logging
 | 
						|
 * recovery code.  It remove a link in a directory with a given name, and
 | 
						|
 * also drops the back refs in the inode to the directory
 | 
						|
 */
 | 
						|
static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
 | 
						|
				struct btrfs_inode *dir,
 | 
						|
				struct btrfs_inode *inode,
 | 
						|
				const char *name, int name_len,
 | 
						|
				struct btrfs_rename_ctx *rename_ctx)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = dir->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	int ret = 0;
 | 
						|
	struct btrfs_dir_item *di;
 | 
						|
	u64 index;
 | 
						|
	u64 ino = btrfs_ino(inode);
 | 
						|
	u64 dir_ino = btrfs_ino(dir);
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
 | 
						|
				    name, name_len, -1);
 | 
						|
	if (IS_ERR_OR_NULL(di)) {
 | 
						|
		ret = di ? PTR_ERR(di) : -ENOENT;
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
	ret = btrfs_delete_one_dir_name(trans, root, path, di);
 | 
						|
	if (ret)
 | 
						|
		goto err;
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we don't have dir index, we have to get it by looking up
 | 
						|
	 * the inode ref, since we get the inode ref, remove it directly,
 | 
						|
	 * it is unnecessary to do delayed deletion.
 | 
						|
	 *
 | 
						|
	 * But if we have dir index, needn't search inode ref to get it.
 | 
						|
	 * Since the inode ref is close to the inode item, it is better
 | 
						|
	 * that we delay to delete it, and just do this deletion when
 | 
						|
	 * we update the inode item.
 | 
						|
	 */
 | 
						|
	if (inode->dir_index) {
 | 
						|
		ret = btrfs_delayed_delete_inode_ref(inode);
 | 
						|
		if (!ret) {
 | 
						|
			index = inode->dir_index;
 | 
						|
			goto skip_backref;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
 | 
						|
				  dir_ino, &index);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_info(fs_info,
 | 
						|
			"failed to delete reference to %.*s, inode %llu parent %llu",
 | 
						|
			name_len, name, ino, dir_ino);
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
skip_backref:
 | 
						|
	if (rename_ctx)
 | 
						|
		rename_ctx->index = index;
 | 
						|
 | 
						|
	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are in a rename context, we don't need to update anything in the
 | 
						|
	 * log. That will be done later during the rename by btrfs_log_new_name().
 | 
						|
	 * Besides that, doing it here would only cause extra unnecessary btree
 | 
						|
	 * operations on the log tree, increasing latency for applications.
 | 
						|
	 */
 | 
						|
	if (!rename_ctx) {
 | 
						|
		btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
 | 
						|
					   dir_ino);
 | 
						|
		btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
 | 
						|
					     index);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have a pending delayed iput we could end up with the final iput
 | 
						|
	 * being run in btrfs-cleaner context.  If we have enough of these built
 | 
						|
	 * up we can end up burning a lot of time in btrfs-cleaner without any
 | 
						|
	 * way to throttle the unlinks.  Since we're currently holding a ref on
 | 
						|
	 * the inode we can run the delayed iput here without any issues as the
 | 
						|
	 * final iput won't be done until after we drop the ref we're currently
 | 
						|
	 * holding.
 | 
						|
	 */
 | 
						|
	btrfs_run_delayed_iput(fs_info, inode);
 | 
						|
err:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
 | 
						|
	inode_inc_iversion(&inode->vfs_inode);
 | 
						|
	inode_inc_iversion(&dir->vfs_inode);
 | 
						|
	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
 | 
						|
		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
 | 
						|
	ret = btrfs_update_inode(trans, root, dir);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
 | 
						|
		       struct btrfs_inode *dir, struct btrfs_inode *inode,
 | 
						|
		       const char *name, int name_len)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
 | 
						|
	if (!ret) {
 | 
						|
		drop_nlink(&inode->vfs_inode);
 | 
						|
		ret = btrfs_update_inode(trans, inode->root, inode);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper to start transaction for unlink and rmdir.
 | 
						|
 *
 | 
						|
 * unlink and rmdir are special in btrfs, they do not always free space, so
 | 
						|
 * if we cannot make our reservations the normal way try and see if there is
 | 
						|
 * plenty of slack room in the global reserve to migrate, otherwise we cannot
 | 
						|
 * allow the unlink to occur.
 | 
						|
 */
 | 
						|
static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = BTRFS_I(dir)->root;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 1 for the possible orphan item
 | 
						|
	 * 1 for the dir item
 | 
						|
	 * 1 for the dir index
 | 
						|
	 * 1 for the inode ref
 | 
						|
	 * 1 for the inode
 | 
						|
	 * 1 for the parent inode
 | 
						|
	 */
 | 
						|
	return btrfs_start_transaction_fallback_global_rsv(root, 6);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
 | 
						|
{
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct inode *inode = d_inode(dentry);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	trans = __unlink_start_trans(dir);
 | 
						|
	if (IS_ERR(trans))
 | 
						|
		return PTR_ERR(trans);
 | 
						|
 | 
						|
	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
 | 
						|
			0);
 | 
						|
 | 
						|
	ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
 | 
						|
			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
 | 
						|
			dentry->d_name.len);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (inode->i_nlink == 0) {
 | 
						|
		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	btrfs_end_transaction(trans);
 | 
						|
	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
 | 
						|
			       struct inode *dir, struct dentry *dentry)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = BTRFS_I(dir)->root;
 | 
						|
	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_dir_item *di;
 | 
						|
	struct btrfs_key key;
 | 
						|
	const char *name = dentry->d_name.name;
 | 
						|
	int name_len = dentry->d_name.len;
 | 
						|
	u64 index;
 | 
						|
	int ret;
 | 
						|
	u64 objectid;
 | 
						|
	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
 | 
						|
 | 
						|
	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
 | 
						|
		objectid = inode->root->root_key.objectid;
 | 
						|
	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
 | 
						|
		objectid = inode->location.objectid;
 | 
						|
	} else {
 | 
						|
		WARN_ON(1);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
 | 
						|
				   name, name_len, -1);
 | 
						|
	if (IS_ERR_OR_NULL(di)) {
 | 
						|
		ret = di ? PTR_ERR(di) : -ENOENT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	btrfs_dir_item_key_to_cpu(leaf, di, &key);
 | 
						|
	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
 | 
						|
	ret = btrfs_delete_one_dir_name(trans, root, path, di);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is a placeholder inode for a subvolume we didn't have a
 | 
						|
	 * reference to at the time of the snapshot creation.  In the meantime
 | 
						|
	 * we could have renamed the real subvol link into our snapshot, so
 | 
						|
	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
 | 
						|
	 * Instead simply lookup the dir_index_item for this entry so we can
 | 
						|
	 * remove it.  Otherwise we know we have a ref to the root and we can
 | 
						|
	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
 | 
						|
	 */
 | 
						|
	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
 | 
						|
		di = btrfs_search_dir_index_item(root, path, dir_ino,
 | 
						|
						 name, name_len);
 | 
						|
		if (IS_ERR_OR_NULL(di)) {
 | 
						|
			if (!di)
 | 
						|
				ret = -ENOENT;
 | 
						|
			else
 | 
						|
				ret = PTR_ERR(di);
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		leaf = path->nodes[0];
 | 
						|
		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | 
						|
		index = key.offset;
 | 
						|
		btrfs_release_path(path);
 | 
						|
	} else {
 | 
						|
		ret = btrfs_del_root_ref(trans, objectid,
 | 
						|
					 root->root_key.objectid, dir_ino,
 | 
						|
					 &index, name, name_len);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
 | 
						|
	inode_inc_iversion(dir);
 | 
						|
	dir->i_mtime = dir->i_ctime = current_time(dir);
 | 
						|
	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
 | 
						|
	if (ret)
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper to check if the subvolume references other subvolumes or if it's
 | 
						|
 * default.
 | 
						|
 */
 | 
						|
static noinline int may_destroy_subvol(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_dir_item *di;
 | 
						|
	struct btrfs_key key;
 | 
						|
	u64 dir_id;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/* Make sure this root isn't set as the default subvol */
 | 
						|
	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 | 
						|
	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
 | 
						|
				   dir_id, "default", 7, 0);
 | 
						|
	if (di && !IS_ERR(di)) {
 | 
						|
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
 | 
						|
		if (key.objectid == root->root_key.objectid) {
 | 
						|
			ret = -EPERM;
 | 
						|
			btrfs_err(fs_info,
 | 
						|
				  "deleting default subvolume %llu is not allowed",
 | 
						|
				  key.objectid);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		btrfs_release_path(path);
 | 
						|
	}
 | 
						|
 | 
						|
	key.objectid = root->root_key.objectid;
 | 
						|
	key.type = BTRFS_ROOT_REF_KEY;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
	BUG_ON(ret == 0);
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	if (path->slots[0] > 0) {
 | 
						|
		path->slots[0]--;
 | 
						|
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | 
						|
		if (key.objectid == root->root_key.objectid &&
 | 
						|
		    key.type == BTRFS_ROOT_REF_KEY)
 | 
						|
			ret = -ENOTEMPTY;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Delete all dentries for inodes belonging to the root */
 | 
						|
static void btrfs_prune_dentries(struct btrfs_root *root)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct rb_node *node;
 | 
						|
	struct rb_node *prev;
 | 
						|
	struct btrfs_inode *entry;
 | 
						|
	struct inode *inode;
 | 
						|
	u64 objectid = 0;
 | 
						|
 | 
						|
	if (!BTRFS_FS_ERROR(fs_info))
 | 
						|
		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
 | 
						|
 | 
						|
	spin_lock(&root->inode_lock);
 | 
						|
again:
 | 
						|
	node = root->inode_tree.rb_node;
 | 
						|
	prev = NULL;
 | 
						|
	while (node) {
 | 
						|
		prev = node;
 | 
						|
		entry = rb_entry(node, struct btrfs_inode, rb_node);
 | 
						|
 | 
						|
		if (objectid < btrfs_ino(entry))
 | 
						|
			node = node->rb_left;
 | 
						|
		else if (objectid > btrfs_ino(entry))
 | 
						|
			node = node->rb_right;
 | 
						|
		else
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (!node) {
 | 
						|
		while (prev) {
 | 
						|
			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 | 
						|
			if (objectid <= btrfs_ino(entry)) {
 | 
						|
				node = prev;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			prev = rb_next(prev);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	while (node) {
 | 
						|
		entry = rb_entry(node, struct btrfs_inode, rb_node);
 | 
						|
		objectid = btrfs_ino(entry) + 1;
 | 
						|
		inode = igrab(&entry->vfs_inode);
 | 
						|
		if (inode) {
 | 
						|
			spin_unlock(&root->inode_lock);
 | 
						|
			if (atomic_read(&inode->i_count) > 1)
 | 
						|
				d_prune_aliases(inode);
 | 
						|
			/*
 | 
						|
			 * btrfs_drop_inode will have it removed from the inode
 | 
						|
			 * cache when its usage count hits zero.
 | 
						|
			 */
 | 
						|
			iput(inode);
 | 
						|
			cond_resched();
 | 
						|
			spin_lock(&root->inode_lock);
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
 | 
						|
		if (cond_resched_lock(&root->inode_lock))
 | 
						|
			goto again;
 | 
						|
 | 
						|
		node = rb_next(node);
 | 
						|
	}
 | 
						|
	spin_unlock(&root->inode_lock);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
 | 
						|
	struct btrfs_root *root = BTRFS_I(dir)->root;
 | 
						|
	struct inode *inode = d_inode(dentry);
 | 
						|
	struct btrfs_root *dest = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_block_rsv block_rsv;
 | 
						|
	u64 root_flags;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't allow to delete a subvolume with send in progress. This is
 | 
						|
	 * inside the inode lock so the error handling that has to drop the bit
 | 
						|
	 * again is not run concurrently.
 | 
						|
	 */
 | 
						|
	spin_lock(&dest->root_item_lock);
 | 
						|
	if (dest->send_in_progress) {
 | 
						|
		spin_unlock(&dest->root_item_lock);
 | 
						|
		btrfs_warn(fs_info,
 | 
						|
			   "attempt to delete subvolume %llu during send",
 | 
						|
			   dest->root_key.objectid);
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
	if (atomic_read(&dest->nr_swapfiles)) {
 | 
						|
		spin_unlock(&dest->root_item_lock);
 | 
						|
		btrfs_warn(fs_info,
 | 
						|
			   "attempt to delete subvolume %llu with active swapfile",
 | 
						|
			   root->root_key.objectid);
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
	root_flags = btrfs_root_flags(&dest->root_item);
 | 
						|
	btrfs_set_root_flags(&dest->root_item,
 | 
						|
			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
 | 
						|
	spin_unlock(&dest->root_item_lock);
 | 
						|
 | 
						|
	down_write(&fs_info->subvol_sem);
 | 
						|
 | 
						|
	ret = may_destroy_subvol(dest);
 | 
						|
	if (ret)
 | 
						|
		goto out_up_write;
 | 
						|
 | 
						|
	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 | 
						|
	/*
 | 
						|
	 * One for dir inode,
 | 
						|
	 * two for dir entries,
 | 
						|
	 * two for root ref/backref.
 | 
						|
	 */
 | 
						|
	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
 | 
						|
	if (ret)
 | 
						|
		goto out_up_write;
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(root, 0);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		ret = PTR_ERR(trans);
 | 
						|
		goto out_release;
 | 
						|
	}
 | 
						|
	trans->block_rsv = &block_rsv;
 | 
						|
	trans->bytes_reserved = block_rsv.size;
 | 
						|
 | 
						|
	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
 | 
						|
 | 
						|
	ret = btrfs_unlink_subvol(trans, dir, dentry);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out_end_trans;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_record_root_in_trans(trans, dest);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out_end_trans;
 | 
						|
	}
 | 
						|
 | 
						|
	memset(&dest->root_item.drop_progress, 0,
 | 
						|
		sizeof(dest->root_item.drop_progress));
 | 
						|
	btrfs_set_root_drop_level(&dest->root_item, 0);
 | 
						|
	btrfs_set_root_refs(&dest->root_item, 0);
 | 
						|
 | 
						|
	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
 | 
						|
		ret = btrfs_insert_orphan_item(trans,
 | 
						|
					fs_info->tree_root,
 | 
						|
					dest->root_key.objectid);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out_end_trans;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
 | 
						|
				  BTRFS_UUID_KEY_SUBVOL,
 | 
						|
				  dest->root_key.objectid);
 | 
						|
	if (ret && ret != -ENOENT) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out_end_trans;
 | 
						|
	}
 | 
						|
	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
 | 
						|
		ret = btrfs_uuid_tree_remove(trans,
 | 
						|
					  dest->root_item.received_uuid,
 | 
						|
					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
 | 
						|
					  dest->root_key.objectid);
 | 
						|
		if (ret && ret != -ENOENT) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out_end_trans;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	free_anon_bdev(dest->anon_dev);
 | 
						|
	dest->anon_dev = 0;
 | 
						|
out_end_trans:
 | 
						|
	trans->block_rsv = NULL;
 | 
						|
	trans->bytes_reserved = 0;
 | 
						|
	ret = btrfs_end_transaction(trans);
 | 
						|
	inode->i_flags |= S_DEAD;
 | 
						|
out_release:
 | 
						|
	btrfs_subvolume_release_metadata(root, &block_rsv);
 | 
						|
out_up_write:
 | 
						|
	up_write(&fs_info->subvol_sem);
 | 
						|
	if (ret) {
 | 
						|
		spin_lock(&dest->root_item_lock);
 | 
						|
		root_flags = btrfs_root_flags(&dest->root_item);
 | 
						|
		btrfs_set_root_flags(&dest->root_item,
 | 
						|
				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
 | 
						|
		spin_unlock(&dest->root_item_lock);
 | 
						|
	} else {
 | 
						|
		d_invalidate(dentry);
 | 
						|
		btrfs_prune_dentries(dest);
 | 
						|
		ASSERT(dest->send_in_progress == 0);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
 | 
						|
{
 | 
						|
	struct inode *inode = d_inode(dentry);
 | 
						|
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 | 
						|
	int err = 0;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	u64 last_unlink_trans;
 | 
						|
 | 
						|
	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
 | 
						|
		return -ENOTEMPTY;
 | 
						|
	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
 | 
						|
		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
 | 
						|
			btrfs_err(fs_info,
 | 
						|
			"extent tree v2 doesn't support snapshot deletion yet");
 | 
						|
			return -EOPNOTSUPP;
 | 
						|
		}
 | 
						|
		return btrfs_delete_subvolume(dir, dentry);
 | 
						|
	}
 | 
						|
 | 
						|
	trans = __unlink_start_trans(dir);
 | 
						|
	if (IS_ERR(trans))
 | 
						|
		return PTR_ERR(trans);
 | 
						|
 | 
						|
	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
 | 
						|
		err = btrfs_unlink_subvol(trans, dir, dentry);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	err = btrfs_orphan_add(trans, BTRFS_I(inode));
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
 | 
						|
 | 
						|
	/* now the directory is empty */
 | 
						|
	err = btrfs_unlink_inode(trans, BTRFS_I(dir),
 | 
						|
			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
 | 
						|
			dentry->d_name.len);
 | 
						|
	if (!err) {
 | 
						|
		btrfs_i_size_write(BTRFS_I(inode), 0);
 | 
						|
		/*
 | 
						|
		 * Propagate the last_unlink_trans value of the deleted dir to
 | 
						|
		 * its parent directory. This is to prevent an unrecoverable
 | 
						|
		 * log tree in the case we do something like this:
 | 
						|
		 * 1) create dir foo
 | 
						|
		 * 2) create snapshot under dir foo
 | 
						|
		 * 3) delete the snapshot
 | 
						|
		 * 4) rmdir foo
 | 
						|
		 * 5) mkdir foo
 | 
						|
		 * 6) fsync foo or some file inside foo
 | 
						|
		 */
 | 
						|
		if (last_unlink_trans >= trans->transid)
 | 
						|
			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	btrfs_end_transaction(trans);
 | 
						|
	btrfs_btree_balance_dirty(fs_info);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * btrfs_truncate_block - read, zero a chunk and write a block
 | 
						|
 * @inode - inode that we're zeroing
 | 
						|
 * @from - the offset to start zeroing
 | 
						|
 * @len - the length to zero, 0 to zero the entire range respective to the
 | 
						|
 *	offset
 | 
						|
 * @front - zero up to the offset instead of from the offset on
 | 
						|
 *
 | 
						|
 * This will find the block for the "from" offset and cow the block and zero the
 | 
						|
 * part we want to zero.  This is used with truncate and hole punching.
 | 
						|
 */
 | 
						|
int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
 | 
						|
			 int front)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	struct address_space *mapping = inode->vfs_inode.i_mapping;
 | 
						|
	struct extent_io_tree *io_tree = &inode->io_tree;
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct extent_changeset *data_reserved = NULL;
 | 
						|
	bool only_release_metadata = false;
 | 
						|
	u32 blocksize = fs_info->sectorsize;
 | 
						|
	pgoff_t index = from >> PAGE_SHIFT;
 | 
						|
	unsigned offset = from & (blocksize - 1);
 | 
						|
	struct page *page;
 | 
						|
	gfp_t mask = btrfs_alloc_write_mask(mapping);
 | 
						|
	size_t write_bytes = blocksize;
 | 
						|
	int ret = 0;
 | 
						|
	u64 block_start;
 | 
						|
	u64 block_end;
 | 
						|
 | 
						|
	if (IS_ALIGNED(offset, blocksize) &&
 | 
						|
	    (!len || IS_ALIGNED(len, blocksize)))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	block_start = round_down(from, blocksize);
 | 
						|
	block_end = block_start + blocksize - 1;
 | 
						|
 | 
						|
	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
 | 
						|
					  blocksize);
 | 
						|
	if (ret < 0) {
 | 
						|
		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
 | 
						|
			/* For nocow case, no need to reserve data space */
 | 
						|
			only_release_metadata = true;
 | 
						|
		} else {
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
 | 
						|
	if (ret < 0) {
 | 
						|
		if (!only_release_metadata)
 | 
						|
			btrfs_free_reserved_data_space(inode, data_reserved,
 | 
						|
						       block_start, blocksize);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
again:
 | 
						|
	page = find_or_create_page(mapping, index, mask);
 | 
						|
	if (!page) {
 | 
						|
		btrfs_delalloc_release_space(inode, data_reserved, block_start,
 | 
						|
					     blocksize, true);
 | 
						|
		btrfs_delalloc_release_extents(inode, blocksize);
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	ret = set_page_extent_mapped(page);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	if (!PageUptodate(page)) {
 | 
						|
		ret = btrfs_read_folio(NULL, page_folio(page));
 | 
						|
		lock_page(page);
 | 
						|
		if (page->mapping != mapping) {
 | 
						|
			unlock_page(page);
 | 
						|
			put_page(page);
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		if (!PageUptodate(page)) {
 | 
						|
			ret = -EIO;
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	wait_on_page_writeback(page);
 | 
						|
 | 
						|
	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
 | 
						|
 | 
						|
	ordered = btrfs_lookup_ordered_extent(inode, block_start);
 | 
						|
	if (ordered) {
 | 
						|
		unlock_extent_cached(io_tree, block_start, block_end,
 | 
						|
				     &cached_state);
 | 
						|
		unlock_page(page);
 | 
						|
		put_page(page);
 | 
						|
		btrfs_start_ordered_extent(ordered, 1);
 | 
						|
		btrfs_put_ordered_extent(ordered);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	clear_extent_bit(&inode->io_tree, block_start, block_end,
 | 
						|
			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 | 
						|
			 0, 0, &cached_state);
 | 
						|
 | 
						|
	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
 | 
						|
					&cached_state);
 | 
						|
	if (ret) {
 | 
						|
		unlock_extent_cached(io_tree, block_start, block_end,
 | 
						|
				     &cached_state);
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	if (offset != blocksize) {
 | 
						|
		if (!len)
 | 
						|
			len = blocksize - offset;
 | 
						|
		if (front)
 | 
						|
			memzero_page(page, (block_start - page_offset(page)),
 | 
						|
				     offset);
 | 
						|
		else
 | 
						|
			memzero_page(page, (block_start - page_offset(page)) + offset,
 | 
						|
				     len);
 | 
						|
		flush_dcache_page(page);
 | 
						|
	}
 | 
						|
	btrfs_page_clear_checked(fs_info, page, block_start,
 | 
						|
				 block_end + 1 - block_start);
 | 
						|
	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
 | 
						|
	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
 | 
						|
 | 
						|
	if (only_release_metadata)
 | 
						|
		set_extent_bit(&inode->io_tree, block_start, block_end,
 | 
						|
			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	if (ret) {
 | 
						|
		if (only_release_metadata)
 | 
						|
			btrfs_delalloc_release_metadata(inode, blocksize, true);
 | 
						|
		else
 | 
						|
			btrfs_delalloc_release_space(inode, data_reserved,
 | 
						|
					block_start, blocksize, true);
 | 
						|
	}
 | 
						|
	btrfs_delalloc_release_extents(inode, blocksize);
 | 
						|
	unlock_page(page);
 | 
						|
	put_page(page);
 | 
						|
out:
 | 
						|
	if (only_release_metadata)
 | 
						|
		btrfs_check_nocow_unlock(inode);
 | 
						|
	extent_changeset_free(data_reserved);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
 | 
						|
			     u64 offset, u64 len)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_drop_extents_args drop_args = { 0 };
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If NO_HOLES is enabled, we don't need to do anything.
 | 
						|
	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
 | 
						|
	 * or btrfs_update_inode() will be called, which guarantee that the next
 | 
						|
	 * fsync will know this inode was changed and needs to be logged.
 | 
						|
	 */
 | 
						|
	if (btrfs_fs_incompat(fs_info, NO_HOLES))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 1 - for the one we're dropping
 | 
						|
	 * 1 - for the one we're adding
 | 
						|
	 * 1 - for updating the inode.
 | 
						|
	 */
 | 
						|
	trans = btrfs_start_transaction(root, 3);
 | 
						|
	if (IS_ERR(trans))
 | 
						|
		return PTR_ERR(trans);
 | 
						|
 | 
						|
	drop_args.start = offset;
 | 
						|
	drop_args.end = offset + len;
 | 
						|
	drop_args.drop_cache = true;
 | 
						|
 | 
						|
	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
 | 
						|
			offset, 0, 0, len, 0, len, 0, 0, 0);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
	} else {
 | 
						|
		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
 | 
						|
		btrfs_update_inode(trans, root, inode);
 | 
						|
	}
 | 
						|
	btrfs_end_transaction(trans);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function puts in dummy file extents for the area we're creating a hole
 | 
						|
 * for.  So if we are truncating this file to a larger size we need to insert
 | 
						|
 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
 | 
						|
 * the range between oldsize and size
 | 
						|
 */
 | 
						|
int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct extent_io_tree *io_tree = &inode->io_tree;
 | 
						|
	struct extent_map *em = NULL;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct extent_map_tree *em_tree = &inode->extent_tree;
 | 
						|
	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
 | 
						|
	u64 block_end = ALIGN(size, fs_info->sectorsize);
 | 
						|
	u64 last_byte;
 | 
						|
	u64 cur_offset;
 | 
						|
	u64 hole_size;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If our size started in the middle of a block we need to zero out the
 | 
						|
	 * rest of the block before we expand the i_size, otherwise we could
 | 
						|
	 * expose stale data.
 | 
						|
	 */
 | 
						|
	err = btrfs_truncate_block(inode, oldsize, 0, 0);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	if (size <= hole_start)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
 | 
						|
					   &cached_state);
 | 
						|
	cur_offset = hole_start;
 | 
						|
	while (1) {
 | 
						|
		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
 | 
						|
				      block_end - cur_offset);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			err = PTR_ERR(em);
 | 
						|
			em = NULL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		last_byte = min(extent_map_end(em), block_end);
 | 
						|
		last_byte = ALIGN(last_byte, fs_info->sectorsize);
 | 
						|
		hole_size = last_byte - cur_offset;
 | 
						|
 | 
						|
		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
 | 
						|
			struct extent_map *hole_em;
 | 
						|
 | 
						|
			err = maybe_insert_hole(root, inode, cur_offset,
 | 
						|
						hole_size);
 | 
						|
			if (err)
 | 
						|
				break;
 | 
						|
 | 
						|
			err = btrfs_inode_set_file_extent_range(inode,
 | 
						|
							cur_offset, hole_size);
 | 
						|
			if (err)
 | 
						|
				break;
 | 
						|
 | 
						|
			btrfs_drop_extent_cache(inode, cur_offset,
 | 
						|
						cur_offset + hole_size - 1, 0);
 | 
						|
			hole_em = alloc_extent_map();
 | 
						|
			if (!hole_em) {
 | 
						|
				btrfs_set_inode_full_sync(inode);
 | 
						|
				goto next;
 | 
						|
			}
 | 
						|
			hole_em->start = cur_offset;
 | 
						|
			hole_em->len = hole_size;
 | 
						|
			hole_em->orig_start = cur_offset;
 | 
						|
 | 
						|
			hole_em->block_start = EXTENT_MAP_HOLE;
 | 
						|
			hole_em->block_len = 0;
 | 
						|
			hole_em->orig_block_len = 0;
 | 
						|
			hole_em->ram_bytes = hole_size;
 | 
						|
			hole_em->compress_type = BTRFS_COMPRESS_NONE;
 | 
						|
			hole_em->generation = fs_info->generation;
 | 
						|
 | 
						|
			while (1) {
 | 
						|
				write_lock(&em_tree->lock);
 | 
						|
				err = add_extent_mapping(em_tree, hole_em, 1);
 | 
						|
				write_unlock(&em_tree->lock);
 | 
						|
				if (err != -EEXIST)
 | 
						|
					break;
 | 
						|
				btrfs_drop_extent_cache(inode, cur_offset,
 | 
						|
							cur_offset +
 | 
						|
							hole_size - 1, 0);
 | 
						|
			}
 | 
						|
			free_extent_map(hole_em);
 | 
						|
		} else {
 | 
						|
			err = btrfs_inode_set_file_extent_range(inode,
 | 
						|
							cur_offset, hole_size);
 | 
						|
			if (err)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
next:
 | 
						|
		free_extent_map(em);
 | 
						|
		em = NULL;
 | 
						|
		cur_offset = last_byte;
 | 
						|
		if (cur_offset >= block_end)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	free_extent_map(em);
 | 
						|
	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_setsize(struct inode *inode, struct iattr *attr)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	loff_t oldsize = i_size_read(inode);
 | 
						|
	loff_t newsize = attr->ia_size;
 | 
						|
	int mask = attr->ia_valid;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
 | 
						|
	 * special case where we need to update the times despite not having
 | 
						|
	 * these flags set.  For all other operations the VFS set these flags
 | 
						|
	 * explicitly if it wants a timestamp update.
 | 
						|
	 */
 | 
						|
	if (newsize != oldsize) {
 | 
						|
		inode_inc_iversion(inode);
 | 
						|
		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
 | 
						|
			inode->i_ctime = inode->i_mtime =
 | 
						|
				current_time(inode);
 | 
						|
	}
 | 
						|
 | 
						|
	if (newsize > oldsize) {
 | 
						|
		/*
 | 
						|
		 * Don't do an expanding truncate while snapshotting is ongoing.
 | 
						|
		 * This is to ensure the snapshot captures a fully consistent
 | 
						|
		 * state of this file - if the snapshot captures this expanding
 | 
						|
		 * truncation, it must capture all writes that happened before
 | 
						|
		 * this truncation.
 | 
						|
		 */
 | 
						|
		btrfs_drew_write_lock(&root->snapshot_lock);
 | 
						|
		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_drew_write_unlock(&root->snapshot_lock);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
 | 
						|
		trans = btrfs_start_transaction(root, 1);
 | 
						|
		if (IS_ERR(trans)) {
 | 
						|
			btrfs_drew_write_unlock(&root->snapshot_lock);
 | 
						|
			return PTR_ERR(trans);
 | 
						|
		}
 | 
						|
 | 
						|
		i_size_write(inode, newsize);
 | 
						|
		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
 | 
						|
		pagecache_isize_extended(inode, oldsize, newsize);
 | 
						|
		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 | 
						|
		btrfs_drew_write_unlock(&root->snapshot_lock);
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
	} else {
 | 
						|
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
 | 
						|
		if (btrfs_is_zoned(fs_info)) {
 | 
						|
			ret = btrfs_wait_ordered_range(inode,
 | 
						|
					ALIGN(newsize, fs_info->sectorsize),
 | 
						|
					(u64)-1);
 | 
						|
			if (ret)
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We're truncating a file that used to have good data down to
 | 
						|
		 * zero. Make sure any new writes to the file get on disk
 | 
						|
		 * on close.
 | 
						|
		 */
 | 
						|
		if (newsize == 0)
 | 
						|
			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
 | 
						|
				&BTRFS_I(inode)->runtime_flags);
 | 
						|
 | 
						|
		truncate_setsize(inode, newsize);
 | 
						|
 | 
						|
		inode_dio_wait(inode);
 | 
						|
 | 
						|
		ret = btrfs_truncate(inode, newsize == oldsize);
 | 
						|
		if (ret && inode->i_nlink) {
 | 
						|
			int err;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Truncate failed, so fix up the in-memory size. We
 | 
						|
			 * adjusted disk_i_size down as we removed extents, so
 | 
						|
			 * wait for disk_i_size to be stable and then update the
 | 
						|
			 * in-memory size to match.
 | 
						|
			 */
 | 
						|
			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
 | 
						|
			if (err)
 | 
						|
				return err;
 | 
						|
			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
 | 
						|
			 struct iattr *attr)
 | 
						|
{
 | 
						|
	struct inode *inode = d_inode(dentry);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (btrfs_root_readonly(root))
 | 
						|
		return -EROFS;
 | 
						|
 | 
						|
	err = setattr_prepare(mnt_userns, dentry, attr);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 | 
						|
		err = btrfs_setsize(inode, attr);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
	}
 | 
						|
 | 
						|
	if (attr->ia_valid) {
 | 
						|
		setattr_copy(mnt_userns, inode, attr);
 | 
						|
		inode_inc_iversion(inode);
 | 
						|
		err = btrfs_dirty_inode(inode);
 | 
						|
 | 
						|
		if (!err && attr->ia_valid & ATTR_MODE)
 | 
						|
			err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * While truncating the inode pages during eviction, we get the VFS
 | 
						|
 * calling btrfs_invalidate_folio() against each folio of the inode. This
 | 
						|
 * is slow because the calls to btrfs_invalidate_folio() result in a
 | 
						|
 * huge amount of calls to lock_extent_bits() and clear_extent_bit(),
 | 
						|
 * which keep merging and splitting extent_state structures over and over,
 | 
						|
 * wasting lots of time.
 | 
						|
 *
 | 
						|
 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
 | 
						|
 * skip all those expensive operations on a per folio basis and do only
 | 
						|
 * the ordered io finishing, while we release here the extent_map and
 | 
						|
 * extent_state structures, without the excessive merging and splitting.
