mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	
				
				Linux kernel source tree
				
			
			
		
				subsystem as a whole and in OP-TEE in particular.
 
 Global Platform TEE specification [1] allows client applications
 to register part of own memory as a shared buffer between
 application and TEE. This allows fast zero-copy communication between
 TEE and REE. But current implementation of TEE in Linux does not support
 this feature.
 
 Also, current implementation of OP-TEE transport uses fixed size
 pre-shared buffer for all communications with OP-TEE OS. This is okay
 in the most use cases. But this prevents use of OP-TEE in virtualized
 environments, because:
  a) We can't share the same buffer between different virtual machines
  b) Physically contiguous memory as seen by VM can be non-contiguous
     in reality (and as seen by OP-TEE OS) due to second stage of
     MMU translation.
  c) Size of this pre-shared buffer is limited.
 
 So, first part of this pull request adds generic register/unregister
 interface to tee subsystem. The second part adds necessary features into
 OP-TEE driver, so it can use not only static pre-shared buffer, but
 whole RAM to communicate with OP-TEE OS.
 
 This change is backwards compatible allowing older secure world or
 user space to work with newer kernels and vice versa.
 
 [1] https://www.globalplatform.org/specificationsdevice.asp
 -----BEGIN PGP SIGNATURE-----
 
 iQI3BAABCgAhBQJaM8X7GhxqZW5zLndpa2xhbmRlckBsaW5hcm8ub3JnAAoJELWw
 uEGXj+zThYsQAMPsMwvV977gLCnFxSZuIh1qnK5sXabpe4ITVOaUaxyCIoKAcROX
 exFdo1l+4UrOaEA9o06IROnHczCEz7IvGcPVYCB13tHwyfPsuicrdM0b/hm2Mehx
 MGYDsm3ZjnUTcZxGMNHYvCunNi84Rt1yOC8Mdx4kPhCI8ZCDqb9pV/Bb5wNLnkXS
 lXP/+EAkF0ECj88JUhgunkvL96QyK/PROCNUMWansB1RwglvyWy7IS/r03BW9Cpi
 4Mtiywmj/KZO9To4LvWhPiX5xvdxe+VxXUD6BW9hVVOxmXGSTEwr9YYr0f7qWH5q
 HeTLzkOsRQ+uHkaSLZOJ1HkIsP0sYQ7tR6OaipAEMJIN87ktGr45uuxaMnJCV1Z/
 tiKkGKJq9VISa7LA0Fv3nLhfYo8/jHiV/dV77FTreHhWimtVl3aiIkon+P/VSA7W
 Qstkq/v+djZXSmJ+dAcaRdukufWLUB4xhl27isnmaVjToFUHJH36wM9smtgXFygv
 DL8+5UBgsWPOlpJkIsTD/dwiQK+CeG4/SASgfe5DV7GVh+Z+71E2V40UQ9JoUROa
 Y33tPFWg07gG3cHAZYugKG2ucf4Yy3GXh5xZnjIq0Ye1U3/TnbK543V1y2N45vx0
 xBWJFFh2blKD04QPynBFqKPKNc5d//OgeK3m4PBTYk2GoGIvnc5YxPTq
 =3iwl
 -----END PGP SIGNATURE-----
Merge tag 'tee-drv-dynamic-shm-for-v4.16' of https://git.linaro.org/people/jens.wiklander/linux-tee into next/drivers
Pull "tee dynamic shm for v4.16" from Jens Wiklander:
This pull request enables dynamic shared memory support in the TEE
subsystem as a whole and in OP-TEE in particular.
Global Platform TEE specification [1] allows client applications
to register part of own memory as a shared buffer between
application and TEE. This allows fast zero-copy communication between
TEE and REE. But current implementation of TEE in Linux does not support
this feature.
Also, current implementation of OP-TEE transport uses fixed size
pre-shared buffer for all communications with OP-TEE OS. This is okay
in the most use cases. But this prevents use of OP-TEE in virtualized
environments, because:
 a) We can't share the same buffer between different virtual machines
 b) Physically contiguous memory as seen by VM can be non-contiguous
    in reality (and as seen by OP-TEE OS) due to second stage of
    MMU translation.
 c) Size of this pre-shared buffer is limited.
So, first part of this pull request adds generic register/unregister
interface to tee subsystem. The second part adds necessary features into
OP-TEE driver, so it can use not only static pre-shared buffer, but
whole RAM to communicate with OP-TEE OS.
This change is backwards compatible allowing older secure world or
user space to work with newer kernels and vice versa.
[1] https://www.globalplatform.org/specificationsdevice.asp
* tag 'tee-drv-dynamic-shm-for-v4.16' of https://git.linaro.org/people/jens.wiklander/linux-tee:
  tee: shm: inline tee_shm_get_id()
  tee: use reference counting for tee_context
  tee: optee: enable dynamic SHM support
  tee: optee: add optee-specific shared pool implementation
  tee: optee: store OP-TEE capabilities in private data
  tee: optee: add registered buffers handling into RPC calls
  tee: optee: add registered shared parameters handling
  tee: optee: add shared buffer registration functions
  tee: optee: add page list manipulation functions
  tee: optee: Update protocol definitions
  tee: shm: add page accessor functions
  tee: shm: add accessors for buffer size and page offset
  tee: add register user memory
  tee: flexible shared memory pool creation
		
	
					 | 
			||
|---|---|---|
| arch | ||
| block | ||
| certs | ||
| crypto | ||
| Documentation | ||
| drivers | ||
| firmware | ||
| fs | ||
| include | ||
| init | ||
| ipc | ||
| kernel | ||
| lib | ||
| mm | ||
| net | ||
| samples | ||
| scripts | ||
| security | ||
| sound | ||
| tools | ||
| usr | ||
| virt | ||
| .cocciconfig | ||
| .get_maintainer.ignore | ||
| .gitattributes | ||
| .gitignore | ||
| .mailmap | ||
| COPYING | ||
| CREDITS | ||
| Kbuild | ||
| Kconfig | ||
| MAINTAINERS | ||
| Makefile | ||
| README | ||
Linux kernel ============ This file was moved to Documentation/admin-guide/README.rst Please notice that there are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. See Documentation/00-INDEX for a list of what is contained in each file. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.