mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	These are the folio equivalents of relock_page_lruvec_irq() and folio_lruvec_relock_irqsave(). Also convert page_matches_lruvec() to folio_matches_lruvec(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
		
			
				
	
	
		
			856 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			856 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 *	linux/mm/mlock.c
 | 
						|
 *
 | 
						|
 *  (C) Copyright 1995 Linus Torvalds
 | 
						|
 *  (C) Copyright 2002 Christoph Hellwig
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/capability.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/sched/user.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/mempolicy.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include <linux/mmzone.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/memcontrol.h>
 | 
						|
#include <linux/mm_inline.h>
 | 
						|
#include <linux/secretmem.h>
 | 
						|
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
bool can_do_mlock(void)
 | 
						|
{
 | 
						|
	if (rlimit(RLIMIT_MEMLOCK) != 0)
 | 
						|
		return true;
 | 
						|
	if (capable(CAP_IPC_LOCK))
 | 
						|
		return true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(can_do_mlock);
 | 
						|
 | 
						|
/*
 | 
						|
 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 | 
						|
 * in vmscan and, possibly, the fault path; and to support semi-accurate
 | 
						|
 * statistics.
 | 
						|
 *
 | 
						|
 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 | 
						|
 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 | 
						|
 * The unevictable list is an LRU sibling list to the [in]active lists.
 | 
						|
 * PageUnevictable is set to indicate the unevictable state.
 | 
						|
 *
 | 
						|
 * When lazy mlocking via vmscan, it is important to ensure that the
 | 
						|
 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
 | 
						|
 * may have mlocked a page that is being munlocked. So lazy mlock must take
 | 
						|
 * the mmap_lock for read, and verify that the vma really is locked
 | 
						|
 * (see mm/rmap.c).
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 *  LRU accounting for clear_page_mlock()
 | 
						|
 */
 | 
						|
void clear_page_mlock(struct page *page)
 | 
						|
{
 | 
						|
	int nr_pages;
 | 
						|
 | 
						|
	if (!TestClearPageMlocked(page))
 | 
						|
		return;
 | 
						|
 | 
						|
	nr_pages = thp_nr_pages(page);
 | 
						|
	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
 | 
						|
	count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
 | 
						|
	/*
 | 
						|
	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
 | 
						|
	 * in __pagevec_lru_add_fn().
 | 
						|
	 *
 | 
						|
	 * See __pagevec_lru_add_fn for more explanation.
 | 
						|
	 */
 | 
						|
	if (!isolate_lru_page(page)) {
 | 
						|
		putback_lru_page(page);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * We lost the race. the page already moved to evictable list.
 | 
						|
		 */
 | 
						|
		if (PageUnevictable(page))
 | 
						|
			count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Mark page as mlocked if not already.
 | 
						|
 * If page on LRU, isolate and putback to move to unevictable list.
 | 
						|
 */
 | 
						|
void mlock_vma_page(struct page *page)
 | 
						|
{
 | 
						|
	/* Serialize with page migration */
 | 
						|
	BUG_ON(!PageLocked(page));
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(PageTail(page), page);
 | 
						|
	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
 | 
						|
 | 
						|
	if (!TestSetPageMlocked(page)) {
 | 
						|
		int nr_pages = thp_nr_pages(page);
 | 
						|
 | 
						|
		mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
 | 
						|
		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
 | 
						|
		if (!isolate_lru_page(page))
 | 
						|
			putback_lru_page(page);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Finish munlock after successful page isolation
 | 
						|
 *
 | 
						|
 * Page must be locked. This is a wrapper for page_mlock()
 | 
						|
 * and putback_lru_page() with munlock accounting.
 | 
						|
 */
 | 
						|
static void __munlock_isolated_page(struct page *page)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Optimization: if the page was mapped just once, that's our mapping
 | 
						|
	 * and we don't need to check all the other vmas.