 | 
						|
 */
 | 
						|
static void evict_inode_truncate_pages(struct inode *inode)
 | 
						|
{
 | 
						|
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | 
						|
	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
 | 
						|
	struct rb_node *node;
 | 
						|
 | 
						|
	ASSERT(inode->i_state & I_FREEING);
 | 
						|
	truncate_inode_pages_final(&inode->i_data);
 | 
						|
 | 
						|
	write_lock(&map_tree->lock);
 | 
						|
	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
 | 
						|
		struct extent_map *em;
 | 
						|
 | 
						|
		node = rb_first_cached(&map_tree->map);
 | 
						|
		em = rb_entry(node, struct extent_map, rb_node);
 | 
						|
		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 | 
						|
		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
 | 
						|
		remove_extent_mapping(map_tree, em);
 | 
						|
		free_extent_map(em);
 | 
						|
		if (need_resched()) {
 | 
						|
			write_unlock(&map_tree->lock);
 | 
						|
			cond_resched();
 | 
						|
			write_lock(&map_tree->lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	write_unlock(&map_tree->lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Keep looping until we have no more ranges in the io tree.
 | 
						|
	 * We can have ongoing bios started by readahead that have
 | 
						|
	 * their endio callback (extent_io.c:end_bio_extent_readpage)
 | 
						|
	 * still in progress (unlocked the pages in the bio but did not yet
 | 
						|
	 * unlocked the ranges in the io tree). Therefore this means some
 | 
						|
	 * ranges can still be locked and eviction started because before
 | 
						|
	 * submitting those bios, which are executed by a separate task (work
 | 
						|
	 * queue kthread), inode references (inode->i_count) were not taken
 | 
						|
	 * (which would be dropped in the end io callback of each bio).
 | 
						|
	 * Therefore here we effectively end up waiting for those bios and
 | 
						|
	 * anyone else holding locked ranges without having bumped the inode's
 | 
						|
	 * reference count - if we don't do it, when they access the inode's
 | 
						|
	 * io_tree to unlock a range it may be too late, leading to an
 | 
						|
	 * use-after-free issue.
 | 
						|
	 */
 | 
						|
	spin_lock(&io_tree->lock);
 | 
						|
	while (!RB_EMPTY_ROOT(&io_tree->state)) {
 | 
						|
		struct extent_state *state;
 | 
						|
		struct extent_state *cached_state = NULL;
 | 
						|
		u64 start;
 | 
						|
		u64 end;
 | 
						|
		unsigned state_flags;
 | 
						|
 | 
						|
		node = rb_first(&io_tree->state);
 | 
						|
		state = rb_entry(node, struct extent_state, rb_node);
 | 
						|
		start = state->start;
 | 
						|
		end = state->end;
 | 
						|
		state_flags = state->state;
 | 
						|
		spin_unlock(&io_tree->lock);
 | 
						|
 | 
						|
		lock_extent_bits(io_tree, start, end, &cached_state);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If still has DELALLOC flag, the extent didn't reach disk,
 | 
						|
		 * and its reserved space won't be freed by delayed_ref.
 | 
						|
		 * So we need to free its reserved space here.
 | 
						|
		 * (Refer to comment in btrfs_invalidate_folio, case 2)
 | 
						|
		 *
 | 
						|
		 * Note, end is the bytenr of last byte, so we need + 1 here.
 | 
						|
		 */
 | 
						|
		if (state_flags & EXTENT_DELALLOC)
 | 
						|
			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
 | 
						|
					       end - start + 1);
 | 
						|
 | 
						|
		clear_extent_bit(io_tree, start, end,
 | 
						|
				 EXTENT_LOCKED | EXTENT_DELALLOC |
 | 
						|
				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
 | 
						|
				 &cached_state);
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
		spin_lock(&io_tree->lock);
 | 
						|
	}
 | 
						|
	spin_unlock(&io_tree->lock);
 | 
						|
}
 | 
						|
 | 
						|
static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
 | 
						|
							struct btrfs_block_rsv *rsv)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Eviction should be taking place at some place safe because of our
 | 
						|
	 * delayed iputs.  However the normal flushing code will run delayed
 | 
						|
	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
 | 
						|
	 *
 | 
						|
	 * We reserve the delayed_refs_extra here again because we can't use
 | 
						|
	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
 | 
						|
	 * above.  We reserve our extra bit here because we generate a ton of
 | 
						|
	 * delayed refs activity by truncating.
 | 
						|
	 *
 | 
						|
	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
 | 
						|
	 * if we fail to make this reservation we can re-try without the
 | 
						|
	 * delayed_refs_extra so we can make some forward progress.
 | 
						|
	 */
 | 
						|
	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
 | 
						|
				     BTRFS_RESERVE_FLUSH_EVICT);
 | 
						|
	if (ret) {
 | 
						|
		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
 | 
						|
					     BTRFS_RESERVE_FLUSH_EVICT);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_warn(fs_info,
 | 
						|
				   "could not allocate space for delete; will truncate on mount");
 | 
						|
			return ERR_PTR(-ENOSPC);
 | 
						|
		}
 | 
						|
		delayed_refs_extra = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	trans = btrfs_join_transaction(root);
 | 
						|
	if (IS_ERR(trans))
 | 
						|
		return trans;
 | 
						|
 | 
						|
	if (delayed_refs_extra) {
 | 
						|
		trans->block_rsv = &fs_info->trans_block_rsv;
 | 
						|
		trans->bytes_reserved = delayed_refs_extra;
 | 
						|
		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
 | 
						|
					delayed_refs_extra, 1);
 | 
						|
	}
 | 
						|
	return trans;
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_evict_inode(struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_block_rsv *rsv;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	trace_btrfs_inode_evict(inode);
 | 
						|
 | 
						|
	if (!root) {
 | 
						|
		fsverity_cleanup_inode(inode);
 | 
						|
		clear_inode(inode);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	evict_inode_truncate_pages(inode);
 | 
						|
 | 
						|
	if (inode->i_nlink &&
 | 
						|
	    ((btrfs_root_refs(&root->root_item) != 0 &&
 | 
						|
	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
 | 
						|
	     btrfs_is_free_space_inode(BTRFS_I(inode))))
 | 
						|
		goto no_delete;
 | 
						|
 | 
						|
	if (is_bad_inode(inode))
 | 
						|
		goto no_delete;
 | 
						|
 | 
						|
	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
 | 
						|
 | 
						|
	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 | 
						|
		goto no_delete;
 | 
						|
 | 
						|
	if (inode->i_nlink > 0) {
 | 
						|
		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
 | 
						|
		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
 | 
						|
		goto no_delete;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This makes sure the inode item in tree is uptodate and the space for
 | 
						|
	 * the inode update is released.
 | 
						|
	 */
 | 
						|
	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
 | 
						|
	if (ret)
 | 
						|
		goto no_delete;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This drops any pending insert or delete operations we have for this
 | 
						|
	 * inode.  We could have a delayed dir index deletion queued up, but
 | 
						|
	 * we're removing the inode completely so that'll be taken care of in
 | 
						|
	 * the truncate.
 | 
						|
	 */
 | 
						|
	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
 | 
						|
 | 
						|
	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
 | 
						|
	if (!rsv)
 | 
						|
		goto no_delete;
 | 
						|
	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
 | 
						|
	rsv->failfast = 1;
 | 
						|
 | 
						|
	btrfs_i_size_write(BTRFS_I(inode), 0);
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		struct btrfs_truncate_control control = {
 | 
						|
			.inode = BTRFS_I(inode),
 | 
						|
			.ino = btrfs_ino(BTRFS_I(inode)),
 | 
						|
			.new_size = 0,
 | 
						|
			.min_type = 0,
 | 
						|
		};
 | 
						|
 | 
						|
		trans = evict_refill_and_join(root, rsv);
 | 
						|
		if (IS_ERR(trans))
 | 
						|
			goto free_rsv;
 | 
						|
 | 
						|
		trans->block_rsv = rsv;
 | 
						|
 | 
						|
		ret = btrfs_truncate_inode_items(trans, root, &control);
 | 
						|
		trans->block_rsv = &fs_info->trans_block_rsv;
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
		btrfs_btree_balance_dirty(fs_info);
 | 
						|
		if (ret && ret != -ENOSPC && ret != -EAGAIN)
 | 
						|
			goto free_rsv;
 | 
						|
		else if (!ret)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Errors here aren't a big deal, it just means we leave orphan items in
 | 
						|
	 * the tree. They will be cleaned up on the next mount. If the inode
 | 
						|
	 * number gets reused, cleanup deletes the orphan item without doing
 | 
						|
	 * anything, and unlink reuses the existing orphan item.
 | 
						|
	 *
 | 
						|
	 * If it turns out that we are dropping too many of these, we might want
 | 
						|
	 * to add a mechanism for retrying these after a commit.
 | 
						|
	 */
 | 
						|
	trans = evict_refill_and_join(root, rsv);
 | 
						|
	if (!IS_ERR(trans)) {
 | 
						|
		trans->block_rsv = rsv;
 | 
						|
		btrfs_orphan_del(trans, BTRFS_I(inode));
 | 
						|
		trans->block_rsv = &fs_info->trans_block_rsv;
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
	}
 | 
						|
 | 
						|
free_rsv:
 | 
						|
	btrfs_free_block_rsv(fs_info, rsv);
 | 
						|
no_delete:
 | 
						|
	/*
 | 
						|
	 * If we didn't successfully delete, the orphan item will still be in
 | 
						|
	 * the tree and we'll retry on the next mount. Again, we might also want
 | 
						|
	 * to retry these periodically in the future.
 | 
						|
	 */
 | 
						|
	btrfs_remove_delayed_node(BTRFS_I(inode));
 | 
						|
	fsverity_cleanup_inode(inode);
 | 
						|
	clear_inode(inode);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the key found in the dir entry in the location pointer, fill @type
 | 
						|
 * with BTRFS_FT_*, and return 0.
 | 
						|
 *
 | 
						|
 * If no dir entries were found, returns -ENOENT.
 | 
						|
 * If found a corrupted location in dir entry, returns -EUCLEAN.
 | 
						|
 */
 | 
						|
static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
 | 
						|
			       struct btrfs_key *location, u8 *type)
 | 
						|
{
 | 
						|
	const char *name = dentry->d_name.name;
 | 
						|
	int namelen = dentry->d_name.len;
 | 
						|
	struct btrfs_dir_item *di;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_root *root = BTRFS_I(dir)->root;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
 | 
						|
			name, namelen, 0);
 | 
						|
	if (IS_ERR_OR_NULL(di)) {
 | 
						|
		ret = di ? PTR_ERR(di) : -ENOENT;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
 | 
						|
	if (location->type != BTRFS_INODE_ITEM_KEY &&
 | 
						|
	    location->type != BTRFS_ROOT_ITEM_KEY) {
 | 
						|
		ret = -EUCLEAN;
 | 
						|
		btrfs_warn(root->fs_info,
 | 
						|
"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
 | 
						|
			   __func__, name, btrfs_ino(BTRFS_I(dir)),
 | 
						|
			   location->objectid, location->type, location->offset);
 | 
						|
	}
 | 
						|
	if (!ret)
 | 
						|
		*type = btrfs_dir_type(path->nodes[0], di);
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * when we hit a tree root in a directory, the btrfs part of the inode
 | 
						|
 * needs to be changed to reflect the root directory of the tree root.  This
 | 
						|
 * is kind of like crossing a mount point.
 | 
						|
 */
 | 
						|
static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
 | 
						|
				    struct inode *dir,
 | 
						|
				    struct dentry *dentry,
 | 
						|
				    struct btrfs_key *location,
 | 
						|
				    struct btrfs_root **sub_root)
 | 
						|
{
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_root *new_root;
 | 
						|
	struct btrfs_root_ref *ref;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_key key;
 | 
						|
	int ret;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path) {
 | 
						|
		err = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	err = -ENOENT;
 | 
						|
	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
 | 
						|
	key.type = BTRFS_ROOT_REF_KEY;
 | 
						|
	key.offset = location->objectid;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
 | 
						|
	if (ret) {
 | 
						|
		if (ret < 0)
 | 
						|
			err = ret;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
 | 
						|
	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
 | 
						|
	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
 | 
						|
				   (unsigned long)(ref + 1),
 | 
						|
				   dentry->d_name.len);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
 | 
						|
	if (IS_ERR(new_root)) {
 | 
						|
		err = PTR_ERR(new_root);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	*sub_root = new_root;
 | 
						|
	location->objectid = btrfs_root_dirid(&new_root->root_item);
 | 
						|
	location->type = BTRFS_INODE_ITEM_KEY;
 | 
						|
	location->offset = 0;
 | 
						|
	err = 0;
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static void inode_tree_add(struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_inode *entry;
 | 
						|
	struct rb_node **p;
 | 
						|
	struct rb_node *parent;
 | 
						|
	struct rb_node *new = &BTRFS_I(inode)->rb_node;
 | 
						|
	u64 ino = btrfs_ino(BTRFS_I(inode));
 | 
						|
 | 
						|
	if (inode_unhashed(inode))
 | 
						|
		return;
 | 
						|
	parent = NULL;
 | 
						|
	spin_lock(&root->inode_lock);
 | 
						|
	p = &root->inode_tree.rb_node;
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		entry = rb_entry(parent, struct btrfs_inode, rb_node);
 | 
						|
 | 
						|
		if (ino < btrfs_ino(entry))
 | 
						|
			p = &parent->rb_left;
 | 
						|
		else if (ino > btrfs_ino(entry))
 | 
						|
			p = &parent->rb_right;
 | 
						|
		else {
 | 
						|
			WARN_ON(!(entry->vfs_inode.i_state &
 | 
						|
				  (I_WILL_FREE | I_FREEING)));
 | 
						|
			rb_replace_node(parent, new, &root->inode_tree);
 | 
						|
			RB_CLEAR_NODE(parent);
 | 
						|
			spin_unlock(&root->inode_lock);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	rb_link_node(new, parent, p);
 | 
						|
	rb_insert_color(new, &root->inode_tree);
 | 
						|
	spin_unlock(&root->inode_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void inode_tree_del(struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	int empty = 0;
 | 
						|
 | 
						|
	spin_lock(&root->inode_lock);
 | 
						|
	if (!RB_EMPTY_NODE(&inode->rb_node)) {
 | 
						|
		rb_erase(&inode->rb_node, &root->inode_tree);
 | 
						|
		RB_CLEAR_NODE(&inode->rb_node);
 | 
						|
		empty = RB_EMPTY_ROOT(&root->inode_tree);
 | 
						|
	}
 | 
						|
	spin_unlock(&root->inode_lock);
 | 
						|
 | 
						|
	if (empty && btrfs_root_refs(&root->root_item) == 0) {
 | 
						|
		spin_lock(&root->inode_lock);
 | 
						|
		empty = RB_EMPTY_ROOT(&root->inode_tree);
 | 
						|
		spin_unlock(&root->inode_lock);
 | 
						|
		if (empty)
 | 
						|
			btrfs_add_dead_root(root);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int btrfs_init_locked_inode(struct inode *inode, void *p)
 | 
						|
{
 | 
						|
	struct btrfs_iget_args *args = p;
 | 
						|
 | 
						|
	inode->i_ino = args->ino;
 | 
						|
	BTRFS_I(inode)->location.objectid = args->ino;
 | 
						|
	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
 | 
						|
	BTRFS_I(inode)->location.offset = 0;
 | 
						|
	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
 | 
						|
	BUG_ON(args->root && !BTRFS_I(inode)->root);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_find_actor(struct inode *inode, void *opaque)
 | 
						|
{
 | 
						|
	struct btrfs_iget_args *args = opaque;
 | 
						|
 | 
						|
	return args->ino == BTRFS_I(inode)->location.objectid &&
 | 
						|
		args->root == BTRFS_I(inode)->root;
 | 
						|
}
 | 
						|
 | 
						|
static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
 | 
						|
				       struct btrfs_root *root)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
	struct btrfs_iget_args args;
 | 
						|
	unsigned long hashval = btrfs_inode_hash(ino, root);
 | 
						|
 | 
						|
	args.ino = ino;
 | 
						|
	args.root = root;
 | 
						|
 | 
						|
	inode = iget5_locked(s, hashval, btrfs_find_actor,
 | 
						|
			     btrfs_init_locked_inode,
 | 
						|
			     (void *)&args);
 | 
						|
	return inode;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get an inode object given its inode number and corresponding root.
 | 
						|
 * Path can be preallocated to prevent recursing back to iget through
 | 
						|
 * allocator. NULL is also valid but may require an additional allocation
 | 
						|
 * later.
 | 
						|
 */
 | 
						|
struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
 | 
						|
			      struct btrfs_root *root, struct btrfs_path *path)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	inode = btrfs_iget_locked(s, ino, root);
 | 
						|
	if (!inode)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	if (inode->i_state & I_NEW) {
 | 
						|
		int ret;
 | 
						|
 | 
						|
		ret = btrfs_read_locked_inode(inode, path);
 | 
						|
		if (!ret) {
 | 
						|
			inode_tree_add(inode);
 | 
						|
			unlock_new_inode(inode);
 | 
						|
		} else {
 | 
						|
			iget_failed(inode);
 | 
						|
			/*
 | 
						|
			 * ret > 0 can come from btrfs_search_slot called by
 | 
						|
			 * btrfs_read_locked_inode, this means the inode item
 | 
						|
			 * was not found.
 | 
						|
			 */
 | 
						|
			if (ret > 0)
 | 
						|
				ret = -ENOENT;
 | 
						|
			inode = ERR_PTR(ret);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return inode;
 | 
						|
}
 | 
						|
 | 
						|
struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
 | 
						|
{
 | 
						|
	return btrfs_iget_path(s, ino, root, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static struct inode *new_simple_dir(struct super_block *s,
 | 
						|
				    struct btrfs_key *key,
 | 
						|
				    struct btrfs_root *root)
 | 
						|
{
 | 
						|
	struct inode *inode = new_inode(s);
 | 
						|
 | 
						|
	if (!inode)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	BTRFS_I(inode)->root = btrfs_grab_root(root);
 | 
						|
	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
 | 
						|
	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
 | 
						|
 | 
						|
	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
 | 
						|
	/*
 | 
						|
	 * We only need lookup, the rest is read-only and there's no inode
 | 
						|
	 * associated with the dentry
 | 
						|
	 */
 | 
						|
	inode->i_op = &simple_dir_inode_operations;
 | 
						|
	inode->i_opflags &= ~IOP_XATTR;
 | 
						|
	inode->i_fop = &simple_dir_operations;
 | 
						|
	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
 | 
						|
	inode->i_mtime = current_time(inode);
 | 
						|
	inode->i_atime = inode->i_mtime;
 | 
						|
	inode->i_ctime = inode->i_mtime;
 | 
						|
	BTRFS_I(inode)->i_otime = inode->i_mtime;
 | 
						|
 | 
						|
	return inode;
 | 
						|
}
 | 
						|
 | 
						|
static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
 | 
						|
static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
 | 
						|
static_assert(BTRFS_FT_DIR == FT_DIR);
 | 
						|
static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
 | 
						|
static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
 | 
						|
static_assert(BTRFS_FT_FIFO == FT_FIFO);
 | 
						|
static_assert(BTRFS_FT_SOCK == FT_SOCK);
 | 
						|
static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
 | 
						|
 | 
						|
static inline u8 btrfs_inode_type(struct inode *inode)
 | 
						|
{
 | 
						|
	return fs_umode_to_ftype(inode->i_mode);
 | 
						|
}
 | 
						|
 | 
						|
struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 | 
						|
	struct inode *inode;
 | 
						|
	struct btrfs_root *root = BTRFS_I(dir)->root;
 | 
						|
	struct btrfs_root *sub_root = root;
 | 
						|
	struct btrfs_key location;
 | 
						|
	u8 di_type = 0;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (dentry->d_name.len > BTRFS_NAME_LEN)
 | 
						|
		return ERR_PTR(-ENAMETOOLONG);
 | 
						|
 | 
						|
	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
 | 
						|
	if (ret < 0)
 | 
						|
		return ERR_PTR(ret);
 | 
						|
 | 
						|
	if (location.type == BTRFS_INODE_ITEM_KEY) {
 | 
						|
		inode = btrfs_iget(dir->i_sb, location.objectid, root);
 | 
						|
		if (IS_ERR(inode))
 | 
						|
			return inode;
 | 
						|
 | 
						|
		/* Do extra check against inode mode with di_type */
 | 
						|
		if (btrfs_inode_type(inode) != di_type) {
 | 
						|
			btrfs_crit(fs_info,
 | 
						|
"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
 | 
						|
				  inode->i_mode, btrfs_inode_type(inode),
 | 
						|
				  di_type);
 | 
						|
			iput(inode);
 | 
						|
			return ERR_PTR(-EUCLEAN);
 | 
						|
		}
 | 
						|
		return inode;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = fixup_tree_root_location(fs_info, dir, dentry,
 | 
						|
				       &location, &sub_root);
 | 
						|
	if (ret < 0) {
 | 
						|
		if (ret != -ENOENT)
 | 
						|
			inode = ERR_PTR(ret);
 | 
						|
		else
 | 
						|
			inode = new_simple_dir(dir->i_sb, &location, sub_root);
 | 
						|
	} else {
 | 
						|
		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
 | 
						|
	}
 | 
						|
	if (root != sub_root)
 | 
						|
		btrfs_put_root(sub_root);
 | 
						|
 | 
						|
	if (!IS_ERR(inode) && root != sub_root) {
 | 
						|
		down_read(&fs_info->cleanup_work_sem);
 | 
						|
		if (!sb_rdonly(inode->i_sb))
 | 
						|
			ret = btrfs_orphan_cleanup(sub_root);
 | 
						|
		up_read(&fs_info->cleanup_work_sem);
 | 
						|
		if (ret) {
 | 
						|
			iput(inode);
 | 
						|
			inode = ERR_PTR(ret);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return inode;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_dentry_delete(const struct dentry *dentry)
 | 
						|
{
 | 
						|
	struct btrfs_root *root;
 | 
						|
	struct inode *inode = d_inode(dentry);
 | 
						|
 | 
						|
	if (!inode && !IS_ROOT(dentry))
 | 
						|
		inode = d_inode(dentry->d_parent);
 | 
						|
 | 
						|
	if (inode) {
 | 
						|
		root = BTRFS_I(inode)->root;
 | 
						|
		if (btrfs_root_refs(&root->root_item) == 0)
 | 
						|
			return 1;
 | 
						|
 | 
						|
		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
 | 
						|
				   unsigned int flags)
 | 
						|
{
 | 
						|
	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
 | 
						|
 | 
						|
	if (inode == ERR_PTR(-ENOENT))
 | 
						|
		inode = NULL;
 | 
						|
	return d_splice_alias(inode, dentry);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * All this infrastructure exists because dir_emit can fault, and we are holding
 | 
						|
 * the tree lock when doing readdir.  For now just allocate a buffer and copy
 | 
						|
 * our information into that, and then dir_emit from the buffer.  This is
 | 
						|
 * similar to what NFS does, only we don't keep the buffer around in pagecache
 | 
						|
 * because I'm afraid I'll mess that up.  Long term we need to make filldir do
 | 
						|
 * copy_to_user_inatomic so we don't have to worry about page faulting under the
 | 
						|
 * tree lock.
 | 
						|
 */
 | 
						|
static int btrfs_opendir(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	struct btrfs_file_private *private;
 | 
						|
 | 
						|
	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
 | 
						|
	if (!private)
 | 
						|
		return -ENOMEM;
 | 
						|
	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
 | 
						|
	if (!private->filldir_buf) {
 | 
						|
		kfree(private);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
	file->private_data = private;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct dir_entry {
 | 
						|
	u64 ino;
 | 
						|
	u64 offset;
 | 
						|
	unsigned type;
 | 
						|
	int name_len;
 | 
						|
};
 | 
						|
 | 
						|
static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
 | 
						|
{
 | 
						|
	while (entries--) {
 | 
						|
		struct dir_entry *entry = addr;
 | 
						|
		char *name = (char *)(entry + 1);
 | 
						|
 | 
						|
		ctx->pos = get_unaligned(&entry->offset);
 | 
						|
		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
 | 
						|
					 get_unaligned(&entry->ino),
 | 
						|
					 get_unaligned(&entry->type)))
 | 
						|
			return 1;
 | 
						|
		addr += sizeof(struct dir_entry) +
 | 
						|
			get_unaligned(&entry->name_len);
 | 
						|
		ctx->pos++;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(file);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_file_private *private = file->private_data;
 | 
						|
	struct btrfs_dir_item *di;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	void *addr;
 | 
						|
	struct list_head ins_list;
 | 
						|
	struct list_head del_list;
 | 
						|
	int ret;
 | 
						|
	char *name_ptr;
 | 
						|
	int name_len;
 | 
						|
	int entries = 0;
 | 
						|
	int total_len = 0;
 | 
						|
	bool put = false;
 | 
						|
	struct btrfs_key location;
 | 
						|
 | 
						|
	if (!dir_emit_dots(file, ctx))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	addr = private->filldir_buf;
 | 
						|
	path->reada = READA_FORWARD;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&ins_list);
 | 
						|
	INIT_LIST_HEAD(&del_list);
 | 
						|
	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
 | 
						|
 | 
						|
again:
 | 
						|
	key.type = BTRFS_DIR_INDEX_KEY;
 | 
						|
	key.offset = ctx->pos;
 | 
						|
	key.objectid = btrfs_ino(BTRFS_I(inode));
 | 
						|
 | 
						|
	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
 | 
						|
		struct dir_entry *entry;
 | 
						|
		struct extent_buffer *leaf = path->nodes[0];
 | 
						|
 | 
						|
		if (found_key.objectid != key.objectid)
 | 
						|
			break;
 | 
						|
		if (found_key.type != BTRFS_DIR_INDEX_KEY)
 | 
						|
			break;
 | 
						|
		if (found_key.offset < ctx->pos)
 | 
						|
			continue;
 | 
						|
		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
 | 
						|
			continue;
 | 
						|
		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
 | 
						|
		name_len = btrfs_dir_name_len(leaf, di);
 | 
						|
		if ((total_len + sizeof(struct dir_entry) + name_len) >=
 | 
						|
		    PAGE_SIZE) {
 | 
						|
			btrfs_release_path(path);
 | 
						|
			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
 | 
						|
			if (ret)
 | 
						|
				goto nopos;
 | 
						|
			addr = private->filldir_buf;
 | 
						|
			entries = 0;
 | 
						|
			total_len = 0;
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
 | 
						|
		entry = addr;
 | 
						|
		put_unaligned(name_len, &entry->name_len);
 | 
						|
		name_ptr = (char *)(entry + 1);
 | 
						|
		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
 | 
						|
				   name_len);
 | 
						|
		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
 | 
						|
				&entry->type);
 | 
						|
		btrfs_dir_item_key_to_cpu(leaf, di, &location);
 | 
						|
		put_unaligned(location.objectid, &entry->ino);
 | 
						|
		put_unaligned(found_key.offset, &entry->offset);
 | 
						|
		entries++;
 | 
						|
		addr += sizeof(struct dir_entry) + name_len;
 | 
						|
		total_len += sizeof(struct dir_entry) + name_len;
 | 
						|
	}
 | 
						|
	/* Catch error encountered during iteration */
 | 
						|
	if (ret < 0)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
 | 
						|
	if (ret)
 | 
						|
		goto nopos;
 | 
						|
 | 
						|
	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
 | 
						|
	if (ret)
 | 
						|
		goto nopos;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Stop new entries from being returned after we return the last
 | 
						|
	 * entry.
 | 
						|
	 *
 | 
						|
	 * New directory entries are assigned a strictly increasing
 | 
						|
	 * offset.  This means that new entries created during readdir
 | 
						|
	 * are *guaranteed* to be seen in the future by that readdir.
 | 
						|
	 * This has broken buggy programs which operate on names as
 | 
						|
	 * they're returned by readdir.  Until we re-use freed offsets
 | 
						|
	 * we have this hack to stop new entries from being returned
 | 
						|
	 * under the assumption that they'll never reach this huge
 | 
						|
	 * offset.
 | 
						|
	 *
 | 
						|
	 * This is being careful not to overflow 32bit loff_t unless the
 | 
						|
	 * last entry requires it because doing so has broken 32bit apps
 | 
						|
	 * in the past.
 | 
						|
	 */
 | 
						|
	if (ctx->pos >= INT_MAX)
 | 
						|
		ctx->pos = LLONG_MAX;
 | 
						|
	else
 | 
						|
		ctx->pos = INT_MAX;
 | 
						|
nopos:
 | 
						|
	ret = 0;
 | 
						|
err:
 | 
						|
	if (put)
 | 
						|
		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is somewhat expensive, updating the tree every time the
 | 
						|
 * inode changes.  But, it is most likely to find the inode in cache.
 | 
						|
 * FIXME, needs more benchmarking...there are no reasons other than performance
 | 
						|
 * to keep or drop this code.
 | 
						|
 */
 | 
						|
static int btrfs_dirty_inode(struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	trans = btrfs_join_transaction(root);
 | 
						|
	if (IS_ERR(trans))
 | 
						|
		return PTR_ERR(trans);
 | 
						|
 | 
						|
	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 | 
						|
	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
 | 
						|
		/* whoops, lets try again with the full transaction */
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
		trans = btrfs_start_transaction(root, 1);
 | 
						|
		if (IS_ERR(trans))
 | 
						|
			return PTR_ERR(trans);
 | 
						|
 | 
						|
		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 | 
						|
	}
 | 
						|
	btrfs_end_transaction(trans);
 | 
						|
	if (BTRFS_I(inode)->delayed_node)
 | 
						|
		btrfs_balance_delayed_items(fs_info);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a copy of file_update_time.  We need this so we can return error on
 | 
						|
 * ENOSPC for updating the inode in the case of file write and mmap writes.
 | 
						|
 */
 | 
						|
static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
 | 
						|
			     int flags)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	bool dirty = flags & ~S_VERSION;
 | 
						|
 | 
						|
	if (btrfs_root_readonly(root))
 | 
						|
		return -EROFS;
 | 
						|
 | 
						|
	if (flags & S_VERSION)
 | 
						|
		dirty |= inode_maybe_inc_iversion(inode, dirty);
 | 
						|
	if (flags & S_CTIME)
 | 
						|
		inode->i_ctime = *now;
 | 
						|
	if (flags & S_MTIME)
 | 
						|
		inode->i_mtime = *now;
 | 
						|
	if (flags & S_ATIME)
 | 
						|
		inode->i_atime = *now;
 | 
						|
	return dirty ? btrfs_dirty_inode(inode) : 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * find the highest existing sequence number in a directory
 | 
						|
 * and then set the in-memory index_cnt variable to reflect
 | 
						|
 * free sequence numbers
 | 
						|
 */
 | 
						|
static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_key key, found_key;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	key.objectid = btrfs_ino(inode);
 | 
						|
	key.type = BTRFS_DIR_INDEX_KEY;
 | 
						|
	key.offset = (u64)-1;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
	/* FIXME: we should be able to handle this */
 | 
						|
	if (ret == 0)
 | 
						|
		goto out;
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
	if (path->slots[0] == 0) {
 | 
						|
		inode->index_cnt = BTRFS_DIR_START_INDEX;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	path->slots[0]--;
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | 
						|
 | 
						|
	if (found_key.objectid != btrfs_ino(inode) ||
 | 
						|
	    found_key.type != BTRFS_DIR_INDEX_KEY) {
 | 
						|
		inode->index_cnt = BTRFS_DIR_START_INDEX;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	inode->index_cnt = found_key.offset + 1;
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper to find a free sequence number in a given directory.  This current
 | 
						|
 * code is very simple, later versions will do smarter things in the btree
 | 
						|
 */
 | 
						|
int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (dir->index_cnt == (u64)-1) {
 | 
						|
		ret = btrfs_inode_delayed_dir_index_count(dir);
 | 
						|
		if (ret) {
 | 
						|
			ret = btrfs_set_inode_index_count(dir);
 | 
						|
			if (ret)
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	*index = dir->index_cnt;
 | 
						|
	dir->index_cnt++;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_insert_inode_locked(struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_iget_args args;
 | 
						|
 | 
						|
	args.ino = BTRFS_I(inode)->location.objectid;
 | 
						|
	args.root = BTRFS_I(inode)->root;
 | 
						|
 | 
						|
	return insert_inode_locked4(inode,
 | 
						|
		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
 | 
						|
		   btrfs_find_actor, &args);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
 | 
						|
			    unsigned int *trans_num_items)
 | 
						|
{
 | 
						|
	struct inode *dir = args->dir;
 | 
						|
	struct inode *inode = args->inode;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* 1 to add inode item */
 | 
						|
	*trans_num_items = 1;
 | 
						|
	/* 1 to add compression property */
 | 
						|
	if (BTRFS_I(dir)->prop_compress)
 | 
						|
		(*trans_num_items)++;
 | 
						|
	/* 1 to add default ACL xattr */
 | 
						|
	if (args->default_acl)
 | 
						|
		(*trans_num_items)++;
 | 
						|
	/* 1 to add access ACL xattr */
 | 
						|
	if (args->acl)
 | 
						|
		(*trans_num_items)++;
 | 
						|
#ifdef CONFIG_SECURITY
 | 
						|
	/* 1 to add LSM xattr */
 | 
						|
	if (dir->i_security)
 | 
						|
		(*trans_num_items)++;
 | 
						|
#endif
 | 
						|
	if (args->orphan) {
 | 
						|
		/* 1 to add orphan item */
 | 
						|
		(*trans_num_items)++;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * 1 to add dir item
 | 
						|
		 * 1 to add dir index
 | 
						|
		 * 1 to update parent inode item
 | 
						|
		 *
 | 
						|
		 * No need for 1 unit for the inode ref item because it is
 | 
						|
		 * inserted in a batch together with the inode item at
 | 
						|
		 * btrfs_create_new_inode().
