mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Fix typos, most reported by "codespell arch/x86". Only touches comments, no code changes. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20240103004011.1758650-1-helgaas@kernel.org
		
			
				
	
	
		
			1081 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1081 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | 
						|
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/prctl.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/sched/idle.h>
 | 
						|
#include <linux/sched/debug.h>
 | 
						|
#include <linux/sched/task.h>
 | 
						|
#include <linux/sched/task_stack.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/pm.h>
 | 
						|
#include <linux/tick.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/user-return-notifier.h>
 | 
						|
#include <linux/dmi.h>
 | 
						|
#include <linux/utsname.h>
 | 
						|
#include <linux/stackprotector.h>
 | 
						|
#include <linux/cpuidle.h>
 | 
						|
#include <linux/acpi.h>
 | 
						|
#include <linux/elf-randomize.h>
 | 
						|
#include <linux/static_call.h>
 | 
						|
#include <trace/events/power.h>
 | 
						|
#include <linux/hw_breakpoint.h>
 | 
						|
#include <linux/entry-common.h>
 | 
						|
#include <asm/cpu.h>
 | 
						|
#include <asm/apic.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <asm/mwait.h>
 | 
						|
#include <asm/fpu/api.h>
 | 
						|
#include <asm/fpu/sched.h>
 | 
						|
#include <asm/fpu/xstate.h>
 | 
						|
#include <asm/debugreg.h>
 | 
						|
#include <asm/nmi.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/mce.h>
 | 
						|
#include <asm/vm86.h>
 | 
						|
#include <asm/switch_to.h>
 | 
						|
#include <asm/desc.h>
 | 
						|
#include <asm/prctl.h>
 | 
						|
#include <asm/spec-ctrl.h>
 | 
						|
#include <asm/io_bitmap.h>
 | 
						|
#include <asm/proto.h>
 | 
						|
#include <asm/frame.h>
 | 
						|
#include <asm/unwind.h>
 | 
						|
#include <asm/tdx.h>
 | 
						|
#include <asm/mmu_context.h>
 | 
						|
#include <asm/shstk.h>
 | 
						|
 | 
						|
#include "process.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 | 
						|
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 | 
						|
 * so they are allowed to end up in the .data..cacheline_aligned
 | 
						|
 * section. Since TSS's are completely CPU-local, we want them
 | 
						|
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 | 
						|
 */
 | 
						|
__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 | 
						|
	.x86_tss = {
 | 
						|
		/*
 | 
						|
		 * .sp0 is only used when entering ring 0 from a lower
 | 
						|
		 * privilege level.  Since the init task never runs anything
 | 
						|
		 * but ring 0 code, there is no need for a valid value here.
 | 
						|
		 * Poison it.
 | 
						|
		 */
 | 
						|
		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
		.sp1 = TOP_OF_INIT_STACK,
 | 
						|
 | 
						|
		.ss0 = __KERNEL_DS,
 | 
						|
		.ss1 = __KERNEL_CS,
 | 
						|
#endif
 | 
						|
		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
 | 
						|
	 },
 | 
						|
};
 | 
						|
EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 | 
						|
 | 
						|
DEFINE_PER_CPU(bool, __tss_limit_invalid);
 | 
						|
EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 | 
						|
 | 
						|
/*
 | 
						|
 * this gets called so that we can store lazy state into memory and copy the
 | 
						|
 * current task into the new thread.
 | 
						|
 */
 | 
						|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 | 
						|
{
 | 
						|
	memcpy(dst, src, arch_task_struct_size);
 | 
						|
#ifdef CONFIG_VM86
 | 
						|
	dst->thread.vm86 = NULL;
 | 
						|
#endif
 | 
						|
	/* Drop the copied pointer to current's fpstate */
 | 
						|
	dst->thread.fpu.fpstate = NULL;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
void arch_release_task_struct(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	if (fpu_state_size_dynamic())
 | 
						|
		fpstate_free(&tsk->thread.fpu);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Free thread data structures etc..
 | 
						|
 */
 | 
						|
void exit_thread(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	struct thread_struct *t = &tsk->thread;
 | 
						|
	struct fpu *fpu = &t->fpu;
 | 
						|
 | 
						|
	if (test_thread_flag(TIF_IO_BITMAP))
 | 
						|
		io_bitmap_exit(tsk);
 | 
						|
 | 
						|
	free_vm86(t);
 | 
						|
 | 
						|
	shstk_free(tsk);
 | 
						|
	fpu__drop(fpu);
 | 
						|
}
 | 
						|
 | 
						|
static int set_new_tls(struct task_struct *p, unsigned long tls)
 | 
						|
{
 | 
						|
	struct user_desc __user *utls = (struct user_desc __user *)tls;
 | 
						|
 | 
						|
	if (in_ia32_syscall())
 | 
						|
		return do_set_thread_area(p, -1, utls, 0);
 | 
						|
	else
 | 
						|
		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
 | 
						|
}
 | 
						|
 | 
						|
__visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
 | 
						|
				     int (*fn)(void *), void *fn_arg)
 | 
						|
{
 | 
						|
	schedule_tail(prev);
 | 
						|
 | 
						|
	/* Is this a kernel thread? */
 | 
						|
	if (unlikely(fn)) {
 | 
						|
		fn(fn_arg);
 | 
						|
		/*
 | 
						|
		 * A kernel thread is allowed to return here after successfully
 | 
						|
		 * calling kernel_execve().  Exit to userspace to complete the
 | 
						|
		 * execve() syscall.
