mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-03 18:20:25 +02:00 
			
		
		
		
	Currently PageHWPoison flag does not behave well when experiencing memory hotremove/hotplug. Any data field in struct page is unreliable when the associated memory is offlined, and the current mechanism can't tell whether a memory block is onlined because a new memory devices is installed or because previous failed offline operations are undone. Especially if there's a hwpoisoned memory, it's unclear what the best option is. So introduce a new mechanism to make struct memory_block remember that a memory block has hwpoisoned memory inside it. And make any online event fail if the onlining memory block contains hwpoison. struct memory_block is freed and reallocated over ACPI-based hotremove/hotplug, but not over sysfs-based hotremove/hotplug. So the new counter can distinguish these cases. Link: https://lkml.kernel.org/r/20221024062012.1520887-5-naoya.horiguchi@linux.dev Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reported-by: kernel test robot <lkp@intel.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			851 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			851 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* SPDX-License-Identifier: GPL-2.0-or-later */
 | 
						|
/* internal.h: mm/ internal definitions
 | 
						|
 *
 | 
						|
 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
 | 
						|
 * Written by David Howells (dhowells@redhat.com)
 | 
						|
 */
 | 
						|
#ifndef __MM_INTERNAL_H
 | 
						|
#define __MM_INTERNAL_H
 | 
						|
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include <linux/tracepoint-defs.h>
 | 
						|
 | 
						|
struct folio_batch;
 | 
						|
 | 
						|
/*
 | 
						|
 * The set of flags that only affect watermark checking and reclaim
 | 
						|
 * behaviour. This is used by the MM to obey the caller constraints
 | 
						|
 * about IO, FS and watermark checking while ignoring placement
 | 
						|
 * hints such as HIGHMEM usage.
 | 
						|
 */
 | 
						|
#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
 | 
						|
			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
 | 
						|
			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
 | 
						|
			__GFP_ATOMIC|__GFP_NOLOCKDEP)
 | 
						|
 | 
						|
/* The GFP flags allowed during early boot */
 | 
						|
#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
 | 
						|
 | 
						|
/* Control allocation cpuset and node placement constraints */
 | 
						|
#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
 | 
						|
 | 
						|
/* Do not use these with a slab allocator */
 | 
						|
#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
 | 
						|
 | 
						|
/*
 | 
						|
 * Different from WARN_ON_ONCE(), no warning will be issued
 | 
						|
 * when we specify __GFP_NOWARN.
 | 
						|
 */
 | 
						|
#define WARN_ON_ONCE_GFP(cond, gfp)	({				\
 | 
						|
	static bool __section(".data.once") __warned;			\
 | 
						|
	int __ret_warn_once = !!(cond);					\
 | 
						|
									\
 | 
						|
	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
 | 
						|
		__warned = true;					\
 | 
						|
		WARN_ON(1);						\
 | 
						|
	}								\
 | 
						|
	unlikely(__ret_warn_once);					\
 | 
						|
})
 | 
						|
 | 
						|
void page_writeback_init(void);
 | 
						|
 | 
						|
static inline void *folio_raw_mapping(struct folio *folio)
 | 
						|
{
 | 
						|
	unsigned long mapping = (unsigned long)folio->mapping;
 | 
						|
 | 
						|
	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
 | 
						|
}
 | 
						|
 | 
						|
void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 | 
						|
						int nr_throttled);
 | 
						|
static inline void acct_reclaim_writeback(struct folio *folio)
 | 
						|
{
 | 
						|
	pg_data_t *pgdat = folio_pgdat(folio);
 | 
						|
	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
 | 
						|
 | 
						|
	if (nr_throttled)
 | 
						|
		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
 | 
						|
}
 | 
						|
 | 
						|
static inline void wake_throttle_isolated(pg_data_t *pgdat)
 | 
						|
{
 | 
						|
	wait_queue_head_t *wqh;
 | 
						|
 | 
						|
	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
 | 
						|
	if (waitqueue_active(wqh))
 | 
						|
		wake_up(wqh);
 | 
						|
}
 | 
						|
 | 
						|
vm_fault_t do_swap_page(struct vm_fault *vmf);
 | 
						|
void folio_rotate_reclaimable(struct folio *folio);
 | 
						|
bool __folio_end_writeback(struct folio *folio);
 | 
						|
void deactivate_file_folio(struct folio *folio);
 | 
						|
void folio_activate(struct folio *folio);
