mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	As lib/mpi is mostly used by crypto code, move it under lib/crypto so that patches touching it get directed to the right mailing list. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Reviewed-by: Mimi Zohar <zohar@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			509 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			509 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/* mpihelp-mul.c  -  MPI helper functions
 | 
						|
 * Copyright (C) 1994, 1996, 1998, 1999,
 | 
						|
 *               2000 Free Software Foundation, Inc.
 | 
						|
 *
 | 
						|
 * This file is part of GnuPG.
 | 
						|
 *
 | 
						|
 * Note: This code is heavily based on the GNU MP Library.
 | 
						|
 *	 Actually it's the same code with only minor changes in the
 | 
						|
 *	 way the data is stored; this is to support the abstraction
 | 
						|
 *	 of an optional secure memory allocation which may be used
 | 
						|
 *	 to avoid revealing of sensitive data due to paging etc.
 | 
						|
 *	 The GNU MP Library itself is published under the LGPL;
 | 
						|
 *	 however I decided to publish this code under the plain GPL.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/string.h>
 | 
						|
#include "mpi-internal.h"
 | 
						|
#include "longlong.h"
 | 
						|
 | 
						|
#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace)		\
 | 
						|
	do {							\
 | 
						|
		if ((size) < KARATSUBA_THRESHOLD)		\
 | 
						|
			mul_n_basecase(prodp, up, vp, size);	\
 | 
						|
		else						\
 | 
						|
			mul_n(prodp, up, vp, size, tspace);	\
 | 
						|
	} while (0);
 | 
						|
 | 
						|
#define MPN_SQR_N_RECURSE(prodp, up, size, tspace)		\
 | 
						|
	do {							\
 | 
						|
		if ((size) < KARATSUBA_THRESHOLD)		\
 | 
						|
			mpih_sqr_n_basecase(prodp, up, size);	\
 | 
						|
		else						\
 | 
						|
			mpih_sqr_n(prodp, up, size, tspace);	\
 | 
						|
	} while (0);
 | 
						|
 | 
						|
/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
 | 
						|
 * both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
 | 
						|
 * always stored.  Return the most significant limb.
 | 
						|
 *
 | 
						|
 * Argument constraints:
 | 
						|
 * 1. PRODP != UP and PRODP != VP, i.e. the destination
 | 
						|
 *    must be distinct from the multiplier and the multiplicand.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * Handle simple cases with traditional multiplication.
 | 
						|
 *
 | 
						|
 * This is the most critical code of multiplication.  All multiplies rely
 | 
						|
 * on this, both small and huge.  Small ones arrive here immediately.  Huge
 | 
						|
 * ones arrive here as this is the base case for Karatsuba's recursive
 | 
						|
 * algorithm below.
 | 
						|
 */
 | 
						|
 | 
						|
static mpi_limb_t
 | 
						|
mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
 | 
						|
{
 | 
						|
	mpi_size_t i;
 | 
						|
	mpi_limb_t cy;
 | 
						|
	mpi_limb_t v_limb;
 | 
						|
 | 
						|
	/* Multiply by the first limb in V separately, as the result can be
 | 
						|
	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
 | 
						|
	v_limb = vp[0];
 | 
						|
	if (v_limb <= 1) {
 | 
						|
		if (v_limb == 1)
 | 
						|
			MPN_COPY(prodp, up, size);
 | 
						|
		else
 | 
						|
			MPN_ZERO(prodp, size);
 | 
						|
		cy = 0;
 | 
						|
	} else
 | 
						|
		cy = mpihelp_mul_1(prodp, up, size, v_limb);
 | 
						|
 | 
						|
	prodp[size] = cy;
 | 
						|
	prodp++;
 | 
						|
 | 
						|
	/* For each iteration in the outer loop, multiply one limb from
 | 
						|
	 * U with one limb from V, and add it to PROD.  */
 | 
						|
	for (i = 1; i < size; i++) {
 | 
						|
		v_limb = vp[i];
 | 
						|
		if (v_limb <= 1) {
 | 
						|
			cy = 0;
 | 
						|
			if (v_limb == 1)
 | 
						|
				cy = mpihelp_add_n(prodp, prodp, up, size);
 | 
						|
		} else
 | 
						|
			cy = mpihelp_addmul_1(prodp, up, size, v_limb);
 | 
						|
 | 
						|
		prodp[size] = cy;
 | 
						|
		prodp++;
 | 
						|
	}
 | 
						|
 | 
						|
	return cy;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
 | 
						|
		mpi_size_t size, mpi_ptr_t tspace)
 | 
						|
{
 | 
						|
	if (size & 1) {
 | 
						|
		/* The size is odd, and the code below doesn't handle that.