 | 
						|
	 */
 | 
						|
	if (page_mapcount(page) > 1)
 | 
						|
		page_mlock(page);
 | 
						|
 | 
						|
	/* Did try_to_unlock() succeed or punt? */
 | 
						|
	if (!PageMlocked(page))
 | 
						|
		count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
 | 
						|
 | 
						|
	putback_lru_page(page);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Accounting for page isolation fail during munlock
 | 
						|
 *
 | 
						|
 * Performs accounting when page isolation fails in munlock. There is nothing
 | 
						|
 * else to do because it means some other task has already removed the page
 | 
						|
 * from the LRU. putback_lru_page() will take care of removing the page from
 | 
						|
 * the unevictable list, if necessary. vmscan [page_referenced()] will move
 | 
						|
 * the page back to the unevictable list if some other vma has it mlocked.
 | 
						|
 */
 | 
						|
static void __munlock_isolation_failed(struct page *page)
 | 
						|
{
 | 
						|
	int nr_pages = thp_nr_pages(page);
 | 
						|
 | 
						|
	if (PageUnevictable(page))
 | 
						|
		__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
 | 
						|
	else
 | 
						|
		__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * munlock_vma_page - munlock a vma page
 | 
						|
 * @page: page to be unlocked, either a normal page or THP page head
 | 
						|
 *
 | 
						|
 * returns the size of the page as a page mask (0 for normal page,
 | 
						|
 *         HPAGE_PMD_NR - 1 for THP head page)
 | 
						|
 *
 | 
						|
 * called from munlock()/munmap() path with page supposedly on the LRU.
 | 
						|
 * When we munlock a page, because the vma where we found the page is being
 | 
						|
 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 | 
						|
 * page locked so that we can leave it on the unevictable lru list and not
 | 
						|
 * bother vmscan with it.  However, to walk the page's rmap list in
 | 
						|
 * page_mlock() we must isolate the page from the LRU.  If some other
 | 
						|
 * task has removed the page from the LRU, we won't be able to do that.
 | 
						|
 * So we clear the PageMlocked as we might not get another chance.  If we
 | 
						|
 * can't isolate the page, we leave it for putback_lru_page() and vmscan
 | 
						|
 * [page_referenced()/try_to_unmap()] to deal with.
 | 
						|
 */
 | 
						|
unsigned int munlock_vma_page(struct page *page)
 | 
						|
{
 | 
						|
	int nr_pages;
 | 
						|
 | 
						|
	/* For page_mlock() and to serialize with page migration */
 | 
						|
	BUG_ON(!PageLocked(page));
 | 
						|
	VM_BUG_ON_PAGE(PageTail(page), page);
 | 
						|
 | 
						|
	if (!TestClearPageMlocked(page)) {
 | 
						|
		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	nr_pages = thp_nr_pages(page);
 | 
						|
	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
 | 
						|
 | 
						|
	if (!isolate_lru_page(page))
 | 
						|
		__munlock_isolated_page(page);
 | 
						|
	else
 | 
						|
		__munlock_isolation_failed(page);
 | 
						|
 | 
						|
	return nr_pages - 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * convert get_user_pages() return value to posix mlock() error
 | 
						|
 */
 | 
						|
static int __mlock_posix_error_return(long retval)
 | 
						|
{
 | 
						|
	if (retval == -EFAULT)
 | 
						|
		retval = -ENOMEM;
 | 
						|
	else if (retval == -ENOMEM)
 | 
						|
		retval = -EAGAIN;
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
 | 
						|
 *
 | 
						|
 * The fast path is available only for evictable pages with single mapping.
 | 
						|
 * Then we can bypass the per-cpu pvec and get better performance.
 | 
						|
 * when mapcount > 1 we need page_mlock() which can fail.
 | 
						|
 * when !page_evictable(), we need the full redo logic of putback_lru_page to
 | 
						|
 * avoid leaving evictable page in unevictable list.