 | 
						|
 | 
						|
void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
 | 
						|
		   struct vm_area_struct *start_vma, unsigned long floor,
 | 
						|
		   unsigned long ceiling);
 | 
						|
void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
 | 
						|
 | 
						|
struct zap_details;
 | 
						|
void unmap_page_range(struct mmu_gather *tlb,
 | 
						|
			     struct vm_area_struct *vma,
 | 
						|
			     unsigned long addr, unsigned long end,
 | 
						|
			     struct zap_details *details);
 | 
						|
 | 
						|
void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
 | 
						|
		unsigned int order);
 | 
						|
void force_page_cache_ra(struct readahead_control *, unsigned long nr);
 | 
						|
static inline void force_page_cache_readahead(struct address_space *mapping,
 | 
						|
		struct file *file, pgoff_t index, unsigned long nr_to_read)
 | 
						|
{
 | 
						|
	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
 | 
						|
	force_page_cache_ra(&ractl, nr_to_read);
 | 
						|
}
 | 
						|
 | 
						|
unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
 | 
						|
		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 | 
						|
unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
 | 
						|
		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 | 
						|
void filemap_free_folio(struct address_space *mapping, struct folio *folio);
 | 
						|
int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
 | 
						|
bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
 | 
						|
		loff_t end);
 | 
						|
long invalidate_inode_page(struct page *page);
 | 
						|
unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
 | 
						|
		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
 | 
						|
 | 
						|
/**
 | 
						|
 * folio_evictable - Test whether a folio is evictable.
 | 
						|
 * @folio: The folio to test.
 | 
						|
 *
 | 
						|
 * Test whether @folio is evictable -- i.e., should be placed on
 | 
						|
 * active/inactive lists vs unevictable list.
 | 
						|
 *
 | 
						|
 * Reasons folio might not be evictable:
 | 
						|
 * 1. folio's mapping marked unevictable
 | 
						|
 * 2. One of the pages in the folio is part of an mlocked VMA
 | 
						|
 */
 | 
						|
static inline bool folio_evictable(struct folio *folio)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	/* Prevent address_space of inode and swap cache from being freed */
 | 
						|
	rcu_read_lock();
 | 
						|
	ret = !mapping_unevictable(folio_mapping(folio)) &&
 | 
						|
			!folio_test_mlocked(folio);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool page_evictable(struct page *page)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	/* Prevent address_space of inode and swap cache from being freed */
 | 
						|
	rcu_read_lock();
 | 
						|
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 | 
						|
 * a count of one.
 | 
						|
 */
 | 
						|
static inline void set_page_refcounted(struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON_PAGE(PageTail(page), page);
 | 
						|
	VM_BUG_ON_PAGE(page_ref_count(page), page);
 | 
						|
	set_page_count(page, 1);
 | 
						|
}
 | 
						|
 | 
						|
extern unsigned long highest_memmap_pfn;
 | 
						|
 | 
						|
/*
 | 
						|
 * Maximum number of reclaim retries without progress before the OOM
 | 
						|
 * killer is consider the only way forward.
 | 
						|
 */
 | 
						|
#define MAX_RECLAIM_RETRIES 16
 | 
						|
 | 
						|
/*
 | 
						|
 * in mm/early_ioremap.c
 | 
						|
 */
 | 
						|
pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
 | 
						|
					unsigned long size, pgprot_t prot);
 | 
						|
 | 
						|
/*
 | 
						|
 * in mm/vmscan.c:
 | 
						|
 */
 | 
						|
int isolate_lru_page(struct page *page);
 | 
						|
int folio_isolate_lru(struct folio *folio);
 | 
						|
void putback_lru_page(struct page *page);
 | 
						|
void folio_putback_lru(struct folio *folio);
 | 
						|
extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
 | 
						|
 | 
						|
/*
 | 
						|
 * in mm/rmap.c:
 | 
						|
 */
 | 
						|
pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 | 
						|
 | 
						|
/*
 | 
						|
 * in mm/page_alloc.c
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Structure for holding the mostly immutable allocation parameters passed
 | 
						|
 * between functions involved in allocations, including the alloc_pages*
 | 
						|
 * family of functions.
 | 
						|
 *
 | 
						|
 * nodemask, migratetype and highest_zoneidx are initialized only once in
 | 
						|
 * __alloc_pages() and then never change.