 | 
						|
		 */
 | 
						|
		*trans_num_items += 3;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
 | 
						|
{
 | 
						|
	posix_acl_release(args->acl);
 | 
						|
	posix_acl_release(args->default_acl);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Inherit flags from the parent inode.
 | 
						|
 *
 | 
						|
 * Currently only the compression flags and the cow flags are inherited.
 | 
						|
 */
 | 
						|
static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
 | 
						|
{
 | 
						|
	unsigned int flags;
 | 
						|
 | 
						|
	flags = BTRFS_I(dir)->flags;
 | 
						|
 | 
						|
	if (flags & BTRFS_INODE_NOCOMPRESS) {
 | 
						|
		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
 | 
						|
		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 | 
						|
	} else if (flags & BTRFS_INODE_COMPRESS) {
 | 
						|
		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
 | 
						|
		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
 | 
						|
	}
 | 
						|
 | 
						|
	if (flags & BTRFS_INODE_NODATACOW) {
 | 
						|
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
 | 
						|
		if (S_ISREG(inode->i_mode))
 | 
						|
			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_sync_inode_flags_to_i_flags(inode);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
 | 
						|
			   struct btrfs_new_inode_args *args)
 | 
						|
{
 | 
						|
	struct inode *dir = args->dir;
 | 
						|
	struct inode *inode = args->inode;
 | 
						|
	const char *name = args->orphan ? NULL : args->dentry->d_name.name;
 | 
						|
	int name_len = args->orphan ? 0 : args->dentry->d_name.len;
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 | 
						|
	struct btrfs_root *root;
 | 
						|
	struct btrfs_inode_item *inode_item;
 | 
						|
	struct btrfs_key *location;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	u64 objectid;
 | 
						|
	struct btrfs_inode_ref *ref;
 | 
						|
	struct btrfs_key key[2];
 | 
						|
	u32 sizes[2];
 | 
						|
	struct btrfs_item_batch batch;
 | 
						|
	unsigned long ptr;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	if (!args->subvol)
 | 
						|
		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
 | 
						|
	root = BTRFS_I(inode)->root;
 | 
						|
 | 
						|
	ret = btrfs_get_free_objectid(root, &objectid);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
	inode->i_ino = objectid;
 | 
						|
 | 
						|
	if (args->orphan) {
 | 
						|
		/*
 | 
						|
		 * O_TMPFILE, set link count to 0, so that after this point, we
 | 
						|
		 * fill in an inode item with the correct link count.
 | 
						|
		 */
 | 
						|
		set_nlink(inode, 0);
 | 
						|
	} else {
 | 
						|
		trace_btrfs_inode_request(dir);
 | 
						|
 | 
						|
		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
	/* index_cnt is ignored for everything but a dir. */
 | 
						|
	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
 | 
						|
	BTRFS_I(inode)->generation = trans->transid;
 | 
						|
	inode->i_generation = BTRFS_I(inode)->generation;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Subvolumes don't inherit flags from their parent directory.
 | 
						|
	 * Originally this was probably by accident, but we probably can't
 | 
						|
	 * change it now without compatibility issues.
 | 
						|
	 */
 | 
						|
	if (!args->subvol)
 | 
						|
		btrfs_inherit_iflags(inode, dir);
 | 
						|
 | 
						|
	if (S_ISREG(inode->i_mode)) {
 | 
						|
		if (btrfs_test_opt(fs_info, NODATASUM))
 | 
						|
			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
 | 
						|
		if (btrfs_test_opt(fs_info, NODATACOW))
 | 
						|
			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
 | 
						|
				BTRFS_INODE_NODATASUM;
 | 
						|
	}
 | 
						|
 | 
						|
	location = &BTRFS_I(inode)->location;
 | 
						|
	location->objectid = objectid;
 | 
						|
	location->offset = 0;
 | 
						|
	location->type = BTRFS_INODE_ITEM_KEY;
 | 
						|
 | 
						|
	ret = btrfs_insert_inode_locked(inode);
 | 
						|
	if (ret < 0) {
 | 
						|
		if (!args->orphan)
 | 
						|
			BTRFS_I(dir)->index_cnt--;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We could have gotten an inode number from somebody who was fsynced
 | 
						|
	 * and then removed in this same transaction, so let's just set full
 | 
						|
	 * sync since it will be a full sync anyway and this will blow away the
 | 
						|
	 * old info in the log.
 | 
						|
	 */
 | 
						|
	btrfs_set_inode_full_sync(BTRFS_I(inode));
 | 
						|
 | 
						|
	key[0].objectid = objectid;
 | 
						|
	key[0].type = BTRFS_INODE_ITEM_KEY;
 | 
						|
	key[0].offset = 0;
 | 
						|
 | 
						|
	sizes[0] = sizeof(struct btrfs_inode_item);
 | 
						|
 | 
						|
	if (!args->orphan) {
 | 
						|
		/*
 | 
						|
		 * Start new inodes with an inode_ref. This is slightly more
 | 
						|
		 * efficient for small numbers of hard links since they will
 | 
						|
		 * be packed into one item. Extended refs will kick in if we
 | 
						|
		 * add more hard links than can fit in the ref item.
 | 
						|
		 */
 | 
						|
		key[1].objectid = objectid;
 | 
						|
		key[1].type = BTRFS_INODE_REF_KEY;
 | 
						|
		if (args->subvol) {
 | 
						|
			key[1].offset = objectid;
 | 
						|
			sizes[1] = 2 + sizeof(*ref);
 | 
						|
		} else {
 | 
						|
			key[1].offset = btrfs_ino(BTRFS_I(dir));
 | 
						|
			sizes[1] = name_len + sizeof(*ref);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	batch.keys = &key[0];
 | 
						|
	batch.data_sizes = &sizes[0];
 | 
						|
	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
 | 
						|
	batch.nr = args->orphan ? 1 : 2;
 | 
						|
	ret = btrfs_insert_empty_items(trans, root, path, &batch);
 | 
						|
	if (ret != 0) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto discard;
 | 
						|
	}
 | 
						|
 | 
						|
	inode->i_mtime = current_time(inode);
 | 
						|
	inode->i_atime = inode->i_mtime;
 | 
						|
	inode->i_ctime = inode->i_mtime;
 | 
						|
	BTRFS_I(inode)->i_otime = inode->i_mtime;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're going to fill the inode item now, so at this point the inode
 | 
						|
	 * must be fully initialized.
 | 
						|
	 */
 | 
						|
 | 
						|
	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | 
						|
				  struct btrfs_inode_item);
 | 
						|
	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
 | 
						|
			     sizeof(*inode_item));
 | 
						|
	fill_inode_item(trans, path->nodes[0], inode_item, inode);
 | 
						|
 | 
						|
	if (!args->orphan) {
 | 
						|
		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
 | 
						|
				     struct btrfs_inode_ref);
 | 
						|
		ptr = (unsigned long)(ref + 1);
 | 
						|
		if (args->subvol) {
 | 
						|
			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
 | 
						|
			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
 | 
						|
			write_extent_buffer(path->nodes[0], "..", ptr, 2);
 | 
						|
		} else {
 | 
						|
			btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
 | 
						|
			btrfs_set_inode_ref_index(path->nodes[0], ref,
 | 
						|
						  BTRFS_I(inode)->dir_index);
 | 
						|
			write_extent_buffer(path->nodes[0], name, ptr, name_len);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_mark_buffer_dirty(path->nodes[0]);
 | 
						|
	btrfs_release_path(path);
 | 
						|
 | 
						|
	if (args->subvol) {
 | 
						|
		struct inode *parent;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Subvolumes inherit properties from their parent subvolume,
 | 
						|
		 * not the directory they were created in.
 | 
						|
		 */
 | 
						|
		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
 | 
						|
				    BTRFS_I(dir)->root);
 | 
						|
		if (IS_ERR(parent)) {
 | 
						|
			ret = PTR_ERR(parent);
 | 
						|
		} else {
 | 
						|
			ret = btrfs_inode_inherit_props(trans, inode, parent);
 | 
						|
			iput(parent);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		ret = btrfs_inode_inherit_props(trans, inode, dir);
 | 
						|
	}
 | 
						|
	if (ret) {
 | 
						|
		btrfs_err(fs_info,
 | 
						|
			  "error inheriting props for ino %llu (root %llu): %d",
 | 
						|
			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
 | 
						|
			  ret);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
 | 
						|
	 * probably a bug.
 | 
						|
	 */
 | 
						|
	if (!args->subvol) {
 | 
						|
		ret = btrfs_init_inode_security(trans, args);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto discard;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	inode_tree_add(inode);
 | 
						|
 | 
						|
	trace_btrfs_inode_new(inode);
 | 
						|
	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
 | 
						|
 | 
						|
	btrfs_update_root_times(trans, root);
 | 
						|
 | 
						|
	if (args->orphan) {
 | 
						|
		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 | 
						|
	} else {
 | 
						|
		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
 | 
						|
				     name_len, 0, BTRFS_I(inode)->dir_index);
 | 
						|
	}
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto discard;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	goto out;
 | 
						|
 | 
						|
discard:
 | 
						|
	/*
 | 
						|
	 * discard_new_inode() calls iput(), but the caller owns the reference
 | 
						|
	 * to the inode.
 | 
						|
	 */
 | 
						|
	ihold(inode);
 | 
						|
	discard_new_inode(inode);
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * utility function to add 'inode' into 'parent_inode' with
 | 
						|
 * a give name and a given sequence number.
 | 
						|
 * if 'add_backref' is true, also insert a backref from the
 | 
						|
 * inode to the parent directory.
 | 
						|
 */
 | 
						|
int btrfs_add_link(struct btrfs_trans_handle *trans,
 | 
						|
		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
 | 
						|
		   const char *name, int name_len, int add_backref, u64 index)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct btrfs_root *root = parent_inode->root;
 | 
						|
	u64 ino = btrfs_ino(inode);
 | 
						|
	u64 parent_ino = btrfs_ino(parent_inode);
 | 
						|
 | 
						|
	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
 | 
						|
		memcpy(&key, &inode->root->root_key, sizeof(key));
 | 
						|
	} else {
 | 
						|
		key.objectid = ino;
 | 
						|
		key.type = BTRFS_INODE_ITEM_KEY;
 | 
						|
		key.offset = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
 | 
						|
		ret = btrfs_add_root_ref(trans, key.objectid,
 | 
						|
					 root->root_key.objectid, parent_ino,
 | 
						|
					 index, name, name_len);
 | 
						|
	} else if (add_backref) {
 | 
						|
		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
 | 
						|
					     parent_ino, index);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Nothing to clean up yet */
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
 | 
						|
				    btrfs_inode_type(&inode->vfs_inode), index);
 | 
						|
	if (ret == -EEXIST || ret == -EOVERFLOW)
 | 
						|
		goto fail_dir_item;
 | 
						|
	else if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
 | 
						|
			   name_len * 2);
 | 
						|
	inode_inc_iversion(&parent_inode->vfs_inode);
 | 
						|
	/*
 | 
						|
	 * If we are replaying a log tree, we do not want to update the mtime
 | 
						|
	 * and ctime of the parent directory with the current time, since the
 | 
						|
	 * log replay procedure is responsible for setting them to their correct
 | 
						|
	 * values (the ones it had when the fsync was done).
 | 
						|
	 */
 | 
						|
	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
 | 
						|
		struct timespec64 now = current_time(&parent_inode->vfs_inode);
 | 
						|
 | 
						|
		parent_inode->vfs_inode.i_mtime = now;
 | 
						|
		parent_inode->vfs_inode.i_ctime = now;
 | 
						|
	}
 | 
						|
	ret = btrfs_update_inode(trans, root, parent_inode);
 | 
						|
	if (ret)
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
	return ret;
 | 
						|
 | 
						|
fail_dir_item:
 | 
						|
	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
 | 
						|
		u64 local_index;
 | 
						|
		int err;
 | 
						|
		err = btrfs_del_root_ref(trans, key.objectid,
 | 
						|
					 root->root_key.objectid, parent_ino,
 | 
						|
					 &local_index, name, name_len);
 | 
						|
		if (err)
 | 
						|
			btrfs_abort_transaction(trans, err);
 | 
						|
	} else if (add_backref) {
 | 
						|
		u64 local_index;
 | 
						|
		int err;
 | 
						|
 | 
						|
		err = btrfs_del_inode_ref(trans, root, name, name_len,
 | 
						|
					  ino, parent_ino, &local_index);
 | 
						|
		if (err)
 | 
						|
			btrfs_abort_transaction(trans, err);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Return the original error code */
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
 | 
						|
			       struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 | 
						|
	struct btrfs_root *root = BTRFS_I(dir)->root;
 | 
						|
	struct btrfs_new_inode_args new_inode_args = {
 | 
						|
		.dir = dir,
 | 
						|
		.dentry = dentry,
 | 
						|
		.inode = inode,
 | 
						|
	};
 | 
						|
	unsigned int trans_num_items;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
 | 
						|
	if (err)
 | 
						|
		goto out_inode;
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(root, trans_num_items);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		err = PTR_ERR(trans);
 | 
						|
		goto out_new_inode_args;
 | 
						|
	}
 | 
						|
 | 
						|
	err = btrfs_create_new_inode(trans, &new_inode_args);
 | 
						|
	if (!err)
 | 
						|
		d_instantiate_new(dentry, inode);
 | 
						|
 | 
						|
	btrfs_end_transaction(trans);
 | 
						|
	btrfs_btree_balance_dirty(fs_info);
 | 
						|
out_new_inode_args:
 | 
						|
	btrfs_new_inode_args_destroy(&new_inode_args);
 | 
						|
out_inode:
 | 
						|
	if (err)
 | 
						|
		iput(inode);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
 | 
						|
		       struct dentry *dentry, umode_t mode, dev_t rdev)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	inode = new_inode(dir->i_sb);
 | 
						|
	if (!inode)
 | 
						|
		return -ENOMEM;
 | 
						|
	inode_init_owner(mnt_userns, inode, dir, mode);
 | 
						|
	inode->i_op = &btrfs_special_inode_operations;
 | 
						|
	init_special_inode(inode, inode->i_mode, rdev);
 | 
						|
	return btrfs_create_common(dir, dentry, inode);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
 | 
						|
			struct dentry *dentry, umode_t mode, bool excl)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	inode = new_inode(dir->i_sb);
 | 
						|
	if (!inode)
 | 
						|
		return -ENOMEM;
 | 
						|
	inode_init_owner(mnt_userns, inode, dir, mode);
 | 
						|
	inode->i_fop = &btrfs_file_operations;
 | 
						|
	inode->i_op = &btrfs_file_inode_operations;
 | 
						|
	inode->i_mapping->a_ops = &btrfs_aops;
 | 
						|
	return btrfs_create_common(dir, dentry, inode);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
 | 
						|
		      struct dentry *dentry)
 | 
						|
{
 | 
						|
	struct btrfs_trans_handle *trans = NULL;
 | 
						|
	struct btrfs_root *root = BTRFS_I(dir)->root;
 | 
						|
	struct inode *inode = d_inode(old_dentry);
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	u64 index;
 | 
						|
	int err;
 | 
						|
	int drop_inode = 0;
 | 
						|
 | 
						|
	/* do not allow sys_link's with other subvols of the same device */
 | 
						|
	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
 | 
						|
		return -EXDEV;
 | 
						|
 | 
						|
	if (inode->i_nlink >= BTRFS_LINK_MAX)
 | 
						|
		return -EMLINK;
 | 
						|
 | 
						|
	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
 | 
						|
	if (err)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 2 items for inode and inode ref
 | 
						|
	 * 2 items for dir items
 | 
						|
	 * 1 item for parent inode
 | 
						|
	 * 1 item for orphan item deletion if O_TMPFILE
 | 
						|
	 */
 | 
						|
	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		err = PTR_ERR(trans);
 | 
						|
		trans = NULL;
 | 
						|
		goto fail;
 | 
						|
	}
 | 
						|
 | 
						|
	/* There are several dir indexes for this inode, clear the cache. */
 | 
						|
	BTRFS_I(inode)->dir_index = 0ULL;
 | 
						|
	inc_nlink(inode);
 | 
						|
	inode_inc_iversion(inode);
 | 
						|
	inode->i_ctime = current_time(inode);
 | 
						|
	ihold(inode);
 | 
						|
	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
 | 
						|
 | 
						|
	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
 | 
						|
			     dentry->d_name.name, dentry->d_name.len, 1, index);
 | 
						|
 | 
						|
	if (err) {
 | 
						|
		drop_inode = 1;
 | 
						|
	} else {
 | 
						|
		struct dentry *parent = dentry->d_parent;
 | 
						|
 | 
						|
		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
 | 
						|
		if (err)
 | 
						|
			goto fail;
 | 
						|
		if (inode->i_nlink == 1) {
 | 
						|
			/*
 | 
						|
			 * If new hard link count is 1, it's a file created
 | 
						|
			 * with open(2) O_TMPFILE flag.
 | 
						|
			 */
 | 
						|
			err = btrfs_orphan_del(trans, BTRFS_I(inode));
 | 
						|
			if (err)
 | 
						|
				goto fail;
 | 
						|
		}
 | 
						|
		d_instantiate(dentry, inode);
 | 
						|
		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
 | 
						|
	}
 | 
						|
 | 
						|
fail:
 | 
						|
	if (trans)
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
	if (drop_inode) {
 | 
						|
		inode_dec_link_count(inode);
 | 
						|
		iput(inode);
 | 
						|
	}
 | 
						|
	btrfs_btree_balance_dirty(fs_info);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
 | 
						|
		       struct dentry *dentry, umode_t mode)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	inode = new_inode(dir->i_sb);
 | 
						|
	if (!inode)
 | 
						|
		return -ENOMEM;
 | 
						|
	inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
 | 
						|
	inode->i_op = &btrfs_dir_inode_operations;
 | 
						|
	inode->i_fop = &btrfs_dir_file_operations;
 | 
						|
	return btrfs_create_common(dir, dentry, inode);
 | 
						|
}
 | 
						|
 | 
						|
static noinline int uncompress_inline(struct btrfs_path *path,
 | 
						|
				      struct page *page,
 | 
						|
				      size_t pg_offset, u64 extent_offset,
 | 
						|
				      struct btrfs_file_extent_item *item)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct extent_buffer *leaf = path->nodes[0];
 | 
						|
	char *tmp;
 | 
						|
	size_t max_size;
 | 
						|
	unsigned long inline_size;
 | 
						|
	unsigned long ptr;
 | 
						|
	int compress_type;
 | 
						|
 | 
						|
	WARN_ON(pg_offset != 0);
 | 
						|
	compress_type = btrfs_file_extent_compression(leaf, item);
 | 
						|
	max_size = btrfs_file_extent_ram_bytes(leaf, item);
 | 
						|
	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
 | 
						|
	tmp = kmalloc(inline_size, GFP_NOFS);
 | 
						|
	if (!tmp)
 | 
						|
		return -ENOMEM;
 | 
						|
	ptr = btrfs_file_extent_inline_start(item);
 | 
						|
 | 
						|
	read_extent_buffer(leaf, tmp, ptr, inline_size);
 | 
						|
 | 
						|
	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
 | 
						|
	ret = btrfs_decompress(compress_type, tmp, page,
 | 
						|
			       extent_offset, inline_size, max_size);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * decompression code contains a memset to fill in any space between the end
 | 
						|
	 * of the uncompressed data and the end of max_size in case the decompressed
 | 
						|
	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
 | 
						|
	 * the end of an inline extent and the beginning of the next block, so we
 | 
						|
	 * cover that region here.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (max_size + pg_offset < PAGE_SIZE)
 | 
						|
		memzero_page(page,  pg_offset + max_size,
 | 
						|
			     PAGE_SIZE - max_size - pg_offset);
 | 
						|
	kfree(tmp);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
 | 
						|
 * @inode:	file to search in
 | 
						|
 * @page:	page to read extent data into if the extent is inline
 | 
						|
 * @pg_offset:	offset into @page to copy to
 | 
						|
 * @start:	file offset
 | 
						|
 * @len:	length of range starting at @start
 | 
						|
 *
 | 
						|
 * This returns the first &struct extent_map which overlaps with the given
 | 
						|
 * range, reading it from the B-tree and caching it if necessary. Note that
 | 
						|
 * there may be more extents which overlap the given range after the returned
 | 
						|
 * extent_map.
 | 
						|
 *
 | 
						|
 * If @page is not NULL and the extent is inline, this also reads the extent
 | 
						|
 * data directly into the page and marks the extent up to date in the io_tree.
 | 
						|
 *
 | 
						|
 * Return: ERR_PTR on error, non-NULL extent_map on success.
 | 
						|
 */
 | 
						|
struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
 | 
						|
				    struct page *page, size_t pg_offset,
 | 
						|
				    u64 start, u64 len)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	int ret = 0;
 | 
						|
	u64 extent_start = 0;
 | 
						|
	u64 extent_end = 0;
 | 
						|
	u64 objectid = btrfs_ino(inode);
 | 
						|
	int extent_type = -1;
 | 
						|
	struct btrfs_path *path = NULL;
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_file_extent_item *item;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_key found_key;
 | 
						|
	struct extent_map *em = NULL;
 | 
						|
	struct extent_map_tree *em_tree = &inode->extent_tree;
 | 
						|
	struct extent_io_tree *io_tree = &inode->io_tree;
 | 
						|
 | 
						|
	read_lock(&em_tree->lock);
 | 
						|
	em = lookup_extent_mapping(em_tree, start, len);
 | 
						|
	read_unlock(&em_tree->lock);
 | 
						|
 | 
						|
	if (em) {
 | 
						|
		if (em->start > start || em->start + em->len <= start)
 | 
						|
			free_extent_map(em);
 | 
						|
		else if (em->block_start == EXTENT_MAP_INLINE && page)
 | 
						|
			free_extent_map(em);
 | 
						|
		else
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
	em = alloc_extent_map();
 | 
						|
	if (!em) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	em->start = EXTENT_MAP_HOLE;
 | 
						|
	em->orig_start = EXTENT_MAP_HOLE;
 | 
						|
	em->len = (u64)-1;
 | 
						|
	em->block_len = (u64)-1;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Chances are we'll be called again, so go ahead and do readahead */
 | 
						|
	path->reada = READA_FORWARD;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The same explanation in load_free_space_cache applies here as well,
 | 
						|
	 * we only read when we're loading the free space cache, and at that
 | 
						|
	 * point the commit_root has everything we need.
 | 
						|
	 */
 | 
						|
	if (btrfs_is_free_space_inode(inode)) {
 | 
						|
		path->search_commit_root = 1;
 | 
						|
		path->skip_locking = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
 | 
						|
	if (ret < 0) {
 | 
						|
		goto out;
 | 
						|
	} else if (ret > 0) {
 | 
						|
		if (path->slots[0] == 0)
 | 
						|
			goto not_found;
 | 
						|
		path->slots[0]--;
 | 
						|
		ret = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	item = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
			      struct btrfs_file_extent_item);
 | 
						|
	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | 
						|
	if (found_key.objectid != objectid ||
 | 
						|
	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
 | 
						|
		/*
 | 
						|
		 * If we backup past the first extent we want to move forward
 | 
						|
		 * and see if there is an extent in front of us, otherwise we'll
 | 
						|
		 * say there is a hole for our whole search range which can
 | 
						|
		 * cause problems.
 | 
						|
		 */
 | 
						|
		extent_end = start;
 | 
						|
		goto next;
 | 
						|
	}
 | 
						|
 | 
						|
	extent_type = btrfs_file_extent_type(leaf, item);
 | 
						|
	extent_start = found_key.offset;
 | 
						|
	extent_end = btrfs_file_extent_end(path);
 | 
						|
	if (extent_type == BTRFS_FILE_EXTENT_REG ||
 | 
						|
	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | 
						|
		/* Only regular file could have regular/prealloc extent */
 | 
						|
		if (!S_ISREG(inode->vfs_inode.i_mode)) {
 | 
						|
			ret = -EUCLEAN;
 | 
						|
			btrfs_crit(fs_info,
 | 
						|
		"regular/prealloc extent found for non-regular inode %llu",
 | 
						|
				   btrfs_ino(inode));
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
 | 
						|
						       extent_start);
 | 
						|
	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
 | 
						|
						      path->slots[0],
 | 
						|
						      extent_start);
 | 
						|
	}
 | 
						|
next:
 | 
						|
	if (start >= extent_end) {
 | 
						|
		path->slots[0]++;
 | 
						|
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | 
						|
			ret = btrfs_next_leaf(root, path);
 | 
						|
			if (ret < 0)
 | 
						|
				goto out;
 | 
						|
			else if (ret > 0)
 | 
						|
				goto not_found;
 | 
						|
 | 
						|
			leaf = path->nodes[0];
 | 
						|
		}
 | 
						|
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | 
						|
		if (found_key.objectid != objectid ||
 | 
						|
		    found_key.type != BTRFS_EXTENT_DATA_KEY)
 | 
						|
			goto not_found;
 | 
						|
		if (start + len <= found_key.offset)
 | 
						|
			goto not_found;
 | 
						|
		if (start > found_key.offset)
 | 
						|
			goto next;
 | 
						|
 | 
						|
		/* New extent overlaps with existing one */
 | 
						|
		em->start = start;
 | 
						|
		em->orig_start = start;
 | 
						|
		em->len = found_key.offset - start;
 | 
						|
		em->block_start = EXTENT_MAP_HOLE;
 | 
						|
		goto insert;
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
 | 
						|
 | 
						|
	if (extent_type == BTRFS_FILE_EXTENT_REG ||
 | 
						|
	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | 
						|
		goto insert;
 | 
						|
	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | 
						|
		unsigned long ptr;
 | 
						|
		char *map;
 | 
						|
		size_t size;
 | 
						|
		size_t extent_offset;
 | 
						|
		size_t copy_size;
 | 
						|
 | 
						|
		if (!page)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		size = btrfs_file_extent_ram_bytes(leaf, item);
 | 
						|
		extent_offset = page_offset(page) + pg_offset - extent_start;
 | 
						|
		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
 | 
						|
				  size - extent_offset);
 | 
						|
		em->start = extent_start + extent_offset;
 | 
						|
		em->len = ALIGN(copy_size, fs_info->sectorsize);
 | 
						|
		em->orig_block_len = em->len;
 | 
						|
		em->orig_start = em->start;
 | 
						|
		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
 | 
						|
 | 
						|
		if (!PageUptodate(page)) {
 | 
						|
			if (btrfs_file_extent_compression(leaf, item) !=
 | 
						|
			    BTRFS_COMPRESS_NONE) {
 | 
						|
				ret = uncompress_inline(path, page, pg_offset,
 | 
						|
							extent_offset, item);
 | 
						|
				if (ret)
 | 
						|
					goto out;
 | 
						|
			} else {
 | 
						|
				map = kmap_local_page(page);
 | 
						|
				read_extent_buffer(leaf, map + pg_offset, ptr,
 | 
						|
						   copy_size);
 | 
						|
				if (pg_offset + copy_size < PAGE_SIZE) {
 | 
						|
					memset(map + pg_offset + copy_size, 0,
 | 
						|
					       PAGE_SIZE - pg_offset -
 | 
						|
					       copy_size);
 | 
						|
				}
 | 
						|
				kunmap_local(map);
 | 
						|
			}
 | 
						|
			flush_dcache_page(page);
 | 
						|
		}
 | 
						|
		set_extent_uptodate(io_tree, em->start,
 | 
						|
				    extent_map_end(em) - 1, NULL, GFP_NOFS);
 | 
						|
		goto insert;
 | 
						|
	}
 | 
						|
not_found:
 | 
						|
	em->start = start;
 | 
						|
	em->orig_start = start;
 | 
						|
	em->len = len;
 | 
						|
	em->block_start = EXTENT_MAP_HOLE;
 | 
						|
insert:
 | 
						|
	ret = 0;
 | 
						|
	btrfs_release_path(path);
 | 
						|
	if (em->start > start || extent_map_end(em) <= start) {
 | 
						|
		btrfs_err(fs_info,
 | 
						|
			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
 | 
						|
			  em->start, em->len, start, len);
 | 
						|
		ret = -EIO;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	write_lock(&em_tree->lock);
 | 
						|
	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
 | 
						|
	write_unlock(&em_tree->lock);
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
 | 
						|
	trace_btrfs_get_extent(root, inode, em);
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		free_extent_map(em);
 | 
						|
		return ERR_PTR(ret);
 | 
						|
	}
 | 
						|
	return em;
 | 
						|
}
 | 
						|
 | 
						|
struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
 | 
						|
					   u64 start, u64 len)
 | 
						|
{
 | 
						|
	struct extent_map *em;
 | 
						|
	struct extent_map *hole_em = NULL;
 | 
						|
	u64 delalloc_start = start;
 | 
						|
	u64 end;
 | 
						|
	u64 delalloc_len;
 | 
						|
	u64 delalloc_end;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	em = btrfs_get_extent(inode, NULL, 0, start, len);
 | 
						|
	if (IS_ERR(em))
 | 
						|
		return em;
 | 
						|
	/*
 | 
						|
	 * If our em maps to:
 | 
						|
	 * - a hole or
 | 
						|
	 * - a pre-alloc extent,
 | 
						|
	 * there might actually be delalloc bytes behind it.