 | 
						|
		 * Multiply the least significant (size - 1) limbs with a recursive
 | 
						|
		 * call, and handle the most significant limb of S1 and S2
 | 
						|
		 * separately.
 | 
						|
		 * A slightly faster way to do this would be to make the Karatsuba
 | 
						|
		 * code below behave as if the size were even, and let it check for
 | 
						|
		 * odd size in the end.  I.e., in essence move this code to the end.
 | 
						|
		 * Doing so would save us a recursive call, and potentially make the
 | 
						|
		 * stack grow a lot less.
 | 
						|
		 */
 | 
						|
		mpi_size_t esize = size - 1;	/* even size */
 | 
						|
		mpi_limb_t cy_limb;
 | 
						|
 | 
						|
		MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace);
 | 
						|
		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]);
 | 
						|
		prodp[esize + esize] = cy_limb;
 | 
						|
		cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]);
 | 
						|
		prodp[esize + size] = cy_limb;
 | 
						|
	} else {
 | 
						|
		/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
 | 
						|
		 *
 | 
						|
		 * Split U in two pieces, U1 and U0, such that
 | 
						|
		 * U = U0 + U1*(B**n),
 | 
						|
		 * and V in V1 and V0, such that
 | 
						|
		 * V = V0 + V1*(B**n).
 | 
						|
		 *
 | 
						|
		 * UV is then computed recursively using the identity
 | 
						|
		 *
 | 
						|
		 *        2n   n          n                     n
 | 
						|
		 * UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
 | 
						|
		 *                1 1        1  0   0  1              0 0
 | 
						|
		 *
 | 
						|
		 * Where B = 2**BITS_PER_MP_LIMB.
 | 
						|
		 */
 | 
						|
		mpi_size_t hsize = size >> 1;
 | 
						|
		mpi_limb_t cy;
 | 
						|
		int negflg;
 | 
						|
 | 
						|
		/* Product H.      ________________  ________________
 | 
						|
		 *                |_____U1 x V1____||____U0 x V0_____|
 | 
						|
		 * Put result in upper part of PROD and pass low part of TSPACE
 | 
						|
		 * as new TSPACE.
 | 
						|
		 */
 | 
						|
		MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize,
 | 
						|
				  tspace);
 | 
						|
 | 
						|
		/* Product M.      ________________
 | 
						|
		 *                |_(U1-U0)(V0-V1)_|
 | 
						|
		 */
 | 
						|
		if (mpihelp_cmp(up + hsize, up, hsize) >= 0) {
 | 
						|
			mpihelp_sub_n(prodp, up + hsize, up, hsize);
 | 
						|
			negflg = 0;
 | 
						|
		} else {
 | 
						|
			mpihelp_sub_n(prodp, up, up + hsize, hsize);
 | 
						|
			negflg = 1;
 | 
						|
		}
 | 
						|
		if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) {
 | 
						|
			mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
 | 
						|
			negflg ^= 1;
 | 
						|
		} else {
 | 
						|
			mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
 | 
						|
			/* No change of NEGFLG.  */
 | 
						|
		}
 | 
						|
		/* Read temporary operands from low part of PROD.
 | 
						|
		 * Put result in low part of TSPACE using upper part of TSPACE
 | 
						|
		 * as new TSPACE.
 | 
						|
		 */
 | 
						|
		MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize,
 | 
						|
				  tspace + size);
 | 
						|
 | 
						|
		/* Add/copy product H. */
 | 
						|
		MPN_COPY(prodp + hsize, prodp + size, hsize);
 | 
						|
		cy = mpihelp_add_n(prodp + size, prodp + size,
 | 
						|
				   prodp + size + hsize, hsize);
 | 
						|
 | 
						|
		/* Add product M (if NEGFLG M is a negative number) */
 | 
						|
		if (negflg)
 | 
						|
			cy -=
 | 
						|
			    mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace,
 | 
						|
					  size);
 | 
						|
		else
 | 
						|
			cy +=
 | 
						|
			    mpihelp_add_n(prodp + hsize, prodp + hsize, tspace,
 | 
						|
					  size);
 | 
						|
 | 
						|
		/* Product L.      ________________  ________________
 | 
						|
		 *                |________________||____U0 x V0_____|
 | 
						|
		 * Read temporary operands from low part of PROD.
 | 
						|
		 * Put result in low part of TSPACE using upper part of TSPACE
 | 
						|
		 * as new TSPACE.