 | 
						|
 *
 | 
						|
 * zonelist, preferred_zone and highest_zoneidx are set first in
 | 
						|
 * __alloc_pages() for the fast path, and might be later changed
 | 
						|
 * in __alloc_pages_slowpath(). All other functions pass the whole structure
 | 
						|
 * by a const pointer.
 | 
						|
 */
 | 
						|
struct alloc_context {
 | 
						|
	struct zonelist *zonelist;
 | 
						|
	nodemask_t *nodemask;
 | 
						|
	struct zoneref *preferred_zoneref;
 | 
						|
	int migratetype;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * highest_zoneidx represents highest usable zone index of
 | 
						|
	 * the allocation request. Due to the nature of the zone,
 | 
						|
	 * memory on lower zone than the highest_zoneidx will be
 | 
						|
	 * protected by lowmem_reserve[highest_zoneidx].
 | 
						|
	 *
 | 
						|
	 * highest_zoneidx is also used by reclaim/compaction to limit
 | 
						|
	 * the target zone since higher zone than this index cannot be
 | 
						|
	 * usable for this allocation request.
 | 
						|
	 */
 | 
						|
	enum zone_type highest_zoneidx;
 | 
						|
	bool spread_dirty_pages;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * This function returns the order of a free page in the buddy system. In
 | 
						|
 * general, page_zone(page)->lock must be held by the caller to prevent the
 | 
						|
 * page from being allocated in parallel and returning garbage as the order.
 | 
						|
 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
 | 
						|
 * page cannot be allocated or merged in parallel. Alternatively, it must
 | 
						|
 * handle invalid values gracefully, and use buddy_order_unsafe() below.
 | 
						|
 */
 | 
						|
static inline unsigned int buddy_order(struct page *page)
 | 
						|
{
 | 
						|
	/* PageBuddy() must be checked by the caller */
 | 
						|
	return page_private(page);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
 | 
						|
 * PageBuddy() should be checked first by the caller to minimize race window,
 | 
						|
 * and invalid values must be handled gracefully.
 | 
						|
 *
 | 
						|
 * READ_ONCE is used so that if the caller assigns the result into a local
 | 
						|
 * variable and e.g. tests it for valid range before using, the compiler cannot
 | 
						|
 * decide to remove the variable and inline the page_private(page) multiple
 | 
						|
 * times, potentially observing different values in the tests and the actual
 | 
						|
 * use of the result.
 | 
						|
 */
 | 
						|
#define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
 | 
						|
 | 
						|
/*
 | 
						|
 * This function checks whether a page is free && is the buddy
 | 
						|
 * we can coalesce a page and its buddy if
 | 
						|
 * (a) the buddy is not in a hole (check before calling!) &&
 | 
						|
 * (b) the buddy is in the buddy system &&
 | 
						|
 * (c) a page and its buddy have the same order &&
 | 
						|
 * (d) a page and its buddy are in the same zone.
 | 
						|
 *
 | 
						|
 * For recording whether a page is in the buddy system, we set PageBuddy.
 | 
						|
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 | 
						|
 *
 | 
						|
 * For recording page's order, we use page_private(page).
 | 
						|
 */
 | 
						|
static inline bool page_is_buddy(struct page *page, struct page *buddy,
 | 
						|
				 unsigned int order)
 | 
						|
{
 | 
						|
	if (!page_is_guard(buddy) && !PageBuddy(buddy))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (buddy_order(buddy) != order)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * zone check is done late to avoid uselessly calculating
 | 
						|
	 * zone/node ids for pages that could never merge.
 | 
						|
	 */
 | 
						|
	if (page_zone_id(page) != page_zone_id(buddy))
 | 
						|
		return false;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Locate the struct page for both the matching buddy in our
 | 
						|
 * pair (buddy1) and the combined O(n+1) page they form (page).
 | 
						|
 *
 | 
						|
 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 | 
						|
 * the following equation:
 | 
						|
 *     B2 = B1 ^ (1 << O)
 | 
						|
 * For example, if the starting buddy (buddy2) is #8 its order
 | 
						|
 * 1 buddy is #10:
 | 
						|
 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 | 
						|
 *
 | 
						|
 * 2) Any buddy B will have an order O+1 parent P which
 | 
						|
 * satisfies the following equation:
 | 
						|
 *     P = B & ~(1 << O)
 | 
						|
 *
 | 
						|
 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 | 
						|
 */
 | 
						|
static inline unsigned long
 | 
						|
__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
 | 
						|
{
 | 
						|
	return page_pfn ^ (1 << order);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the buddy of @page and validate it.