 | 
						|
 *
 | 
						|
 * In case of success, @page is added to @pvec and @pgrescued is incremented
 | 
						|
 * in case that the page was previously unevictable. @page is also unlocked.
 | 
						|
 */
 | 
						|
static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
 | 
						|
		int *pgrescued)
 | 
						|
{
 | 
						|
	VM_BUG_ON_PAGE(PageLRU(page), page);
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
 | 
						|
	if (page_mapcount(page) <= 1 && page_evictable(page)) {
 | 
						|
		pagevec_add(pvec, page);
 | 
						|
		if (TestClearPageUnevictable(page))
 | 
						|
			(*pgrescued)++;
 | 
						|
		unlock_page(page);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Putback multiple evictable pages to the LRU
 | 
						|
 *
 | 
						|
 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
 | 
						|
 * the pages might have meanwhile become unevictable but that is OK.
 | 
						|
 */
 | 
						|
static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
 | 
						|
{
 | 
						|
	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
 | 
						|
	/*
 | 
						|
	 *__pagevec_lru_add() calls release_pages() so we don't call
 | 
						|
	 * put_page() explicitly
 | 
						|
	 */
 | 
						|
	__pagevec_lru_add(pvec);
 | 
						|
	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Munlock a batch of pages from the same zone
 | 
						|
 *
 | 
						|
 * The work is split to two main phases. First phase clears the Mlocked flag
 | 
						|
 * and attempts to isolate the pages, all under a single zone lru lock.
 | 
						|
 * The second phase finishes the munlock only for pages where isolation
 | 
						|
 * succeeded.
 | 
						|
 *
 | 
						|
 * Note that the pagevec may be modified during the process.
 | 
						|
 */
 | 
						|
static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int nr = pagevec_count(pvec);
 | 
						|
	int delta_munlocked = -nr;
 | 
						|
	struct pagevec pvec_putback;
 | 
						|
	struct lruvec *lruvec = NULL;
 | 
						|
	int pgrescued = 0;
 | 
						|
 | 
						|
	pagevec_init(&pvec_putback);
 | 
						|
 | 
						|
	/* Phase 1: page isolation */
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		struct page *page = pvec->pages[i];
 | 
						|
		struct folio *folio = page_folio(page);
 | 
						|
 | 
						|
		if (TestClearPageMlocked(page)) {
 | 
						|
			/*
 | 
						|
			 * We already have pin from follow_page_mask()
 | 
						|
			 * so we can spare the get_page() here.
 | 
						|
			 */
 | 
						|
			if (TestClearPageLRU(page)) {
 | 
						|
				lruvec = folio_lruvec_relock_irq(folio, lruvec);
 | 
						|
				del_page_from_lru_list(page, lruvec);
 | 
						|
				continue;
 | 
						|
			} else
 | 
						|
				__munlock_isolation_failed(page);
 | 
						|
		} else {
 | 
						|
			delta_munlocked++;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We won't be munlocking this page in the next phase
 | 
						|
		 * but we still need to release the follow_page_mask()
 | 
						|
		 * pin. We cannot do it under lru_lock however. If it's
 | 
						|
		 * the last pin, __page_cache_release() would deadlock.