 | 
						|
		 */
 | 
						|
		regs->ax = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	syscall_exit_to_user_mode(regs);
 | 
						|
}
 | 
						|
 | 
						|
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 | 
						|
{
 | 
						|
	unsigned long clone_flags = args->flags;
 | 
						|
	unsigned long sp = args->stack;
 | 
						|
	unsigned long tls = args->tls;
 | 
						|
	struct inactive_task_frame *frame;
 | 
						|
	struct fork_frame *fork_frame;
 | 
						|
	struct pt_regs *childregs;
 | 
						|
	unsigned long new_ssp;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	childregs = task_pt_regs(p);
 | 
						|
	fork_frame = container_of(childregs, struct fork_frame, regs);
 | 
						|
	frame = &fork_frame->frame;
 | 
						|
 | 
						|
	frame->bp = encode_frame_pointer(childregs);
 | 
						|
	frame->ret_addr = (unsigned long) ret_from_fork_asm;
 | 
						|
	p->thread.sp = (unsigned long) fork_frame;
 | 
						|
	p->thread.io_bitmap = NULL;
 | 
						|
	p->thread.iopl_warn = 0;
 | 
						|
	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 | 
						|
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
	current_save_fsgs();
 | 
						|
	p->thread.fsindex = current->thread.fsindex;
 | 
						|
	p->thread.fsbase = current->thread.fsbase;
 | 
						|
	p->thread.gsindex = current->thread.gsindex;
 | 
						|
	p->thread.gsbase = current->thread.gsbase;
 | 
						|
 | 
						|
	savesegment(es, p->thread.es);
 | 
						|
	savesegment(ds, p->thread.ds);
 | 
						|
 | 
						|
	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
 | 
						|
		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
 | 
						|
#else
 | 
						|
	p->thread.sp0 = (unsigned long) (childregs + 1);
 | 
						|
	savesegment(gs, p->thread.gs);
 | 
						|
	/*
 | 
						|
	 * Clear all status flags including IF and set fixed bit. 64bit
 | 
						|
	 * does not have this initialization as the frame does not contain
 | 
						|
	 * flags. The flags consistency (especially vs. AC) is there
 | 
						|
	 * ensured via objtool, which lacks 32bit support.
 | 
						|
	 */
 | 
						|
	frame->flags = X86_EFLAGS_FIXED;
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate a new shadow stack for thread if needed. If shadow stack,
 | 
						|
	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
 | 
						|
	 * update it.
 | 
						|
	 */
 | 
						|
	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
 | 
						|
	if (IS_ERR_VALUE(new_ssp))
 | 
						|
		return PTR_ERR((void *)new_ssp);
 | 
						|
 | 
						|
	fpu_clone(p, clone_flags, args->fn, new_ssp);
 | 
						|
 | 
						|
	/* Kernel thread ? */
 | 
						|
	if (unlikely(p->flags & PF_KTHREAD)) {
 | 
						|
		p->thread.pkru = pkru_get_init_value();
 | 
						|
		memset(childregs, 0, sizeof(struct pt_regs));
 | 
						|
		kthread_frame_init(frame, args->fn, args->fn_arg);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clone current's PKRU value from hardware. tsk->thread.pkru
 | 
						|
	 * is only valid when scheduled out.
 | 
						|
	 */
 | 
						|
	p->thread.pkru = read_pkru();
 | 
						|
 | 
						|
	frame->bx = 0;
 | 
						|
	*childregs = *current_pt_regs();
 | 
						|
	childregs->ax = 0;
 | 
						|
	if (sp)
 | 
						|
		childregs->sp = sp;
 | 
						|
 | 
						|
	if (unlikely(args->fn)) {
 | 
						|
		/*
 | 
						|
		 * A user space thread, but it doesn't return to
 | 
						|
		 * ret_after_fork().
 | 
						|
		 *
 | 
						|
		 * In order to indicate that to tools like gdb,
 | 
						|
		 * we reset the stack and instruction pointers.
 | 
						|
		 *
 | 
						|
		 * It does the same kernel frame setup to return to a kernel
 | 
						|
		 * function that a kernel thread does.