 | 
						|
 * @page: The input page
 | 
						|
 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
 | 
						|
 *       function is used in the performance-critical __free_one_page().
 | 
						|
 * @order: The order of the page
 | 
						|
 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
 | 
						|
 *             page_to_pfn().
 | 
						|
 *
 | 
						|
 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
 | 
						|
 * not the same as @page. The validation is necessary before use it.
 | 
						|
 *
 | 
						|
 * Return: the found buddy page or NULL if not found.
 | 
						|
 */
 | 
						|
static inline struct page *find_buddy_page_pfn(struct page *page,
 | 
						|
			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
 | 
						|
{
 | 
						|
	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
 | 
						|
	struct page *buddy;
 | 
						|
 | 
						|
	buddy = page + (__buddy_pfn - pfn);
 | 
						|
	if (buddy_pfn)
 | 
						|
		*buddy_pfn = __buddy_pfn;
 | 
						|
 | 
						|
	if (page_is_buddy(page, buddy, order))
 | 
						|
		return buddy;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
 | 
						|
				unsigned long end_pfn, struct zone *zone);
 | 
						|
 | 
						|
static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
 | 
						|
				unsigned long end_pfn, struct zone *zone)
 | 
						|
{
 | 
						|
	if (zone->contiguous)
 | 
						|
		return pfn_to_page(start_pfn);
 | 
						|
 | 
						|
	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
 | 
						|
}
 | 
						|
 | 
						|
extern int __isolate_free_page(struct page *page, unsigned int order);
 | 
						|
extern void __putback_isolated_page(struct page *page, unsigned int order,
 | 
						|
				    int mt);
 | 
						|
extern void memblock_free_pages(struct page *page, unsigned long pfn,
 | 
						|
					unsigned int order);
 | 
						|
extern void __free_pages_core(struct page *page, unsigned int order);
 | 
						|
extern void prep_compound_page(struct page *page, unsigned int order);
 | 
						|
extern void post_alloc_hook(struct page *page, unsigned int order,
 | 
						|
					gfp_t gfp_flags);
 | 
						|
extern int user_min_free_kbytes;
 | 
						|
 | 
						|
extern void free_unref_page(struct page *page, unsigned int order);
 | 
						|
extern void free_unref_page_list(struct list_head *list);
 | 
						|
 | 
						|
extern void zone_pcp_reset(struct zone *zone);
 | 
						|
extern void zone_pcp_disable(struct zone *zone);
 | 
						|
extern void zone_pcp_enable(struct zone *zone);
 | 
						|
 | 
						|
extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
 | 
						|
			  phys_addr_t min_addr,
 | 
						|
			  int nid, bool exact_nid);
 | 
						|
 | 
						|
int split_free_page(struct page *free_page,
 | 
						|
			unsigned int order, unsigned long split_pfn_offset);
 | 
						|
 | 
						|
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 | 
						|
 | 
						|
/*
 | 
						|
 * in mm/compaction.c
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * compact_control is used to track pages being migrated and the free pages
 | 
						|
 * they are being migrated to during memory compaction. The free_pfn starts
 | 
						|
 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 | 
						|
 * are moved to the end of a zone during a compaction run and the run
 | 
						|
 * completes when free_pfn <= migrate_pfn
 | 
						|
 */
 | 
						|
struct compact_control {
 | 
						|
	struct list_head freepages;	/* List of free pages to migrate to */
 | 
						|
	struct list_head migratepages;	/* List of pages being migrated */
 | 
						|
	unsigned int nr_freepages;	/* Number of isolated free pages */
 | 
						|
	unsigned int nr_migratepages;	/* Number of pages to migrate */
 | 
						|
	unsigned long free_pfn;		/* isolate_freepages search base */
 | 
						|
	/*
 | 
						|
	 * Acts as an in/out parameter to page isolation for migration.
 | 
						|
	 * isolate_migratepages uses it as a search base.
 | 
						|
	 * isolate_migratepages_block will update the value to the next pfn
 | 
						|
	 * after the last isolated one.