 | 
						|
		 */
 | 
						|
		MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
 | 
						|
 | 
						|
		/* Add/copy Product L (twice) */
 | 
						|
 | 
						|
		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
 | 
						|
		if (cy)
 | 
						|
			mpihelp_add_1(prodp + hsize + size,
 | 
						|
				      prodp + hsize + size, hsize, cy);
 | 
						|
 | 
						|
		MPN_COPY(prodp, tspace, hsize);
 | 
						|
		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
 | 
						|
				   hsize);
 | 
						|
		if (cy)
 | 
						|
			mpihelp_add_1(prodp + size, prodp + size, size, 1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size)
 | 
						|
{
 | 
						|
	mpi_size_t i;
 | 
						|
	mpi_limb_t cy_limb;
 | 
						|
	mpi_limb_t v_limb;
 | 
						|
 | 
						|
	/* Multiply by the first limb in V separately, as the result can be
 | 
						|
	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
 | 
						|
	v_limb = up[0];
 | 
						|
	if (v_limb <= 1) {
 | 
						|
		if (v_limb == 1)
 | 
						|
			MPN_COPY(prodp, up, size);
 | 
						|
		else
 | 
						|
			MPN_ZERO(prodp, size);
 | 
						|
		cy_limb = 0;
 | 
						|
	} else
 | 
						|
		cy_limb = mpihelp_mul_1(prodp, up, size, v_limb);
 | 
						|
 | 
						|
	prodp[size] = cy_limb;
 | 
						|
	prodp++;
 | 
						|
 | 
						|
	/* For each iteration in the outer loop, multiply one limb from
 | 
						|
	 * U with one limb from V, and add it to PROD.  */
 | 
						|
	for (i = 1; i < size; i++) {
 | 
						|
		v_limb = up[i];
 | 
						|
		if (v_limb <= 1) {
 | 
						|
			cy_limb = 0;
 | 
						|
			if (v_limb == 1)
 | 
						|
				cy_limb = mpihelp_add_n(prodp, prodp, up, size);
 | 
						|
		} else
 | 
						|
			cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
 | 
						|
 | 
						|
		prodp[size] = cy_limb;
 | 
						|
		prodp++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
 | 
						|
{
 | 
						|
	if (size & 1) {
 | 
						|
		/* The size is odd, and the code below doesn't handle that.
 | 
						|
		 * Multiply the least significant (size - 1) limbs with a recursive
 | 
						|
		 * call, and handle the most significant limb of S1 and S2
 | 
						|
		 * separately.
 | 
						|
		 * A slightly faster way to do this would be to make the Karatsuba
 | 
						|
		 * code below behave as if the size were even, and let it check for
 | 
						|
		 * odd size in the end.  I.e., in essence move this code to the end.
 | 
						|
		 * Doing so would save us a recursive call, and potentially make the
 | 
						|
		 * stack grow a lot less.
 | 
						|
		 */
 | 
						|
		mpi_size_t esize = size - 1;	/* even size */
 | 
						|
		mpi_limb_t cy_limb;
 | 
						|
 | 
						|
		MPN_SQR_N_RECURSE(prodp, up, esize, tspace);
 | 
						|
		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]);
 | 
						|
		prodp[esize + esize] = cy_limb;
 | 
						|
		cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]);
 | 
						|
 | 
						|
		prodp[esize + size] = cy_limb;
 | 
						|
	} else {
 | 
						|
		mpi_size_t hsize = size >> 1;
 | 
						|
		mpi_limb_t cy;
 | 
						|
 | 
						|
		/* Product H.      ________________  ________________
 | 
						|
		 *                |_____U1 x U1____||____U0 x U0_____|
 | 
						|
		 * Put result in upper part of PROD and pass low part of TSPACE
 | 
						|
		 * as new TSPACE.
 | 
						|
		 */
 | 
						|
		MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
 | 
						|
 | 
						|
		/* Product M.      ________________
 | 
						|
		 *                |_(U1-U0)(U0-U1)_|
 | 
						|
		 */
 | 
						|
		if (mpihelp_cmp(up + hsize, up, hsize) >= 0)
 | 
						|
			mpihelp_sub_n(prodp, up + hsize, up, hsize);
 | 
						|
		else
 | 
						|
			mpihelp_sub_n(prodp, up, up + hsize, hsize);
 | 
						|
 | 
						|
		/* Read temporary operands from low part of PROD.