 | 
						|
		 */
 | 
						|
		childregs->sp = 0;
 | 
						|
		childregs->ip = 0;
 | 
						|
		kthread_frame_init(frame, args->fn, args->fn_arg);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set a new TLS for the child thread? */
 | 
						|
	if (clone_flags & CLONE_SETTLS)
 | 
						|
		ret = set_new_tls(p, tls);
 | 
						|
 | 
						|
	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
 | 
						|
		io_bitmap_share(p);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void pkru_flush_thread(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If PKRU is enabled the default PKRU value has to be loaded into
 | 
						|
	 * the hardware right here (similar to context switch).
 | 
						|
	 */
 | 
						|
	pkru_write_default();
 | 
						|
}
 | 
						|
 | 
						|
void flush_thread(void)
 | 
						|
{
 | 
						|
	struct task_struct *tsk = current;
 | 
						|
 | 
						|
	flush_ptrace_hw_breakpoint(tsk);
 | 
						|
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 | 
						|
 | 
						|
	fpu_flush_thread();
 | 
						|
	pkru_flush_thread();
 | 
						|
}
 | 
						|
 | 
						|
void disable_TSC(void)
 | 
						|
{
 | 
						|
	preempt_disable();
 | 
						|
	if (!test_and_set_thread_flag(TIF_NOTSC))
 | 
						|
		/*
 | 
						|
		 * Must flip the CPU state synchronously with
 | 
						|
		 * TIF_NOTSC in the current running context.
 | 
						|
		 */
 | 
						|
		cr4_set_bits(X86_CR4_TSD);
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
static void enable_TSC(void)
 | 
						|
{
 | 
						|
	preempt_disable();
 | 
						|
	if (test_and_clear_thread_flag(TIF_NOTSC))
 | 
						|
		/*
 | 
						|
		 * Must flip the CPU state synchronously with
 | 
						|
		 * TIF_NOTSC in the current running context.
 | 
						|
		 */
 | 
						|
		cr4_clear_bits(X86_CR4_TSD);
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
int get_tsc_mode(unsigned long adr)
 | 
						|
{
 | 
						|
	unsigned int val;
 | 
						|
 | 
						|
	if (test_thread_flag(TIF_NOTSC))
 | 
						|
		val = PR_TSC_SIGSEGV;
 | 
						|
	else
 | 
						|
		val = PR_TSC_ENABLE;
 | 
						|
 | 
						|
	return put_user(val, (unsigned int __user *)adr);
 | 
						|
}
 | 
						|
 | 
						|
int set_tsc_mode(unsigned int val)
 | 
						|
{
 | 
						|
	if (val == PR_TSC_SIGSEGV)
 | 
						|
		disable_TSC();
 | 
						|
	else if (val == PR_TSC_ENABLE)
 | 
						|
		enable_TSC();
 | 
						|
	else
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 | 
						|
 | 
						|
static void set_cpuid_faulting(bool on)
 | 
						|
{
 | 
						|
	u64 msrval;
 | 
						|
 | 
						|
	msrval = this_cpu_read(msr_misc_features_shadow);
 | 
						|
	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 | 
						|
	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 | 
						|
	this_cpu_write(msr_misc_features_shadow, msrval);
 | 
						|
	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 | 
						|
}
 | 
						|
 | 
						|
static void disable_cpuid(void)
 | 
						|
{
 | 
						|
	preempt_disable();
 | 
						|
	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 | 
						|
		/*
 | 
						|
		 * Must flip the CPU state synchronously with
 | 
						|
		 * TIF_NOCPUID in the current running context.
 | 
						|
		 */
 | 
						|
		set_cpuid_faulting(true);
 | 
						|
	}
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
static void enable_cpuid(void)
 | 
						|
{
 | 
						|
	preempt_disable();
 | 
						|
	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 | 
						|
		/*
 | 
						|
		 * Must flip the CPU state synchronously with
 | 
						|
		 * TIF_NOCPUID in the current running context.
 | 
						|
		 */
 | 
						|
		set_cpuid_faulting(false);
 | 
						|
	}
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
static int get_cpuid_mode(void)
 | 
						|
{
 | 
						|
	return !test_thread_flag(TIF_NOCPUID);
 | 
						|
}
 | 
						|
 | 
						|
static int set_cpuid_mode(unsigned long cpuid_enabled)
 | 
						|
{
 | 
						|
	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	if (cpuid_enabled)
 | 
						|
		enable_cpuid();
 | 
						|
	else
 | 
						|
		disable_cpuid();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called immediately after a successful exec.