 | 
						|
	 */
 | 
						|
	unsigned long migrate_pfn;
 | 
						|
	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
 | 
						|
	struct zone *zone;
 | 
						|
	unsigned long total_migrate_scanned;
 | 
						|
	unsigned long total_free_scanned;
 | 
						|
	unsigned short fast_search_fail;/* failures to use free list searches */
 | 
						|
	short search_order;		/* order to start a fast search at */
 | 
						|
	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
 | 
						|
	int order;			/* order a direct compactor needs */
 | 
						|
	int migratetype;		/* migratetype of direct compactor */
 | 
						|
	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
 | 
						|
	const int highest_zoneidx;	/* zone index of a direct compactor */
 | 
						|
	enum migrate_mode mode;		/* Async or sync migration mode */
 | 
						|
	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
 | 
						|
	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
 | 
						|
	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
 | 
						|
	bool direct_compaction;		/* False from kcompactd or /proc/... */
 | 
						|
	bool proactive_compaction;	/* kcompactd proactive compaction */
 | 
						|
	bool whole_zone;		/* Whole zone should/has been scanned */
 | 
						|
	bool contended;			/* Signal lock contention */
 | 
						|
	bool rescan;			/* Rescanning the same pageblock */
 | 
						|
	bool alloc_contig;		/* alloc_contig_range allocation */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Used in direct compaction when a page should be taken from the freelists
 | 
						|
 * immediately when one is created during the free path.
 | 
						|
 */
 | 
						|
struct capture_control {
 | 
						|
	struct compact_control *cc;
 | 
						|
	struct page *page;
 | 
						|
};
 | 
						|
 | 
						|
unsigned long
 | 
						|
isolate_freepages_range(struct compact_control *cc,
 | 
						|
			unsigned long start_pfn, unsigned long end_pfn);
 | 
						|
int
 | 
						|
isolate_migratepages_range(struct compact_control *cc,
 | 
						|
			   unsigned long low_pfn, unsigned long end_pfn);
 | 
						|
 | 
						|
int __alloc_contig_migrate_range(struct compact_control *cc,
 | 
						|
					unsigned long start, unsigned long end);
 | 
						|
#endif
 | 
						|
int find_suitable_fallback(struct free_area *area, unsigned int order,
 | 
						|
			int migratetype, bool only_stealable, bool *can_steal);
 | 
						|
 | 
						|
/*
 | 
						|
 * These three helpers classifies VMAs for virtual memory accounting.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Executable code area - executable, not writable, not stack
 | 
						|
 */
 | 
						|
static inline bool is_exec_mapping(vm_flags_t flags)
 | 
						|
{
 | 
						|
	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Stack area - automatically grows in one direction
 | 
						|
 *
 | 
						|
 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
 | 
						|
 * do_mmap() forbids all other combinations.
 | 
						|
 */
 | 
						|
static inline bool is_stack_mapping(vm_flags_t flags)
 | 
						|
{
 | 
						|
	return (flags & VM_STACK) == VM_STACK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Data area - private, writable, not stack
 | 
						|
 */
 | 
						|
static inline bool is_data_mapping(vm_flags_t flags)
 | 
						|
{
 | 
						|
	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
 | 
						|
}
 | 
						|
 | 
						|
/* mm/util.c */
 | 
						|
struct anon_vma *folio_anon_vma(struct folio *folio);
 | 
						|
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
void unmap_mapping_folio(struct folio *folio);
 | 
						|
extern long populate_vma_page_range(struct vm_area_struct *vma,
 | 
						|
		unsigned long start, unsigned long end, int *locked);
 | 
						|
extern long faultin_vma_page_range(struct vm_area_struct *vma,
 | 
						|
				   unsigned long start, unsigned long end,
 | 
						|
				   bool write, int *locked);
 | 
						|
extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
 | 
						|
			      unsigned long len);
 | 
						|
/*
 | 
						|
 * mlock_vma_page() and munlock_vma_page():
 | 
						|
 * should be called with vma's mmap_lock held for read or write,
 | 
						|
 * under page table lock for the pte/pmd being added or removed.
 | 
						|
 *
 | 
						|
 * mlock is usually called at the end of page_add_*_rmap(),
 | 
						|
 * munlock at the end of page_remove_rmap(); but new anon
 | 
						|
 * pages are managed by lru_cache_add_inactive_or_unevictable()
 | 
						|
 * calling mlock_new_page().