 | 
						|
		 */
 | 
						|
		pagevec_add(&pvec_putback, pvec->pages[i]);
 | 
						|
		pvec->pages[i] = NULL;
 | 
						|
	}
 | 
						|
	if (lruvec) {
 | 
						|
		__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
 | 
						|
		unlock_page_lruvec_irq(lruvec);
 | 
						|
	} else if (delta_munlocked) {
 | 
						|
		mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Now we can release pins of pages that we are not munlocking */
 | 
						|
	pagevec_release(&pvec_putback);
 | 
						|
 | 
						|
	/* Phase 2: page munlock */
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		struct page *page = pvec->pages[i];
 | 
						|
 | 
						|
		if (page) {
 | 
						|
			lock_page(page);
 | 
						|
			if (!__putback_lru_fast_prepare(page, &pvec_putback,
 | 
						|
					&pgrescued)) {
 | 
						|
				/*
 | 
						|
				 * Slow path. We don't want to lose the last
 | 
						|
				 * pin before unlock_page()
 | 
						|
				 */
 | 
						|
				get_page(page); /* for putback_lru_page() */
 | 
						|
				__munlock_isolated_page(page);
 | 
						|
				unlock_page(page);
 | 
						|
				put_page(page); /* from follow_page_mask() */
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Phase 3: page putback for pages that qualified for the fast path
 | 
						|
	 * This will also call put_page() to return pin from follow_page_mask()
 | 
						|
	 */
 | 
						|
	if (pagevec_count(&pvec_putback))
 | 
						|
		__putback_lru_fast(&pvec_putback, pgrescued);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Fill up pagevec for __munlock_pagevec using pte walk
 | 
						|
 *
 | 
						|
 * The function expects that the struct page corresponding to @start address is
 | 
						|
 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
 | 
						|
 *
 | 
						|
 * The rest of @pvec is filled by subsequent pages within the same pmd and same
 | 
						|
 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
 | 
						|
 * pages also get pinned.
 | 
						|
 *
 | 
						|
 * Returns the address of the next page that should be scanned. This equals
 | 
						|
 * @start + PAGE_SIZE when no page could be added by the pte walk.
 | 
						|
 */
 | 
						|
static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
 | 
						|
			struct vm_area_struct *vma, struct zone *zone,
 | 
						|
			unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	pte_t *pte;
 | 
						|
	spinlock_t *ptl;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize pte walk starting at the already pinned page where we
 | 
						|
	 * are sure that there is a pte, as it was pinned under the same
 | 
						|
	 * mmap_lock write op.
 | 
						|
	 */
 | 
						|
	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
 | 
						|
	/* Make sure we do not cross the page table boundary */
 | 
						|
	end = pgd_addr_end(start, end);
 | 
						|
	end = p4d_addr_end(start, end);
 | 
						|
	end = pud_addr_end(start, end);
 | 
						|
	end = pmd_addr_end(start, end);
 | 
						|
 | 
						|
	/* The page next to the pinned page is the first we will try to get */
 | 
						|
	start += PAGE_SIZE;
 | 
						|
	while (start < end) {
 | 
						|
		struct page *page = NULL;
 | 
						|
		pte++;
 | 
						|
		if (pte_present(*pte))
 | 
						|
			page = vm_normal_page(vma, start, *pte);
 | 
						|
		/*
 | 
						|
		 * Break if page could not be obtained or the page's node+zone does not
 | 
						|
		 * match
 | 
						|
		 */
 | 
						|
		if (!page || page_zone(page) != zone)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Do not use pagevec for PTE-mapped THP,
 | 
						|
		 * munlock_vma_pages_range() will handle them.
 | 
						|
		 */
 | 
						|
		if (PageTransCompound(page))
 | 
						|
			break;
 | 
						|
 | 
						|
		get_page(page);
 | 
						|
		/*
 | 
						|
		 * Increase the address that will be returned *before* the
 | 
						|
		 * eventual break due to pvec becoming full by adding the page
 | 
						|
		 */
 | 
						|
		start += PAGE_SIZE;
 | 
						|
		if (pagevec_add(pvec, page) == 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	pte_unmap_unlock(pte, ptl);
 | 
						|
	return start;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * munlock_vma_pages_range() - munlock all pages in the vma range.'
 | 
						|
 * @vma - vma containing range to be munlock()ed.
 | 
						|
 * @start - start address in @vma of the range
 | 
						|
 * @end - end of range in @vma.
 | 
						|
 *
 | 
						|
 *  For mremap(), munmap() and exit().
 | 
						|
 *
 | 
						|
 * Called with @vma VM_LOCKED.