 | 
						|
	 */
 | 
						|
	if (em->block_start != EXTENT_MAP_HOLE &&
 | 
						|
	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
 | 
						|
		return em;
 | 
						|
	else
 | 
						|
		hole_em = em;
 | 
						|
 | 
						|
	/* check to see if we've wrapped (len == -1 or similar) */
 | 
						|
	end = start + len;
 | 
						|
	if (end < start)
 | 
						|
		end = (u64)-1;
 | 
						|
	else
 | 
						|
		end -= 1;
 | 
						|
 | 
						|
	em = NULL;
 | 
						|
 | 
						|
	/* ok, we didn't find anything, lets look for delalloc */
 | 
						|
	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
 | 
						|
				 end, len, EXTENT_DELALLOC, 1);
 | 
						|
	delalloc_end = delalloc_start + delalloc_len;
 | 
						|
	if (delalloc_end < delalloc_start)
 | 
						|
		delalloc_end = (u64)-1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We didn't find anything useful, return the original results from
 | 
						|
	 * get_extent()
 | 
						|
	 */
 | 
						|
	if (delalloc_start > end || delalloc_end <= start) {
 | 
						|
		em = hole_em;
 | 
						|
		hole_em = NULL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Adjust the delalloc_start to make sure it doesn't go backwards from
 | 
						|
	 * the start they passed in
 | 
						|
	 */
 | 
						|
	delalloc_start = max(start, delalloc_start);
 | 
						|
	delalloc_len = delalloc_end - delalloc_start;
 | 
						|
 | 
						|
	if (delalloc_len > 0) {
 | 
						|
		u64 hole_start;
 | 
						|
		u64 hole_len;
 | 
						|
		const u64 hole_end = extent_map_end(hole_em);
 | 
						|
 | 
						|
		em = alloc_extent_map();
 | 
						|
		if (!em) {
 | 
						|
			err = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT(hole_em);
 | 
						|
		/*
 | 
						|
		 * When btrfs_get_extent can't find anything it returns one
 | 
						|
		 * huge hole
 | 
						|
		 *
 | 
						|
		 * Make sure what it found really fits our range, and adjust to
 | 
						|
		 * make sure it is based on the start from the caller
 | 
						|
		 */
 | 
						|
		if (hole_end <= start || hole_em->start > end) {
 | 
						|
		       free_extent_map(hole_em);
 | 
						|
		       hole_em = NULL;
 | 
						|
		} else {
 | 
						|
		       hole_start = max(hole_em->start, start);
 | 
						|
		       hole_len = hole_end - hole_start;
 | 
						|
		}
 | 
						|
 | 
						|
		if (hole_em && delalloc_start > hole_start) {
 | 
						|
			/*
 | 
						|
			 * Our hole starts before our delalloc, so we have to
 | 
						|
			 * return just the parts of the hole that go until the
 | 
						|
			 * delalloc starts
 | 
						|
			 */
 | 
						|
			em->len = min(hole_len, delalloc_start - hole_start);
 | 
						|
			em->start = hole_start;
 | 
						|
			em->orig_start = hole_start;
 | 
						|
			/*
 | 
						|
			 * Don't adjust block start at all, it is fixed at
 | 
						|
			 * EXTENT_MAP_HOLE
 | 
						|
			 */
 | 
						|
			em->block_start = hole_em->block_start;
 | 
						|
			em->block_len = hole_len;
 | 
						|
			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
 | 
						|
				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Hole is out of passed range or it starts after
 | 
						|
			 * delalloc range
 | 
						|
			 */
 | 
						|
			em->start = delalloc_start;
 | 
						|
			em->len = delalloc_len;
 | 
						|
			em->orig_start = delalloc_start;
 | 
						|
			em->block_start = EXTENT_MAP_DELALLOC;
 | 
						|
			em->block_len = delalloc_len;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		return hole_em;
 | 
						|
	}
 | 
						|
out:
 | 
						|
 | 
						|
	free_extent_map(hole_em);
 | 
						|
	if (err) {
 | 
						|
		free_extent_map(em);
 | 
						|
		return ERR_PTR(err);
 | 
						|
	}
 | 
						|
	return em;
 | 
						|
}
 | 
						|
 | 
						|
static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
 | 
						|
						  const u64 start,
 | 
						|
						  const u64 len,
 | 
						|
						  const u64 orig_start,
 | 
						|
						  const u64 block_start,
 | 
						|
						  const u64 block_len,
 | 
						|
						  const u64 orig_block_len,
 | 
						|
						  const u64 ram_bytes,
 | 
						|
						  const int type)
 | 
						|
{
 | 
						|
	struct extent_map *em = NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (type != BTRFS_ORDERED_NOCOW) {
 | 
						|
		em = create_io_em(inode, start, len, orig_start, block_start,
 | 
						|
				  block_len, orig_block_len, ram_bytes,
 | 
						|
				  BTRFS_COMPRESS_NONE, /* compress_type */
 | 
						|
				  type);
 | 
						|
		if (IS_ERR(em))
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
	ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
 | 
						|
				       block_len, 0,
 | 
						|
				       (1 << type) |
 | 
						|
				       (1 << BTRFS_ORDERED_DIRECT),
 | 
						|
				       BTRFS_COMPRESS_NONE);
 | 
						|
	if (ret) {
 | 
						|
		if (em) {
 | 
						|
			free_extent_map(em);
 | 
						|
			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
 | 
						|
		}
 | 
						|
		em = ERR_PTR(ret);
 | 
						|
	}
 | 
						|
 out:
 | 
						|
 | 
						|
	return em;
 | 
						|
}
 | 
						|
 | 
						|
static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
 | 
						|
						  u64 start, u64 len)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct extent_map *em;
 | 
						|
	struct btrfs_key ins;
 | 
						|
	u64 alloc_hint;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	alloc_hint = get_extent_allocation_hint(inode, start, len);
 | 
						|
	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
 | 
						|
				   0, alloc_hint, &ins, 1, 1);
 | 
						|
	if (ret)
 | 
						|
		return ERR_PTR(ret);
 | 
						|
 | 
						|
	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
 | 
						|
				     ins.objectid, ins.offset, ins.offset,
 | 
						|
				     ins.offset, BTRFS_ORDERED_REGULAR);
 | 
						|
	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 | 
						|
	if (IS_ERR(em))
 | 
						|
		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
 | 
						|
					   1);
 | 
						|
 | 
						|
	return em;
 | 
						|
}
 | 
						|
 | 
						|
static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
 | 
						|
{
 | 
						|
	struct btrfs_block_group *block_group;
 | 
						|
	bool readonly = false;
 | 
						|
 | 
						|
	block_group = btrfs_lookup_block_group(fs_info, bytenr);
 | 
						|
	if (!block_group || block_group->ro)
 | 
						|
		readonly = true;
 | 
						|
	if (block_group)
 | 
						|
		btrfs_put_block_group(block_group);
 | 
						|
	return readonly;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if we can do nocow write into the range [@offset, @offset + @len)
 | 
						|
 *
 | 
						|
 * @offset:	File offset
 | 
						|
 * @len:	The length to write, will be updated to the nocow writeable
 | 
						|
 *		range
 | 
						|
 * @orig_start:	(optional) Return the original file offset of the file extent
 | 
						|
 * @orig_len:	(optional) Return the original on-disk length of the file extent
 | 
						|
 * @ram_bytes:	(optional) Return the ram_bytes of the file extent
 | 
						|
 * @strict:	if true, omit optimizations that might force us into unnecessary
 | 
						|
 *		cow. e.g., don't trust generation number.
 | 
						|
 *
 | 
						|
 * Return:
 | 
						|
 * >0	and update @len if we can do nocow write
 | 
						|
 *  0	if we can't do nocow write
 | 
						|
 * <0	if error happened
 | 
						|
 *
 | 
						|
 * NOTE: This only checks the file extents, caller is responsible to wait for
 | 
						|
 *	 any ordered extents.
 | 
						|
 */
 | 
						|
noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
 | 
						|
			      u64 *orig_start, u64 *orig_block_len,
 | 
						|
			      u64 *ram_bytes, bool strict)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct can_nocow_file_extent_args nocow_args = { 0 };
 | 
						|
	struct btrfs_path *path;
 | 
						|
	int ret;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | 
						|
	struct btrfs_file_extent_item *fi;
 | 
						|
	struct btrfs_key key;
 | 
						|
	int found_type;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = btrfs_lookup_file_extent(NULL, root, path,
 | 
						|
			btrfs_ino(BTRFS_I(inode)), offset, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (ret == 1) {
 | 
						|
		if (path->slots[0] == 0) {
 | 
						|
			/* can't find the item, must cow */
 | 
						|
			ret = 0;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		path->slots[0]--;
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | 
						|
	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
 | 
						|
	    key.type != BTRFS_EXTENT_DATA_KEY) {
 | 
						|
		/* not our file or wrong item type, must cow */
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (key.offset > offset) {
 | 
						|
		/* Wrong offset, must cow */
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (btrfs_file_extent_end(path) <= offset)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
 | 
						|
	found_type = btrfs_file_extent_type(leaf, fi);
 | 
						|
	if (ram_bytes)
 | 
						|
		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
 | 
						|
 | 
						|
	nocow_args.start = offset;
 | 
						|
	nocow_args.end = offset + *len - 1;
 | 
						|
	nocow_args.strict = strict;
 | 
						|
	nocow_args.free_path = true;
 | 
						|
 | 
						|
	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
 | 
						|
	/* can_nocow_file_extent() has freed the path. */
 | 
						|
	path = NULL;
 | 
						|
 | 
						|
	if (ret != 1) {
 | 
						|
		/* Treat errors as not being able to NOCOW. */
 | 
						|
		ret = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
 | 
						|
	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | 
						|
		u64 range_end;
 | 
						|
 | 
						|
		range_end = round_up(offset + nocow_args.num_bytes,
 | 
						|
				     root->fs_info->sectorsize) - 1;
 | 
						|
		ret = test_range_bit(io_tree, offset, range_end,
 | 
						|
				     EXTENT_DELALLOC, 0, NULL);
 | 
						|
		if (ret) {
 | 
						|
			ret = -EAGAIN;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (orig_start)
 | 
						|
		*orig_start = key.offset - nocow_args.extent_offset;
 | 
						|
	if (orig_block_len)
 | 
						|
		*orig_block_len = nocow_args.disk_num_bytes;
 | 
						|
 | 
						|
	*len = nocow_args.num_bytes;
 | 
						|
	ret = 1;
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
 | 
						|
			      struct extent_state **cached_state,
 | 
						|
			      unsigned int iomap_flags)
 | 
						|
{
 | 
						|
	const bool writing = (iomap_flags & IOMAP_WRITE);
 | 
						|
	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
 | 
						|
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		if (nowait) {
 | 
						|
			if (!try_lock_extent(io_tree, lockstart, lockend))
 | 
						|
				return -EAGAIN;
 | 
						|
		} else {
 | 
						|
			lock_extent_bits(io_tree, lockstart, lockend, cached_state);
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * We're concerned with the entire range that we're going to be
 | 
						|
		 * doing DIO to, so we need to make sure there's no ordered
 | 
						|
		 * extents in this range.
 | 
						|
		 */
 | 
						|
		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
 | 
						|
						     lockend - lockstart + 1);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We need to make sure there are no buffered pages in this
 | 
						|
		 * range either, we could have raced between the invalidate in
 | 
						|
		 * generic_file_direct_write and locking the extent.  The
 | 
						|
		 * invalidate needs to happen so that reads after a write do not
 | 
						|
		 * get stale data.
 | 
						|
		 */
 | 
						|
		if (!ordered &&
 | 
						|
		    (!writing || !filemap_range_has_page(inode->i_mapping,
 | 
						|
							 lockstart, lockend)))
 | 
						|
			break;
 | 
						|
 | 
						|
		unlock_extent_cached(io_tree, lockstart, lockend, cached_state);
 | 
						|
 | 
						|
		if (ordered) {
 | 
						|
			if (nowait) {
 | 
						|
				btrfs_put_ordered_extent(ordered);
 | 
						|
				ret = -EAGAIN;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * If we are doing a DIO read and the ordered extent we
 | 
						|
			 * found is for a buffered write, we can not wait for it
 | 
						|
			 * to complete and retry, because if we do so we can
 | 
						|
			 * deadlock with concurrent buffered writes on page
 | 
						|
			 * locks. This happens only if our DIO read covers more
 | 
						|
			 * than one extent map, if at this point has already
 | 
						|
			 * created an ordered extent for a previous extent map
 | 
						|
			 * and locked its range in the inode's io tree, and a
 | 
						|
			 * concurrent write against that previous extent map's
 | 
						|
			 * range and this range started (we unlock the ranges
 | 
						|
			 * in the io tree only when the bios complete and
 | 
						|
			 * buffered writes always lock pages before attempting
 | 
						|
			 * to lock range in the io tree).
 | 
						|
			 */
 | 
						|
			if (writing ||
 | 
						|
			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
 | 
						|
				btrfs_start_ordered_extent(ordered, 1);
 | 
						|
			else
 | 
						|
				ret = nowait ? -EAGAIN : -ENOTBLK;
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * We could trigger writeback for this range (and wait
 | 
						|
			 * for it to complete) and then invalidate the pages for
 | 
						|
			 * this range (through invalidate_inode_pages2_range()),
 | 
						|
			 * but that can lead us to a deadlock with a concurrent
 | 
						|
			 * call to readahead (a buffered read or a defrag call
 | 
						|
			 * triggered a readahead) on a page lock due to an
 | 
						|
			 * ordered dio extent we created before but did not have
 | 
						|
			 * yet a corresponding bio submitted (whence it can not
 | 
						|
			 * complete), which makes readahead wait for that
 | 
						|
			 * ordered extent to complete while holding a lock on
 | 
						|
			 * that page.
 | 
						|
			 */
 | 
						|
			ret = nowait ? -EAGAIN : -ENOTBLK;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* The callers of this must take lock_extent() */
 | 
						|
static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
 | 
						|
				       u64 len, u64 orig_start, u64 block_start,
 | 
						|
				       u64 block_len, u64 orig_block_len,
 | 
						|
				       u64 ram_bytes, int compress_type,
 | 
						|
				       int type)
 | 
						|
{
 | 
						|
	struct extent_map_tree *em_tree;
 | 
						|
	struct extent_map *em;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
 | 
						|
	       type == BTRFS_ORDERED_COMPRESSED ||
 | 
						|
	       type == BTRFS_ORDERED_NOCOW ||
 | 
						|
	       type == BTRFS_ORDERED_REGULAR);
 | 
						|
 | 
						|
	em_tree = &inode->extent_tree;
 | 
						|
	em = alloc_extent_map();
 | 
						|
	if (!em)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	em->start = start;
 | 
						|
	em->orig_start = orig_start;
 | 
						|
	em->len = len;
 | 
						|
	em->block_len = block_len;
 | 
						|
	em->block_start = block_start;
 | 
						|
	em->orig_block_len = orig_block_len;
 | 
						|
	em->ram_bytes = ram_bytes;
 | 
						|
	em->generation = -1;
 | 
						|
	set_bit(EXTENT_FLAG_PINNED, &em->flags);
 | 
						|
	if (type == BTRFS_ORDERED_PREALLOC) {
 | 
						|
		set_bit(EXTENT_FLAG_FILLING, &em->flags);
 | 
						|
	} else if (type == BTRFS_ORDERED_COMPRESSED) {
 | 
						|
		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 | 
						|
		em->compress_type = compress_type;
 | 
						|
	}
 | 
						|
 | 
						|
	do {
 | 
						|
		btrfs_drop_extent_cache(inode, em->start,
 | 
						|
					em->start + em->len - 1, 0);
 | 
						|
		write_lock(&em_tree->lock);
 | 
						|
		ret = add_extent_mapping(em_tree, em, 1);
 | 
						|
		write_unlock(&em_tree->lock);
 | 
						|
		/*
 | 
						|
		 * The caller has taken lock_extent(), who could race with us
 | 
						|
		 * to add em?
 | 
						|
		 */
 | 
						|
	} while (ret == -EEXIST);
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		free_extent_map(em);
 | 
						|
		return ERR_PTR(ret);
 | 
						|
	}
 | 
						|
 | 
						|
	/* em got 2 refs now, callers needs to do free_extent_map once. */
 | 
						|
	return em;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int btrfs_get_blocks_direct_write(struct extent_map **map,
 | 
						|
					 struct inode *inode,
 | 
						|
					 struct btrfs_dio_data *dio_data,
 | 
						|
					 u64 start, u64 len,
 | 
						|
					 unsigned int iomap_flags)
 | 
						|
{
 | 
						|
	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct extent_map *em = *map;
 | 
						|
	int type;
 | 
						|
	u64 block_start, orig_start, orig_block_len, ram_bytes;
 | 
						|
	struct btrfs_block_group *bg;
 | 
						|
	bool can_nocow = false;
 | 
						|
	bool space_reserved = false;
 | 
						|
	u64 prev_len;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't allocate a new extent in the following cases
 | 
						|
	 *
 | 
						|
	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
 | 
						|
	 * existing extent.
 | 
						|
	 * 2) The extent is marked as PREALLOC. We're good to go here and can
 | 
						|
	 * just use the extent.
 | 
						|
	 *
 | 
						|
	 */
 | 
						|
	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
 | 
						|
	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
 | 
						|
	     em->block_start != EXTENT_MAP_HOLE)) {
 | 
						|
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
 | 
						|
			type = BTRFS_ORDERED_PREALLOC;
 | 
						|
		else
 | 
						|
			type = BTRFS_ORDERED_NOCOW;
 | 
						|
		len = min(len, em->len - (start - em->start));
 | 
						|
		block_start = em->block_start + (start - em->start);
 | 
						|
 | 
						|
		if (can_nocow_extent(inode, start, &len, &orig_start,
 | 
						|
				     &orig_block_len, &ram_bytes, false) == 1) {
 | 
						|
			bg = btrfs_inc_nocow_writers(fs_info, block_start);
 | 
						|
			if (bg)
 | 
						|
				can_nocow = true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	prev_len = len;
 | 
						|
	if (can_nocow) {
 | 
						|
		struct extent_map *em2;
 | 
						|
 | 
						|
		/* We can NOCOW, so only need to reserve metadata space. */
 | 
						|
		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
 | 
						|
						      nowait);
 | 
						|
		if (ret < 0) {
 | 
						|
			/* Our caller expects us to free the input extent map. */
 | 
						|
			free_extent_map(em);
 | 
						|
			*map = NULL;
 | 
						|
			btrfs_dec_nocow_writers(bg);
 | 
						|
			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
 | 
						|
				ret = -EAGAIN;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		space_reserved = true;
 | 
						|
 | 
						|
		em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
 | 
						|
					      orig_start, block_start,
 | 
						|
					      len, orig_block_len,
 | 
						|
					      ram_bytes, type);
 | 
						|
		btrfs_dec_nocow_writers(bg);
 | 
						|
		if (type == BTRFS_ORDERED_PREALLOC) {
 | 
						|
			free_extent_map(em);
 | 
						|
			*map = em = em2;
 | 
						|
		}
 | 
						|
 | 
						|
		if (IS_ERR(em2)) {
 | 
						|
			ret = PTR_ERR(em2);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		dio_data->nocow_done = true;
 | 
						|
	} else {
 | 
						|
		/* Our caller expects us to free the input extent map. */
 | 
						|
		free_extent_map(em);
 | 
						|
		*map = NULL;
 | 
						|
 | 
						|
		if (nowait)
 | 
						|
			return -EAGAIN;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we could not allocate data space before locking the file
 | 
						|
		 * range and we can't do a NOCOW write, then we have to fail.
 | 
						|
		 */
 | 
						|
		if (!dio_data->data_space_reserved)
 | 
						|
			return -ENOSPC;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We have to COW and we have already reserved data space before,
 | 
						|
		 * so now we reserve only metadata.
 | 
						|
		 */
 | 
						|
		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
 | 
						|
						      false);
 | 
						|
		if (ret < 0)
 | 
						|
			goto out;
 | 
						|
		space_reserved = true;
 | 
						|
 | 
						|
		em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			ret = PTR_ERR(em);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		*map = em;
 | 
						|
		len = min(len, em->len - (start - em->start));
 | 
						|
		if (len < prev_len)
 | 
						|
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
 | 
						|
							prev_len - len, true);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have created our ordered extent, so we can now release our reservation
 | 
						|
	 * for an outstanding extent.
 | 
						|
	 */
 | 
						|
	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Need to update the i_size under the extent lock so buffered
 | 
						|
	 * readers will get the updated i_size when we unlock.
 | 
						|
	 */
 | 
						|
	if (start + len > i_size_read(inode))
 | 
						|
		i_size_write(inode, start + len);
 | 
						|
out:
 | 
						|
	if (ret && space_reserved) {
 | 
						|
		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
 | 
						|
		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
 | 
						|
		loff_t length, unsigned int flags, struct iomap *iomap,
 | 
						|
		struct iomap *srcmap)
 | 
						|
{
 | 
						|
	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct extent_map *em;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct btrfs_dio_data *dio_data = iter->private;
 | 
						|
	u64 lockstart, lockend;
 | 
						|
	const bool write = !!(flags & IOMAP_WRITE);
 | 
						|
	int ret = 0;
 | 
						|
	u64 len = length;
 | 
						|
	const u64 data_alloc_len = length;
 | 
						|
	bool unlock_extents = false;
 | 
						|
 | 
						|
	if (!write)
 | 
						|
		len = min_t(u64, len, fs_info->sectorsize);
 | 
						|
 | 
						|
	lockstart = start;
 | 
						|
	lockend = start + len - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
 | 
						|
	 * enough if we've written compressed pages to this area, so we need to
 | 
						|
	 * flush the dirty pages again to make absolutely sure that any
 | 
						|
	 * outstanding dirty pages are on disk - the first flush only starts
 | 
						|
	 * compression on the data, while keeping the pages locked, so by the
 | 
						|
	 * time the second flush returns we know bios for the compressed pages
 | 
						|
	 * were submitted and finished, and the pages no longer under writeback.
 | 
						|
	 *
 | 
						|
	 * If we have a NOWAIT request and we have any pages in the range that
 | 
						|
	 * are locked, likely due to compression still in progress, we don't want
 | 
						|
	 * to block on page locks. We also don't want to block on pages marked as
 | 
						|
	 * dirty or under writeback (same as for the non-compression case).
 | 
						|
	 * iomap_dio_rw() did the same check, but after that and before we got
 | 
						|
	 * here, mmap'ed writes may have happened or buffered reads started
 | 
						|
	 * (readpage() and readahead(), which lock pages), as we haven't locked
 | 
						|
	 * the file range yet.
 | 
						|
	 */
 | 
						|
	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 | 
						|
		     &BTRFS_I(inode)->runtime_flags)) {
 | 
						|
		if (flags & IOMAP_NOWAIT) {
 | 
						|
			if (filemap_range_needs_writeback(inode->i_mapping,
 | 
						|
							  lockstart, lockend))
 | 
						|
				return -EAGAIN;
 | 
						|
		} else {
 | 
						|
			ret = filemap_fdatawrite_range(inode->i_mapping, start,
 | 
						|
						       start + length - 1);
 | 
						|
			if (ret)
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	memset(dio_data, 0, sizeof(*dio_data));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We always try to allocate data space and must do it before locking
 | 
						|
	 * the file range, to avoid deadlocks with concurrent writes to the same
 | 
						|
	 * range if the range has several extents and the writes don't expand the
 | 
						|
	 * current i_size (the inode lock is taken in shared mode). If we fail to
 | 
						|
	 * allocate data space here we continue and later, after locking the
 | 
						|
	 * file range, we fail with ENOSPC only if we figure out we can not do a
 | 
						|
	 * NOCOW write.
 | 
						|
	 */
 | 
						|
	if (write && !(flags & IOMAP_NOWAIT)) {
 | 
						|
		ret = btrfs_check_data_free_space(BTRFS_I(inode),
 | 
						|
						  &dio_data->data_reserved,
 | 
						|
						  start, data_alloc_len);
 | 
						|
		if (!ret)
 | 
						|
			dio_data->data_space_reserved = true;
 | 
						|
		else if (ret && !(BTRFS_I(inode)->flags &
 | 
						|
				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
 | 
						|
			goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this errors out it's because we couldn't invalidate pagecache for
 | 
						|
	 * this range and we need to fallback to buffered IO, or we are doing a
 | 
						|
	 * NOWAIT read/write and we need to block.
 | 
						|
	 */
 | 
						|
	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
 | 
						|
	if (ret < 0)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
 | 
						|
	if (IS_ERR(em)) {
 | 
						|
		ret = PTR_ERR(em);
 | 
						|
		goto unlock_err;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
 | 
						|
	 * io.  INLINE is special, and we could probably kludge it in here, but
 | 
						|
	 * it's still buffered so for safety lets just fall back to the generic
 | 
						|
	 * buffered path.
 | 
						|
	 *
 | 
						|
	 * For COMPRESSED we _have_ to read the entire extent in so we can
 | 
						|
	 * decompress it, so there will be buffering required no matter what we
 | 
						|
	 * do, so go ahead and fallback to buffered.
 | 
						|
	 *
 | 
						|
	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
 | 
						|
	 * to buffered IO.  Don't blame me, this is the price we pay for using
 | 
						|
	 * the generic code.
 | 
						|
	 */
 | 
						|
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
 | 
						|
	    em->block_start == EXTENT_MAP_INLINE) {
 | 
						|
		free_extent_map(em);
 | 
						|
		/*
 | 
						|
		 * If we are in a NOWAIT context, return -EAGAIN in order to
 | 
						|
		 * fallback to buffered IO. This is not only because we can
 | 
						|
		 * block with buffered IO (no support for NOWAIT semantics at
 | 
						|
		 * the moment) but also to avoid returning short reads to user
 | 
						|
		 * space - this happens if we were able to read some data from
 | 
						|
		 * previous non-compressed extents and then when we fallback to
 | 
						|
		 * buffered IO, at btrfs_file_read_iter() by calling
 | 
						|
		 * filemap_read(), we fail to fault in pages for the read buffer,
 | 
						|
		 * in which case filemap_read() returns a short read (the number
 | 
						|
		 * of bytes previously read is > 0, so it does not return -EFAULT).
 | 
						|
		 */
 | 
						|
		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
 | 
						|
		goto unlock_err;
 | 
						|
	}
 | 
						|
 | 
						|
	len = min(len, em->len - (start - em->start));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have a NOWAIT request and the range contains multiple extents
 | 
						|
	 * (or a mix of extents and holes), then we return -EAGAIN to make the
 | 
						|
	 * caller fallback to a context where it can do a blocking (without
 | 
						|
	 * NOWAIT) request. This way we avoid doing partial IO and returning
 | 
						|
	 * success to the caller, which is not optimal for writes and for reads
 | 
						|
	 * it can result in unexpected behaviour for an application.
 | 
						|
	 *
 | 
						|
	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
 | 
						|
	 * iomap_dio_rw(), we can end up returning less data then what the caller
 | 
						|
	 * asked for, resulting in an unexpected, and incorrect, short read.
 | 
						|
	 * That is, the caller asked to read N bytes and we return less than that,
 | 
						|
	 * which is wrong unless we are crossing EOF. This happens if we get a
 | 
						|
	 * page fault error when trying to fault in pages for the buffer that is
 | 
						|
	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
 | 
						|
	 * have previously submitted bios for other extents in the range, in
 | 
						|
	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
 | 
						|
	 * those bios have completed by the time we get the page fault error,
 | 
						|
	 * which we return back to our caller - we should only return EIOCBQUEUED
 | 
						|
	 * after we have submitted bios for all the extents in the range.
 | 
						|
	 */
 | 
						|
	if ((flags & IOMAP_NOWAIT) && len < length) {
 | 
						|
		free_extent_map(em);
 | 
						|
		ret = -EAGAIN;
 | 
						|
		goto unlock_err;
 | 
						|
	}
 | 
						|
 | 
						|
	if (write) {
 | 
						|
		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
 | 
						|
						    start, len, flags);
 | 
						|
		if (ret < 0)
 | 
						|
			goto unlock_err;
 | 
						|
		unlock_extents = true;
 | 
						|
		/* Recalc len in case the new em is smaller than requested */
 | 
						|
		len = min(len, em->len - (start - em->start));
 | 
						|
		if (dio_data->data_space_reserved) {
 | 
						|
			u64 release_offset;
 | 
						|
			u64 release_len = 0;
 | 
						|
 | 
						|
			if (dio_data->nocow_done) {
 | 
						|
				release_offset = start;
 | 
						|
				release_len = data_alloc_len;
 | 
						|
			} else if (len < data_alloc_len) {
 | 
						|
				release_offset = start + len;
 | 
						|
				release_len = data_alloc_len - len;
 | 
						|
			}
 | 
						|
 | 
						|
			if (release_len > 0)
 | 
						|
				btrfs_free_reserved_data_space(BTRFS_I(inode),
 | 
						|
							       dio_data->data_reserved,
 | 
						|
							       release_offset,
 | 
						|
							       release_len);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * We need to unlock only the end area that we aren't using.
 | 
						|
		 * The rest is going to be unlocked by the endio routine.
 | 
						|
		 */
 | 
						|
		lockstart = start + len;
 | 
						|
		if (lockstart < lockend)
 | 
						|
			unlock_extents = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlock_extents)
 | 
						|
		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
 | 
						|
				     lockstart, lockend, &cached_state);
 | 
						|
	else
 | 
						|
		free_extent_state(cached_state);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Translate extent map information to iomap.
 | 
						|
	 * We trim the extents (and move the addr) even though iomap code does
 | 
						|
	 * that, since we have locked only the parts we are performing I/O in.
 | 
						|
	 */
 | 
						|
	if ((em->block_start == EXTENT_MAP_HOLE) ||
 | 
						|
	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
 | 
						|
		iomap->addr = IOMAP_NULL_ADDR;
 | 
						|
		iomap->type = IOMAP_HOLE;
 | 
						|
	} else {
 | 
						|
		iomap->addr = em->block_start + (start - em->start);
 | 
						|
		iomap->type = IOMAP_MAPPED;
 | 
						|
	}
 | 
						|
	iomap->offset = start;
 | 
						|
	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
 | 
						|
	iomap->length = len;
 | 
						|
 | 
						|
	if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
 | 
						|
		iomap->flags |= IOMAP_F_ZONE_APPEND;
 | 
						|
 | 
						|
	free_extent_map(em);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
unlock_err:
 | 
						|
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | 
						|
			     &cached_state);
 | 
						|
err:
 | 
						|
	if (dio_data->data_space_reserved) {
 | 
						|
		btrfs_free_reserved_data_space(BTRFS_I(inode),
 | 
						|
					       dio_data->data_reserved,
 | 
						|
					       start, data_alloc_len);
 | 
						|
		extent_changeset_free(dio_data->data_reserved);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
 | 
						|
		ssize_t written, unsigned int flags, struct iomap *iomap)
 | 
						|
{
 | 
						|
	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
 | 
						|
	struct btrfs_dio_data *dio_data = iter->private;
 | 
						|
	size_t submitted = dio_data->submitted;
 | 
						|
	const bool write = !!(flags & IOMAP_WRITE);
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (!write && (iomap->type == IOMAP_HOLE)) {
 | 
						|
		/* If reading from a hole, unlock and return */
 | 
						|
		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (submitted < length) {
 | 
						|
		pos += submitted;
 | 
						|
		length -= submitted;
 | 
						|
		if (write)
 | 
						|
			__endio_write_update_ordered(BTRFS_I(inode), pos,
 | 
						|
					length, false);
 | 
						|
		else
 | 
						|
			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
 | 
						|
				      pos + length - 1);
 | 
						|
		ret = -ENOTBLK;
 | 
						|
	}
 | 
						|
 | 
						|
	if (write)
 | 
						|
		extent_changeset_free(dio_data->data_reserved);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * This implies a barrier so that stores to dio_bio->bi_status before
 | 
						|
	 * this and loads of dio_bio->bi_status after this are fully ordered.
 | 
						|
	 */
 | 
						|
	if (!refcount_dec_and_test(&dip->refs))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
 | 
						|
		__endio_write_update_ordered(BTRFS_I(dip->inode),
 | 
						|
					     dip->file_offset,
 | 
						|
					     dip->bytes,
 | 
						|
					     !dip->bio.bi_status);
 | 
						|
	} else {
 | 
						|
		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
 | 
						|
			      dip->file_offset,
 | 
						|
			      dip->file_offset + dip->bytes - 1);
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(dip->csums);
 | 
						|
	bio_endio(&dip->bio);
 | 
						|
}
 | 
						|
 | 
						|
static void submit_dio_repair_bio(struct inode *inode, struct bio *bio,
 | 
						|
				  int mirror_num,
 | 
						|
				  enum btrfs_compression_type compress_type)
 | 
						|
{
 | 
						|
	struct btrfs_dio_private *dip = bio->bi_private;
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
 | 
						|
	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
 | 
						|
 | 
						|
	if (btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA))
 | 
						|
		return;
 | 
						|
 | 
						|
	refcount_inc(&dip->refs);
 | 
						|
	if (btrfs_map_bio(fs_info, bio, mirror_num))
 | 
						|
		refcount_dec(&dip->refs);
 | 
						|
}
 | 
						|
 | 
						|
static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
 | 
						|
					     struct btrfs_bio *bbio,
 | 
						|
					     const bool uptodate)
 | 
						|
{
 | 
						|
	struct inode *inode = dip->inode;
 | 
						|
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 | 
						|
	const u32 sectorsize = fs_info->sectorsize;
 | 
						|
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
 | 
						|
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | 
						|
	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
 | 
						|
	struct bio_vec bvec;
 | 
						|
	struct bvec_iter iter;
 | 
						|
	u32 bio_offset = 0;
 | 
						|
	blk_status_t err = BLK_STS_OK;
 | 
						|
 | 
						|
	__bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
 | 
						|
		unsigned int i, nr_sectors, pgoff;
 | 
						|
 | 
						|
		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
 | 
						|
		pgoff = bvec.bv_offset;
 | 
						|
		for (i = 0; i < nr_sectors; i++) {
 | 
						|
			u64 start = bbio->file_offset + bio_offset;
 | 
						|
 | 
						|
			ASSERT(pgoff < PAGE_SIZE);
 | 
						|
			if (uptodate &&
 | 
						|
			    (!csum || !check_data_csum(inode, bbio,
 | 
						|
						       bio_offset, bvec.bv_page,
 | 
						|
						       pgoff, start))) {
 | 
						|
				clean_io_failure(fs_info, failure_tree, io_tree,
 | 
						|
						 start, bvec.bv_page,
 | 
						|
						 btrfs_ino(BTRFS_I(inode)),
 | 
						|
						 pgoff);
 | 
						|
			} else {
 | 
						|
				int ret;
 | 
						|
 | 
						|
				ret = btrfs_repair_one_sector(inode, &bbio->bio,
 | 
						|
						bio_offset, bvec.bv_page, pgoff,
 | 
						|
						start, bbio->mirror_num,
 | 
						|
						submit_dio_repair_bio);
 | 
						|
				if (ret)
 | 
						|
					err = errno_to_blk_status(ret);
 | 
						|
			}
 | 
						|
			ASSERT(bio_offset + sectorsize > bio_offset);
 | 
						|
			bio_offset += sectorsize;
 | 
						|
			pgoff += sectorsize;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static void __endio_write_update_ordered(struct btrfs_inode *inode,
 | 
						|
					 const u64 offset, const u64 bytes,
 | 
						|
					 const bool uptodate)
 | 
						|
{
 | 
						|
	btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
 | 
						|
				       finish_ordered_fn, uptodate);
 | 
						|
}
 | 
						|
 | 
						|
static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
 | 
						|
						     struct bio *bio,
 | 
						|
						     u64 dio_file_offset)
 | 
						|
{
 | 
						|
	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_end_dio_bio(struct bio *bio)
 | 
						|
{
 | 
						|
	struct btrfs_dio_private *dip = bio->bi_private;
 | 
						|
	struct btrfs_bio *bbio = btrfs_bio(bio);
 | 
						|
	blk_status_t err = bio->bi_status;
 | 
						|
 | 
						|
	if (err)
 | 
						|
		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
 | 
						|
			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
 | 
						|
			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
 | 
						|
			   bio->bi_opf, bio->bi_iter.bi_sector,
 | 
						|
			   bio->bi_iter.bi_size, err);
 | 
						|
 | 
						|
	if (bio_op(bio) == REQ_OP_READ)
 | 
						|
		err = btrfs_check_read_dio_bio(dip, bbio, !err);
 | 
						|
 | 
						|
	if (err)
 | 
						|
		dip->bio.bi_status = err;
 | 
						|
 | 
						|
	btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
 | 
						|
 | 
						|
	bio_put(bio);
 | 
						|
	btrfs_dio_private_put(dip);
 | 
						|
}
 | 
						|
 | 
						|
static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
 | 
						|
		struct inode *inode, u64 file_offset, int async_submit)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_dio_private *dip = bio->bi_private;
 | 
						|
	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
 | 
						|
	blk_status_t ret;
 | 
						|
 | 
						|
	/* Check btrfs_submit_bio_hook() for rules about async submit. */
 | 
						|
	if (async_submit)
 | 
						|
		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
 | 
						|
 | 
						|
	if (!write) {
 | 
						|
		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 | 
						|
		if (ret)
 | 
						|
			goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 | 
						|
		goto map;
 | 
						|
 | 
						|
	if (write && async_submit) {
 | 
						|
		ret = btrfs_wq_submit_bio(inode, bio, 0, file_offset,
 | 
						|
					  btrfs_submit_bio_start_direct_io);
 | 
						|
		goto err;
 | 
						|
	} else if (write) {
 | 
						|
		/*
 | 
						|
		 * If we aren't doing async submit, calculate the csum of the
 | 
						|
		 * bio now.