 | 
						|
 */
 | 
						|
void arch_setup_new_exec(void)
 | 
						|
{
 | 
						|
	/* If cpuid was previously disabled for this task, re-enable it. */
 | 
						|
	if (test_thread_flag(TIF_NOCPUID))
 | 
						|
		enable_cpuid();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't inherit TIF_SSBD across exec boundary when
 | 
						|
	 * PR_SPEC_DISABLE_NOEXEC is used.
 | 
						|
	 */
 | 
						|
	if (test_thread_flag(TIF_SSBD) &&
 | 
						|
	    task_spec_ssb_noexec(current)) {
 | 
						|
		clear_thread_flag(TIF_SSBD);
 | 
						|
		task_clear_spec_ssb_disable(current);
 | 
						|
		task_clear_spec_ssb_noexec(current);
 | 
						|
		speculation_ctrl_update(read_thread_flags());
 | 
						|
	}
 | 
						|
 | 
						|
	mm_reset_untag_mask(current->mm);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_X86_IOPL_IOPERM
 | 
						|
static inline void switch_to_bitmap(unsigned long tifp)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Invalidate I/O bitmap if the previous task used it. This prevents
 | 
						|
	 * any possible leakage of an active I/O bitmap.
 | 
						|
	 *
 | 
						|
	 * If the next task has an I/O bitmap it will handle it on exit to
 | 
						|
	 * user mode.
 | 
						|
	 */
 | 
						|
	if (tifp & _TIF_IO_BITMAP)
 | 
						|
		tss_invalidate_io_bitmap();
 | 
						|
}
 | 
						|
 | 
						|
static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Copy at least the byte range of the incoming tasks bitmap which
 | 
						|
	 * covers the permitted I/O ports.
 | 
						|
	 *
 | 
						|
	 * If the previous task which used an I/O bitmap had more bits
 | 
						|
	 * permitted, then the copy needs to cover those as well so they
 | 
						|
	 * get turned off.
 | 
						|
	 */
 | 
						|
	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
 | 
						|
	       max(tss->io_bitmap.prev_max, iobm->max));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Store the new max and the sequence number of this bitmap
 | 
						|
	 * and a pointer to the bitmap itself.
 | 
						|
	 */
 | 
						|
	tss->io_bitmap.prev_max = iobm->max;
 | 
						|
	tss->io_bitmap.prev_sequence = iobm->sequence;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
 | 
						|
 */
 | 
						|
void native_tss_update_io_bitmap(void)
 | 
						|
{
 | 
						|
	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 | 
						|
	struct thread_struct *t = ¤t->thread;
 | 
						|
	u16 *base = &tss->x86_tss.io_bitmap_base;
 | 
						|
 | 
						|
	if (!test_thread_flag(TIF_IO_BITMAP)) {
 | 
						|
		native_tss_invalidate_io_bitmap();
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
 | 
						|
		*base = IO_BITMAP_OFFSET_VALID_ALL;
 | 
						|
	} else {
 | 
						|
		struct io_bitmap *iobm = t->io_bitmap;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Only copy bitmap data when the sequence number differs. The
 | 
						|
		 * update time is accounted to the incoming task.
 | 
						|
		 */
 | 
						|
		if (tss->io_bitmap.prev_sequence != iobm->sequence)
 | 
						|
			tss_copy_io_bitmap(tss, iobm);
 | 
						|
 | 
						|
		/* Enable the bitmap */
 | 
						|
		*base = IO_BITMAP_OFFSET_VALID_MAP;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure that the TSS limit is covering the IO bitmap. It might have
 | 
						|
	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
 | 
						|
	 * access from user space to trigger a #GP because the bitmap is outside
 | 
						|
	 * the TSS limit.
 | 
						|
	 */
 | 
						|
	refresh_tss_limit();
 | 
						|
}
 | 
						|
#else /* CONFIG_X86_IOPL_IOPERM */
 | 
						|
static inline void switch_to_bitmap(unsigned long tifp) { }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
 | 
						|
struct ssb_state {
 | 
						|
	struct ssb_state	*shared_state;
 | 
						|
	raw_spinlock_t		lock;
 | 
						|
	unsigned int		disable_state;
 | 
						|
	unsigned long		local_state;
 | 
						|
};
 | 
						|
 | 
						|
#define LSTATE_SSB	0
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 | 
						|
 | 
						|
void speculative_store_bypass_ht_init(void)
 | 
						|
{
 | 
						|
	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 | 
						|
	unsigned int this_cpu = smp_processor_id();
 | 
						|
	unsigned int cpu;
 | 
						|
 | 
						|
	st->local_state = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Shared state setup happens once on the first bringup
 | 
						|
	 * of the CPU. It's not destroyed on CPU hotunplug.
 | 
						|
	 */
 | 
						|
	if (st->shared_state)
 | 
						|
		return;
 | 
						|
 | 
						|
	raw_spin_lock_init(&st->lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Go over HT siblings and check whether one of them has set up the
 | 
						|
	 * shared state pointer already.