 | 
						|
 *
 | 
						|
 * @compound is used to include pmd mappings of THPs, but filter out
 | 
						|
 * pte mappings of THPs, which cannot be consistently counted: a pte
 | 
						|
 * mapping of the THP head cannot be distinguished by the page alone.
 | 
						|
 */
 | 
						|
void mlock_folio(struct folio *folio);
 | 
						|
static inline void mlock_vma_folio(struct folio *folio,
 | 
						|
			struct vm_area_struct *vma, bool compound)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * The VM_SPECIAL check here serves two purposes.
 | 
						|
	 * 1) VM_IO check prevents migration from double-counting during mlock.
 | 
						|
	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
 | 
						|
	 *    is never left set on a VM_SPECIAL vma, there is an interval while
 | 
						|
	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
 | 
						|
	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
 | 
						|
	 */
 | 
						|
	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
 | 
						|
	    (compound || !folio_test_large(folio)))
 | 
						|
		mlock_folio(folio);
 | 
						|
}
 | 
						|
 | 
						|
static inline void mlock_vma_page(struct page *page,
 | 
						|
			struct vm_area_struct *vma, bool compound)
 | 
						|
{
 | 
						|
	mlock_vma_folio(page_folio(page), vma, compound);
 | 
						|
}
 | 
						|
 | 
						|
void munlock_page(struct page *page);
 | 
						|
static inline void munlock_vma_page(struct page *page,
 | 
						|
			struct vm_area_struct *vma, bool compound)
 | 
						|
{
 | 
						|
	if (unlikely(vma->vm_flags & VM_LOCKED) &&
 | 
						|
	    (compound || !PageTransCompound(page)))
 | 
						|
		munlock_page(page);
 | 
						|
}
 | 
						|
void mlock_new_page(struct page *page);
 | 
						|
bool need_mlock_page_drain(int cpu);
 | 
						|
void mlock_page_drain_local(void);
 | 
						|
void mlock_page_drain_remote(int cpu);
 | 
						|
 | 
						|
extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the start of user virtual address at the specific offset within
 | 
						|
 * a vma.
 | 
						|
 */
 | 
						|
static inline unsigned long
 | 
						|
vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
 | 
						|
		  struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	unsigned long address;
 | 
						|
 | 
						|
	if (pgoff >= vma->vm_pgoff) {
 | 
						|
		address = vma->vm_start +
 | 
						|
			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | 
						|
		/* Check for address beyond vma (or wrapped through 0?) */
 | 
						|
		if (address < vma->vm_start || address >= vma->vm_end)
 | 
						|
			address = -EFAULT;
 | 
						|
	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
 | 
						|
		/* Test above avoids possibility of wrap to 0 on 32-bit */
 | 
						|
		address = vma->vm_start;
 | 
						|
	} else {
 | 
						|
		address = -EFAULT;
 | 
						|
	}
 | 
						|
	return address;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the start of user virtual address of a page within a vma.
 | 
						|
 * Returns -EFAULT if all of the page is outside the range of vma.
 | 
						|
 * If page is a compound head, the entire compound page is considered.
 | 
						|
 */
 | 
						|
static inline unsigned long
 | 
						|
vma_address(struct page *page, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
 | 
						|
	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Then at what user virtual address will none of the range be found in vma?
 | 
						|
 * Assumes that vma_address() already returned a good starting address.