 | 
						|
		 */
 | 
						|
		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
 | 
						|
		if (ret)
 | 
						|
			goto err;
 | 
						|
	} else {
 | 
						|
		u64 csum_offset;
 | 
						|
 | 
						|
		csum_offset = file_offset - dip->file_offset;
 | 
						|
		csum_offset >>= fs_info->sectorsize_bits;
 | 
						|
		csum_offset *= fs_info->csum_size;
 | 
						|
		btrfs_bio(bio)->csum = dip->csums + csum_offset;
 | 
						|
	}
 | 
						|
map:
 | 
						|
	ret = btrfs_map_bio(fs_info, bio, 0);
 | 
						|
err:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_submit_direct(const struct iomap_iter *iter,
 | 
						|
		struct bio *dio_bio, loff_t file_offset)
 | 
						|
{
 | 
						|
	struct btrfs_dio_private *dip =
 | 
						|
		container_of(dio_bio, struct btrfs_dio_private, bio);
 | 
						|
	struct inode *inode = iter->inode;
 | 
						|
	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
 | 
						|
			     BTRFS_BLOCK_GROUP_RAID56_MASK);
 | 
						|
	struct bio *bio;
 | 
						|
	u64 start_sector;
 | 
						|
	int async_submit = 0;
 | 
						|
	u64 submit_len;
 | 
						|
	u64 clone_offset = 0;
 | 
						|
	u64 clone_len;
 | 
						|
	u64 logical;
 | 
						|
	int ret;
 | 
						|
	blk_status_t status;
 | 
						|
	struct btrfs_io_geometry geom;
 | 
						|
	struct btrfs_dio_data *dio_data = iter->private;
 | 
						|
	struct extent_map *em = NULL;
 | 
						|
 | 
						|
	dip->inode = inode;
 | 
						|
	dip->file_offset = file_offset;
 | 
						|
	dip->bytes = dio_bio->bi_iter.bi_size;
 | 
						|
	refcount_set(&dip->refs, 1);
 | 
						|
	dip->csums = NULL;
 | 
						|
 | 
						|
	if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 | 
						|
		unsigned int nr_sectors =
 | 
						|
			(dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Load the csums up front to reduce csum tree searches and
 | 
						|
		 * contention when submitting bios.
 | 
						|
		 */
 | 
						|
		status = BLK_STS_RESOURCE;
 | 
						|
		dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
 | 
						|
		if (!dip)
 | 
						|
			goto out_err;
 | 
						|
 | 
						|
		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
 | 
						|
		if (status != BLK_STS_OK)
 | 
						|
			goto out_err;
 | 
						|
	}
 | 
						|
 | 
						|
	start_sector = dio_bio->bi_iter.bi_sector;
 | 
						|
	submit_len = dio_bio->bi_iter.bi_size;
 | 
						|
 | 
						|
	do {
 | 
						|
		logical = start_sector << 9;
 | 
						|
		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			status = errno_to_blk_status(PTR_ERR(em));
 | 
						|
			em = NULL;
 | 
						|
			goto out_err_em;
 | 
						|
		}
 | 
						|
		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
 | 
						|
					    logical, &geom);
 | 
						|
		if (ret) {
 | 
						|
			status = errno_to_blk_status(ret);
 | 
						|
			goto out_err_em;
 | 
						|
		}
 | 
						|
 | 
						|
		clone_len = min(submit_len, geom.len);
 | 
						|
		ASSERT(clone_len <= UINT_MAX);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This will never fail as it's passing GPF_NOFS and
 | 
						|
		 * the allocation is backed by btrfs_bioset.
 | 
						|
		 */
 | 
						|
		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
 | 
						|
		bio->bi_private = dip;
 | 
						|
		bio->bi_end_io = btrfs_end_dio_bio;
 | 
						|
		btrfs_bio(bio)->file_offset = file_offset;
 | 
						|
 | 
						|
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
 | 
						|
			status = extract_ordered_extent(BTRFS_I(inode), bio,
 | 
						|
							file_offset);
 | 
						|
			if (status) {
 | 
						|
				bio_put(bio);
 | 
						|
				goto out_err;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT(submit_len >= clone_len);
 | 
						|
		submit_len -= clone_len;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Increase the count before we submit the bio so we know
 | 
						|
		 * the end IO handler won't happen before we increase the
 | 
						|
		 * count. Otherwise, the dip might get freed before we're
 | 
						|
		 * done setting it up.
 | 
						|
		 *
 | 
						|
		 * We transfer the initial reference to the last bio, so we
 | 
						|
		 * don't need to increment the reference count for the last one.
 | 
						|
		 */
 | 
						|
		if (submit_len > 0) {
 | 
						|
			refcount_inc(&dip->refs);
 | 
						|
			/*
 | 
						|
			 * If we are submitting more than one bio, submit them
 | 
						|
			 * all asynchronously. The exception is RAID 5 or 6, as
 | 
						|
			 * asynchronous checksums make it difficult to collect
 | 
						|
			 * full stripe writes.
 | 
						|
			 */
 | 
						|
			if (!raid56)
 | 
						|
				async_submit = 1;
 | 
						|
		}
 | 
						|
 | 
						|
		status = btrfs_submit_dio_bio(bio, inode, file_offset,
 | 
						|
						async_submit);
 | 
						|
		if (status) {
 | 
						|
			bio_put(bio);
 | 
						|
			if (submit_len > 0)
 | 
						|
				refcount_dec(&dip->refs);
 | 
						|
			goto out_err_em;
 | 
						|
		}
 | 
						|
 | 
						|
		dio_data->submitted += clone_len;
 | 
						|
		clone_offset += clone_len;
 | 
						|
		start_sector += clone_len >> 9;
 | 
						|
		file_offset += clone_len;
 | 
						|
 | 
						|
		free_extent_map(em);
 | 
						|
	} while (submit_len > 0);
 | 
						|
	return;
 | 
						|
 | 
						|
out_err_em:
 | 
						|
	free_extent_map(em);
 | 
						|
out_err:
 | 
						|
	dio_bio->bi_status = status;
 | 
						|
	btrfs_dio_private_put(dip);
 | 
						|
}
 | 
						|
 | 
						|
static const struct iomap_ops btrfs_dio_iomap_ops = {
 | 
						|
	.iomap_begin            = btrfs_dio_iomap_begin,
 | 
						|
	.iomap_end              = btrfs_dio_iomap_end,
 | 
						|
};
 | 
						|
 | 
						|
static const struct iomap_dio_ops btrfs_dio_ops = {
 | 
						|
	.submit_io		= btrfs_submit_direct,
 | 
						|
	.bio_set		= &btrfs_dio_bioset,
 | 
						|
};
 | 
						|
 | 
						|
ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
 | 
						|
{
 | 
						|
	struct btrfs_dio_data data;
 | 
						|
 | 
						|
	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
 | 
						|
			    IOMAP_DIO_PARTIAL, &data, done_before);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 | 
						|
			u64 start, u64 len)
 | 
						|
{
 | 
						|
	int	ret;
 | 
						|
 | 
						|
	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
 | 
						|
{
 | 
						|
	struct inode *inode = page->mapping->host;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (current->flags & PF_MEMALLOC) {
 | 
						|
		redirty_page_for_writepage(wbc, page);
 | 
						|
		unlock_page(page);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are under memory pressure we will call this directly from the
 | 
						|
	 * VM, we need to make sure we have the inode referenced for the ordered
 | 
						|
	 * extent.  If not just return like we didn't do anything.
 | 
						|
	 */
 | 
						|
	if (!igrab(inode)) {
 | 
						|
		redirty_page_for_writepage(wbc, page);
 | 
						|
		return AOP_WRITEPAGE_ACTIVATE;
 | 
						|
	}
 | 
						|
	ret = extent_write_full_page(page, wbc);
 | 
						|
	btrfs_add_delayed_iput(inode);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_writepages(struct address_space *mapping,
 | 
						|
			    struct writeback_control *wbc)
 | 
						|
{
 | 
						|
	return extent_writepages(mapping, wbc);
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_readahead(struct readahead_control *rac)
 | 
						|
{
 | 
						|
	extent_readahead(rac);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For release_folio() and invalidate_folio() we have a race window where
 | 
						|
 * folio_end_writeback() is called but the subpage spinlock is not yet released.
 | 
						|
 * If we continue to release/invalidate the page, we could cause use-after-free
 | 
						|
 * for subpage spinlock.  So this function is to spin and wait for subpage
 | 
						|
 * spinlock.
 | 
						|
 */
 | 
						|
static void wait_subpage_spinlock(struct page *page)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 | 
						|
	struct btrfs_subpage *subpage;
 | 
						|
 | 
						|
	if (!btrfs_is_subpage(fs_info, page))
 | 
						|
		return;
 | 
						|
 | 
						|
	ASSERT(PagePrivate(page) && page->private);
 | 
						|
	subpage = (struct btrfs_subpage *)page->private;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This may look insane as we just acquire the spinlock and release it,
 | 
						|
	 * without doing anything.  But we just want to make sure no one is
 | 
						|
	 * still holding the subpage spinlock.
 | 
						|
	 * And since the page is not dirty nor writeback, and we have page
 | 
						|
	 * locked, the only possible way to hold a spinlock is from the endio
 | 
						|
	 * function to clear page writeback.
 | 
						|
	 *
 | 
						|
	 * Here we just acquire the spinlock so that all existing callers
 | 
						|
	 * should exit and we're safe to release/invalidate the page.
 | 
						|
	 */
 | 
						|
	spin_lock_irq(&subpage->lock);
 | 
						|
	spin_unlock_irq(&subpage->lock);
 | 
						|
}
 | 
						|
 | 
						|
static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
 | 
						|
{
 | 
						|
	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
 | 
						|
 | 
						|
	if (ret == 1) {
 | 
						|
		wait_subpage_spinlock(&folio->page);
 | 
						|
		clear_page_extent_mapped(&folio->page);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
 | 
						|
{
 | 
						|
	if (folio_test_writeback(folio) || folio_test_dirty(folio))
 | 
						|
		return false;
 | 
						|
	return __btrfs_release_folio(folio, gfp_flags);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MIGRATION
 | 
						|
static int btrfs_migratepage(struct address_space *mapping,
 | 
						|
			     struct page *newpage, struct page *page,
 | 
						|
			     enum migrate_mode mode)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
 | 
						|
	if (ret != MIGRATEPAGE_SUCCESS)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (page_has_private(page))
 | 
						|
		attach_page_private(newpage, detach_page_private(page));
 | 
						|
 | 
						|
	if (PageOrdered(page)) {
 | 
						|
		ClearPageOrdered(page);
 | 
						|
		SetPageOrdered(newpage);
 | 
						|
	}
 | 
						|
 | 
						|
	if (mode != MIGRATE_SYNC_NO_COPY)
 | 
						|
		migrate_page_copy(newpage, page);
 | 
						|
	else
 | 
						|
		migrate_page_states(newpage, page);
 | 
						|
	return MIGRATEPAGE_SUCCESS;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
 | 
						|
				 size_t length)
 | 
						|
{
 | 
						|
	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	struct extent_io_tree *tree = &inode->io_tree;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	u64 page_start = folio_pos(folio);
 | 
						|
	u64 page_end = page_start + folio_size(folio) - 1;
 | 
						|
	u64 cur;
 | 
						|
	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have folio locked so no new ordered extent can be created on this
 | 
						|
	 * page, nor bio can be submitted for this folio.
 | 
						|
	 *
 | 
						|
	 * But already submitted bio can still be finished on this folio.
 | 
						|
	 * Furthermore, endio function won't skip folio which has Ordered
 | 
						|
	 * (Private2) already cleared, so it's possible for endio and
 | 
						|
	 * invalidate_folio to do the same ordered extent accounting twice
 | 
						|
	 * on one folio.
 | 
						|
	 *
 | 
						|
	 * So here we wait for any submitted bios to finish, so that we won't
 | 
						|
	 * do double ordered extent accounting on the same folio.
 | 
						|
	 */
 | 
						|
	folio_wait_writeback(folio);
 | 
						|
	wait_subpage_spinlock(&folio->page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For subpage case, we have call sites like
 | 
						|
	 * btrfs_punch_hole_lock_range() which passes range not aligned to
 | 
						|
	 * sectorsize.
 | 
						|
	 * If the range doesn't cover the full folio, we don't need to and
 | 
						|
	 * shouldn't clear page extent mapped, as folio->private can still
 | 
						|
	 * record subpage dirty bits for other part of the range.
 | 
						|
	 *
 | 
						|
	 * For cases that invalidate the full folio even the range doesn't
 | 
						|
	 * cover the full folio, like invalidating the last folio, we're
 | 
						|
	 * still safe to wait for ordered extent to finish.
 | 
						|
	 */
 | 
						|
	if (!(offset == 0 && length == folio_size(folio))) {
 | 
						|
		btrfs_release_folio(folio, GFP_NOFS);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!inode_evicting)
 | 
						|
		lock_extent_bits(tree, page_start, page_end, &cached_state);
 | 
						|
 | 
						|
	cur = page_start;
 | 
						|
	while (cur < page_end) {
 | 
						|
		struct btrfs_ordered_extent *ordered;
 | 
						|
		bool delete_states;
 | 
						|
		u64 range_end;
 | 
						|
		u32 range_len;
 | 
						|
 | 
						|
		ordered = btrfs_lookup_first_ordered_range(inode, cur,
 | 
						|
							   page_end + 1 - cur);
 | 
						|
		if (!ordered) {
 | 
						|
			range_end = page_end;
 | 
						|
			/*
 | 
						|
			 * No ordered extent covering this range, we are safe
 | 
						|
			 * to delete all extent states in the range.
 | 
						|
			 */
 | 
						|
			delete_states = true;
 | 
						|
			goto next;
 | 
						|
		}
 | 
						|
		if (ordered->file_offset > cur) {
 | 
						|
			/*
 | 
						|
			 * There is a range between [cur, oe->file_offset) not
 | 
						|
			 * covered by any ordered extent.
 | 
						|
			 * We are safe to delete all extent states, and handle
 | 
						|
			 * the ordered extent in the next iteration.
 | 
						|
			 */
 | 
						|
			range_end = ordered->file_offset - 1;
 | 
						|
			delete_states = true;
 | 
						|
			goto next;
 | 
						|
		}
 | 
						|
 | 
						|
		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
 | 
						|
				page_end);
 | 
						|
		ASSERT(range_end + 1 - cur < U32_MAX);
 | 
						|
		range_len = range_end + 1 - cur;
 | 
						|
		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
 | 
						|
			/*
 | 
						|
			 * If Ordered (Private2) is cleared, it means endio has
 | 
						|
			 * already been executed for the range.
 | 
						|
			 * We can't delete the extent states as
 | 
						|
			 * btrfs_finish_ordered_io() may still use some of them.
 | 
						|
			 */
 | 
						|
			delete_states = false;
 | 
						|
			goto next;
 | 
						|
		}
 | 
						|
		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * IO on this page will never be started, so we need to account
 | 
						|
		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
 | 
						|
		 * here, must leave that up for the ordered extent completion.
 | 
						|
		 *
 | 
						|
		 * This will also unlock the range for incoming
 | 
						|
		 * btrfs_finish_ordered_io().
 | 
						|
		 */
 | 
						|
		if (!inode_evicting)
 | 
						|
			clear_extent_bit(tree, cur, range_end,
 | 
						|
					 EXTENT_DELALLOC |
 | 
						|
					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
 | 
						|
					 EXTENT_DEFRAG, 1, 0, &cached_state);
 | 
						|
 | 
						|
		spin_lock_irq(&inode->ordered_tree.lock);
 | 
						|
		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
 | 
						|
		ordered->truncated_len = min(ordered->truncated_len,
 | 
						|
					     cur - ordered->file_offset);
 | 
						|
		spin_unlock_irq(&inode->ordered_tree.lock);
 | 
						|
 | 
						|
		if (btrfs_dec_test_ordered_pending(inode, &ordered,
 | 
						|
						   cur, range_end + 1 - cur)) {
 | 
						|
			btrfs_finish_ordered_io(ordered);
 | 
						|
			/*
 | 
						|
			 * The ordered extent has finished, now we're again
 | 
						|
			 * safe to delete all extent states of the range.
 | 
						|
			 */
 | 
						|
			delete_states = true;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * btrfs_finish_ordered_io() will get executed by endio
 | 
						|
			 * of other pages, thus we can't delete extent states
 | 
						|
			 * anymore
 | 
						|
			 */
 | 
						|
			delete_states = false;
 | 
						|
		}
 | 
						|
next:
 | 
						|
		if (ordered)
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
		/*
 | 
						|
		 * Qgroup reserved space handler
 | 
						|
		 * Sector(s) here will be either:
 | 
						|
		 *
 | 
						|
		 * 1) Already written to disk or bio already finished
 | 
						|
		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
 | 
						|
		 *    Qgroup will be handled by its qgroup_record then.
 | 
						|
		 *    btrfs_qgroup_free_data() call will do nothing here.
 | 
						|
		 *
 | 
						|
		 * 2) Not written to disk yet
 | 
						|
		 *    Then btrfs_qgroup_free_data() call will clear the
 | 
						|
		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
 | 
						|
		 *    reserved data space.
 | 
						|
		 *    Since the IO will never happen for this page.
 | 
						|
		 */
 | 
						|
		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
 | 
						|
		if (!inode_evicting) {
 | 
						|
			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
 | 
						|
				 EXTENT_DELALLOC | EXTENT_UPTODATE |
 | 
						|
				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
 | 
						|
				 delete_states, &cached_state);
 | 
						|
		}
 | 
						|
		cur = range_end + 1;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * We have iterated through all ordered extents of the page, the page
 | 
						|
	 * should not have Ordered (Private2) anymore, or the above iteration
 | 
						|
	 * did something wrong.
 | 
						|
	 */
 | 
						|
	ASSERT(!folio_test_ordered(folio));
 | 
						|
	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
 | 
						|
	if (!inode_evicting)
 | 
						|
		__btrfs_release_folio(folio, GFP_NOFS);
 | 
						|
	clear_page_extent_mapped(&folio->page);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
 | 
						|
 * called from a page fault handler when a page is first dirtied. Hence we must
 | 
						|
 * be careful to check for EOF conditions here. We set the page up correctly
 | 
						|
 * for a written page which means we get ENOSPC checking when writing into
 | 
						|
 * holes and correct delalloc and unwritten extent mapping on filesystems that
 | 
						|
 * support these features.
 | 
						|
 *
 | 
						|
 * We are not allowed to take the i_mutex here so we have to play games to
 | 
						|
 * protect against truncate races as the page could now be beyond EOF.  Because
 | 
						|
 * truncate_setsize() writes the inode size before removing pages, once we have
 | 
						|
 * the page lock we can determine safely if the page is beyond EOF. If it is not
 | 
						|
 * beyond EOF, then the page is guaranteed safe against truncation until we
 | 
						|
 * unlock the page.
 | 
						|
 */
 | 
						|
vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
 | 
						|
{
 | 
						|
	struct page *page = vmf->page;
 | 
						|
	struct inode *inode = file_inode(vmf->vma->vm_file);
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct extent_changeset *data_reserved = NULL;
 | 
						|
	unsigned long zero_start;
 | 
						|
	loff_t size;
 | 
						|
	vm_fault_t ret;
 | 
						|
	int ret2;
 | 
						|
	int reserved = 0;
 | 
						|
	u64 reserved_space;
 | 
						|
	u64 page_start;
 | 
						|
	u64 page_end;
 | 
						|
	u64 end;
 | 
						|
 | 
						|
	reserved_space = PAGE_SIZE;
 | 
						|
 | 
						|
	sb_start_pagefault(inode->i_sb);
 | 
						|
	page_start = page_offset(page);
 | 
						|
	page_end = page_start + PAGE_SIZE - 1;
 | 
						|
	end = page_end;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reserving delalloc space after obtaining the page lock can lead to
 | 
						|
	 * deadlock. For example, if a dirty page is locked by this function
 | 
						|
	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
 | 
						|
	 * dirty page write out, then the btrfs_writepage() function could
 | 
						|
	 * end up waiting indefinitely to get a lock on the page currently
 | 
						|
	 * being processed by btrfs_page_mkwrite() function.
 | 
						|
	 */
 | 
						|
	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
 | 
						|
					    page_start, reserved_space);
 | 
						|
	if (!ret2) {
 | 
						|
		ret2 = file_update_time(vmf->vma->vm_file);
 | 
						|
		reserved = 1;
 | 
						|
	}
 | 
						|
	if (ret2) {
 | 
						|
		ret = vmf_error(ret2);
 | 
						|
		if (reserved)
 | 
						|
			goto out;
 | 
						|
		goto out_noreserve;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
 | 
						|
again:
 | 
						|
	down_read(&BTRFS_I(inode)->i_mmap_lock);
 | 
						|
	lock_page(page);
 | 
						|
	size = i_size_read(inode);
 | 
						|
 | 
						|
	if ((page->mapping != inode->i_mapping) ||
 | 
						|
	    (page_start >= size)) {
 | 
						|
		/* page got truncated out from underneath us */
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
	wait_on_page_writeback(page);
 | 
						|
 | 
						|
	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
 | 
						|
	ret2 = set_page_extent_mapped(page);
 | 
						|
	if (ret2 < 0) {
 | 
						|
		ret = vmf_error(ret2);
 | 
						|
		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we can't set the delalloc bits if there are pending ordered
 | 
						|
	 * extents.  Drop our locks and wait for them to finish
 | 
						|
	 */
 | 
						|
	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
 | 
						|
			PAGE_SIZE);
 | 
						|
	if (ordered) {
 | 
						|
		unlock_extent_cached(io_tree, page_start, page_end,
 | 
						|
				     &cached_state);
 | 
						|
		unlock_page(page);
 | 
						|
		up_read(&BTRFS_I(inode)->i_mmap_lock);
 | 
						|
		btrfs_start_ordered_extent(ordered, 1);
 | 
						|
		btrfs_put_ordered_extent(ordered);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
 | 
						|
		reserved_space = round_up(size - page_start,
 | 
						|
					  fs_info->sectorsize);
 | 
						|
		if (reserved_space < PAGE_SIZE) {
 | 
						|
			end = page_start + reserved_space - 1;
 | 
						|
			btrfs_delalloc_release_space(BTRFS_I(inode),
 | 
						|
					data_reserved, page_start,
 | 
						|
					PAGE_SIZE - reserved_space, true);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * page_mkwrite gets called when the page is firstly dirtied after it's
 | 
						|
	 * faulted in, but write(2) could also dirty a page and set delalloc
 | 
						|
	 * bits, thus in this case for space account reason, we still need to
 | 
						|
	 * clear any delalloc bits within this page range since we have to
 | 
						|
	 * reserve data&meta space before lock_page() (see above comments).
 | 
						|
	 */
 | 
						|
	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
 | 
						|
			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
 | 
						|
			  EXTENT_DEFRAG, 0, 0, &cached_state);
 | 
						|
 | 
						|
	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
 | 
						|
					&cached_state);
 | 
						|
	if (ret2) {
 | 
						|
		unlock_extent_cached(io_tree, page_start, page_end,
 | 
						|
				     &cached_state);
 | 
						|
		ret = VM_FAULT_SIGBUS;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	/* page is wholly or partially inside EOF */
 | 
						|
	if (page_start + PAGE_SIZE > size)
 | 
						|
		zero_start = offset_in_page(size);
 | 
						|
	else
 | 
						|
		zero_start = PAGE_SIZE;
 | 
						|
 | 
						|
	if (zero_start != PAGE_SIZE) {
 | 
						|
		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
 | 
						|
		flush_dcache_page(page);
 | 
						|
	}
 | 
						|
	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
 | 
						|
	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
 | 
						|
	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
 | 
						|
 | 
						|
	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
 | 
						|
 | 
						|
	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
 | 
						|
	up_read(&BTRFS_I(inode)->i_mmap_lock);
 | 
						|
 | 
						|
	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
 | 
						|
	sb_end_pagefault(inode->i_sb);
 | 
						|
	extent_changeset_free(data_reserved);
 | 
						|
	return VM_FAULT_LOCKED;
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	unlock_page(page);
 | 
						|
	up_read(&BTRFS_I(inode)->i_mmap_lock);
 | 
						|
out:
 | 
						|
	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
 | 
						|
	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
 | 
						|
				     reserved_space, (ret != 0));
 | 
						|
out_noreserve:
 | 
						|
	sb_end_pagefault(inode->i_sb);
 | 
						|
	extent_changeset_free(data_reserved);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_truncate(struct inode *inode, bool skip_writeback)
 | 
						|
{
 | 
						|
	struct btrfs_truncate_control control = {
 | 
						|
		.inode = BTRFS_I(inode),
 | 
						|
		.ino = btrfs_ino(BTRFS_I(inode)),
 | 
						|
		.min_type = BTRFS_EXTENT_DATA_KEY,
 | 
						|
		.clear_extent_range = true,
 | 
						|
	};
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_block_rsv *rsv;
 | 
						|
	int ret;
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	u64 mask = fs_info->sectorsize - 1;
 | 
						|
	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
 | 
						|
 | 
						|
	if (!skip_writeback) {
 | 
						|
		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
 | 
						|
					       (u64)-1);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
 | 
						|
	 * things going on here:
 | 
						|
	 *
 | 
						|
	 * 1) We need to reserve space to update our inode.
 | 
						|
	 *
 | 
						|
	 * 2) We need to have something to cache all the space that is going to
 | 
						|
	 * be free'd up by the truncate operation, but also have some slack
 | 
						|
	 * space reserved in case it uses space during the truncate (thank you
 | 
						|
	 * very much snapshotting).
 | 
						|
	 *
 | 
						|
	 * And we need these to be separate.  The fact is we can use a lot of
 | 
						|
	 * space doing the truncate, and we have no earthly idea how much space
 | 
						|
	 * we will use, so we need the truncate reservation to be separate so it
 | 
						|
	 * doesn't end up using space reserved for updating the inode.  We also
 | 
						|
	 * need to be able to stop the transaction and start a new one, which
 | 
						|
	 * means we need to be able to update the inode several times, and we
 | 
						|
	 * have no idea of knowing how many times that will be, so we can't just
 | 
						|
	 * reserve 1 item for the entirety of the operation, so that has to be
 | 
						|
	 * done separately as well.
 | 
						|
	 *
 | 
						|
	 * So that leaves us with
 | 
						|
	 *
 | 
						|
	 * 1) rsv - for the truncate reservation, which we will steal from the
 | 
						|
	 * transaction reservation.
 | 
						|
	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
 | 
						|
	 * updating the inode.
 | 
						|
	 */
 | 
						|
	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
 | 
						|
	if (!rsv)
 | 
						|
		return -ENOMEM;
 | 
						|
	rsv->size = min_size;
 | 
						|
	rsv->failfast = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 1 for the truncate slack space
 | 
						|
	 * 1 for updating the inode.
 | 
						|
	 */
 | 
						|
	trans = btrfs_start_transaction(root, 2);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		ret = PTR_ERR(trans);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Migrate the slack space for the truncate to our reserve */
 | 
						|
	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
 | 
						|
				      min_size, false);
 | 
						|
	BUG_ON(ret);
 | 
						|
 | 
						|
	trans->block_rsv = rsv;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		struct extent_state *cached_state = NULL;
 | 
						|
		const u64 new_size = inode->i_size;
 | 
						|
		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
 | 
						|
 | 
						|
		control.new_size = new_size;
 | 
						|
		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
 | 
						|
				 &cached_state);
 | 
						|
		/*
 | 
						|
		 * We want to drop from the next block forward in case this new
 | 
						|
		 * size is not block aligned since we will be keeping the last
 | 
						|
		 * block of the extent just the way it is.
 | 
						|
		 */
 | 
						|
		btrfs_drop_extent_cache(BTRFS_I(inode),
 | 
						|
					ALIGN(new_size, fs_info->sectorsize),
 | 
						|
					(u64)-1, 0);
 | 
						|
 | 
						|
		ret = btrfs_truncate_inode_items(trans, root, &control);
 | 
						|
 | 
						|
		inode_sub_bytes(inode, control.sub_bytes);
 | 
						|
		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
 | 
						|
 | 
						|
		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
 | 
						|
				     (u64)-1, &cached_state);
 | 
						|
 | 
						|
		trans->block_rsv = &fs_info->trans_block_rsv;
 | 
						|
		if (ret != -ENOSPC && ret != -EAGAIN)
 | 
						|
			break;
 | 
						|
 | 
						|
		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
		btrfs_btree_balance_dirty(fs_info);
 | 
						|
 | 
						|
		trans = btrfs_start_transaction(root, 2);
 | 
						|
		if (IS_ERR(trans)) {
 | 
						|
			ret = PTR_ERR(trans);
 | 
						|
			trans = NULL;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
 | 
						|
		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
 | 
						|
					      rsv, min_size, false);
 | 
						|
		BUG_ON(ret);	/* shouldn't happen */
 | 
						|
		trans->block_rsv = rsv;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can't call btrfs_truncate_block inside a trans handle as we could
 | 
						|
	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
 | 
						|
	 * know we've truncated everything except the last little bit, and can
 | 
						|
	 * do btrfs_truncate_block and then update the disk_i_size.
 | 
						|
	 */
 | 
						|
	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
 | 
						|
		btrfs_end_transaction(trans);
 | 
						|
		btrfs_btree_balance_dirty(fs_info);
 | 
						|
 | 
						|
		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
		trans = btrfs_start_transaction(root, 1);
 | 
						|
		if (IS_ERR(trans)) {
 | 
						|
			ret = PTR_ERR(trans);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
 | 
						|
	}
 | 
						|
 | 
						|
	if (trans) {
 | 
						|
		int ret2;
 | 
						|
 | 
						|
		trans->block_rsv = &fs_info->trans_block_rsv;
 | 
						|
		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
 | 
						|
		if (ret2 && !ret)
 | 
						|
			ret = ret2;
 | 
						|
 | 
						|
		ret2 = btrfs_end_transaction(trans);
 | 
						|
		if (ret2 && !ret)
 | 
						|
			ret = ret2;
 | 
						|
		btrfs_btree_balance_dirty(fs_info);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	btrfs_free_block_rsv(fs_info, rsv);
 | 
						|
	/*
 | 
						|
	 * So if we truncate and then write and fsync we normally would just
 | 
						|
	 * write the extents that changed, which is a problem if we need to
 | 
						|
	 * first truncate that entire inode.  So set this flag so we write out
 | 
						|
	 * all of the extents in the inode to the sync log so we're completely
 | 
						|
	 * safe.
 | 
						|
	 *
 | 
						|
	 * If no extents were dropped or trimmed we don't need to force the next
 | 
						|
	 * fsync to truncate all the inode's items from the log and re-log them
 | 
						|
	 * all. This means the truncate operation did not change the file size,
 | 
						|
	 * or changed it to a smaller size but there was only an implicit hole
 | 
						|
	 * between the old i_size and the new i_size, and there were no prealloc
 | 
						|
	 * extents beyond i_size to drop.
 | 
						|
	 */
 | 
						|
	if (control.extents_found > 0)
 | 
						|
		btrfs_set_inode_full_sync(BTRFS_I(inode));
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
 | 
						|
				     struct inode *dir)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	inode = new_inode(dir->i_sb);
 | 
						|
	if (inode) {
 | 
						|
		/*
 | 
						|
		 * Subvolumes don't inherit the sgid bit or the parent's gid if
 | 
						|
		 * the parent's sgid bit is set. This is probably a bug.