 | 
						|
	 */
 | 
						|
	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 | 
						|
		if (cpu == this_cpu)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!per_cpu(ssb_state, cpu).shared_state)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Link it to the state of the sibling: */
 | 
						|
		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First HT sibling to come up on the core.  Link shared state of
 | 
						|
	 * the first HT sibling to itself. The siblings on the same core
 | 
						|
	 * which come up later will see the shared state pointer and link
 | 
						|
	 * themselves to the state of this CPU.
 | 
						|
	 */
 | 
						|
	st->shared_state = st;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Logic is: First HT sibling enables SSBD for both siblings in the core
 | 
						|
 * and last sibling to disable it, disables it for the whole core. This how
 | 
						|
 * MSR_SPEC_CTRL works in "hardware":
 | 
						|
 *
 | 
						|
 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 | 
						|
 */
 | 
						|
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 | 
						|
{
 | 
						|
	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 | 
						|
	u64 msr = x86_amd_ls_cfg_base;
 | 
						|
 | 
						|
	if (!static_cpu_has(X86_FEATURE_ZEN)) {
 | 
						|
		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 | 
						|
		wrmsrl(MSR_AMD64_LS_CFG, msr);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tifn & _TIF_SSBD) {
 | 
						|
		/*
 | 
						|
		 * Since this can race with prctl(), block reentry on the
 | 
						|
		 * same CPU.
 | 
						|
		 */
 | 
						|
		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 | 
						|
			return;
 | 
						|
 | 
						|
		msr |= x86_amd_ls_cfg_ssbd_mask;
 | 
						|
 | 
						|
		raw_spin_lock(&st->shared_state->lock);
 | 
						|
		/* First sibling enables SSBD: */
 | 
						|
		if (!st->shared_state->disable_state)
 | 
						|
			wrmsrl(MSR_AMD64_LS_CFG, msr);
 | 
						|
		st->shared_state->disable_state++;
 | 
						|
		raw_spin_unlock(&st->shared_state->lock);
 | 
						|
	} else {
 | 
						|
		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 | 
						|
			return;
 | 
						|
 | 
						|
		raw_spin_lock(&st->shared_state->lock);
 | 
						|
		st->shared_state->disable_state--;
 | 
						|
		if (!st->shared_state->disable_state)
 | 
						|
			wrmsrl(MSR_AMD64_LS_CFG, msr);
 | 
						|
		raw_spin_unlock(&st->shared_state->lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 | 
						|
{
 | 
						|
	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 | 
						|
 | 
						|
	wrmsrl(MSR_AMD64_LS_CFG, msr);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 | 
						|
	 * so ssbd_tif_to_spec_ctrl() just works.
 | 
						|
	 */
 | 
						|
	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the MSRs managing speculation control, during context switch.
 | 
						|
 *
 | 
						|
 * tifp: Previous task's thread flags
 | 
						|
 * tifn: Next task's thread flags
 | 
						|
 */
 | 
						|
static __always_inline void __speculation_ctrl_update(unsigned long tifp,
 | 
						|
						      unsigned long tifn)
 | 
						|
{
 | 
						|
	unsigned long tif_diff = tifp ^ tifn;
 | 
						|
	u64 msr = x86_spec_ctrl_base;
 | 
						|
	bool updmsr = false;
 | 
						|
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
 | 
						|
	/* Handle change of TIF_SSBD depending on the mitigation method. */
 | 
						|
	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
 | 
						|
		if (tif_diff & _TIF_SSBD)
 | 
						|
			amd_set_ssb_virt_state(tifn);
 | 
						|
	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 | 
						|
		if (tif_diff & _TIF_SSBD)
 | 
						|
			amd_set_core_ssb_state(tifn);
 | 
						|
	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 | 
						|
		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
 | 
						|
		updmsr |= !!(tif_diff & _TIF_SSBD);
 | 
						|
		msr |= ssbd_tif_to_spec_ctrl(tifn);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
 | 
						|
	if (IS_ENABLED(CONFIG_SMP) &&
 | 
						|
	    static_branch_unlikely(&switch_to_cond_stibp)) {
 | 
						|
		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
 | 
						|
		msr |= stibp_tif_to_spec_ctrl(tifn);
 | 
						|
	}
 | 
						|
 | 
						|
	if (updmsr)
 | 
						|
		update_spec_ctrl_cond(msr);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
 | 
						|
		if (task_spec_ssb_disable(tsk))
 | 
						|
			set_tsk_thread_flag(tsk, TIF_SSBD);
 | 
						|
		else
 | 
						|
			clear_tsk_thread_flag(tsk, TIF_SSBD);
 | 
						|
 | 
						|
		if (task_spec_ib_disable(tsk))
 | 
						|
			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
 | 
						|
		else
 | 
						|