 | 
						|
 */
 | 
						|
static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = pvmw->vma;
 | 
						|
	pgoff_t pgoff;
 | 
						|
	unsigned long address;
 | 
						|
 | 
						|
	/* Common case, plus ->pgoff is invalid for KSM */
 | 
						|
	if (pvmw->nr_pages == 1)
 | 
						|
		return pvmw->address + PAGE_SIZE;
 | 
						|
 | 
						|
	pgoff = pvmw->pgoff + pvmw->nr_pages;
 | 
						|
	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | 
						|
	/* Check for address beyond vma (or wrapped through 0?) */
 | 
						|
	if (address < vma->vm_start || address > vma->vm_end)
 | 
						|
		address = vma->vm_end;
 | 
						|
	return address;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
 | 
						|
						    struct file *fpin)
 | 
						|
{
 | 
						|
	int flags = vmf->flags;
 | 
						|
 | 
						|
	if (fpin)
 | 
						|
		return fpin;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
 | 
						|
	 * anything, so we only pin the file and drop the mmap_lock if only
 | 
						|
	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
 | 
						|
	 */
 | 
						|
	if (fault_flag_allow_retry_first(flags) &&
 | 
						|
	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
 | 
						|
		fpin = get_file(vmf->vma->vm_file);
 | 
						|
		mmap_read_unlock(vmf->vma->vm_mm);
 | 
						|
	}
 | 
						|
	return fpin;
 | 
						|
}
 | 
						|
#else /* !CONFIG_MMU */
 | 
						|
static inline void unmap_mapping_folio(struct folio *folio) { }
 | 
						|
static inline void mlock_vma_page(struct page *page,
 | 
						|
			struct vm_area_struct *vma, bool compound) { }
 | 
						|
static inline void munlock_vma_page(struct page *page,
 | 
						|
			struct vm_area_struct *vma, bool compound) { }
 | 
						|
static inline void mlock_new_page(struct page *page) { }
 | 
						|
static inline bool need_mlock_page_drain(int cpu) { return false; }
 | 
						|
static inline void mlock_page_drain_local(void) { }
 | 
						|
static inline void mlock_page_drain_remote(int cpu) { }
 | 
						|
static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* !CONFIG_MMU */
 | 
						|
 | 
						|
/* Memory initialisation debug and verification */
 | 
						|
enum mminit_level {
 | 
						|
	MMINIT_WARNING,
 | 
						|
	MMINIT_VERIFY,
 | 
						|
	MMINIT_TRACE
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_MEMORY_INIT
 | 
						|
 | 
						|
extern int mminit_loglevel;
 | 
						|
 | 
						|
#define mminit_dprintk(level, prefix, fmt, arg...) \
 | 
						|
do { \
 | 
						|
	if (level < mminit_loglevel) { \
 | 
						|
		if (level <= MMINIT_WARNING) \
 | 
						|
			pr_warn("mminit::" prefix " " fmt, ##arg);	\
 | 
						|
		else \
 | 
						|
			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
 | 
						|
	} \
 | 
						|
} while (0)
 | 
						|
 | 
						|
extern void mminit_verify_pageflags_layout(void);
 | 
						|
extern void mminit_verify_zonelist(void);
 | 
						|
#else
 | 
						|
 | 
						|
static inline void mminit_dprintk(enum mminit_level level,
 | 
						|
				const char *prefix, const char *fmt, ...)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void mminit_verify_pageflags_layout(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void mminit_verify_zonelist(void)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_DEBUG_MEMORY_INIT */
 | 
						|
 | 
						|
#define NODE_RECLAIM_NOSCAN	-2
 | 
						|
#define NODE_RECLAIM_FULL	-1
 | 
						|
#define NODE_RECLAIM_SOME	0
 | 
						|
#define NODE_RECLAIM_SUCCESS	1
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
 | 
						|
extern int find_next_best_node(int node, nodemask_t *used_node_mask);
 | 
						|
#else
 | 
						|
static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
 | 
						|
				unsigned int order)
 | 
						|
{
 | 
						|
	return NODE_RECLAIM_NOSCAN;
 | 
						|
}
 | 
						|
static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
 | 
						|
{
 | 
						|
	return NUMA_NO_NODE;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * mm/memory-failure.c
 | 
						|
 */
 | 
						|
extern int hwpoison_filter(struct page *p);
 | 
						|
 | 
						|
extern u32 hwpoison_filter_dev_major;
 | 
						|
extern u32 hwpoison_filter_dev_minor;
 | 
						|
extern u64 hwpoison_filter_flags_mask;
 | 
						|
extern u64 hwpoison_filter_flags_value;
 | 
						|
extern u64 hwpoison_filter_memcg;
 | 
						|
extern u32 hwpoison_filter_enable;
 | 
						|
 | 
						|
extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
 | 
						|
        unsigned long, unsigned long,
 | 
						|
        unsigned long, unsigned long);
 | 
						|
 | 
						|
extern void set_pageblock_order(void);
 | 
						|
unsigned int reclaim_clean_pages_from_list(struct zone *zone,
 | 
						|
					    struct list_head *page_list);
 | 
						|