 | 
						|
		 */
 | 
						|
		inode_init_owner(mnt_userns, inode, NULL,
 | 
						|
				 S_IFDIR | (~current_umask() & S_IRWXUGO));
 | 
						|
		inode->i_op = &btrfs_dir_inode_operations;
 | 
						|
		inode->i_fop = &btrfs_dir_file_operations;
 | 
						|
	}
 | 
						|
	return inode;
 | 
						|
}
 | 
						|
 | 
						|
struct inode *btrfs_alloc_inode(struct super_block *sb)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 | 
						|
	struct btrfs_inode *ei;
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
 | 
						|
	if (!ei)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	ei->root = NULL;
 | 
						|
	ei->generation = 0;
 | 
						|
	ei->last_trans = 0;
 | 
						|
	ei->last_sub_trans = 0;
 | 
						|
	ei->logged_trans = 0;
 | 
						|
	ei->delalloc_bytes = 0;
 | 
						|
	ei->new_delalloc_bytes = 0;
 | 
						|
	ei->defrag_bytes = 0;
 | 
						|
	ei->disk_i_size = 0;
 | 
						|
	ei->flags = 0;
 | 
						|
	ei->ro_flags = 0;
 | 
						|
	ei->csum_bytes = 0;
 | 
						|
	ei->index_cnt = (u64)-1;
 | 
						|
	ei->dir_index = 0;
 | 
						|
	ei->last_unlink_trans = 0;
 | 
						|
	ei->last_reflink_trans = 0;
 | 
						|
	ei->last_log_commit = 0;
 | 
						|
 | 
						|
	spin_lock_init(&ei->lock);
 | 
						|
	ei->outstanding_extents = 0;
 | 
						|
	if (sb->s_magic != BTRFS_TEST_MAGIC)
 | 
						|
		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
 | 
						|
					      BTRFS_BLOCK_RSV_DELALLOC);
 | 
						|
	ei->runtime_flags = 0;
 | 
						|
	ei->prop_compress = BTRFS_COMPRESS_NONE;
 | 
						|
	ei->defrag_compress = BTRFS_COMPRESS_NONE;
 | 
						|
 | 
						|
	ei->delayed_node = NULL;
 | 
						|
 | 
						|
	ei->i_otime.tv_sec = 0;
 | 
						|
	ei->i_otime.tv_nsec = 0;
 | 
						|
 | 
						|
	inode = &ei->vfs_inode;
 | 
						|
	extent_map_tree_init(&ei->extent_tree);
 | 
						|
	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
 | 
						|
	extent_io_tree_init(fs_info, &ei->io_failure_tree,
 | 
						|
			    IO_TREE_INODE_IO_FAILURE, inode);
 | 
						|
	extent_io_tree_init(fs_info, &ei->file_extent_tree,
 | 
						|
			    IO_TREE_INODE_FILE_EXTENT, inode);
 | 
						|
	ei->io_tree.track_uptodate = true;
 | 
						|
	ei->io_failure_tree.track_uptodate = true;
 | 
						|
	atomic_set(&ei->sync_writers, 0);
 | 
						|
	mutex_init(&ei->log_mutex);
 | 
						|
	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
 | 
						|
	INIT_LIST_HEAD(&ei->delalloc_inodes);
 | 
						|
	INIT_LIST_HEAD(&ei->delayed_iput);
 | 
						|
	RB_CLEAR_NODE(&ei->rb_node);
 | 
						|
	init_rwsem(&ei->i_mmap_lock);
 | 
						|
 | 
						|
	return inode;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | 
						|
void btrfs_test_destroy_inode(struct inode *inode)
 | 
						|
{
 | 
						|
	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
 | 
						|
	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void btrfs_free_inode(struct inode *inode)
 | 
						|
{
 | 
						|
	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_destroy_inode(struct inode *vfs_inode)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
 | 
						|
	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
 | 
						|
	WARN_ON(vfs_inode->i_data.nrpages);
 | 
						|
	WARN_ON(inode->block_rsv.reserved);
 | 
						|
	WARN_ON(inode->block_rsv.size);
 | 
						|
	WARN_ON(inode->outstanding_extents);
 | 
						|
	if (!S_ISDIR(vfs_inode->i_mode)) {
 | 
						|
		WARN_ON(inode->delalloc_bytes);
 | 
						|
		WARN_ON(inode->new_delalloc_bytes);
 | 
						|
	}
 | 
						|
	WARN_ON(inode->csum_bytes);
 | 
						|
	WARN_ON(inode->defrag_bytes);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This can happen where we create an inode, but somebody else also
 | 
						|
	 * created the same inode and we need to destroy the one we already
 | 
						|
	 * created.
 | 
						|
	 */
 | 
						|
	if (!root)
 | 
						|
		return;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
 | 
						|
		if (!ordered)
 | 
						|
			break;
 | 
						|
		else {
 | 
						|
			btrfs_err(root->fs_info,
 | 
						|
				  "found ordered extent %llu %llu on inode cleanup",
 | 
						|
				  ordered->file_offset, ordered->num_bytes);
 | 
						|
			btrfs_remove_ordered_extent(inode, ordered);
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	btrfs_qgroup_check_reserved_leak(inode);
 | 
						|
	inode_tree_del(inode);
 | 
						|
	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
 | 
						|
	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
 | 
						|
	btrfs_put_root(inode->root);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_drop_inode(struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
 | 
						|
	if (root == NULL)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/* the snap/subvol tree is on deleting */
 | 
						|
	if (btrfs_root_refs(&root->root_item) == 0)
 | 
						|
		return 1;
 | 
						|
	else
 | 
						|
		return generic_drop_inode(inode);
 | 
						|
}
 | 
						|
 | 
						|
static void init_once(void *foo)
 | 
						|
{
 | 
						|
	struct btrfs_inode *ei = foo;
 | 
						|
 | 
						|
	inode_init_once(&ei->vfs_inode);
 | 
						|
}
 | 
						|
 | 
						|
void __cold btrfs_destroy_cachep(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Make sure all delayed rcu free inodes are flushed before we
 | 
						|
	 * destroy cache.
 | 
						|
	 */
 | 
						|
	rcu_barrier();
 | 
						|
	bioset_exit(&btrfs_dio_bioset);
 | 
						|
	kmem_cache_destroy(btrfs_inode_cachep);
 | 
						|
	kmem_cache_destroy(btrfs_trans_handle_cachep);
 | 
						|
	kmem_cache_destroy(btrfs_path_cachep);
 | 
						|
	kmem_cache_destroy(btrfs_free_space_cachep);
 | 
						|
	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
 | 
						|
}
 | 
						|
 | 
						|
int __init btrfs_init_cachep(void)
 | 
						|
{
 | 
						|
	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
 | 
						|
			sizeof(struct btrfs_inode), 0,
 | 
						|
			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
 | 
						|
			init_once);
 | 
						|
	if (!btrfs_inode_cachep)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
 | 
						|
			sizeof(struct btrfs_trans_handle), 0,
 | 
						|
			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
 | 
						|
	if (!btrfs_trans_handle_cachep)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	btrfs_path_cachep = kmem_cache_create("btrfs_path",
 | 
						|
			sizeof(struct btrfs_path), 0,
 | 
						|
			SLAB_MEM_SPREAD, NULL);
 | 
						|
	if (!btrfs_path_cachep)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
 | 
						|
			sizeof(struct btrfs_free_space), 0,
 | 
						|
			SLAB_MEM_SPREAD, NULL);
 | 
						|
	if (!btrfs_free_space_cachep)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
 | 
						|
							PAGE_SIZE, PAGE_SIZE,
 | 
						|
							SLAB_MEM_SPREAD, NULL);
 | 
						|
	if (!btrfs_free_space_bitmap_cachep)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
 | 
						|
			offsetof(struct btrfs_dio_private, bio),
 | 
						|
			BIOSET_NEED_BVECS))
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	return 0;
 | 
						|
fail:
 | 
						|
	btrfs_destroy_cachep();
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_getattr(struct user_namespace *mnt_userns,
 | 
						|
			 const struct path *path, struct kstat *stat,
 | 
						|
			 u32 request_mask, unsigned int flags)
 | 
						|
{
 | 
						|
	u64 delalloc_bytes;
 | 
						|
	u64 inode_bytes;
 | 
						|
	struct inode *inode = d_inode(path->dentry);
 | 
						|
	u32 blocksize = inode->i_sb->s_blocksize;
 | 
						|
	u32 bi_flags = BTRFS_I(inode)->flags;
 | 
						|
	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
 | 
						|
 | 
						|
	stat->result_mask |= STATX_BTIME;
 | 
						|
	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
 | 
						|
	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
 | 
						|
	if (bi_flags & BTRFS_INODE_APPEND)
 | 
						|
		stat->attributes |= STATX_ATTR_APPEND;
 | 
						|
	if (bi_flags & BTRFS_INODE_COMPRESS)
 | 
						|
		stat->attributes |= STATX_ATTR_COMPRESSED;
 | 
						|
	if (bi_flags & BTRFS_INODE_IMMUTABLE)
 | 
						|
		stat->attributes |= STATX_ATTR_IMMUTABLE;
 | 
						|
	if (bi_flags & BTRFS_INODE_NODUMP)
 | 
						|
		stat->attributes |= STATX_ATTR_NODUMP;
 | 
						|
	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
 | 
						|
		stat->attributes |= STATX_ATTR_VERITY;
 | 
						|
 | 
						|
	stat->attributes_mask |= (STATX_ATTR_APPEND |
 | 
						|
				  STATX_ATTR_COMPRESSED |
 | 
						|
				  STATX_ATTR_IMMUTABLE |
 | 
						|
				  STATX_ATTR_NODUMP);
 | 
						|
 | 
						|
	generic_fillattr(mnt_userns, inode, stat);
 | 
						|
	stat->dev = BTRFS_I(inode)->root->anon_dev;
 | 
						|
 | 
						|
	spin_lock(&BTRFS_I(inode)->lock);
 | 
						|
	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
 | 
						|
	inode_bytes = inode_get_bytes(inode);
 | 
						|
	spin_unlock(&BTRFS_I(inode)->lock);
 | 
						|
	stat->blocks = (ALIGN(inode_bytes, blocksize) +
 | 
						|
			ALIGN(delalloc_bytes, blocksize)) >> 9;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_rename_exchange(struct inode *old_dir,
 | 
						|
			      struct dentry *old_dentry,
 | 
						|
			      struct inode *new_dir,
 | 
						|
			      struct dentry *new_dentry)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	unsigned int trans_num_items;
 | 
						|
	struct btrfs_root *root = BTRFS_I(old_dir)->root;
 | 
						|
	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
 | 
						|
	struct inode *new_inode = new_dentry->d_inode;
 | 
						|
	struct inode *old_inode = old_dentry->d_inode;
 | 
						|
	struct timespec64 ctime = current_time(old_inode);
 | 
						|
	struct btrfs_rename_ctx old_rename_ctx;
 | 
						|
	struct btrfs_rename_ctx new_rename_ctx;
 | 
						|
	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
 | 
						|
	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
 | 
						|
	u64 old_idx = 0;
 | 
						|
	u64 new_idx = 0;
 | 
						|
	int ret;
 | 
						|
	int ret2;
 | 
						|
	bool need_abort = false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For non-subvolumes allow exchange only within one subvolume, in the
 | 
						|
	 * same inode namespace. Two subvolumes (represented as directory) can
 | 
						|
	 * be exchanged as they're a logical link and have a fixed inode number.
 | 
						|
	 */
 | 
						|
	if (root != dest &&
 | 
						|
	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
 | 
						|
	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
 | 
						|
		return -EXDEV;
 | 
						|
 | 
						|
	/* close the race window with snapshot create/destroy ioctl */
 | 
						|
	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
 | 
						|
	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		down_read(&fs_info->subvol_sem);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For each inode:
 | 
						|
	 * 1 to remove old dir item
 | 
						|
	 * 1 to remove old dir index
 | 
						|
	 * 1 to add new dir item
 | 
						|
	 * 1 to add new dir index
 | 
						|
	 * 1 to update parent inode
 | 
						|
	 *
 | 
						|
	 * If the parents are the same, we only need to account for one
 | 
						|
	 */
 | 
						|
	trans_num_items = (old_dir == new_dir ? 9 : 10);
 | 
						|
	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
 | 
						|
		/*
 | 
						|
		 * 1 to remove old root ref
 | 
						|
		 * 1 to remove old root backref
 | 
						|
		 * 1 to add new root ref
 | 
						|
		 * 1 to add new root backref
 | 
						|
		 */
 | 
						|
		trans_num_items += 4;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * 1 to update inode item
 | 
						|
		 * 1 to remove old inode ref
 | 
						|
		 * 1 to add new inode ref
 | 
						|
		 */
 | 
						|
		trans_num_items += 3;
 | 
						|
	}
 | 
						|
	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		trans_num_items += 4;
 | 
						|
	else
 | 
						|
		trans_num_items += 3;
 | 
						|
	trans = btrfs_start_transaction(root, trans_num_items);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		ret = PTR_ERR(trans);
 | 
						|
		goto out_notrans;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dest != root) {
 | 
						|
		ret = btrfs_record_root_in_trans(trans, dest);
 | 
						|
		if (ret)
 | 
						|
			goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need to find a free sequence number both in the source and
 | 
						|
	 * in the destination directory for the exchange.
 | 
						|
	 */
 | 
						|
	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
 | 
						|
	if (ret)
 | 
						|
		goto out_fail;
 | 
						|
	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
 | 
						|
	if (ret)
 | 
						|
		goto out_fail;
 | 
						|
 | 
						|
	BTRFS_I(old_inode)->dir_index = 0ULL;
 | 
						|
	BTRFS_I(new_inode)->dir_index = 0ULL;
 | 
						|
 | 
						|
	/* Reference for the source. */
 | 
						|
	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
 | 
						|
		/* force full log commit if subvolume involved. */
 | 
						|
		btrfs_set_log_full_commit(trans);
 | 
						|
	} else {
 | 
						|
		ret = btrfs_insert_inode_ref(trans, dest,
 | 
						|
					     new_dentry->d_name.name,
 | 
						|
					     new_dentry->d_name.len,
 | 
						|
					     old_ino,
 | 
						|
					     btrfs_ino(BTRFS_I(new_dir)),
 | 
						|
					     old_idx);
 | 
						|
		if (ret)
 | 
						|
			goto out_fail;
 | 
						|
		need_abort = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/* And now for the dest. */
 | 
						|
	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
 | 
						|
		/* force full log commit if subvolume involved. */
 | 
						|
		btrfs_set_log_full_commit(trans);
 | 
						|
	} else {
 | 
						|
		ret = btrfs_insert_inode_ref(trans, root,
 | 
						|
					     old_dentry->d_name.name,
 | 
						|
					     old_dentry->d_name.len,
 | 
						|
					     new_ino,
 | 
						|
					     btrfs_ino(BTRFS_I(old_dir)),
 | 
						|
					     new_idx);
 | 
						|
		if (ret) {
 | 
						|
			if (need_abort)
 | 
						|
				btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out_fail;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Update inode version and ctime/mtime. */
 | 
						|
	inode_inc_iversion(old_dir);
 | 
						|
	inode_inc_iversion(new_dir);
 | 
						|
	inode_inc_iversion(old_inode);
 | 
						|
	inode_inc_iversion(new_inode);
 | 
						|
	old_dir->i_ctime = old_dir->i_mtime = ctime;
 | 
						|
	new_dir->i_ctime = new_dir->i_mtime = ctime;
 | 
						|
	old_inode->i_ctime = ctime;
 | 
						|
	new_inode->i_ctime = ctime;
 | 
						|
 | 
						|
	if (old_dentry->d_parent != new_dentry->d_parent) {
 | 
						|
		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
 | 
						|
				BTRFS_I(old_inode), 1);
 | 
						|
		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
 | 
						|
				BTRFS_I(new_inode), 1);
 | 
						|
	}
 | 
						|
 | 
						|
	/* src is a subvolume */
 | 
						|
	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
 | 
						|
		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
 | 
						|
	} else { /* src is an inode */
 | 
						|
		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
 | 
						|
					   BTRFS_I(old_dentry->d_inode),
 | 
						|
					   old_dentry->d_name.name,
 | 
						|
					   old_dentry->d_name.len,
 | 
						|
					   &old_rename_ctx);
 | 
						|
		if (!ret)
 | 
						|
			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
 | 
						|
	}
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	/* dest is a subvolume */
 | 
						|
	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
 | 
						|
		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
 | 
						|
	} else { /* dest is an inode */
 | 
						|
		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
 | 
						|
					   BTRFS_I(new_dentry->d_inode),
 | 
						|
					   new_dentry->d_name.name,
 | 
						|
					   new_dentry->d_name.len,
 | 
						|
					   &new_rename_ctx);
 | 
						|
		if (!ret)
 | 
						|
			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
 | 
						|
	}
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
 | 
						|
			     new_dentry->d_name.name,
 | 
						|
			     new_dentry->d_name.len, 0, old_idx);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
 | 
						|
			     old_dentry->d_name.name,
 | 
						|
			     old_dentry->d_name.len, 0, new_idx);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	if (old_inode->i_nlink == 1)
 | 
						|
		BTRFS_I(old_inode)->dir_index = old_idx;
 | 
						|
	if (new_inode->i_nlink == 1)
 | 
						|
		BTRFS_I(new_inode)->dir_index = new_idx;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now pin the logs of the roots. We do it to ensure that no other task
 | 
						|
	 * can sync the logs while we are in progress with the rename, because
 | 
						|
	 * that could result in an inconsistency in case any of the inodes that
 | 
						|
	 * are part of this rename operation were logged before.
 | 
						|
	 */
 | 
						|
	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		btrfs_pin_log_trans(root);
 | 
						|
	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		btrfs_pin_log_trans(dest);
 | 
						|
 | 
						|
	/* Do the log updates for all inodes. */
 | 
						|
	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
 | 
						|
				   old_rename_ctx.index, new_dentry->d_parent);
 | 
						|
	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
 | 
						|
				   new_rename_ctx.index, old_dentry->d_parent);
 | 
						|
 | 
						|
	/* Now unpin the logs. */
 | 
						|
	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		btrfs_end_log_trans(root);
 | 
						|
	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		btrfs_end_log_trans(dest);
 | 
						|
out_fail:
 | 
						|
	ret2 = btrfs_end_transaction(trans);
 | 
						|
	ret = ret ? ret : ret2;
 | 
						|
out_notrans:
 | 
						|
	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
 | 
						|
	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		up_read(&fs_info->subvol_sem);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
 | 
						|
					struct inode *dir)
 | 
						|
{
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	inode = new_inode(dir->i_sb);
 | 
						|
	if (inode) {
 | 
						|
		inode_init_owner(mnt_userns, inode, dir,
 | 
						|
				 S_IFCHR | WHITEOUT_MODE);
 | 
						|
		inode->i_op = &btrfs_special_inode_operations;
 | 
						|
		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
 | 
						|
	}
 | 
						|
	return inode;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_rename(struct user_namespace *mnt_userns,
 | 
						|
			struct inode *old_dir, struct dentry *old_dentry,
 | 
						|
			struct inode *new_dir, struct dentry *new_dentry,
 | 
						|
			unsigned int flags)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
 | 
						|
	struct btrfs_new_inode_args whiteout_args = {
 | 
						|
		.dir = old_dir,
 | 
						|
		.dentry = old_dentry,
 | 
						|
	};
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	unsigned int trans_num_items;
 | 
						|
	struct btrfs_root *root = BTRFS_I(old_dir)->root;
 | 
						|
	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
 | 
						|
	struct inode *new_inode = d_inode(new_dentry);
 | 
						|
	struct inode *old_inode = d_inode(old_dentry);
 | 
						|
	struct btrfs_rename_ctx rename_ctx;
 | 
						|
	u64 index = 0;
 | 
						|
	int ret;
 | 
						|
	int ret2;
 | 
						|
	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
 | 
						|
 | 
						|
	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	/* we only allow rename subvolume link between subvolumes */
 | 
						|
	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
 | 
						|
		return -EXDEV;
 | 
						|
 | 
						|
	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
 | 
						|
	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
 | 
						|
		return -ENOTEMPTY;
 | 
						|
 | 
						|
	if (S_ISDIR(old_inode->i_mode) && new_inode &&
 | 
						|
	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
 | 
						|
		return -ENOTEMPTY;
 | 
						|
 | 
						|
 | 
						|
	/* check for collisions, even if the  name isn't there */
 | 
						|
	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
 | 
						|
			     new_dentry->d_name.name,
 | 
						|
			     new_dentry->d_name.len);
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		if (ret == -EEXIST) {
 | 
						|
			/* we shouldn't get
 | 
						|
			 * eexist without a new_inode */
 | 
						|
			if (WARN_ON(!new_inode)) {
 | 
						|
				return ret;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			/* maybe -EOVERFLOW */
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ret = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we're using rename to replace one file with another.  Start IO on it
 | 
						|
	 * now so  we don't add too much work to the end of the transaction
 | 
						|
	 */
 | 
						|
	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
 | 
						|
		filemap_flush(old_inode->i_mapping);
 | 
						|
 | 
						|
	if (flags & RENAME_WHITEOUT) {
 | 
						|
		whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
 | 
						|
		if (!whiteout_args.inode)
 | 
						|
			return -ENOMEM;
 | 
						|
		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
 | 
						|
		if (ret)
 | 
						|
			goto out_whiteout_inode;
 | 
						|
	} else {
 | 
						|
		/* 1 to update the old parent inode. */
 | 
						|
		trans_num_items = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
 | 
						|
		/* Close the race window with snapshot create/destroy ioctl */
 | 
						|
		down_read(&fs_info->subvol_sem);
 | 
						|
		/*
 | 
						|
		 * 1 to remove old root ref
 | 
						|
		 * 1 to remove old root backref
 | 
						|
		 * 1 to add new root ref
 | 
						|
		 * 1 to add new root backref
 | 
						|
		 */
 | 
						|
		trans_num_items += 4;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * 1 to update inode
 | 
						|
		 * 1 to remove old inode ref
 | 
						|
		 * 1 to add new inode ref
 | 
						|
		 */
 | 
						|
		trans_num_items += 3;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * 1 to remove old dir item
 | 
						|
	 * 1 to remove old dir index
 | 
						|
	 * 1 to add new dir item
 | 
						|
	 * 1 to add new dir index
 | 
						|
	 */
 | 
						|
	trans_num_items += 4;
 | 
						|
	/* 1 to update new parent inode if it's not the same as the old parent */
 | 
						|
	if (new_dir != old_dir)
 | 
						|
		trans_num_items++;
 | 
						|
	if (new_inode) {
 | 
						|
		/*
 | 
						|
		 * 1 to update inode
 | 
						|
		 * 1 to remove inode ref
 | 
						|
		 * 1 to remove dir item
 | 
						|
		 * 1 to remove dir index
 | 
						|
		 * 1 to possibly add orphan item
 | 
						|
		 */
 | 
						|
		trans_num_items += 5;
 | 
						|
	}
 | 
						|
	trans = btrfs_start_transaction(root, trans_num_items);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		ret = PTR_ERR(trans);
 | 
						|
		goto out_notrans;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dest != root) {
 | 
						|
		ret = btrfs_record_root_in_trans(trans, dest);
 | 
						|
		if (ret)
 | 
						|
			goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
 | 
						|
	if (ret)
 | 
						|
		goto out_fail;
 | 
						|
 | 
						|
	BTRFS_I(old_inode)->dir_index = 0ULL;
 | 
						|
	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
 | 
						|
		/* force full log commit if subvolume involved. */
 | 
						|
		btrfs_set_log_full_commit(trans);
 | 
						|
	} else {
 | 
						|
		ret = btrfs_insert_inode_ref(trans, dest,
 | 
						|
					     new_dentry->d_name.name,
 | 
						|
					     new_dentry->d_name.len,
 | 
						|
					     old_ino,
 | 
						|
					     btrfs_ino(BTRFS_I(new_dir)), index);
 | 
						|
		if (ret)
 | 
						|
			goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	inode_inc_iversion(old_dir);
 | 
						|
	inode_inc_iversion(new_dir);
 | 
						|
	inode_inc_iversion(old_inode);
 | 
						|
	old_dir->i_ctime = old_dir->i_mtime =
 | 
						|
	new_dir->i_ctime = new_dir->i_mtime =
 | 
						|
	old_inode->i_ctime = current_time(old_dir);
 | 
						|
 | 
						|
	if (old_dentry->d_parent != new_dentry->d_parent)
 | 
						|
		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
 | 
						|
				BTRFS_I(old_inode), 1);
 | 
						|
 | 
						|
	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
 | 
						|
		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
 | 
						|
	} else {
 | 
						|
		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
 | 
						|
					BTRFS_I(d_inode(old_dentry)),
 | 
						|
					old_dentry->d_name.name,
 | 
						|
					old_dentry->d_name.len,
 | 
						|
					&rename_ctx);
 | 
						|
		if (!ret)
 | 
						|
			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
 | 
						|
	}
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	if (new_inode) {
 | 
						|
		inode_inc_iversion(new_inode);
 | 
						|
		new_inode->i_ctime = current_time(new_inode);
 | 
						|
		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
 | 
						|
			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
 | 
						|
			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
 | 
						|
			BUG_ON(new_inode->i_nlink == 0);
 | 
						|
		} else {
 | 
						|
			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
 | 
						|
						 BTRFS_I(d_inode(new_dentry)),
 | 
						|
						 new_dentry->d_name.name,
 | 
						|
						 new_dentry->d_name.len);
 | 
						|
		}
 | 
						|
		if (!ret && new_inode->i_nlink == 0)
 | 
						|
			ret = btrfs_orphan_add(trans,
 | 
						|
					BTRFS_I(d_inode(new_dentry)));
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out_fail;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
 | 
						|
			     new_dentry->d_name.name,
 | 
						|
			     new_dentry->d_name.len, 0, index);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_abort_transaction(trans, ret);
 | 
						|
		goto out_fail;
 | 
						|
	}
 | 
						|
 | 
						|
	if (old_inode->i_nlink == 1)
 | 
						|
		BTRFS_I(old_inode)->dir_index = index;
 | 
						|
 | 
						|
	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
 | 
						|
				   rename_ctx.index, new_dentry->d_parent);
 | 
						|
 | 
						|
	if (flags & RENAME_WHITEOUT) {
 | 
						|
		ret = btrfs_create_new_inode(trans, &whiteout_args);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			goto out_fail;
 | 
						|
		} else {
 | 
						|
			unlock_new_inode(whiteout_args.inode);
 | 
						|
			iput(whiteout_args.inode);
 | 
						|
			whiteout_args.inode = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
out_fail:
 | 
						|
	ret2 = btrfs_end_transaction(trans);
 | 
						|
	ret = ret ? ret : ret2;
 | 
						|
out_notrans:
 | 
						|
	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
 | 
						|
		up_read(&fs_info->subvol_sem);
 | 
						|
	if (flags & RENAME_WHITEOUT)
 | 
						|
		btrfs_new_inode_args_destroy(&whiteout_args);
 | 
						|
out_whiteout_inode:
 | 
						|
	if (flags & RENAME_WHITEOUT)
 | 
						|
		iput(whiteout_args.inode);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
 | 
						|
			 struct dentry *old_dentry, struct inode *new_dir,
 | 
						|
			 struct dentry *new_dentry, unsigned int flags)
 | 
						|
{
 | 
						|
	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (flags & RENAME_EXCHANGE)
 | 
						|
		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
 | 
						|
					  new_dentry);
 | 
						|
 | 
						|
	return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
 | 
						|
			    new_dentry, flags);
 | 
						|
}
 | 
						|
 | 
						|
struct btrfs_delalloc_work {
 | 
						|
	struct inode *inode;
 | 
						|
	struct completion completion;
 | 
						|
	struct list_head list;
 | 
						|
	struct btrfs_work work;
 | 
						|
};
 | 
						|
 | 
						|
static void btrfs_run_delalloc_work(struct btrfs_work *work)
 | 
						|
{
 | 
						|
	struct btrfs_delalloc_work *delalloc_work;
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	delalloc_work = container_of(work, struct btrfs_delalloc_work,
 | 
						|
				     work);
 | 
						|
	inode = delalloc_work->inode;
 | 
						|
	filemap_flush(inode->i_mapping);
 | 
						|
	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 | 
						|
				&BTRFS_I(inode)->runtime_flags))
 | 
						|
		filemap_flush(inode->i_mapping);
 | 
						|
 | 
						|
	iput(inode);
 | 
						|
	complete(&delalloc_work->completion);
 | 
						|
}
 | 
						|
 | 
						|
static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_delalloc_work *work;
 | 
						|
 | 
						|
	work = kmalloc(sizeof(*work), GFP_NOFS);
 | 
						|
	if (!work)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	init_completion(&work->completion);
 | 
						|
	INIT_LIST_HEAD(&work->list);
 | 
						|
	work->inode = inode;
 | 
						|
	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
 | 
						|
 | 
						|
	return work;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * some fairly slow code that needs optimization. This walks the list
 | 
						|
 * of all the inodes with pending delalloc and forces them to disk.
 | 
						|
 */
 | 
						|
static int start_delalloc_inodes(struct btrfs_root *root,
 | 
						|
				 struct writeback_control *wbc, bool snapshot,
 | 
						|
				 bool in_reclaim_context)
 | 
						|
{
 | 
						|
	struct btrfs_inode *binode;
 | 
						|
	struct inode *inode;
 | 
						|
	struct btrfs_delalloc_work *work, *next;
 | 
						|
	struct list_head works;
 | 
						|
	struct list_head splice;
 | 
						|
	int ret = 0;
 | 
						|
	bool full_flush = wbc->nr_to_write == LONG_MAX;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&works);
 | 
						|
	INIT_LIST_HEAD(&splice);
 | 
						|
 | 
						|
	mutex_lock(&root->delalloc_mutex);
 | 
						|
	spin_lock(&root->delalloc_lock);
 | 
						|
	list_splice_init(&root->delalloc_inodes, &splice);
 | 
						|
	while (!list_empty(&splice)) {
 | 
						|
		binode = list_entry(splice.next, struct btrfs_inode,
 | 
						|
				    delalloc_inodes);
 | 
						|
 | 
						|
		list_move_tail(&binode->delalloc_inodes,
 | 
						|
			       &root->delalloc_inodes);
 | 
						|
 | 
						|
		if (in_reclaim_context &&
 | 
						|
		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
 | 
						|
			continue;
 | 
						|
 | 
						|
		inode = igrab(&binode->vfs_inode);
 | 
						|
		if (!inode) {
 | 
						|
			cond_resched_lock(&root->delalloc_lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		spin_unlock(&root->delalloc_lock);
 | 
						|
 | 
						|
		if (snapshot)
 | 
						|
			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
 | 
						|
				&binode->runtime_flags);
 | 
						|
		if (full_flush) {
 | 
						|
			work = btrfs_alloc_delalloc_work(inode);
 | 
						|
			if (!work) {
 | 
						|
				iput(inode);
 | 
						|
				ret = -ENOMEM;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			list_add_tail(&work->list, &works);
 | 
						|
			btrfs_queue_work(root->fs_info->flush_workers,
 | 
						|
					 &work->work);
 | 
						|
		} else {
 | 
						|
			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
 | 
						|
			btrfs_add_delayed_iput(inode);
 | 
						|
			if (ret || wbc->nr_to_write <= 0)
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
		cond_resched();
 | 
						|
		spin_lock(&root->delalloc_lock);
 | 
						|
	}
 | 
						|
	spin_unlock(&root->delalloc_lock);
 | 
						|
 | 
						|
out:
 | 
						|
	list_for_each_entry_safe(work, next, &works, list) {
 | 
						|
		list_del_init(&work->list);
 | 
						|
		wait_for_completion(&work->completion);
 | 
						|
		kfree(work);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!list_empty(&splice)) {
 | 
						|
		spin_lock(&root->delalloc_lock);
 | 
						|
		list_splice_tail(&splice, &root->delalloc_inodes);
 | 
						|
		spin_unlock(&root->delalloc_lock);
 | 
						|
	}
 | 
						|
	mutex_unlock(&root->delalloc_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
 | 
						|
{
 | 
						|
	struct writeback_control wbc = {
 | 
						|
		.nr_to_write = LONG_MAX,
 | 
						|
		.sync_mode = WB_SYNC_NONE,
 | 
						|
		.range_start = 0,
 | 
						|
		.range_end = LLONG_MAX,
 | 
						|
	};
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
 | 
						|
	if (BTRFS_FS_ERROR(fs_info))
 | 
						|
		return -EROFS;
 | 
						|
 | 
						|
	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
 | 
						|
			       bool in_reclaim_context)
 | 
						|
{
 | 
						|
	struct writeback_control wbc = {
 | 
						|
		.nr_to_write = nr,
 | 
						|
		.sync_mode = WB_SYNC_NONE,
 | 
						|
		.range_start = 0,
 | 
						|
		.range_end = LLONG_MAX,
 | 
						|
	};
 | 
						|
	struct btrfs_root *root;
 | 
						|
	struct list_head splice;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (BTRFS_FS_ERROR(fs_info))
 | 
						|
		return -EROFS;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&splice);
 | 
						|
 | 
						|
	mutex_lock(&fs_info->delalloc_root_mutex);
 | 
						|
	spin_lock(&fs_info->delalloc_root_lock);
 | 
						|
	list_splice_init(&fs_info->delalloc_roots, &splice);
 | 
						|
	while (!list_empty(&splice)) {
 | 
						|
		/*
 | 
						|
		 * Reset nr_to_write here so we know that we're doing a full
 | 
						|
		 * flush.