 | 
						|
 *
 | 
						|
 * Returns with VM_LOCKED cleared.  Callers must be prepared to
 | 
						|
 * deal with this.
 | 
						|
 *
 | 
						|
 * We don't save and restore VM_LOCKED here because pages are
 | 
						|
 * still on lru.  In unmap path, pages might be scanned by reclaim
 | 
						|
 * and re-mlocked by page_mlock/try_to_unmap before we unmap and
 | 
						|
 * free them.  This will result in freeing mlocked pages.
 | 
						|
 */
 | 
						|
void munlock_vma_pages_range(struct vm_area_struct *vma,
 | 
						|
			     unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
 | 
						|
 | 
						|
	while (start < end) {
 | 
						|
		struct page *page;
 | 
						|
		unsigned int page_mask = 0;
 | 
						|
		unsigned long page_increm;
 | 
						|
		struct pagevec pvec;
 | 
						|
		struct zone *zone;
 | 
						|
 | 
						|
		pagevec_init(&pvec);
 | 
						|
		/*
 | 
						|
		 * Although FOLL_DUMP is intended for get_dump_page(),
 | 
						|
		 * it just so happens that its special treatment of the
 | 
						|
		 * ZERO_PAGE (returning an error instead of doing get_page)
 | 
						|
		 * suits munlock very well (and if somehow an abnormal page
 | 
						|
		 * has sneaked into the range, we won't oops here: great).
 | 
						|
		 */
 | 
						|
		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
 | 
						|
 | 
						|
		if (page && !IS_ERR(page)) {
 | 
						|
			if (PageTransTail(page)) {
 | 
						|
				VM_BUG_ON_PAGE(PageMlocked(page), page);
 | 
						|
				put_page(page); /* follow_page_mask() */
 | 
						|
			} else if (PageTransHuge(page)) {
 | 
						|
				lock_page(page);
 | 
						|
				/*
 | 
						|
				 * Any THP page found by follow_page_mask() may
 | 
						|
				 * have gotten split before reaching
 | 
						|
				 * munlock_vma_page(), so we need to compute
 | 
						|
				 * the page_mask here instead.
 | 
						|
				 */
 | 
						|
				page_mask = munlock_vma_page(page);
 | 
						|
				unlock_page(page);
 | 
						|
				put_page(page); /* follow_page_mask() */
 | 
						|
			} else {
 | 
						|
				/*
 | 
						|
				 * Non-huge pages are handled in batches via
 | 
						|
				 * pagevec. The pin from follow_page_mask()
 | 
						|
				 * prevents them from collapsing by THP.
 | 
						|
				 */
 | 
						|
				pagevec_add(&pvec, page);
 | 
						|
				zone = page_zone(page);
 | 
						|
 | 
						|
				/*
 | 
						|
				 * Try to fill the rest of pagevec using fast
 | 
						|
				 * pte walk. This will also update start to
 | 
						|
				 * the next page to process. Then munlock the
 | 
						|
				 * pagevec.
 | 
						|
				 */
 | 
						|
				start = __munlock_pagevec_fill(&pvec, vma,
 | 
						|
						zone, start, end);
 | 
						|
				__munlock_pagevec(&pvec, zone);
 | 
						|
				goto next;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		page_increm = 1 + page_mask;
 | 
						|
		start += page_increm * PAGE_SIZE;
 | 
						|
next:
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
 | 
						|
 *
 | 
						|
 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
 | 
						|
 * munlock is a no-op.  However, for some special vmas, we go ahead and
 | 
						|
 * populate the ptes.
 | 
						|
 *
 | 
						|
 * For vmas that pass the filters, merge/split as appropriate.