 | 
						|
		 * Put result in low part of TSPACE using upper part of TSPACE
 | 
						|
		 * as new TSPACE.  */
 | 
						|
		MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
 | 
						|
 | 
						|
		/* Add/copy product H  */
 | 
						|
		MPN_COPY(prodp + hsize, prodp + size, hsize);
 | 
						|
		cy = mpihelp_add_n(prodp + size, prodp + size,
 | 
						|
				   prodp + size + hsize, hsize);
 | 
						|
 | 
						|
		/* Add product M (if NEGFLG M is a negative number).  */
 | 
						|
		cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
 | 
						|
 | 
						|
		/* Product L.      ________________  ________________
 | 
						|
		 *                |________________||____U0 x U0_____|
 | 
						|
		 * Read temporary operands from low part of PROD.
 | 
						|
		 * Put result in low part of TSPACE using upper part of TSPACE
 | 
						|
		 * as new TSPACE.  */
 | 
						|
		MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size);
 | 
						|
 | 
						|
		/* Add/copy Product L (twice).  */
 | 
						|
		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
 | 
						|
		if (cy)
 | 
						|
			mpihelp_add_1(prodp + hsize + size,
 | 
						|
				      prodp + hsize + size, hsize, cy);
 | 
						|
 | 
						|
		MPN_COPY(prodp, tspace, hsize);
 | 
						|
		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
 | 
						|
				   hsize);
 | 
						|
		if (cy)
 | 
						|
			mpihelp_add_1(prodp + size, prodp + size, size, 1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void mpihelp_mul_n(mpi_ptr_t prodp,
 | 
						|
		mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
 | 
						|
{
 | 
						|
	if (up == vp) {
 | 
						|
		if (size < KARATSUBA_THRESHOLD)
 | 
						|
			mpih_sqr_n_basecase(prodp, up, size);
 | 
						|
		else {
 | 
						|
			mpi_ptr_t tspace;
 | 
						|
			tspace = mpi_alloc_limb_space(2 * size);
 | 
						|
			mpih_sqr_n(prodp, up, size, tspace);
 | 
						|
			mpi_free_limb_space(tspace);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if (size < KARATSUBA_THRESHOLD)
 | 
						|
			mul_n_basecase(prodp, up, vp, size);
 | 
						|
		else {
 | 
						|
			mpi_ptr_t tspace;
 | 
						|
			tspace = mpi_alloc_limb_space(2 * size);
 | 
						|
			mul_n(prodp, up, vp, size, tspace);
 | 
						|
			mpi_free_limb_space(tspace);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
 | 
						|
			   mpi_ptr_t up, mpi_size_t usize,
 | 
						|
			   mpi_ptr_t vp, mpi_size_t vsize,
 | 
						|
			   struct karatsuba_ctx *ctx)
 | 
						|
{
 | 
						|
	mpi_limb_t cy;
 | 
						|
 | 
						|
	if (!ctx->tspace || ctx->tspace_size < vsize) {
 | 
						|
		if (ctx->tspace)
 | 
						|
			mpi_free_limb_space(ctx->tspace);
 | 
						|
		ctx->tspace = mpi_alloc_limb_space(2 * vsize);
 | 
						|
		if (!ctx->tspace)
 | 
						|
			return -ENOMEM;
 | 
						|
		ctx->tspace_size = vsize;
 | 
						|
	}
 | 
						|
 | 
						|
	MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace);
 | 
						|
 | 
						|
	prodp += vsize;
 | 
						|
	up += vsize;
 | 
						|
	usize -= vsize;
 | 
						|
	if (usize >= vsize) {
 | 
						|
		if (!ctx->tp || ctx->tp_size < vsize) {
 | 
						|
			if (ctx->tp)
 | 
						|
				mpi_free_limb_space(ctx->tp);
 | 
						|
			ctx->tp = mpi_alloc_limb_space(2 * vsize);
 | 
						|
			if (!ctx->tp) {
 | 
						|
				if (ctx->tspace)
 | 
						|
					mpi_free_limb_space(ctx->tspace);
 | 
						|
				ctx->tspace = NULL;
 | 
						|
				return -ENOMEM;
 | 
						|
			}
 | 
						|
			ctx->tp_size = vsize;
 | 
						|
		}
 | 
						|
 | 
						|
		do {
 | 
						|
			MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace);
 | 
						|
			cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize);
 | 
						|
			mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize,
 | 
						|
				      cy);
 | 
						|
			prodp += vsize;
 | 
						|
			up += vsize;
 | 
						|
			usize -= vsize;
 | 
						|
		} while (usize >= vsize);
 | 
						|
	}
 | 
						|
 | 
						|
	if (usize) {