 | 
						|
		 */
 | 
						|
		if (nr == LONG_MAX)
 | 
						|
			wbc.nr_to_write = LONG_MAX;
 | 
						|
 | 
						|
		root = list_first_entry(&splice, struct btrfs_root,
 | 
						|
					delalloc_root);
 | 
						|
		root = btrfs_grab_root(root);
 | 
						|
		BUG_ON(!root);
 | 
						|
		list_move_tail(&root->delalloc_root,
 | 
						|
			       &fs_info->delalloc_roots);
 | 
						|
		spin_unlock(&fs_info->delalloc_root_lock);
 | 
						|
 | 
						|
		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
 | 
						|
		btrfs_put_root(root);
 | 
						|
		if (ret < 0 || wbc.nr_to_write <= 0)
 | 
						|
			goto out;
 | 
						|
		spin_lock(&fs_info->delalloc_root_lock);
 | 
						|
	}
 | 
						|
	spin_unlock(&fs_info->delalloc_root_lock);
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
out:
 | 
						|
	if (!list_empty(&splice)) {
 | 
						|
		spin_lock(&fs_info->delalloc_root_lock);
 | 
						|
		list_splice_tail(&splice, &fs_info->delalloc_roots);
 | 
						|
		spin_unlock(&fs_info->delalloc_root_lock);
 | 
						|
	}
 | 
						|
	mutex_unlock(&fs_info->delalloc_root_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
 | 
						|
			 struct dentry *dentry, const char *symname)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_root *root = BTRFS_I(dir)->root;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct btrfs_key key;
 | 
						|
	struct inode *inode;
 | 
						|
	struct btrfs_new_inode_args new_inode_args = {
 | 
						|
		.dir = dir,
 | 
						|
		.dentry = dentry,
 | 
						|
	};
 | 
						|
	unsigned int trans_num_items;
 | 
						|
	int err;
 | 
						|
	int name_len;
 | 
						|
	int datasize;
 | 
						|
	unsigned long ptr;
 | 
						|
	struct btrfs_file_extent_item *ei;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
 | 
						|
	name_len = strlen(symname);
 | 
						|
	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
 | 
						|
		return -ENAMETOOLONG;
 | 
						|
 | 
						|
	inode = new_inode(dir->i_sb);
 | 
						|
	if (!inode)
 | 
						|
		return -ENOMEM;
 | 
						|
	inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
 | 
						|
	inode->i_op = &btrfs_symlink_inode_operations;
 | 
						|
	inode_nohighmem(inode);
 | 
						|
	inode->i_mapping->a_ops = &btrfs_aops;
 | 
						|
	btrfs_i_size_write(BTRFS_I(inode), name_len);
 | 
						|
	inode_set_bytes(inode, name_len);
 | 
						|
 | 
						|
	new_inode_args.inode = inode;
 | 
						|
	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
 | 
						|
	if (err)
 | 
						|
		goto out_inode;
 | 
						|
	/* 1 additional item for the inline extent */
 | 
						|
	trans_num_items++;
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(root, trans_num_items);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		err = PTR_ERR(trans);
 | 
						|
		goto out_new_inode_args;
 | 
						|
	}
 | 
						|
 | 
						|
	err = btrfs_create_new_inode(trans, &new_inode_args);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path) {
 | 
						|
		err = -ENOMEM;
 | 
						|
		btrfs_abort_transaction(trans, err);
 | 
						|
		discard_new_inode(inode);
 | 
						|
		inode = NULL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	key.objectid = btrfs_ino(BTRFS_I(inode));
 | 
						|
	key.offset = 0;
 | 
						|
	key.type = BTRFS_EXTENT_DATA_KEY;
 | 
						|
	datasize = btrfs_file_extent_calc_inline_size(name_len);
 | 
						|
	err = btrfs_insert_empty_item(trans, root, path, &key,
 | 
						|
				      datasize);
 | 
						|
	if (err) {
 | 
						|
		btrfs_abort_transaction(trans, err);
 | 
						|
		btrfs_free_path(path);
 | 
						|
		discard_new_inode(inode);
 | 
						|
		inode = NULL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	ei = btrfs_item_ptr(leaf, path->slots[0],
 | 
						|
			    struct btrfs_file_extent_item);
 | 
						|
	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 | 
						|
	btrfs_set_file_extent_type(leaf, ei,
 | 
						|
				   BTRFS_FILE_EXTENT_INLINE);
 | 
						|
	btrfs_set_file_extent_encryption(leaf, ei, 0);
 | 
						|
	btrfs_set_file_extent_compression(leaf, ei, 0);
 | 
						|
	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 | 
						|
	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
 | 
						|
 | 
						|
	ptr = btrfs_file_extent_inline_start(ei);
 | 
						|
	write_extent_buffer(leaf, symname, ptr, name_len);
 | 
						|
	btrfs_mark_buffer_dirty(leaf);
 | 
						|
	btrfs_free_path(path);
 | 
						|
 | 
						|
	d_instantiate_new(dentry, inode);
 | 
						|
	err = 0;
 | 
						|
out:
 | 
						|
	btrfs_end_transaction(trans);
 | 
						|
	btrfs_btree_balance_dirty(fs_info);
 | 
						|
out_new_inode_args:
 | 
						|
	btrfs_new_inode_args_destroy(&new_inode_args);
 | 
						|
out_inode:
 | 
						|
	if (err)
 | 
						|
		iput(inode);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static struct btrfs_trans_handle *insert_prealloc_file_extent(
 | 
						|
				       struct btrfs_trans_handle *trans_in,
 | 
						|
				       struct btrfs_inode *inode,
 | 
						|
				       struct btrfs_key *ins,
 | 
						|
				       u64 file_offset)
 | 
						|
{
 | 
						|
	struct btrfs_file_extent_item stack_fi;
 | 
						|
	struct btrfs_replace_extent_info extent_info;
 | 
						|
	struct btrfs_trans_handle *trans = trans_in;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	u64 start = ins->objectid;
 | 
						|
	u64 len = ins->offset;
 | 
						|
	int qgroup_released;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	memset(&stack_fi, 0, sizeof(stack_fi));
 | 
						|
 | 
						|
	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
 | 
						|
	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
 | 
						|
	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
 | 
						|
	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
 | 
						|
	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
 | 
						|
	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
 | 
						|
	/* Encryption and other encoding is reserved and all 0 */
 | 
						|
 | 
						|
	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
 | 
						|
	if (qgroup_released < 0)
 | 
						|
		return ERR_PTR(qgroup_released);
 | 
						|
 | 
						|
	if (trans) {
 | 
						|
		ret = insert_reserved_file_extent(trans, inode,
 | 
						|
						  file_offset, &stack_fi,
 | 
						|
						  true, qgroup_released);
 | 
						|
		if (ret)
 | 
						|
			goto free_qgroup;
 | 
						|
		return trans;
 | 
						|
	}
 | 
						|
 | 
						|
	extent_info.disk_offset = start;
 | 
						|
	extent_info.disk_len = len;
 | 
						|
	extent_info.data_offset = 0;
 | 
						|
	extent_info.data_len = len;
 | 
						|
	extent_info.file_offset = file_offset;
 | 
						|
	extent_info.extent_buf = (char *)&stack_fi;
 | 
						|
	extent_info.is_new_extent = true;
 | 
						|
	extent_info.update_times = true;
 | 
						|
	extent_info.qgroup_reserved = qgroup_released;
 | 
						|
	extent_info.insertions = 0;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto free_qgroup;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_replace_file_extents(inode, path, file_offset,
 | 
						|
				     file_offset + len - 1, &extent_info,
 | 
						|
				     &trans);
 | 
						|
	btrfs_free_path(path);
 | 
						|
	if (ret)
 | 
						|
		goto free_qgroup;
 | 
						|
	return trans;
 | 
						|
 | 
						|
free_qgroup:
 | 
						|
	/*
 | 
						|
	 * We have released qgroup data range at the beginning of the function,
 | 
						|
	 * and normally qgroup_released bytes will be freed when committing
 | 
						|
	 * transaction.
 | 
						|
	 * But if we error out early, we have to free what we have released
 | 
						|
	 * or we leak qgroup data reservation.
 | 
						|
	 */
 | 
						|
	btrfs_qgroup_free_refroot(inode->root->fs_info,
 | 
						|
			inode->root->root_key.objectid, qgroup_released,
 | 
						|
			BTRFS_QGROUP_RSV_DATA);
 | 
						|
	return ERR_PTR(ret);
 | 
						|
}
 | 
						|
 | 
						|
static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
 | 
						|
				       u64 start, u64 num_bytes, u64 min_size,
 | 
						|
				       loff_t actual_len, u64 *alloc_hint,
 | 
						|
				       struct btrfs_trans_handle *trans)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | 
						|
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 | 
						|
	struct extent_map *em;
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_key ins;
 | 
						|
	u64 cur_offset = start;
 | 
						|
	u64 clear_offset = start;
 | 
						|
	u64 i_size;
 | 
						|
	u64 cur_bytes;
 | 
						|
	u64 last_alloc = (u64)-1;
 | 
						|
	int ret = 0;
 | 
						|
	bool own_trans = true;
 | 
						|
	u64 end = start + num_bytes - 1;
 | 
						|
 | 
						|
	if (trans)
 | 
						|
		own_trans = false;
 | 
						|
	while (num_bytes > 0) {
 | 
						|
		cur_bytes = min_t(u64, num_bytes, SZ_256M);
 | 
						|
		cur_bytes = max(cur_bytes, min_size);
 | 
						|
		/*
 | 
						|
		 * If we are severely fragmented we could end up with really
 | 
						|
		 * small allocations, so if the allocator is returning small
 | 
						|
		 * chunks lets make its job easier by only searching for those
 | 
						|
		 * sized chunks.
 | 
						|
		 */
 | 
						|
		cur_bytes = min(cur_bytes, last_alloc);
 | 
						|
		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
 | 
						|
				min_size, 0, *alloc_hint, &ins, 1, 0);
 | 
						|
		if (ret)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We've reserved this space, and thus converted it from
 | 
						|
		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
 | 
						|
		 * from here on out we will only need to clear our reservation
 | 
						|
		 * for the remaining unreserved area, so advance our
 | 
						|
		 * clear_offset by our extent size.
 | 
						|
		 */
 | 
						|
		clear_offset += ins.offset;
 | 
						|
 | 
						|
		last_alloc = ins.offset;
 | 
						|
		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
 | 
						|
						    &ins, cur_offset);
 | 
						|
		/*
 | 
						|
		 * Now that we inserted the prealloc extent we can finally
 | 
						|
		 * decrement the number of reservations in the block group.
 | 
						|
		 * If we did it before, we could race with relocation and have
 | 
						|
		 * relocation miss the reserved extent, making it fail later.
 | 
						|
		 */
 | 
						|
		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 | 
						|
		if (IS_ERR(trans)) {
 | 
						|
			ret = PTR_ERR(trans);
 | 
						|
			btrfs_free_reserved_extent(fs_info, ins.objectid,
 | 
						|
						   ins.offset, 0);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
 | 
						|
					cur_offset + ins.offset -1, 0);
 | 
						|
 | 
						|
		em = alloc_extent_map();
 | 
						|
		if (!em) {
 | 
						|
			btrfs_set_inode_full_sync(BTRFS_I(inode));
 | 
						|
			goto next;
 | 
						|
		}
 | 
						|
 | 
						|
		em->start = cur_offset;
 | 
						|
		em->orig_start = cur_offset;
 | 
						|
		em->len = ins.offset;
 | 
						|
		em->block_start = ins.objectid;
 | 
						|
		em->block_len = ins.offset;
 | 
						|
		em->orig_block_len = ins.offset;
 | 
						|
		em->ram_bytes = ins.offset;
 | 
						|
		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
 | 
						|
		em->generation = trans->transid;
 | 
						|
 | 
						|
		while (1) {
 | 
						|
			write_lock(&em_tree->lock);
 | 
						|
			ret = add_extent_mapping(em_tree, em, 1);
 | 
						|
			write_unlock(&em_tree->lock);
 | 
						|
			if (ret != -EEXIST)
 | 
						|
				break;
 | 
						|
			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
 | 
						|
						cur_offset + ins.offset - 1,
 | 
						|
						0);
 | 
						|
		}
 | 
						|
		free_extent_map(em);
 | 
						|
next:
 | 
						|
		num_bytes -= ins.offset;
 | 
						|
		cur_offset += ins.offset;
 | 
						|
		*alloc_hint = ins.objectid + ins.offset;
 | 
						|
 | 
						|
		inode_inc_iversion(inode);
 | 
						|
		inode->i_ctime = current_time(inode);
 | 
						|
		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
 | 
						|
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 | 
						|
		    (actual_len > inode->i_size) &&
 | 
						|
		    (cur_offset > inode->i_size)) {
 | 
						|
			if (cur_offset > actual_len)
 | 
						|
				i_size = actual_len;
 | 
						|
			else
 | 
						|
				i_size = cur_offset;
 | 
						|
			i_size_write(inode, i_size);
 | 
						|
			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
 | 
						|
		}
 | 
						|
 | 
						|
		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 | 
						|
 | 
						|
		if (ret) {
 | 
						|
			btrfs_abort_transaction(trans, ret);
 | 
						|
			if (own_trans)
 | 
						|
				btrfs_end_transaction(trans);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (own_trans) {
 | 
						|
			btrfs_end_transaction(trans);
 | 
						|
			trans = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (clear_offset < end)
 | 
						|
		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
 | 
						|
			end - clear_offset + 1);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_prealloc_file_range(struct inode *inode, int mode,
 | 
						|
			      u64 start, u64 num_bytes, u64 min_size,
 | 
						|
			      loff_t actual_len, u64 *alloc_hint)
 | 
						|
{
 | 
						|
	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
 | 
						|
					   min_size, actual_len, alloc_hint,
 | 
						|
					   NULL);
 | 
						|
}
 | 
						|
 | 
						|
int btrfs_prealloc_file_range_trans(struct inode *inode,
 | 
						|
				    struct btrfs_trans_handle *trans, int mode,
 | 
						|
				    u64 start, u64 num_bytes, u64 min_size,
 | 
						|
				    loff_t actual_len, u64 *alloc_hint)
 | 
						|
{
 | 
						|
	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
 | 
						|
					   min_size, actual_len, alloc_hint, trans);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_permission(struct user_namespace *mnt_userns,
 | 
						|
			    struct inode *inode, int mask)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	umode_t mode = inode->i_mode;
 | 
						|
 | 
						|
	if (mask & MAY_WRITE &&
 | 
						|
	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
 | 
						|
		if (btrfs_root_readonly(root))
 | 
						|
			return -EROFS;
 | 
						|
		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
 | 
						|
			return -EACCES;
 | 
						|
	}
 | 
						|
	return generic_permission(mnt_userns, inode, mask);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
 | 
						|
			 struct dentry *dentry, umode_t mode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 | 
						|
	struct btrfs_trans_handle *trans;
 | 
						|
	struct btrfs_root *root = BTRFS_I(dir)->root;
 | 
						|
	struct inode *inode;
 | 
						|
	struct btrfs_new_inode_args new_inode_args = {
 | 
						|
		.dir = dir,
 | 
						|
		.dentry = dentry,
 | 
						|
		.orphan = true,
 | 
						|
	};
 | 
						|
	unsigned int trans_num_items;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	inode = new_inode(dir->i_sb);
 | 
						|
	if (!inode)
 | 
						|
		return -ENOMEM;
 | 
						|
	inode_init_owner(mnt_userns, inode, dir, mode);
 | 
						|
	inode->i_fop = &btrfs_file_operations;
 | 
						|
	inode->i_op = &btrfs_file_inode_operations;
 | 
						|
	inode->i_mapping->a_ops = &btrfs_aops;
 | 
						|
 | 
						|
	new_inode_args.inode = inode;
 | 
						|
	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
 | 
						|
	if (ret)
 | 
						|
		goto out_inode;
 | 
						|
 | 
						|
	trans = btrfs_start_transaction(root, trans_num_items);
 | 
						|
	if (IS_ERR(trans)) {
 | 
						|
		ret = PTR_ERR(trans);
 | 
						|
		goto out_new_inode_args;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_create_new_inode(trans, &new_inode_args);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
 | 
						|
	 * set it to 1 because d_tmpfile() will issue a warning if the count is
 | 
						|
	 * 0, through:
 | 
						|
	 *
 | 
						|
	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
 | 
						|
	 */
 | 
						|
	set_nlink(inode, 1);
 | 
						|
 | 
						|
	if (!ret) {
 | 
						|
		d_tmpfile(dentry, inode);
 | 
						|
		unlock_new_inode(inode);
 | 
						|
		mark_inode_dirty(inode);
 | 
						|
	}
 | 
						|
 | 
						|
	btrfs_end_transaction(trans);
 | 
						|
	btrfs_btree_balance_dirty(fs_info);
 | 
						|
out_new_inode_args:
 | 
						|
	btrfs_new_inode_args_destroy(&new_inode_args);
 | 
						|
out_inode:
 | 
						|
	if (ret)
 | 
						|
		iput(inode);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	unsigned long index = start >> PAGE_SHIFT;
 | 
						|
	unsigned long end_index = end >> PAGE_SHIFT;
 | 
						|
	struct page *page;
 | 
						|
	u32 len;
 | 
						|
 | 
						|
	ASSERT(end + 1 - start <= U32_MAX);
 | 
						|
	len = end + 1 - start;
 | 
						|
	while (index <= end_index) {
 | 
						|
		page = find_get_page(inode->vfs_inode.i_mapping, index);
 | 
						|
		ASSERT(page); /* Pages should be in the extent_io_tree */
 | 
						|
 | 
						|
		btrfs_page_set_writeback(fs_info, page, start, len);
 | 
						|
		put_page(page);
 | 
						|
		index++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_encoded_io_compression_from_extent(
 | 
						|
				struct btrfs_fs_info *fs_info,
 | 
						|
				int compress_type)
 | 
						|
{
 | 
						|
	switch (compress_type) {
 | 
						|
	case BTRFS_COMPRESS_NONE:
 | 
						|
		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
 | 
						|
	case BTRFS_COMPRESS_ZLIB:
 | 
						|
		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
 | 
						|
	case BTRFS_COMPRESS_LZO:
 | 
						|
		/*
 | 
						|
		 * The LZO format depends on the sector size. 64K is the maximum
 | 
						|
		 * sector size that we support.
 | 
						|
		 */
 | 
						|
		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
 | 
						|
			return -EINVAL;
 | 
						|
		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
 | 
						|
		       (fs_info->sectorsize_bits - 12);
 | 
						|
	case BTRFS_COMPRESS_ZSTD:
 | 
						|
		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
 | 
						|
	default:
 | 
						|
		return -EUCLEAN;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t btrfs_encoded_read_inline(
 | 
						|
				struct kiocb *iocb,
 | 
						|
				struct iov_iter *iter, u64 start,
 | 
						|
				u64 lockend,
 | 
						|
				struct extent_state **cached_state,
 | 
						|
				u64 extent_start, size_t count,
 | 
						|
				struct btrfs_ioctl_encoded_io_args *encoded,
 | 
						|
				bool *unlocked)
 | 
						|
{
 | 
						|
	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct extent_io_tree *io_tree = &inode->io_tree;
 | 
						|
	struct btrfs_path *path;
 | 
						|
	struct extent_buffer *leaf;
 | 
						|
	struct btrfs_file_extent_item *item;
 | 
						|
	u64 ram_bytes;
 | 
						|
	unsigned long ptr;
 | 
						|
	void *tmp;
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	path = btrfs_alloc_path();
 | 
						|
	if (!path) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
 | 
						|
				       extent_start, 0);
 | 
						|
	if (ret) {
 | 
						|
		if (ret > 0) {
 | 
						|
			/* The extent item disappeared? */
 | 
						|
			ret = -EIO;
 | 
						|
		}
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	leaf = path->nodes[0];
 | 
						|
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
 | 
						|
 | 
						|
	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
 | 
						|
	ptr = btrfs_file_extent_inline_start(item);
 | 
						|
 | 
						|
	encoded->len = min_t(u64, extent_start + ram_bytes,
 | 
						|
			     inode->vfs_inode.i_size) - iocb->ki_pos;
 | 
						|
	ret = btrfs_encoded_io_compression_from_extent(fs_info,
 | 
						|
				 btrfs_file_extent_compression(leaf, item));
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
	encoded->compression = ret;
 | 
						|
	if (encoded->compression) {
 | 
						|
		size_t inline_size;
 | 
						|
 | 
						|
		inline_size = btrfs_file_extent_inline_item_len(leaf,
 | 
						|
								path->slots[0]);
 | 
						|
		if (inline_size > count) {
 | 
						|
			ret = -ENOBUFS;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		count = inline_size;
 | 
						|
		encoded->unencoded_len = ram_bytes;
 | 
						|
		encoded->unencoded_offset = iocb->ki_pos - extent_start;
 | 
						|
	} else {
 | 
						|
		count = min_t(u64, count, encoded->len);
 | 
						|
		encoded->len = count;
 | 
						|
		encoded->unencoded_len = count;
 | 
						|
		ptr += iocb->ki_pos - extent_start;
 | 
						|
	}
 | 
						|
 | 
						|
	tmp = kmalloc(count, GFP_NOFS);
 | 
						|
	if (!tmp) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	read_extent_buffer(leaf, tmp, ptr, count);
 | 
						|
	btrfs_release_path(path);
 | 
						|
	unlock_extent_cached(io_tree, start, lockend, cached_state);
 | 
						|
	btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
 | 
						|
	*unlocked = true;
 | 
						|
 | 
						|
	ret = copy_to_iter(tmp, count, iter);
 | 
						|
	if (ret != count)
 | 
						|
		ret = -EFAULT;
 | 
						|
	kfree(tmp);
 | 
						|
out:
 | 
						|
	btrfs_free_path(path);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
struct btrfs_encoded_read_private {
 | 
						|
	struct btrfs_inode *inode;
 | 
						|
	u64 file_offset;
 | 
						|
	wait_queue_head_t wait;
 | 
						|
	atomic_t pending;
 | 
						|
	blk_status_t status;
 | 
						|
	bool skip_csum;
 | 
						|
};
 | 
						|
 | 
						|
static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
 | 
						|
					    struct bio *bio, int mirror_num)
 | 
						|
{
 | 
						|
	struct btrfs_encoded_read_private *priv = bio->bi_private;
 | 
						|
	struct btrfs_bio *bbio = btrfs_bio(bio);
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	blk_status_t ret;
 | 
						|
 | 
						|
	if (!priv->skip_csum) {
 | 
						|
		ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_bio_free_csum(bbio);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_inc(&priv->pending);
 | 
						|
	ret = btrfs_map_bio(fs_info, bio, mirror_num);
 | 
						|
	if (ret) {
 | 
						|
		atomic_dec(&priv->pending);
 | 
						|
		btrfs_bio_free_csum(bbio);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
 | 
						|
{
 | 
						|
	const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
 | 
						|
	struct btrfs_encoded_read_private *priv = bbio->bio.bi_private;
 | 
						|
	struct btrfs_inode *inode = priv->inode;
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	u32 sectorsize = fs_info->sectorsize;
 | 
						|
	struct bio_vec *bvec;
 | 
						|
	struct bvec_iter_all iter_all;
 | 
						|
	u64 start = priv->file_offset;
 | 
						|
	u32 bio_offset = 0;
 | 
						|
 | 
						|
	if (priv->skip_csum || !uptodate)
 | 
						|
		return bbio->bio.bi_status;
 | 
						|
 | 
						|
	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
 | 
						|
		unsigned int i, nr_sectors, pgoff;
 | 
						|
 | 
						|
		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
 | 
						|
		pgoff = bvec->bv_offset;
 | 
						|
		for (i = 0; i < nr_sectors; i++) {
 | 
						|
			ASSERT(pgoff < PAGE_SIZE);
 | 
						|
			if (check_data_csum(&inode->vfs_inode, bbio, bio_offset,
 | 
						|
					    bvec->bv_page, pgoff, start))
 | 
						|
				return BLK_STS_IOERR;
 | 
						|
			start += sectorsize;
 | 
						|
			bio_offset += sectorsize;
 | 
						|
			pgoff += sectorsize;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return BLK_STS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_encoded_read_endio(struct bio *bio)
 | 
						|
{
 | 
						|
	struct btrfs_encoded_read_private *priv = bio->bi_private;
 | 
						|
	struct btrfs_bio *bbio = btrfs_bio(bio);
 | 
						|
	blk_status_t status;
 | 
						|
 | 
						|
	status = btrfs_encoded_read_verify_csum(bbio);
 | 
						|
	if (status) {
 | 
						|
		/*
 | 
						|
		 * The memory barrier implied by the atomic_dec_return() here
 | 
						|
		 * pairs with the memory barrier implied by the
 | 
						|
		 * atomic_dec_return() or io_wait_event() in
 | 
						|
		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
 | 
						|
		 * write is observed before the load of status in
 | 
						|
		 * btrfs_encoded_read_regular_fill_pages().
 | 
						|
		 */
 | 
						|
		WRITE_ONCE(priv->status, status);
 | 
						|
	}
 | 
						|
	if (!atomic_dec_return(&priv->pending))
 | 
						|
		wake_up(&priv->wait);
 | 
						|
	btrfs_bio_free_csum(bbio);
 | 
						|
	bio_put(bio);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
 | 
						|
						 u64 file_offset,
 | 
						|
						 u64 disk_bytenr,
 | 
						|
						 u64 disk_io_size,
 | 
						|
						 struct page **pages)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	struct btrfs_encoded_read_private priv = {
 | 
						|
		.inode = inode,
 | 
						|
		.file_offset = file_offset,
 | 
						|
		.pending = ATOMIC_INIT(1),
 | 
						|
		.skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
 | 
						|
	};
 | 
						|
	unsigned long i = 0;
 | 
						|
	u64 cur = 0;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	init_waitqueue_head(&priv.wait);
 | 
						|
	/*
 | 
						|
	 * Submit bios for the extent, splitting due to bio or stripe limits as
 | 
						|
	 * necessary.
 | 
						|
	 */
 | 
						|
	while (cur < disk_io_size) {
 | 
						|
		struct extent_map *em;
 | 
						|
		struct btrfs_io_geometry geom;
 | 
						|
		struct bio *bio = NULL;
 | 
						|
		u64 remaining;
 | 
						|
 | 
						|
		em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
 | 
						|
					 disk_io_size - cur);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			ret = PTR_ERR(em);
 | 
						|
		} else {
 | 
						|
			ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
 | 
						|
						    disk_bytenr + cur, &geom);
 | 
						|
			free_extent_map(em);
 | 
						|
		}
 | 
						|
		if (ret) {
 | 
						|
			WRITE_ONCE(priv.status, errno_to_blk_status(ret));
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		remaining = min(geom.len, disk_io_size - cur);
 | 
						|
		while (bio || remaining) {
 | 
						|
			size_t bytes = min_t(u64, remaining, PAGE_SIZE);
 | 
						|
 | 
						|
			if (!bio) {
 | 
						|
				bio = btrfs_bio_alloc(BIO_MAX_VECS);
 | 
						|
				bio->bi_iter.bi_sector =
 | 
						|
					(disk_bytenr + cur) >> SECTOR_SHIFT;
 | 
						|
				bio->bi_end_io = btrfs_encoded_read_endio;
 | 
						|
				bio->bi_private = &priv;
 | 
						|
				bio->bi_opf = REQ_OP_READ;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!bytes ||
 | 
						|
			    bio_add_page(bio, pages[i], bytes, 0) < bytes) {
 | 
						|
				blk_status_t status;
 | 
						|
 | 
						|
				status = submit_encoded_read_bio(inode, bio, 0);
 | 
						|
				if (status) {
 | 
						|
					WRITE_ONCE(priv.status, status);
 | 
						|
					bio_put(bio);
 | 
						|
					goto out;
 | 
						|
				}
 | 
						|
				bio = NULL;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			i++;
 | 
						|
			cur += bytes;
 | 
						|
			remaining -= bytes;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	if (atomic_dec_return(&priv.pending))
 | 
						|
		io_wait_event(priv.wait, !atomic_read(&priv.pending));
 | 
						|
	/* See btrfs_encoded_read_endio() for ordering. */
 | 
						|
	return blk_status_to_errno(READ_ONCE(priv.status));
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
 | 
						|
					  struct iov_iter *iter,
 | 
						|
					  u64 start, u64 lockend,
 | 
						|
					  struct extent_state **cached_state,
 | 
						|
					  u64 disk_bytenr, u64 disk_io_size,
 | 
						|
					  size_t count, bool compressed,
 | 
						|
					  bool *unlocked)
 | 
						|
{
 | 
						|
	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
 | 
						|
	struct extent_io_tree *io_tree = &inode->io_tree;
 | 
						|
	struct page **pages;
 | 
						|
	unsigned long nr_pages, i;
 | 
						|
	u64 cur;
 | 
						|
	size_t page_offset;
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
 | 
						|
	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
 | 
						|
	if (!pages)
 | 
						|
		return -ENOMEM;
 | 
						|
	ret = btrfs_alloc_page_array(nr_pages, pages);
 | 
						|
	if (ret) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto out;
 | 
						|
		}
 | 
						|
 | 
						|
	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
 | 
						|
						    disk_io_size, pages);
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	unlock_extent_cached(io_tree, start, lockend, cached_state);
 | 
						|
	btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
 | 
						|
	*unlocked = true;
 | 
						|
 | 
						|
	if (compressed) {
 | 
						|
		i = 0;
 | 
						|
		page_offset = 0;
 | 
						|
	} else {
 | 
						|
		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
 | 
						|
		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
 | 
						|
	}
 | 
						|
	cur = 0;
 | 
						|
	while (cur < count) {
 | 
						|
		size_t bytes = min_t(size_t, count - cur,
 | 
						|
				     PAGE_SIZE - page_offset);
 | 
						|
 | 
						|
		if (copy_page_to_iter(pages[i], page_offset, bytes,
 | 
						|
				      iter) != bytes) {
 | 
						|
			ret = -EFAULT;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		i++;
 | 
						|
		cur += bytes;
 | 
						|
		page_offset = 0;
 | 
						|
	}
 | 
						|
	ret = count;
 | 
						|
out:
 | 
						|
	for (i = 0; i < nr_pages; i++) {
 | 
						|
		if (pages[i])
 | 
						|
			__free_page(pages[i]);
 | 
						|
	}
 | 
						|
	kfree(pages);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
 | 
						|
			   struct btrfs_ioctl_encoded_io_args *encoded)
 | 
						|
{
 | 
						|
	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
 | 
						|
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | 
						|
	struct extent_io_tree *io_tree = &inode->io_tree;
 | 
						|
	ssize_t ret;
 | 
						|
	size_t count = iov_iter_count(iter);
 | 
						|
	u64 start, lockend, disk_bytenr, disk_io_size;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct extent_map *em;
 | 
						|
	bool unlocked = false;
 | 
						|
 | 
						|
	file_accessed(iocb->ki_filp);
 | 
						|
 | 
						|
	btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
 | 
						|
 | 
						|
	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
 | 
						|
		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
 | 
						|
	/*
 | 
						|
	 * We don't know how long the extent containing iocb->ki_pos is, but if
 | 
						|
	 * it's compressed we know that it won't be longer than this.
 | 
						|
	 */
 | 
						|
	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		struct btrfs_ordered_extent *ordered;
 | 
						|
 | 
						|
		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
 | 
						|
					       lockend - start + 1);
 | 
						|
		if (ret)
 | 
						|
			goto out_unlock_inode;
 | 
						|
		lock_extent_bits(io_tree, start, lockend, &cached_state);
 | 
						|
		ordered = btrfs_lookup_ordered_range(inode, start,
 | 
						|
						     lockend - start + 1);
 | 
						|
		if (!ordered)
 | 
						|
			break;
 | 
						|
		btrfs_put_ordered_extent(ordered);
 | 
						|
		unlock_extent_cached(io_tree, start, lockend, &cached_state);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
 | 
						|
	if (IS_ERR(em)) {
 | 
						|
		ret = PTR_ERR(em);
 | 
						|
		goto out_unlock_extent;
 | 
						|
	}
 | 
						|
 | 
						|
	if (em->block_start == EXTENT_MAP_INLINE) {
 | 
						|
		u64 extent_start = em->start;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * For inline extents we get everything we need out of the
 | 
						|
		 * extent item.
 | 
						|
		 */
 | 
						|
		free_extent_map(em);
 | 
						|
		em = NULL;
 | 
						|
		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
 | 
						|
						&cached_state, extent_start,
 | 
						|
						count, encoded, &unlocked);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We only want to return up to EOF even if the extent extends beyond
 | 
						|
	 * that.