 | 
						|
 */
 | 
						|
static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
 | 
						|
	unsigned long start, unsigned long end, vm_flags_t newflags)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	pgoff_t pgoff;
 | 
						|
	int nr_pages;
 | 
						|
	int ret = 0;
 | 
						|
	int lock = !!(newflags & VM_LOCKED);
 | 
						|
	vm_flags_t old_flags = vma->vm_flags;
 | 
						|
 | 
						|
	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
 | 
						|
	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
 | 
						|
	    vma_is_dax(vma) || vma_is_secretmem(vma))
 | 
						|
		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
 | 
						|
		goto out;
 | 
						|
 | 
						|
	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 | 
						|
	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
 | 
						|
			  vma->vm_file, pgoff, vma_policy(vma),
 | 
						|
			  vma->vm_userfaultfd_ctx);
 | 
						|
	if (*prev) {
 | 
						|
		vma = *prev;
 | 
						|
		goto success;
 | 
						|
	}
 | 
						|
 | 
						|
	if (start != vma->vm_start) {
 | 
						|
		ret = split_vma(mm, vma, start, 1);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (end != vma->vm_end) {
 | 
						|
		ret = split_vma(mm, vma, end, 0);
 | 
						|
		if (ret)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
success:
 | 
						|
	/*
 | 
						|
	 * Keep track of amount of locked VM.
 | 
						|
	 */
 | 
						|
	nr_pages = (end - start) >> PAGE_SHIFT;
 | 
						|
	if (!lock)
 | 
						|
		nr_pages = -nr_pages;
 | 
						|
	else if (old_flags & VM_LOCKED)
 | 
						|
		nr_pages = 0;
 | 
						|
	mm->locked_vm += nr_pages;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * vm_flags is protected by the mmap_lock held in write mode.
 | 
						|
	 * It's okay if try_to_unmap_one unmaps a page just after we
 | 
						|
	 * set VM_LOCKED, populate_vma_page_range will bring it back.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (lock)
 | 
						|
		vma->vm_flags = newflags;
 | 
						|
	else
 | 
						|
		munlock_vma_pages_range(vma, start, end);
 | 
						|
 | 
						|
out:
 | 
						|
	*prev = vma;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int apply_vma_lock_flags(unsigned long start, size_t len,
 | 
						|
				vm_flags_t flags)
 | 
						|
{
 | 
						|
	unsigned long nstart, end, tmp;
 | 
						|
	struct vm_area_struct *vma, *prev;
 | 
						|
	int error;
 | 
						|
 | 
						|
	VM_BUG_ON(offset_in_page(start));
 | 
						|
	VM_BUG_ON(len != PAGE_ALIGN(len));
 | 
						|
	end = start + len;
 | 
						|
	if (end < start)
 | 
						|
		return -EINVAL;
 | 
						|
	if (end == start)
 | 
						|
		return 0;
 | 
						|
	vma = find_vma(current->mm, start);
 | 
						|
	if (!vma || vma->vm_start > start)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	prev = vma->vm_prev;
 | 
						|
	if (start > vma->vm_start)
 | 
						|
		prev = vma;
 | 
						|
 | 
						|
	for (nstart = start ; ; ) {
 | 
						|
		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 | 
						|
 | 
						|
		newflags |= flags;
 | 
						|
 | 
						|
		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 | 
						|
		tmp = vma->vm_end;
 | 
						|
		if (tmp > end)
 | 
						|
			tmp = end;
 | 
						|
		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
 | 
						|
		if (error)
 | 
						|
			break;
 | 
						|
		nstart = tmp;
 | 
						|
		if (nstart < prev->vm_end)
 | 
						|
			nstart = prev->vm_end;
 | 
						|
		if (nstart >= end)
 | 
						|
			break;
 | 
						|
 | 
						|
		vma = prev->vm_next;
 | 
						|
		if (!vma || vma->vm_start != nstart) {
 | 
						|
			error = -ENOMEM;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Go through vma areas and sum size of mlocked
 | 
						|
 * vma pages, as return value.
 | 
						|
 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
 | 
						|
 * is also counted.
