mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 c09a8ac1cd
			
		
	
	
		c09a8ac1cd
		
	
	
	
	
		
			
			Implement `Borrow<[T]>` and `BorrowMut<[T]>` for `Vec<T>`. This allows `Vec<T>` to be used in generic APIs asking for types implementing those traits. `[T; N]` and `&mut [T]` also implement those traits allowing users to use either owned, borrowed and heap-owned values. The implementation leverages `as_slice` and `as_mut_slice`. Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Benno Lossin <lossin@kernel.org> Signed-off-by: Alexandre Courbot <acourbot@nvidia.com> Link: https://lore.kernel.org/r/20250616-borrow_impls-v4-1-36f9beb3fe6a@nvidia.com Signed-off-by: Danilo Krummrich <dakr@kernel.org>
		
			
				
	
	
		
			1344 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1344 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| //! Implementation of [`Vec`].
 | |
| 
 | |
| use super::{
 | |
|     allocator::{KVmalloc, Kmalloc, Vmalloc},
 | |
|     layout::ArrayLayout,
 | |
|     AllocError, Allocator, Box, Flags,
 | |
| };
 | |
| use core::{
 | |
|     borrow::{Borrow, BorrowMut},
 | |
|     fmt,
 | |
|     marker::PhantomData,
 | |
|     mem::{ManuallyDrop, MaybeUninit},
 | |
|     ops::Deref,
 | |
|     ops::DerefMut,
 | |
|     ops::Index,
 | |
|     ops::IndexMut,
 | |
|     ptr,
 | |
|     ptr::NonNull,
 | |
|     slice,
 | |
|     slice::SliceIndex,
 | |
| };
 | |
| 
 | |
| mod errors;
 | |
| pub use self::errors::{InsertError, PushError, RemoveError};
 | |
| 
 | |
| /// Create a [`KVec`] containing the arguments.
 | |
| ///
 | |
| /// New memory is allocated with `GFP_KERNEL`.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// let mut v = kernel::kvec![];
 | |
| /// v.push(1, GFP_KERNEL)?;
 | |
| /// assert_eq!(v, [1]);
 | |
| ///
 | |
| /// let mut v = kernel::kvec![1; 3]?;
 | |
| /// v.push(4, GFP_KERNEL)?;
 | |
| /// assert_eq!(v, [1, 1, 1, 4]);
 | |
| ///
 | |
| /// let mut v = kernel::kvec![1, 2, 3]?;
 | |
| /// v.push(4, GFP_KERNEL)?;
 | |
| /// assert_eq!(v, [1, 2, 3, 4]);
 | |
| ///
 | |
| /// # Ok::<(), Error>(())
 | |
| /// ```
 | |
| #[macro_export]
 | |
| macro_rules! kvec {
 | |
|     () => (
 | |
|         $crate::alloc::KVec::new()
 | |
|     );
 | |
|     ($elem:expr; $n:expr) => (
 | |
|         $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
 | |
|     );
 | |
|     ($($x:expr),+ $(,)?) => (
 | |
|         match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
 | |
|             Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
 | |
|             Err(e) => Err(e),
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| /// The kernel's [`Vec`] type.
 | |
| ///
 | |
| /// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
 | |
| /// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
 | |
| ///
 | |
| /// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
 | |
| /// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
 | |
| ///
 | |
| /// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
 | |
| ///
 | |
| /// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
 | |
| /// capacity of the vector (the number of elements that currently fit into the vector), its length
 | |
| /// (the number of elements that are currently stored in the vector) and the `Allocator` type used
 | |
| /// to allocate (and free) the backing buffer.
 | |
| ///
 | |
| /// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
 | |
| /// and manually modified.
 | |
| ///
 | |
| /// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
 | |
| /// are added to the vector.
 | |
| ///
 | |
| /// # Invariants
 | |
| ///
 | |
| /// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
 | |
| ///   zero-sized types, is a dangling, well aligned pointer.
 | |
| ///
 | |
| /// - `self.len` always represents the exact number of elements stored in the vector.
 | |
| ///
 | |
| /// - `self.layout` represents the absolute number of elements that can be stored within the vector