			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
 | 
						|
	}
 | 
						|
	/* Return the updated threadinfo flags*/
 | 
						|
	return read_task_thread_flags(tsk);
 | 
						|
}
 | 
						|
 | 
						|
void speculation_ctrl_update(unsigned long tif)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/* Forced update. Make sure all relevant TIF flags are different */
 | 
						|
	local_irq_save(flags);
 | 
						|
	__speculation_ctrl_update(~tif, tif);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/* Called from seccomp/prctl update */
 | 
						|
void speculation_ctrl_update_current(void)
 | 
						|
{
 | 
						|
	preempt_disable();
 | 
						|
	speculation_ctrl_update(speculation_ctrl_update_tif(current));
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 | 
						|
{
 | 
						|
	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 | 
						|
 | 
						|
	newval = cr4 ^ mask;
 | 
						|
	if (newval != cr4) {
 | 
						|
		this_cpu_write(cpu_tlbstate.cr4, newval);
 | 
						|
		__write_cr4(newval);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 | 
						|
{
 | 
						|
	unsigned long tifp, tifn;
 | 
						|
 | 
						|
	tifn = read_task_thread_flags(next_p);
 | 
						|
	tifp = read_task_thread_flags(prev_p);
 | 
						|
 | 
						|
	switch_to_bitmap(tifp);
 | 
						|
 | 
						|
	propagate_user_return_notify(prev_p, next_p);
 | 
						|
 | 
						|
	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 | 
						|
	    arch_has_block_step()) {
 | 
						|
		unsigned long debugctl, msk;
 | 
						|
 | 
						|
		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 | 
						|
		debugctl &= ~DEBUGCTLMSR_BTF;
 | 
						|
		msk = tifn & _TIF_BLOCKSTEP;
 | 
						|
		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 | 
						|
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 | 
						|
	}
 | 
						|
 | 
						|
	if ((tifp ^ tifn) & _TIF_NOTSC)
 | 
						|
		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 | 
						|
 | 
						|
	if ((tifp ^ tifn) & _TIF_NOCPUID)
 | 
						|
		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 | 
						|
 | 
						|
	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
 | 
						|
		__speculation_ctrl_update(tifp, tifn);
 | 
						|
	} else {
 | 
						|
		speculation_ctrl_update_tif(prev_p);
 | 
						|
		tifn = speculation_ctrl_update_tif(next_p);
 | 
						|
 | 
						|
		/* Enforce MSR update to ensure consistent state */
 | 
						|
		__speculation_ctrl_update(~tifn, tifn);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Idle related variables and functions
 | 
						|
 */
 | 
						|
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 | 
						|
EXPORT_SYMBOL(boot_option_idle_override);
 | 
						|
 | 
						|
/*
 | 
						|
 * We use this if we don't have any better idle routine..
 | 
						|
 */
 | 
						|
void __cpuidle default_idle(void)
 | 
						|
{
 | 
						|
	raw_safe_halt();
 | 
						|
	raw_local_irq_disable();
 | 
						|
}
 | 
						|
#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
 | 
						|
EXPORT_SYMBOL(default_idle);
 | 
						|
#endif
 | 
						|
 | 
						|
DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
 | 
						|
 | 
						|
static bool x86_idle_set(void)
 | 
						|
{
 | 
						|
	return !!static_call_query(x86_idle);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_SMP
 | 
						|
static inline void __noreturn play_dead(void)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void arch_cpu_idle_enter(void)
 | 
						|
{
 | 
						|
	tsc_verify_tsc_adjust(false);
 | 
						|
	local_touch_nmi();
 | 
						|
}
 | 
						|
 | 
						|
void __noreturn arch_cpu_idle_dead(void)
 | 
						|
{
 | 
						|
	play_dead();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from the generic idle code.
 | 
						|
 */
 | 
						|
void __cpuidle arch_cpu_idle(void)
 | 
						|
{
 | 
						|
	static_call(x86_idle)();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(arch_cpu_idle);
 | 
						|
 | 
						|
#ifdef CONFIG_XEN
 | 
						|
bool xen_set_default_idle(void)
 | 
						|
{
 | 
						|
	bool ret = x86_idle_set();
 | 
						|
 | 
						|
	static_call_update(x86_idle, default_idle);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
struct cpumask cpus_stop_mask;
 | 
						|
 | 
						|
void __noreturn stop_this_cpu(void *dummy)
 | 
						|
{
 | 
						|
	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
 | 
						|
	unsigned int cpu = smp_processor_id();
 | 
						|
 | 
						|
	local_irq_disable();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Remove this CPU from the online mask and disable it
 | 
						|
	 * unconditionally. This might be redundant in case that the reboot
 | 
						|
	 * vector was handled late and stop_other_cpus() sent an NMI.