 | 
						|
 * Return value: previously mlocked page counts
 | 
						|
 */
 | 
						|
static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
 | 
						|
		unsigned long start, size_t len)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	unsigned long count = 0;
 | 
						|
 | 
						|
	if (mm == NULL)
 | 
						|
		mm = current->mm;
 | 
						|
 | 
						|
	vma = find_vma(mm, start);
 | 
						|
	if (vma == NULL)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	for (; vma ; vma = vma->vm_next) {
 | 
						|
		if (start >= vma->vm_end)
 | 
						|
			continue;
 | 
						|
		if (start + len <=  vma->vm_start)
 | 
						|
			break;
 | 
						|
		if (vma->vm_flags & VM_LOCKED) {
 | 
						|
			if (start > vma->vm_start)
 | 
						|
				count -= (start - vma->vm_start);
 | 
						|
			if (start + len < vma->vm_end) {
 | 
						|
				count += start + len - vma->vm_start;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			count += vma->vm_end - vma->vm_start;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return count >> PAGE_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
 | 
						|
{
 | 
						|
	unsigned long locked;
 | 
						|
	unsigned long lock_limit;
 | 
						|
	int error = -ENOMEM;
 | 
						|
 | 
						|
	start = untagged_addr(start);
 | 
						|
 | 
						|
	if (!can_do_mlock())
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	len = PAGE_ALIGN(len + (offset_in_page(start)));
 | 
						|
	start &= PAGE_MASK;
 | 
						|
 | 
						|
	lock_limit = rlimit(RLIMIT_MEMLOCK);
 | 
						|
	lock_limit >>= PAGE_SHIFT;
 | 
						|
	locked = len >> PAGE_SHIFT;
 | 
						|
 | 
						|
	if (mmap_write_lock_killable(current->mm))
 | 
						|
		return -EINTR;
 | 
						|
 | 
						|
	locked += current->mm->locked_vm;
 | 
						|
	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
 | 
						|
		/*
 | 
						|
		 * It is possible that the regions requested intersect with
 | 
						|
		 * previously mlocked areas, that part area in "mm->locked_vm"
 | 
						|
		 * should not be counted to new mlock increment count. So check
 | 
						|
		 * and adjust locked count if necessary.
 | 
						|
		 */
 | 
						|
		locked -= count_mm_mlocked_page_nr(current->mm,
 | 
						|
				start, len);
 | 
						|
	}
 | 
						|
 | 
						|
	/* check against resource limits */
 | 
						|
	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
 | 
						|
		error = apply_vma_lock_flags(start, len, flags);
 | 
						|
 | 
						|
	mmap_write_unlock(current->mm);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	error = __mm_populate(start, len, 0);
 | 
						|
	if (error)
 | 
						|
		return __mlock_posix_error_return(error);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 | 
						|
{
 | 
						|
	return do_mlock(start, len, VM_LOCKED);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
 | 
						|
{
 | 
						|
	vm_flags_t vm_flags = VM_LOCKED;
 | 
						|
 | 
						|
	if (flags & ~MLOCK_ONFAULT)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (flags & MLOCK_ONFAULT)
 | 
						|
		vm_flags |= VM_LOCKONFAULT;
 | 
						|
 | 
						|
	return do_mlock(start, len, vm_flags);
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	start = untagged_addr(start);
 | 
						|
 | 
						|
	len = PAGE_ALIGN(len + (offset_in_page(start)));
 | 
						|
	start &= PAGE_MASK;
 | 
						|
 | 
						|
	if (mmap_write_lock_killable(current->mm))
 | 
						|
		return -EINTR;
 | 
						|
	ret = apply_vma_lock_flags(start, len, 0);
 | 
						|
	mmap_write_unlock(current->mm);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
 | 
						|
 * and translate into the appropriate modifications to mm->def_flags and/or the
 | 
						|
 * flags for all current VMAs.