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
 | 
						|
#define ALLOC_WMARK_MIN		WMARK_MIN
 | 
						|
#define ALLOC_WMARK_LOW		WMARK_LOW
 | 
						|
#define ALLOC_WMARK_HIGH	WMARK_HIGH
 | 
						|
#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
 | 
						|
 | 
						|
/* Mask to get the watermark bits */
 | 
						|
#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
 | 
						|
 | 
						|
/*
 | 
						|
 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
 | 
						|
 * cannot assume a reduced access to memory reserves is sufficient for
 | 
						|
 * !MMU
 | 
						|
 */
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
#define ALLOC_OOM		0x08
 | 
						|
#else
 | 
						|
#define ALLOC_OOM		ALLOC_NO_WATERMARKS
 | 
						|
#endif
 | 
						|
 | 
						|
#define ALLOC_HARDER		 0x10 /* try to alloc harder */
 | 
						|
#define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
 | 
						|
#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
 | 
						|
#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
 | 
						|
#ifdef CONFIG_ZONE_DMA32
 | 
						|
#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
 | 
						|
#else
 | 
						|
#define ALLOC_NOFRAGMENT	  0x0
 | 
						|
#endif
 | 
						|
#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
 | 
						|
 | 
						|
enum ttu_flags;
 | 
						|
struct tlbflush_unmap_batch;
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * only for MM internal work items which do not depend on
 | 
						|
 * any allocations or locks which might depend on allocations
 | 
						|
 */
 | 
						|
extern struct workqueue_struct *mm_percpu_wq;
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 | 
						|
void try_to_unmap_flush(void);
 | 
						|
void try_to_unmap_flush_dirty(void);
 | 
						|
void flush_tlb_batched_pending(struct mm_struct *mm);
 | 
						|
#else
 | 
						|
static inline void try_to_unmap_flush(void)
 | 
						|
{
 | 
						|
}
 | 
						|
static inline void try_to_unmap_flush_dirty(void)
 | 
						|
{
 | 
						|
}
 | 
						|
static inline void flush_tlb_batched_pending(struct mm_struct *mm)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 | 
						|
 | 
						|
extern const struct trace_print_flags pageflag_names[];
 | 
						|
extern const struct trace_print_flags vmaflag_names[];
 | 
						|
extern const struct trace_print_flags gfpflag_names[];
 | 
						|
 | 
						|
static inline bool is_migrate_highatomic(enum migratetype migratetype)
 | 
						|
{
 | 
						|
	return migratetype == MIGRATE_HIGHATOMIC;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool is_migrate_highatomic_page(struct page *page)
 | 
						|
{
 | 
						|
	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
 | 
						|
}
 | 
						|
 | 
						|
void setup_zone_pageset(struct zone *zone);
 | 
						|
 | 
						|
struct migration_target_control {
 | 
						|
	int nid;		/* preferred node id */
 | 
						|
	nodemask_t *nmask;
 | 
						|
	gfp_t gfp_mask;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * mm/vmalloc.c
 | 
						|
 */
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 | 
						|
                pgprot_t prot, struct page **pages, unsigned int page_shift);
 | 
						|
#else
 | 
						|
static inline
 | 
						|
int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 | 
						|
                pgprot_t prot, struct page **pages, unsigned int page_shift)
 | 
						|
{
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 | 
						|
			       pgprot_t prot, struct page **pages,
 | 
						|
			       unsigned int page_shift);
 | 
						|
 | 
						|
void vunmap_range_noflush(unsigned long start, unsigned long end);
 | 
						|
 | 
						|
void __vunmap_range_noflush(unsigned long start, unsigned long end);
 | 
						|
 | 
						|
int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
 | 
						|
		      unsigned long addr, int page_nid, int *flags);
 | 
						|
 | 
						|
void free_zone_device_page(struct page *page);
 | 
						|
int migrate_device_coherent_page(struct page *page);
 | 
						|
 | 
						|
/*
 | 
						|
 * mm/gup.c
 | 
						|
 */
 | 
						|
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
 | 
						|
 | 
						|
extern bool mirrored_kernelcore;
 | 
						|
 | 
						|
static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
 | 
						|
	 * enablements, because when without soft-dirty being compiled in,
 | 
						|
	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
 | 
						|
	 * will be constantly true.
 | 
						|
	 */
 | 
						|
	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Soft-dirty is kind of special: its tracking is enabled when the
 | 
						|
	 * vma flags not set.
 | 
						|
	 */
 | 
						|
	return !(vma->vm_flags & VM_SOFTDIRTY);
 | 
						|
}
 | 
						|
 | 
						|
#endif	/* __MM_INTERNAL_H */
 |