 | |
| ///   without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
 | |
| ///   backing buffer to be larger than `layout`.
 | |
| ///
 | |
| /// - `self.len()` is always less than or equal to `self.capacity()`.
 | |
| ///
 | |
| /// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
 | |
| ///   was allocated with (and must be freed with).
 | |
| pub struct Vec<T, A: Allocator> {
 | |
|     ptr: NonNull<T>,
 | |
|     /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
 | |
|     ///
 | |
|     /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
 | |
|     /// elements we can still store without reallocating.
 | |
|     layout: ArrayLayout<T>,
 | |
|     len: usize,
 | |
|     _p: PhantomData<A>,
 | |
| }
 | |
| 
 | |
| /// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// let mut v = KVec::new();
 | |
| /// v.push(1, GFP_KERNEL)?;
 | |
| /// assert_eq!(&v, &[1]);
 | |
| ///
 | |
| /// # Ok::<(), Error>(())
 | |
| /// ```
 | |
| pub type KVec<T> = Vec<T, Kmalloc>;
 | |
| 
 | |
| /// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// let mut v = VVec::new();
 | |
| /// v.push(1, GFP_KERNEL)?;
 | |
| /// assert_eq!(&v, &[1]);
 | |
| ///
 | |
| /// # Ok::<(), Error>(())
 | |
| /// ```
 | |
| pub type VVec<T> = Vec<T, Vmalloc>;
 | |
| 
 | |
| /// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// let mut v = KVVec::new();
 | |
| /// v.push(1, GFP_KERNEL)?;
 | |
| /// assert_eq!(&v, &[1]);
 | |
| ///
 | |
| /// # Ok::<(), Error>(())
 | |
| /// ```
 | |
| pub type KVVec<T> = Vec<T, KVmalloc>;
 | |
| 
 | |
| // SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
 | |
| unsafe impl<T, A> Send for Vec<T, A>
 | |
| where
 | |
|     T: Send,
 | |
|     A: Allocator,
 | |
| {
 | |
| }
 | |
| 
 | |
| // SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
 | |
| unsafe impl<T, A> Sync for Vec<T, A>
 | |
| where
 | |
|     T: Sync,
 | |
|     A: Allocator,
 | |
| {
 | |
| }
 | |
| 
 | |
| impl<T, A> Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     #[inline]
 | |
|     const fn is_zst() -> bool {
 | |
|         core::mem::size_of::<T>() == 0
 | |
|     }
 | |
| 
 | |
|     /// Returns the number of elements that can be stored within the vector without allocating
 | |
|     /// additional memory.
 | |
|     pub fn capacity(&self) -> usize {
 | |
|         if const { Self::is_zst() } {
 | |
|             usize::MAX
 | |
|         } else {
 | |
|             self.layout.len()
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Returns the number of elements stored within the vector.
 | |
|     #[inline]
 | |
|     pub fn len(&self) -> usize {
 | |
|         self.len
 | |
|     }
 | |
| 
 | |
|     /// Increments `self.len` by `additional`.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// - `additional` must be less than or equal to `self.capacity - self.len`.
 | |
|     /// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
 | |
|     #[inline]
 | |
|     pub unsafe fn inc_len(&mut self, additional: usize) {
 | |
|         // Guaranteed by the type invariant to never underflow.
 | |
|         debug_assert!(additional <= self.capacity() - self.len());
 | |
|         // INVARIANT: By the safety requirements of this method this represents the exact number of
 | |
|         // elements stored within `self`.
 | |
|         self.len += additional;
 | |
|     }
 | |
| 
 | |
|     /// Decreases `self.len` by `count`.
 | |
|     ///
 | |
|     /// Returns a mutable slice to the elements forgotten by the vector. It is the caller's
 | |
|     /// responsibility to drop these elements if necessary.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// - `count` must be less than or equal to `self.len`.
 | |
|     unsafe fn dec_len(&mut self, count: usize) -> &mut [T] {
 | |
|         debug_assert!(count <= self.len());
 | |
|         // INVARIANT: We relinquish ownership of the elements within the range `[self.len - count,
 | |