 | 
						|
 *
 | 
						|
 * There are a couple of subtleties with this.  If mlockall() is called multiple
 | 
						|
 * times with different flags, the values do not necessarily stack.  If mlockall
 | 
						|
 * is called once including the MCL_FUTURE flag and then a second time without
 | 
						|
 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
 | 
						|
 */
 | 
						|
static int apply_mlockall_flags(int flags)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma, *prev = NULL;
 | 
						|
	vm_flags_t to_add = 0;
 | 
						|
 | 
						|
	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
 | 
						|
	if (flags & MCL_FUTURE) {
 | 
						|
		current->mm->def_flags |= VM_LOCKED;
 | 
						|
 | 
						|
		if (flags & MCL_ONFAULT)
 | 
						|
			current->mm->def_flags |= VM_LOCKONFAULT;
 | 
						|
 | 
						|
		if (!(flags & MCL_CURRENT))
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (flags & MCL_CURRENT) {
 | 
						|
		to_add |= VM_LOCKED;
 | 
						|
		if (flags & MCL_ONFAULT)
 | 
						|
			to_add |= VM_LOCKONFAULT;
 | 
						|
	}
 | 
						|
 | 
						|
	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
 | 
						|
		vm_flags_t newflags;
 | 
						|
 | 
						|
		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 | 
						|
		newflags |= to_add;
 | 
						|
 | 
						|
		/* Ignore errors */
 | 
						|
		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE1(mlockall, int, flags)
 | 
						|
{
 | 
						|
	unsigned long lock_limit;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
 | 
						|
	    flags == MCL_ONFAULT)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (!can_do_mlock())
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	lock_limit = rlimit(RLIMIT_MEMLOCK);
 | 
						|
	lock_limit >>= PAGE_SHIFT;
 | 
						|
 | 
						|
	if (mmap_write_lock_killable(current->mm))
 | 
						|
		return -EINTR;
 | 
						|
 | 
						|
	ret = -ENOMEM;
 | 
						|
	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
 | 
						|
	    capable(CAP_IPC_LOCK))
 | 
						|
		ret = apply_mlockall_flags(flags);
 | 
						|
	mmap_write_unlock(current->mm);
 | 
						|
	if (!ret && (flags & MCL_CURRENT))
 | 
						|
		mm_populate(0, TASK_SIZE);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE0(munlockall)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (mmap_write_lock_killable(current->mm))
 | 
						|
		return -EINTR;
 | 
						|
	ret = apply_mlockall_flags(0);
 | 
						|
	mmap_write_unlock(current->mm);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
 | 
						|
 * shm segments) get accounted against the user_struct instead.
 | 
						|
 */
 | 
						|
static DEFINE_SPINLOCK(shmlock_user_lock);
 | 
						|
 | 
						|
int user_shm_lock(size_t size, struct ucounts *ucounts)
 | 
						|
{
 | 
						|
	unsigned long lock_limit, locked;
 | 
						|
	long memlock;
 | 
						|
	int allowed = 0;
 | 
						|
 | 
						|
	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | 
						|
	lock_limit = rlimit(RLIMIT_MEMLOCK);
 | 
						|
	if (lock_limit == RLIM_INFINITY)
 | 
						|
		allowed = 1;
 | 
						|
	lock_limit >>= PAGE_SHIFT;
 | 
						|
	spin_lock(&shmlock_user_lock);
 | 
						|
	memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
 | 
						|
 | 
						|
	if (!allowed && (memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
 | 
						|
		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (!get_ucounts(ucounts)) {
 | 
						|
		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	allowed = 1;
 | 
						|
out:
 | 
						|
	spin_unlock(&shmlock_user_lock);
 | 
						|
	return allowed;
 | 
						|
}
 | 
						|
 | 
						|
void user_shm_unlock(size_t size, struct ucounts *ucounts)
 | 
						|
{
 | 
						|
	spin_lock(&shmlock_user_lock);
 | 
						|
	dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
 | 
						|
	spin_unlock(&shmlock_user_lock);
 | 
						|
	put_ucounts(ucounts);
 | 
						|
}
 |