 | 
						|
	 */
 | 
						|
	encoded->len = min_t(u64, extent_map_end(em),
 | 
						|
			     inode->vfs_inode.i_size) - iocb->ki_pos;
 | 
						|
	if (em->block_start == EXTENT_MAP_HOLE ||
 | 
						|
	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
 | 
						|
		disk_bytenr = EXTENT_MAP_HOLE;
 | 
						|
		count = min_t(u64, count, encoded->len);
 | 
						|
		encoded->len = count;
 | 
						|
		encoded->unencoded_len = count;
 | 
						|
	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
 | 
						|
		disk_bytenr = em->block_start;
 | 
						|
		/*
 | 
						|
		 * Bail if the buffer isn't large enough to return the whole
 | 
						|
		 * compressed extent.
 | 
						|
		 */
 | 
						|
		if (em->block_len > count) {
 | 
						|
			ret = -ENOBUFS;
 | 
						|
			goto out_em;
 | 
						|
		}
 | 
						|
		disk_io_size = count = em->block_len;
 | 
						|
		encoded->unencoded_len = em->ram_bytes;
 | 
						|
		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
 | 
						|
		ret = btrfs_encoded_io_compression_from_extent(fs_info,
 | 
						|
							     em->compress_type);
 | 
						|
		if (ret < 0)
 | 
						|
			goto out_em;
 | 
						|
		encoded->compression = ret;
 | 
						|
	} else {
 | 
						|
		disk_bytenr = em->block_start + (start - em->start);
 | 
						|
		if (encoded->len > count)
 | 
						|
			encoded->len = count;
 | 
						|
		/*
 | 
						|
		 * Don't read beyond what we locked. This also limits the page
 | 
						|
		 * allocations that we'll do.
 | 
						|
		 */
 | 
						|
		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
 | 
						|
		count = start + disk_io_size - iocb->ki_pos;
 | 
						|
		encoded->len = count;
 | 
						|
		encoded->unencoded_len = count;
 | 
						|
		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
 | 
						|
	}
 | 
						|
	free_extent_map(em);
 | 
						|
	em = NULL;
 | 
						|
 | 
						|
	if (disk_bytenr == EXTENT_MAP_HOLE) {
 | 
						|
		unlock_extent_cached(io_tree, start, lockend, &cached_state);
 | 
						|
		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
 | 
						|
		unlocked = true;
 | 
						|
		ret = iov_iter_zero(count, iter);
 | 
						|
		if (ret != count)
 | 
						|
			ret = -EFAULT;
 | 
						|
	} else {
 | 
						|
		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
 | 
						|
						 &cached_state, disk_bytenr,
 | 
						|
						 disk_io_size, count,
 | 
						|
						 encoded->compression,
 | 
						|
						 &unlocked);
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	if (ret >= 0)
 | 
						|
		iocb->ki_pos += encoded->len;
 | 
						|
out_em:
 | 
						|
	free_extent_map(em);
 | 
						|
out_unlock_extent:
 | 
						|
	if (!unlocked)
 | 
						|
		unlock_extent_cached(io_tree, start, lockend, &cached_state);
 | 
						|
out_unlock_inode:
 | 
						|
	if (!unlocked)
 | 
						|
		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
 | 
						|
			       const struct btrfs_ioctl_encoded_io_args *encoded)
 | 
						|
{
 | 
						|
	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct extent_io_tree *io_tree = &inode->io_tree;
 | 
						|
	struct extent_changeset *data_reserved = NULL;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	int compression;
 | 
						|
	size_t orig_count;
 | 
						|
	u64 start, end;
 | 
						|
	u64 num_bytes, ram_bytes, disk_num_bytes;
 | 
						|
	unsigned long nr_pages, i;
 | 
						|
	struct page **pages;
 | 
						|
	struct btrfs_key ins;
 | 
						|
	bool extent_reserved = false;
 | 
						|
	struct extent_map *em;
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	switch (encoded->compression) {
 | 
						|
	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
 | 
						|
		compression = BTRFS_COMPRESS_ZLIB;
 | 
						|
		break;
 | 
						|
	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
 | 
						|
		compression = BTRFS_COMPRESS_ZSTD;
 | 
						|
		break;
 | 
						|
	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
 | 
						|
	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
 | 
						|
	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
 | 
						|
	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
 | 
						|
	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
 | 
						|
		/* The sector size must match for LZO. */
 | 
						|
		if (encoded->compression -
 | 
						|
		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
 | 
						|
		    fs_info->sectorsize_bits)
 | 
						|
			return -EINVAL;
 | 
						|
		compression = BTRFS_COMPRESS_LZO;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	orig_count = iov_iter_count(from);
 | 
						|
 | 
						|
	/* The extent size must be sane. */
 | 
						|
	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
 | 
						|
	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The compressed data must be smaller than the decompressed data.
 | 
						|
	 *
 | 
						|
	 * It's of course possible for data to compress to larger or the same
 | 
						|
	 * size, but the buffered I/O path falls back to no compression for such
 | 
						|
	 * data, and we don't want to break any assumptions by creating these
 | 
						|
	 * extents.
 | 
						|
	 *
 | 
						|
	 * Note that this is less strict than the current check we have that the
 | 
						|
	 * compressed data must be at least one sector smaller than the
 | 
						|
	 * decompressed data. We only want to enforce the weaker requirement
 | 
						|
	 * from old kernels that it is at least one byte smaller.
 | 
						|
	 */
 | 
						|
	if (orig_count >= encoded->unencoded_len)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* The extent must start on a sector boundary. */
 | 
						|
	start = iocb->ki_pos;
 | 
						|
	if (!IS_ALIGNED(start, fs_info->sectorsize))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The extent must end on a sector boundary. However, we allow a write
 | 
						|
	 * which ends at or extends i_size to have an unaligned length; we round
 | 
						|
	 * up the extent size and set i_size to the unaligned end.
 | 
						|
	 */
 | 
						|
	if (start + encoded->len < inode->vfs_inode.i_size &&
 | 
						|
	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Finally, the offset in the unencoded data must be sector-aligned. */
 | 
						|
	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
 | 
						|
	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
 | 
						|
	end = start + num_bytes - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the extent cannot be inline, the compressed data on disk must be
 | 
						|
	 * sector-aligned. For convenience, we extend it with zeroes if it
 | 
						|
	 * isn't.
 | 
						|
	 */
 | 
						|
	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
 | 
						|
	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
 | 
						|
	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
 | 
						|
	if (!pages)
 | 
						|
		return -ENOMEM;
 | 
						|
	for (i = 0; i < nr_pages; i++) {
 | 
						|
		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
 | 
						|
		char *kaddr;
 | 
						|
 | 
						|
		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
 | 
						|
		if (!pages[i]) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto out_pages;
 | 
						|
		}
 | 
						|
		kaddr = kmap(pages[i]);
 | 
						|
		if (copy_from_iter(kaddr, bytes, from) != bytes) {
 | 
						|
			kunmap(pages[i]);
 | 
						|
			ret = -EFAULT;
 | 
						|
			goto out_pages;
 | 
						|
		}
 | 
						|
		if (bytes < PAGE_SIZE)
 | 
						|
			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
 | 
						|
		kunmap(pages[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		struct btrfs_ordered_extent *ordered;
 | 
						|
 | 
						|
		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
 | 
						|
		if (ret)
 | 
						|
			goto out_pages;
 | 
						|
		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
 | 
						|
						    start >> PAGE_SHIFT,
 | 
						|
						    end >> PAGE_SHIFT);
 | 
						|
		if (ret)
 | 
						|
			goto out_pages;
 | 
						|
		lock_extent_bits(io_tree, start, end, &cached_state);
 | 
						|
		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
 | 
						|
		if (!ordered &&
 | 
						|
		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
 | 
						|
			break;
 | 
						|
		if (ordered)
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
		unlock_extent_cached(io_tree, start, end, &cached_state);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't use the higher-level delalloc space functions because our
 | 
						|
	 * num_bytes and disk_num_bytes are different.
 | 
						|
	 */
 | 
						|
	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
 | 
						|
	if (ret)
 | 
						|
		goto out_unlock;
 | 
						|
	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
 | 
						|
	if (ret)
 | 
						|
		goto out_free_data_space;
 | 
						|
	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
 | 
						|
					      false);
 | 
						|
	if (ret)
 | 
						|
		goto out_qgroup_free_data;
 | 
						|
 | 
						|
	/* Try an inline extent first. */
 | 
						|
	if (start == 0 && encoded->unencoded_len == encoded->len &&
 | 
						|
	    encoded->unencoded_offset == 0) {
 | 
						|
		ret = cow_file_range_inline(inode, encoded->len, orig_count,
 | 
						|
					    compression, pages, true);
 | 
						|
		if (ret <= 0) {
 | 
						|
			if (ret == 0)
 | 
						|
				ret = orig_count;
 | 
						|
			goto out_delalloc_release;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
 | 
						|
				   disk_num_bytes, 0, 0, &ins, 1, 1);
 | 
						|
	if (ret)
 | 
						|
		goto out_delalloc_release;
 | 
						|
	extent_reserved = true;
 | 
						|
 | 
						|
	em = create_io_em(inode, start, num_bytes,
 | 
						|
			  start - encoded->unencoded_offset, ins.objectid,
 | 
						|
			  ins.offset, ins.offset, ram_bytes, compression,
 | 
						|
			  BTRFS_ORDERED_COMPRESSED);
 | 
						|
	if (IS_ERR(em)) {
 | 
						|
		ret = PTR_ERR(em);
 | 
						|
		goto out_free_reserved;
 | 
						|
	}
 | 
						|
	free_extent_map(em);
 | 
						|
 | 
						|
	ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
 | 
						|
				       ins.objectid, ins.offset,
 | 
						|
				       encoded->unencoded_offset,
 | 
						|
				       (1 << BTRFS_ORDERED_ENCODED) |
 | 
						|
				       (1 << BTRFS_ORDERED_COMPRESSED),
 | 
						|
				       compression);
 | 
						|
	if (ret) {
 | 
						|
		btrfs_drop_extent_cache(inode, start, end, 0);
 | 
						|
		goto out_free_reserved;
 | 
						|
	}
 | 
						|
	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 | 
						|
 | 
						|
	if (start + encoded->len > inode->vfs_inode.i_size)
 | 
						|
		i_size_write(&inode->vfs_inode, start + encoded->len);
 | 
						|
 | 
						|
	unlock_extent_cached(io_tree, start, end, &cached_state);
 | 
						|
 | 
						|
	btrfs_delalloc_release_extents(inode, num_bytes);
 | 
						|
 | 
						|
	if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
 | 
						|
					  ins.offset, pages, nr_pages, 0, NULL,
 | 
						|
					  false)) {
 | 
						|
		btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
 | 
						|
		ret = -EIO;
 | 
						|
		goto out_pages;
 | 
						|
	}
 | 
						|
	ret = orig_count;
 | 
						|
	goto out;
 | 
						|
 | 
						|
out_free_reserved:
 | 
						|
	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 | 
						|
	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
 | 
						|
out_delalloc_release:
 | 
						|
	btrfs_delalloc_release_extents(inode, num_bytes);
 | 
						|
	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
 | 
						|
out_qgroup_free_data:
 | 
						|
	if (ret < 0)
 | 
						|
		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
 | 
						|
out_free_data_space:
 | 
						|
	/*
 | 
						|
	 * If btrfs_reserve_extent() succeeded, then we already decremented
 | 
						|
	 * bytes_may_use.
 | 
						|
	 */
 | 
						|
	if (!extent_reserved)
 | 
						|
		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
 | 
						|
out_unlock:
 | 
						|
	unlock_extent_cached(io_tree, start, end, &cached_state);
 | 
						|
out_pages:
 | 
						|
	for (i = 0; i < nr_pages; i++) {
 | 
						|
		if (pages[i])
 | 
						|
			__free_page(pages[i]);
 | 
						|
	}
 | 
						|
	kvfree(pages);
 | 
						|
out:
 | 
						|
	if (ret >= 0)
 | 
						|
		iocb->ki_pos += encoded->len;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SWAP
 | 
						|
/*
 | 
						|
 * Add an entry indicating a block group or device which is pinned by a
 | 
						|
 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
 | 
						|
 * negative errno on failure.
 | 
						|
 */
 | 
						|
static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
 | 
						|
				  bool is_block_group)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 | 
						|
	struct btrfs_swapfile_pin *sp, *entry;
 | 
						|
	struct rb_node **p;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
 | 
						|
	sp = kmalloc(sizeof(*sp), GFP_NOFS);
 | 
						|
	if (!sp)
 | 
						|
		return -ENOMEM;
 | 
						|
	sp->ptr = ptr;
 | 
						|
	sp->inode = inode;
 | 
						|
	sp->is_block_group = is_block_group;
 | 
						|
	sp->bg_extent_count = 1;
 | 
						|
 | 
						|
	spin_lock(&fs_info->swapfile_pins_lock);
 | 
						|
	p = &fs_info->swapfile_pins.rb_node;
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
 | 
						|
		if (sp->ptr < entry->ptr ||
 | 
						|
		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		} else if (sp->ptr > entry->ptr ||
 | 
						|
			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
		} else {
 | 
						|
			if (is_block_group)
 | 
						|
				entry->bg_extent_count++;
 | 
						|
			spin_unlock(&fs_info->swapfile_pins_lock);
 | 
						|
			kfree(sp);
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	rb_link_node(&sp->node, parent, p);
 | 
						|
	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
 | 
						|
	spin_unlock(&fs_info->swapfile_pins_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Free all of the entries pinned by this swapfile. */
 | 
						|
static void btrfs_free_swapfile_pins(struct inode *inode)
 | 
						|
{
 | 
						|
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 | 
						|
	struct btrfs_swapfile_pin *sp;
 | 
						|
	struct rb_node *node, *next;
 | 
						|
 | 
						|
	spin_lock(&fs_info->swapfile_pins_lock);
 | 
						|
	node = rb_first(&fs_info->swapfile_pins);
 | 
						|
	while (node) {
 | 
						|
		next = rb_next(node);
 | 
						|
		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
 | 
						|
		if (sp->inode == inode) {
 | 
						|
			rb_erase(&sp->node, &fs_info->swapfile_pins);
 | 
						|
			if (sp->is_block_group) {
 | 
						|
				btrfs_dec_block_group_swap_extents(sp->ptr,
 | 
						|
							   sp->bg_extent_count);
 | 
						|
				btrfs_put_block_group(sp->ptr);
 | 
						|
			}
 | 
						|
			kfree(sp);
 | 
						|
		}
 | 
						|
		node = next;
 | 
						|
	}
 | 
						|
	spin_unlock(&fs_info->swapfile_pins_lock);
 | 
						|
}
 | 
						|
 | 
						|
struct btrfs_swap_info {
 | 
						|
	u64 start;
 | 
						|
	u64 block_start;
 | 
						|
	u64 block_len;
 | 
						|
	u64 lowest_ppage;
 | 
						|
	u64 highest_ppage;
 | 
						|
	unsigned long nr_pages;
 | 
						|
	int nr_extents;
 | 
						|
};
 | 
						|
 | 
						|
static int btrfs_add_swap_extent(struct swap_info_struct *sis,
 | 
						|
				 struct btrfs_swap_info *bsi)
 | 
						|
{
 | 
						|
	unsigned long nr_pages;
 | 
						|
	unsigned long max_pages;
 | 
						|
	u64 first_ppage, first_ppage_reported, next_ppage;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Our swapfile may have had its size extended after the swap header was
 | 
						|
	 * written. In that case activating the swapfile should not go beyond
 | 
						|
	 * the max size set in the swap header.
 | 
						|
	 */
 | 
						|
	if (bsi->nr_pages >= sis->max)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	max_pages = sis->max - bsi->nr_pages;
 | 
						|
	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
 | 
						|
	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
 | 
						|
				PAGE_SIZE) >> PAGE_SHIFT;
 | 
						|
 | 
						|
	if (first_ppage >= next_ppage)
 | 
						|
		return 0;
 | 
						|
	nr_pages = next_ppage - first_ppage;
 | 
						|
	nr_pages = min(nr_pages, max_pages);
 | 
						|
 | 
						|
	first_ppage_reported = first_ppage;
 | 
						|
	if (bsi->start == 0)
 | 
						|
		first_ppage_reported++;
 | 
						|
	if (bsi->lowest_ppage > first_ppage_reported)
 | 
						|
		bsi->lowest_ppage = first_ppage_reported;
 | 
						|
	if (bsi->highest_ppage < (next_ppage - 1))
 | 
						|
		bsi->highest_ppage = next_ppage - 1;
 | 
						|
 | 
						|
	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
	bsi->nr_extents += ret;
 | 
						|
	bsi->nr_pages += nr_pages;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void btrfs_swap_deactivate(struct file *file)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(file);
 | 
						|
 | 
						|
	btrfs_free_swapfile_pins(inode);
 | 
						|
	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
 | 
						|
			       sector_t *span)
 | 
						|
{
 | 
						|
	struct inode *inode = file_inode(file);
 | 
						|
	struct btrfs_root *root = BTRFS_I(inode)->root;
 | 
						|
	struct btrfs_fs_info *fs_info = root->fs_info;
 | 
						|
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | 
						|
	struct extent_state *cached_state = NULL;
 | 
						|
	struct extent_map *em = NULL;
 | 
						|
	struct btrfs_device *device = NULL;
 | 
						|
	struct btrfs_swap_info bsi = {
 | 
						|
		.lowest_ppage = (sector_t)-1ULL,
 | 
						|
	};
 | 
						|
	int ret = 0;
 | 
						|
	u64 isize;
 | 
						|
	u64 start;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the swap file was just created, make sure delalloc is done. If the
 | 
						|
	 * file changes again after this, the user is doing something stupid and
 | 
						|
	 * we don't really care.
 | 
						|
	 */
 | 
						|
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The inode is locked, so these flags won't change after we check them.
 | 
						|
	 */
 | 
						|
	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
 | 
						|
		btrfs_warn(fs_info, "swapfile must not be compressed");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
 | 
						|
		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 | 
						|
		btrfs_warn(fs_info, "swapfile must not be checksummed");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Balance or device remove/replace/resize can move stuff around from
 | 
						|
	 * under us. The exclop protection makes sure they aren't running/won't
 | 
						|
	 * run concurrently while we are mapping the swap extents, and
 | 
						|
	 * fs_info->swapfile_pins prevents them from running while the swap
 | 
						|
	 * file is active and moving the extents. Note that this also prevents
 | 
						|
	 * a concurrent device add which isn't actually necessary, but it's not
 | 
						|
	 * really worth the trouble to allow it.
 | 
						|
	 */
 | 
						|
	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
 | 
						|
		btrfs_warn(fs_info,
 | 
						|
	   "cannot activate swapfile while exclusive operation is running");
 | 
						|
		return -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Prevent snapshot creation while we are activating the swap file.
 | 
						|
	 * We do not want to race with snapshot creation. If snapshot creation
 | 
						|
	 * already started before we bumped nr_swapfiles from 0 to 1 and
 | 
						|
	 * completes before the first write into the swap file after it is
 | 
						|
	 * activated, than that write would fallback to COW.
 | 
						|
	 */
 | 
						|
	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
 | 
						|
		btrfs_exclop_finish(fs_info);
 | 
						|
		btrfs_warn(fs_info,
 | 
						|
	   "cannot activate swapfile because snapshot creation is in progress");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Snapshots can create extents which require COW even if NODATACOW is
 | 
						|
	 * set. We use this counter to prevent snapshots. We must increment it
 | 
						|
	 * before walking the extents because we don't want a concurrent
 | 
						|
	 * snapshot to run after we've already checked the extents.
 | 
						|
	 *
 | 
						|
	 * It is possible that subvolume is marked for deletion but still not
 | 
						|
	 * removed yet. To prevent this race, we check the root status before
 | 
						|
	 * activating the swapfile.
 | 
						|
	 */
 | 
						|
	spin_lock(&root->root_item_lock);
 | 
						|
	if (btrfs_root_dead(root)) {
 | 
						|
		spin_unlock(&root->root_item_lock);
 | 
						|
 | 
						|
		btrfs_exclop_finish(fs_info);
 | 
						|
		btrfs_warn(fs_info,
 | 
						|
		"cannot activate swapfile because subvolume %llu is being deleted",
 | 
						|
			root->root_key.objectid);
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
	atomic_inc(&root->nr_swapfiles);
 | 
						|
	spin_unlock(&root->root_item_lock);
 | 
						|
 | 
						|
	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
 | 
						|
 | 
						|
	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
 | 
						|
	start = 0;
 | 
						|
	while (start < isize) {
 | 
						|
		u64 logical_block_start, physical_block_start;
 | 
						|
		struct btrfs_block_group *bg;
 | 
						|
		u64 len = isize - start;
 | 
						|
 | 
						|
		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			ret = PTR_ERR(em);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (em->block_start == EXTENT_MAP_HOLE) {
 | 
						|
			btrfs_warn(fs_info, "swapfile must not have holes");
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (em->block_start == EXTENT_MAP_INLINE) {
 | 
						|
			/*
 | 
						|
			 * It's unlikely we'll ever actually find ourselves
 | 
						|
			 * here, as a file small enough to fit inline won't be
 | 
						|
			 * big enough to store more than the swap header, but in
 | 
						|
			 * case something changes in the future, let's catch it
 | 
						|
			 * here rather than later.
 | 
						|
			 */
 | 
						|
			btrfs_warn(fs_info, "swapfile must not be inline");
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
 | 
						|
			btrfs_warn(fs_info, "swapfile must not be compressed");
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		logical_block_start = em->block_start + (start - em->start);
 | 
						|
		len = min(len, em->len - (start - em->start));
 | 
						|
		free_extent_map(em);
 | 
						|
		em = NULL;
 | 
						|
 | 
						|
		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
 | 
						|
		if (ret < 0) {
 | 
						|
			goto out;
 | 
						|
		} else if (ret) {
 | 
						|
			ret = 0;
 | 
						|
		} else {
 | 
						|
			btrfs_warn(fs_info,
 | 
						|
				   "swapfile must not be copy-on-write");
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
 | 
						|
		if (IS_ERR(em)) {
 | 
						|
			ret = PTR_ERR(em);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
 | 
						|
			btrfs_warn(fs_info,
 | 
						|
				   "swapfile must have single data profile");
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (device == NULL) {
 | 
						|
			device = em->map_lookup->stripes[0].dev;
 | 
						|
			ret = btrfs_add_swapfile_pin(inode, device, false);
 | 
						|
			if (ret == 1)
 | 
						|
				ret = 0;
 | 
						|
			else if (ret)
 | 
						|
				goto out;
 | 
						|
		} else if (device != em->map_lookup->stripes[0].dev) {
 | 
						|
			btrfs_warn(fs_info, "swapfile must be on one device");
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		physical_block_start = (em->map_lookup->stripes[0].physical +
 | 
						|
					(logical_block_start - em->start));
 | 
						|
		len = min(len, em->len - (logical_block_start - em->start));
 | 
						|
		free_extent_map(em);
 | 
						|
		em = NULL;
 | 
						|
 | 
						|
		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
 | 
						|
		if (!bg) {
 | 
						|
			btrfs_warn(fs_info,
 | 
						|
			   "could not find block group containing swapfile");
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!btrfs_inc_block_group_swap_extents(bg)) {
 | 
						|
			btrfs_warn(fs_info,
 | 
						|
			   "block group for swapfile at %llu is read-only%s",
 | 
						|
			   bg->start,
 | 
						|
			   atomic_read(&fs_info->scrubs_running) ?
 | 
						|
				       " (scrub running)" : "");
 | 
						|
			btrfs_put_block_group(bg);
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = btrfs_add_swapfile_pin(inode, bg, true);
 | 
						|
		if (ret) {
 | 
						|
			btrfs_put_block_group(bg);
 | 
						|
			if (ret == 1)
 | 
						|
				ret = 0;
 | 
						|
			else
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (bsi.block_len &&
 | 
						|
		    bsi.block_start + bsi.block_len == physical_block_start) {
 | 
						|
			bsi.block_len += len;
 | 
						|
		} else {
 | 
						|
			if (bsi.block_len) {
 | 
						|
				ret = btrfs_add_swap_extent(sis, &bsi);
 | 
						|
				if (ret)
 | 
						|
					goto out;
 | 
						|
			}
 | 
						|
			bsi.start = start;
 | 
						|
			bsi.block_start = physical_block_start;
 | 
						|
			bsi.block_len = len;
 | 
						|
		}
 | 
						|
 | 
						|
		start += len;
 | 
						|
	}
 | 
						|
 | 
						|
	if (bsi.block_len)
 | 
						|
		ret = btrfs_add_swap_extent(sis, &bsi);
 | 
						|
 | 
						|
out:
 | 
						|
	if (!IS_ERR_OR_NULL(em))
 | 
						|
		free_extent_map(em);
 | 
						|
 | 
						|
	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		btrfs_swap_deactivate(file);
 | 
						|
 | 
						|
	btrfs_drew_write_unlock(&root->snapshot_lock);
 | 
						|
 | 
						|
	btrfs_exclop_finish(fs_info);
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (device)
 | 
						|
		sis->bdev = device->bdev;
 | 
						|
	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
 | 
						|
	sis->max = bsi.nr_pages;
 | 
						|
	sis->pages = bsi.nr_pages - 1;
 | 
						|
	sis->highest_bit = bsi.nr_pages - 1;
 | 
						|
	return bsi.nr_extents;
 | 
						|
}
 | 
						|
#else
 | 
						|
static void btrfs_swap_deactivate(struct file *file)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
 | 
						|
			       sector_t *span)
 | 
						|
{
 | 
						|
	return -EOPNOTSUPP;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the number of bytes used in the VFS' inode. When we replace extents in
 | 
						|
 * a range (clone, dedupe, fallocate's zero range), we must update the number of
 | 
						|
 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
 | 
						|
 * always get a correct value.
 | 
						|
 */
 | 
						|
void btrfs_update_inode_bytes(struct btrfs_inode *inode,
 | 
						|
			      const u64 add_bytes,
 | 
						|
			      const u64 del_bytes)
 | 
						|
{
 | 
						|
	if (add_bytes == del_bytes)
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock(&inode->lock);
 | 
						|
	if (del_bytes > 0)
 | 
						|
		inode_sub_bytes(&inode->vfs_inode, del_bytes);
 | 
						|
	if (add_bytes > 0)
 | 
						|
		inode_add_bytes(&inode->vfs_inode, add_bytes);
 | 
						|
	spin_unlock(&inode->lock);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Verify that there are no ordered extents for a given file range.
 | 
						|
 *
 | 
						|
 * @inode:   The target inode.
 | 
						|
 * @start:   Start offset of the file range, should be sector size aligned.
 | 
						|
 * @end:     End offset (inclusive) of the file range, its value +1 should be
 | 
						|
 *           sector size aligned.
 | 
						|
 *
 | 
						|
 * This should typically be used for cases where we locked an inode's VFS lock in
 | 
						|
 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
 | 
						|
 * we have flushed all delalloc in the range, we have waited for all ordered
 | 
						|
 * extents in the range to complete and finally we have locked the file range in
 | 
						|
 * the inode's io_tree.
 | 
						|
 */
 | 
						|
void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
 | 
						|
{
 | 
						|
	struct btrfs_root *root = inode->root;
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
 | 
						|
		return;
 | 
						|
 | 
						|
	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
 | 
						|
	if (ordered) {
 | 
						|
		btrfs_err(root->fs_info,
 | 
						|
"found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
 | 
						|
			  start, end, btrfs_ino(inode), root->root_key.objectid,
 | 
						|
			  ordered->file_offset,
 | 
						|
			  ordered->file_offset + ordered->num_bytes - 1);
 | 
						|
		btrfs_put_ordered_extent(ordered);
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(ordered == NULL);
 | 
						|
}
 | 
						|
 | 
						|
static const struct inode_operations btrfs_dir_inode_operations = {
 | 
						|
	.getattr	= btrfs_getattr,
 | 
						|
	.lookup		= btrfs_lookup,
 | 
						|
	.create		= btrfs_create,
 | 
						|
	.unlink		= btrfs_unlink,
 | 
						|
	.link		= btrfs_link,
 | 
						|
	.mkdir		= btrfs_mkdir,
 | 
						|
	.rmdir		= btrfs_rmdir,
 | 
						|
	.rename		= btrfs_rename2,
 | 
						|
	.symlink	= btrfs_symlink,
 | 
						|
	.setattr	= btrfs_setattr,
 | 
						|
	.mknod		= btrfs_mknod,
 | 
						|
	.listxattr	= btrfs_listxattr,
 | 
						|
	.permission	= btrfs_permission,
 | 
						|
	.get_acl	= btrfs_get_acl,
 | 
						|
	.set_acl	= btrfs_set_acl,
 | 
						|
	.update_time	= btrfs_update_time,
 | 
						|
	.tmpfile        = btrfs_tmpfile,
 | 
						|
	.fileattr_get	= btrfs_fileattr_get,
 | 
						|
	.fileattr_set	= btrfs_fileattr_set,
 | 
						|
};
 | 
						|
 | 
						|
static const struct file_operations btrfs_dir_file_operations = {
 | 
						|
	.llseek		= generic_file_llseek,
 | 
						|
	.read		= generic_read_dir,
 | 
						|
	.iterate_shared	= btrfs_real_readdir,
 | 
						|
	.open		= btrfs_opendir,
 | 
						|
	.unlocked_ioctl	= btrfs_ioctl,
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
	.compat_ioctl	= btrfs_compat_ioctl,
 | 
						|
#endif
 | 
						|
	.release        = btrfs_release_file,
 | 
						|
	.fsync		= btrfs_sync_file,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * btrfs doesn't support the bmap operation because swapfiles
 | 
						|
 * use bmap to make a mapping of extents in the file.  They assume
 | 
						|
 * these extents won't change over the life of the file and they
 | 
						|
 * use the bmap result to do IO directly to the drive.
 | 
						|
 *
 | 
						|
 * the btrfs bmap call would return logical addresses that aren't
 | 
						|
 * suitable for IO and they also will change frequently as COW
 | 
						|
 * operations happen.  So, swapfile + btrfs == corruption.
 | 
						|
 *
 | 
						|
 * For now we're avoiding this by dropping bmap.
 | 
						|
 */
 | 
						|
static const struct address_space_operations btrfs_aops = {
 | 
						|
	.read_folio	= btrfs_read_folio,
 | 
						|
	.writepage	= btrfs_writepage,
 | 
						|
	.writepages	= btrfs_writepages,
 | 
						|
	.readahead	= btrfs_readahead,
 | 
						|
	.direct_IO	= noop_direct_IO,
 | 
						|
	.invalidate_folio = btrfs_invalidate_folio,
 | 
						|
	.release_folio	= btrfs_release_folio,
 | 
						|
#ifdef CONFIG_MIGRATION
 | 
						|
	.migratepage	= btrfs_migratepage,
 | 
						|
#endif
 | 
						|
	.dirty_folio	= filemap_dirty_folio,
 | 
						|
	.error_remove_page = generic_error_remove_page,
 | 
						|
	.swap_activate	= btrfs_swap_activate,
 | 
						|
	.swap_deactivate = btrfs_swap_deactivate,
 | 
						|
};
 | 
						|
 | 
						|
static const struct inode_operations btrfs_file_inode_operations = {
 | 
						|
	.getattr	= btrfs_getattr,
 | 
						|
	.setattr	= btrfs_setattr,
 | 
						|
	.listxattr      = btrfs_listxattr,
 | 
						|
	.permission	= btrfs_permission,
 | 
						|
	.fiemap		= btrfs_fiemap,
 | 
						|
	.get_acl	= btrfs_get_acl,
 | 
						|
	.set_acl	= btrfs_set_acl,
 | 
						|
	.update_time	= btrfs_update_time,
 | 
						|
	.fileattr_get	= btrfs_fileattr_get,
 | 
						|
	.fileattr_set	= btrfs_fileattr_set,
 | 
						|
};
 | 
						|
static const struct inode_operations btrfs_special_inode_operations = {
 | 
						|
	.getattr	= btrfs_getattr,
 | 
						|
	.setattr	= btrfs_setattr,
 | 
						|
	.permission	= btrfs_permission,
 | 
						|
	.listxattr	= btrfs_listxattr,
 | 
						|
	.get_acl	= btrfs_get_acl,
 | 
						|
	.set_acl	= btrfs_set_acl,
 | 
						|
	.update_time	= btrfs_update_time,
 | 
						|
};
 | 
						|
static const struct inode_operations btrfs_symlink_inode_operations = {
 | 
						|
	.get_link	= page_get_link,
 | 
						|
	.getattr	= btrfs_getattr,
 | 
						|
	.setattr	= btrfs_setattr,
 | 
						|
	.permission	= btrfs_permission,
 | 
						|
	.listxattr	= btrfs_listxattr,
 | 
						|
	.update_time	= btrfs_update_time,
 | 
						|
};
 | 
						|
 | 
						|
const struct dentry_operations btrfs_dentry_operations = {
 | 
						|
	.d_delete	= btrfs_dentry_delete,
 | 
						|
};
 |