|         // self.len)`, hence the updated value of `set.len` represents the exact number of elements
 | |
|         // stored within `self`.
 | |
|         self.len -= count;
 | |
|         // SAFETY: The memory after `self.len()` is guaranteed to contain `count` initialized
 | |
|         // elements of type `T`.
 | |
|         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr().add(self.len), count) }
 | |
|     }
 | |
| 
 | |
|     /// Returns a slice of the entire vector.
 | |
|     #[inline]
 | |
|     pub fn as_slice(&self) -> &[T] {
 | |
|         self
 | |
|     }
 | |
| 
 | |
|     /// Returns a mutable slice of the entire vector.
 | |
|     #[inline]
 | |
|     pub fn as_mut_slice(&mut self) -> &mut [T] {
 | |
|         self
 | |
|     }
 | |
| 
 | |
|     /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
 | |
|     /// dangling raw pointer.
 | |
|     #[inline]
 | |
|     pub fn as_mut_ptr(&mut self) -> *mut T {
 | |
|         self.ptr.as_ptr()
 | |
|     }
 | |
| 
 | |
|     /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
 | |
|     /// pointer.
 | |
|     #[inline]
 | |
|     pub fn as_ptr(&self) -> *const T {
 | |
|         self.ptr.as_ptr()
 | |
|     }
 | |
| 
 | |
|     /// Returns `true` if the vector contains no elements, `false` otherwise.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = KVec::new();
 | |
|     /// assert!(v.is_empty());
 | |
|     ///
 | |
|     /// v.push(1, GFP_KERNEL);
 | |
|     /// assert!(!v.is_empty());
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     pub fn is_empty(&self) -> bool {
 | |
|         self.len() == 0
 | |
|     }
 | |
| 
 | |
|     /// Creates a new, empty `Vec<T, A>`.
 | |
|     ///
 | |
|     /// This method does not allocate by itself.
 | |
|     #[inline]
 | |
|     pub const fn new() -> Self {
 | |
|         // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
 | |
|         // - `ptr` is a properly aligned dangling pointer for type `T`,
 | |
|         // - `layout` is an empty `ArrayLayout` (zero capacity)
 | |
|         // - `len` is zero, since no elements can be or have been stored,
 | |
|         // - `A` is always valid.
 | |
|         Self {
 | |
|             ptr: NonNull::dangling(),
 | |
|             layout: ArrayLayout::empty(),
 | |
|             len: 0,
 | |
|             _p: PhantomData::<A>,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
 | |
|     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
 | |
|         // SAFETY:
 | |
|         // - `self.len` is smaller than `self.capacity` by the type invariant and hence, the
 | |
|         //   resulting pointer is guaranteed to be part of the same allocated object.
 | |
|         // - `self.len` can not overflow `isize`.
 | |
|         let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
 | |
| 
 | |
|         // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
 | |
|         // and valid, but uninitialized.
 | |
|         unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
 | |
|     }
 | |
| 
 | |
|     /// Appends an element to the back of the [`Vec`] instance.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = KVec::new();
 | |
|     /// v.push(1, GFP_KERNEL)?;
 | |
|     /// assert_eq!(&v, &[1]);
 | |
|     ///
 | |
|     /// v.push(2, GFP_KERNEL)?;
 | |
|     /// assert_eq!(&v, &[1, 2]);
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
 | |
|         self.reserve(1, flags)?;
 | |
|         // SAFETY: The call to `reserve` was successful, so the capacity is at least one greater
 | |
|         // than the length.
 | |
|         unsafe { self.push_within_capacity_unchecked(v) };
 | |
|         Ok(())
 | |
|     }
 | |
| 
 | |
|     /// Appends an element to the back of the [`Vec`] instance without reallocating.
 | |
|     ///
 | |
|     /// Fails if the vector does not have capacity for the new element.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = KVec::with_capacity(10, GFP_KERNEL)?;
 | |