 | 
						|
	 *
 | 
						|
	 * According to SDM and APM NMIs can be accepted even after soft
 | 
						|
	 * disabling the local APIC.
 | 
						|
	 */
 | 
						|
	set_cpu_online(cpu, false);
 | 
						|
	disable_local_APIC();
 | 
						|
	mcheck_cpu_clear(c);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use wbinvd on processors that support SME. This provides support
 | 
						|
	 * for performing a successful kexec when going from SME inactive
 | 
						|
	 * to SME active (or vice-versa). The cache must be cleared so that
 | 
						|
	 * if there are entries with the same physical address, both with and
 | 
						|
	 * without the encryption bit, they don't race each other when flushed
 | 
						|
	 * and potentially end up with the wrong entry being committed to
 | 
						|
	 * memory.
 | 
						|
	 *
 | 
						|
	 * Test the CPUID bit directly because the machine might've cleared
 | 
						|
	 * X86_FEATURE_SME due to cmdline options.
 | 
						|
	 */
 | 
						|
	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
 | 
						|
		native_wbinvd();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This brings a cache line back and dirties it, but
 | 
						|
	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
 | 
						|
	 * observed that all CPUs reported stop. This write will invalidate
 | 
						|
	 * the related cache line on this CPU.
 | 
						|
	 */
 | 
						|
	cpumask_clear_cpu(cpu, &cpus_stop_mask);
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		/*
 | 
						|
		 * Use native_halt() so that memory contents don't change
 | 
						|
		 * (stack usage and variables) after possibly issuing the
 | 
						|
		 * native_wbinvd() above.
 | 
						|
		 */
 | 
						|
		native_halt();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 | 
						|
 * states (local apic timer and TSC stop).
 | 
						|
 *
 | 
						|
 * XXX this function is completely buggered vs RCU and tracing.
 | 
						|
 */
 | 
						|
static void amd_e400_idle(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
 | 
						|
	 * gets set after static_cpu_has() places have been converted via
 | 
						|
	 * alternatives.
 | 
						|
	 */
 | 
						|
	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 | 
						|
		default_idle();
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	tick_broadcast_enter();
 | 
						|
 | 
						|
	default_idle();
 | 
						|
 | 
						|
	tick_broadcast_exit();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
 | 
						|
 * exists and whenever MONITOR/MWAIT extensions are present there is at
 | 
						|
 * least one C1 substate.
 | 
						|
 *
 | 
						|
 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
 | 
						|
 * is passed to kernel commandline parameter.
 | 
						|
 */
 | 
						|
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	u32 eax, ebx, ecx, edx;
 | 
						|
 | 
						|
	/* User has disallowed the use of MWAIT. Fallback to HALT */
 | 
						|
	if (boot_option_idle_override == IDLE_NOMWAIT)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* MWAIT is not supported on this platform. Fallback to HALT */
 | 
						|
	if (!cpu_has(c, X86_FEATURE_MWAIT))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Monitor has a bug. Fallback to HALT */
 | 
						|
	if (boot_cpu_has_bug(X86_BUG_MONITOR))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If MWAIT extensions are not available, it is safe to use MWAIT
 | 
						|
	 * with EAX=0, ECX=0.
 | 
						|
	 */
 | 
						|
	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If MWAIT extensions are available, there should be at least one
 | 
						|
	 * MWAIT C1 substate present.
 | 
						|
	 */
 | 
						|
	return (edx & MWAIT_C1_SUBSTATE_MASK);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 | 
						|
 * with interrupts enabled and no flags, which is backwards compatible with the
 | 
						|
 * original MWAIT implementation.
 | 
						|
 */
 | 
						|
static __cpuidle void mwait_idle(void)
 | 
						|
{
 | 
						|
	if (!current_set_polling_and_test()) {
 | 
						|
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 | 
						|
			mb(); /* quirk */
 | 
						|
			clflush((void *)¤t_thread_info()->flags);
 | 
						|
			mb(); /* quirk */
 | 
						|
		}
 | 
						|
 | 
						|
		__monitor((void *)¤t_thread_info()->flags, 0, 0);
 | 
						|
		if (!need_resched()) {
 | 
						|
			__sti_mwait(0, 0);
 | 
						|
			raw_local_irq_disable();
 | 
						|
		}
 | 
						|
	}
 | 
						|
	__current_clr_polling();
 | 
						|
}
 | 
						|
 | 
						|
void select_idle_routine(const struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 | 
						|
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 | 
						|
#endif
 | 
						|
	if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 | 
						|
		pr_info("using AMD E400 aware idle routine\n");
 | 
						|
		static_call_update(x86_idle, amd_e400_idle);
 | 
						|
	} else if (prefer_mwait_c1_over_halt(c)) {
 | 
						|
		pr_info("using mwait in idle threads\n");
 | 
						|
		static_call_update(x86_idle, mwait_idle);
 | 
						|
	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
 | 
						|
		pr_info("using TDX aware idle routine\n");
 | 
						|
		static_call_update(x86_idle, tdx_safe_halt);
 | 
						|
	} else
 | 
						|
		static_call_update(x86_idle, default_idle);
 | 
						|
}
 | 
						|
 | 
						|
void amd_e400_c1e_apic_setup(void)
 | 
						|
{
 | 
						|
	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 | 
						|
		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 | 
						|
		local_irq_disable();
 | 
						|
		tick_broadcast_force();
 | 
						|
		local_irq_enable();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init arch_post_acpi_subsys_init(void)
 | 
						|
{
 | 
						|
	u32 lo, hi;
 | 
						|
 | 
						|
	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * AMD E400 detection needs to happen after ACPI has been enabled. If
 | 
						|
	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 | 
						|
	 * MSR_K8_INT_PENDING_MSG.