 | 
						|
		if (usize < KARATSUBA_THRESHOLD) {
 | 
						|
			mpi_limb_t tmp;
 | 
						|
			if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp)
 | 
						|
			    < 0)
 | 
						|
				return -ENOMEM;
 | 
						|
		} else {
 | 
						|
			if (!ctx->next) {
 | 
						|
				ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL);
 | 
						|
				if (!ctx->next)
 | 
						|
					return -ENOMEM;
 | 
						|
			}
 | 
						|
			if (mpihelp_mul_karatsuba_case(ctx->tspace,
 | 
						|
						       vp, vsize,
 | 
						|
						       up, usize,
 | 
						|
						       ctx->next) < 0)
 | 
						|
				return -ENOMEM;
 | 
						|
		}
 | 
						|
 | 
						|
		cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize);
 | 
						|
		mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx)
 | 
						|
{
 | 
						|
	struct karatsuba_ctx *ctx2;
 | 
						|
 | 
						|
	if (ctx->tp)
 | 
						|
		mpi_free_limb_space(ctx->tp);
 | 
						|
	if (ctx->tspace)
 | 
						|
		mpi_free_limb_space(ctx->tspace);
 | 
						|
	for (ctx = ctx->next; ctx; ctx = ctx2) {
 | 
						|
		ctx2 = ctx->next;
 | 
						|
		if (ctx->tp)
 | 
						|
			mpi_free_limb_space(ctx->tp);
 | 
						|
		if (ctx->tspace)
 | 
						|
			mpi_free_limb_space(ctx->tspace);
 | 
						|
		kfree(ctx);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
 | 
						|
 * and v (pointed to by VP, with VSIZE limbs), and store the result at
 | 
						|
 * PRODP.  USIZE + VSIZE limbs are always stored, but if the input
 | 
						|
 * operands are normalized.  Return the most significant limb of the
 | 
						|
 * result.
 | 
						|
 *
 | 
						|
 * NOTE: The space pointed to by PRODP is overwritten before finished
 | 
						|
 * with U and V, so overlap is an error.
 | 
						|
 *
 | 
						|
 * Argument constraints:
 | 
						|
 * 1. USIZE >= VSIZE.
 | 
						|
 * 2. PRODP != UP and PRODP != VP, i.e. the destination
 | 
						|
 *    must be distinct from the multiplier and the multiplicand.
 | 
						|
 */
 | 
						|
 | 
						|
int
 | 
						|
mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
 | 
						|
	    mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result)
 | 
						|
{
 | 
						|
	mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
 | 
						|
	mpi_limb_t cy;
 | 
						|
	struct karatsuba_ctx ctx;
 | 
						|
 | 
						|
	if (vsize < KARATSUBA_THRESHOLD) {
 | 
						|
		mpi_size_t i;
 | 
						|
		mpi_limb_t v_limb;
 | 
						|
 | 
						|
		if (!vsize) {
 | 
						|
			*_result = 0;
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Multiply by the first limb in V separately, as the result can be
 | 
						|
		 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
 | 
						|
		v_limb = vp[0];
 | 
						|
		if (v_limb <= 1) {
 | 
						|
			if (v_limb == 1)
 | 
						|
				MPN_COPY(prodp, up, usize);
 | 
						|
			else
 | 
						|
				MPN_ZERO(prodp, usize);
 | 
						|
			cy = 0;
 | 
						|
		} else
 | 
						|
			cy = mpihelp_mul_1(prodp, up, usize, v_limb);
 | 
						|
 | 
						|
		prodp[usize] = cy;
 | 
						|
		prodp++;
 | 
						|
 | 
						|
		/* For each iteration in the outer loop, multiply one limb from
 | 
						|
		 * U with one limb from V, and add it to PROD.  */
 | 
						|
		for (i = 1; i < vsize; i++) {
 | 
						|
			v_limb = vp[i];
 | 
						|
			if (v_limb <= 1) {
 | 
						|
				cy = 0;
 | 
						|
				if (v_limb == 1)
 | 
						|
					cy = mpihelp_add_n(prodp, prodp, up,
 | 
						|
							   usize);
 | 
						|
			} else
 | 
						|
				cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
 | 
						|
 | 
						|
			prodp[usize] = cy;
 | 
						|
			prodp++;
 | 
						|
		}
 | 
						|
 | 
						|
		*_result = cy;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	memset(&ctx, 0, sizeof ctx);
 | 
						|
	if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0)
 | 
						|
		return -ENOMEM;
 | 
						|
	mpihelp_release_karatsuba_ctx(&ctx);
 | 
						|
	*_result = *prod_endp;
 | 
						|
	return 0;
 | 
						|
}
 |