 | 
						|
	 */
 | 
						|
	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 | 
						|
	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 | 
						|
		return;
 | 
						|
 | 
						|
	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 | 
						|
 | 
						|
	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 | 
						|
		mark_tsc_unstable("TSC halt in AMD C1E");
 | 
						|
	pr_info("System has AMD C1E enabled\n");
 | 
						|
}
 | 
						|
 | 
						|
static int __init idle_setup(char *str)
 | 
						|
{
 | 
						|
	if (!str)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (!strcmp(str, "poll")) {
 | 
						|
		pr_info("using polling idle threads\n");
 | 
						|
		boot_option_idle_override = IDLE_POLL;
 | 
						|
		cpu_idle_poll_ctrl(true);
 | 
						|
	} else if (!strcmp(str, "halt")) {
 | 
						|
		/*
 | 
						|
		 * When the boot option of idle=halt is added, halt is
 | 
						|
		 * forced to be used for CPU idle. In such case CPU C2/C3
 | 
						|
		 * won't be used again.
 | 
						|
		 * To continue to load the CPU idle driver, don't touch
 | 
						|
		 * the boot_option_idle_override.
 | 
						|
		 */
 | 
						|
		static_call_update(x86_idle, default_idle);
 | 
						|
		boot_option_idle_override = IDLE_HALT;
 | 
						|
	} else if (!strcmp(str, "nomwait")) {
 | 
						|
		/*
 | 
						|
		 * If the boot option of "idle=nomwait" is added,
 | 
						|
		 * it means that mwait will be disabled for CPU C1/C2/C3
 | 
						|
		 * states.
 | 
						|
		 */
 | 
						|
		boot_option_idle_override = IDLE_NOMWAIT;
 | 
						|
	} else
 | 
						|
		return -1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("idle", idle_setup);
 | 
						|
 | 
						|
unsigned long arch_align_stack(unsigned long sp)
 | 
						|
{
 | 
						|
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | 
						|
		sp -= get_random_u32_below(8192);
 | 
						|
	return sp & ~0xf;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long arch_randomize_brk(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	return randomize_page(mm->brk, 0x02000000);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from fs/proc with a reference on @p to find the function
 | 
						|
 * which called into schedule(). This needs to be done carefully
 | 
						|
 * because the task might wake up and we might look at a stack
 | 
						|
 * changing under us.
 | 
						|
 */
 | 
						|
unsigned long __get_wchan(struct task_struct *p)
 | 
						|
{
 | 
						|
	struct unwind_state state;
 | 
						|
	unsigned long addr = 0;
 | 
						|
 | 
						|
	if (!try_get_task_stack(p))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
 | 
						|
	     unwind_next_frame(&state)) {
 | 
						|
		addr = unwind_get_return_address(&state);
 | 
						|
		if (!addr)
 | 
						|
			break;
 | 
						|
		if (in_sched_functions(addr))
 | 
						|
			continue;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	put_task_stack(p);
 | 
						|
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
 | 
						|
long do_arch_prctl_common(int option, unsigned long arg2)
 | 
						|
{
 | 
						|
	switch (option) {
 | 
						|
	case ARCH_GET_CPUID:
 | 
						|
		return get_cpuid_mode();
 | 
						|
	case ARCH_SET_CPUID:
 | 
						|
		return set_cpuid_mode(arg2);
 | 
						|
	case ARCH_GET_XCOMP_SUPP:
 | 
						|
	case ARCH_GET_XCOMP_PERM:
 | 
						|
	case ARCH_REQ_XCOMP_PERM:
 | 
						|
	case ARCH_GET_XCOMP_GUEST_PERM:
 | 
						|
	case ARCH_REQ_XCOMP_GUEST_PERM:
 | 
						|
		return fpu_xstate_prctl(option, arg2);
 | 
						|
	}
 | 
						|
 | 
						|
	return -EINVAL;
 | 
						|
}
 |