|     /// for i in 0..10 {
 | |
|     ///     v.push_within_capacity(i)?;
 | |
|     /// }
 | |
|     ///
 | |
|     /// assert!(v.push_within_capacity(10).is_err());
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>> {
 | |
|         if self.len() < self.capacity() {
 | |
|             // SAFETY: The length is less than the capacity.
 | |
|             unsafe { self.push_within_capacity_unchecked(v) };
 | |
|             Ok(())
 | |
|         } else {
 | |
|             Err(PushError(v))
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Appends an element to the back of the [`Vec`] instance without reallocating.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The length must be less than the capacity.
 | |
|     unsafe fn push_within_capacity_unchecked(&mut self, v: T) {
 | |
|         let spare = self.spare_capacity_mut();
 | |
| 
 | |
|         // SAFETY: By the safety requirements, `spare` is non-empty.
 | |
|         unsafe { spare.get_unchecked_mut(0) }.write(v);
 | |
| 
 | |
|         // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
 | |
|         // by 1. We also know that the new length is <= capacity because the caller guarantees that
 | |
|         // the length is less than the capacity at the beginning of this function.
 | |
|         unsafe { self.inc_len(1) };
 | |
|     }
 | |
| 
 | |
|     /// Inserts an element at the given index in the [`Vec`] instance.
 | |
|     ///
 | |
|     /// Fails if the vector does not have capacity for the new element. Panics if the index is out
 | |
|     /// of bounds.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// use kernel::alloc::kvec::InsertError;
 | |
|     ///
 | |
|     /// let mut v = KVec::with_capacity(5, GFP_KERNEL)?;
 | |
|     /// for i in 0..5 {
 | |
|     ///     v.insert_within_capacity(0, i)?;
 | |
|     /// }
 | |
|     ///
 | |
|     /// assert!(matches!(v.insert_within_capacity(0, 5), Err(InsertError::OutOfCapacity(_))));
 | |
|     /// assert!(matches!(v.insert_within_capacity(1000, 5), Err(InsertError::IndexOutOfBounds(_))));
 | |
|     /// assert_eq!(v, [4, 3, 2, 1, 0]);
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn insert_within_capacity(
 | |
|         &mut self,
 | |
|         index: usize,
 | |
|         element: T,
 | |
|     ) -> Result<(), InsertError<T>> {
 | |
|         let len = self.len();
 | |
|         if index > len {
 | |
|             return Err(InsertError::IndexOutOfBounds(element));
 | |
|         }
 | |
| 
 | |
|         if len >= self.capacity() {
 | |
|             return Err(InsertError::OutOfCapacity(element));
 | |
|         }
 | |
| 
 | |
|         // SAFETY: This is in bounds since `index <= len < capacity`.
 | |
|         let p = unsafe { self.as_mut_ptr().add(index) };
 | |
|         // INVARIANT: This breaks the Vec invariants by making `index` contain an invalid element,
 | |
|         // but we restore the invariants below.
 | |
|         // SAFETY: Both the src and dst ranges end no later than one element after the length.
 | |
|         // Since the length is less than the capacity, both ranges are in bounds of the allocation.
 | |
|         unsafe { ptr::copy(p, p.add(1), len - index) };
 | |
|         // INVARIANT: This restores the Vec invariants.
 | |
|         // SAFETY: The pointer is in-bounds of the allocation.
 | |
|         unsafe { ptr::write(p, element) };
 | |
|         // SAFETY: Index `len` contains a valid element due to the above copy and write.
 | |
|         unsafe { self.inc_len(1) };
 | |
|         Ok(())
 | |
|     }
 | |
| 
 | |
|     /// Removes the last element from a vector and returns it, or `None` if it is empty.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = KVec::new();
 | |
|     /// v.push(1, GFP_KERNEL)?;
 | |
|     /// v.push(2, GFP_KERNEL)?;
 | |
|     /// assert_eq!(&v, &[1, 2]);
 | |
|     ///
 | |
|     /// assert_eq!(v.pop(), Some(2));
 | |
|     /// assert_eq!(v.pop(), Some(1));
 | |
|     /// assert_eq!(v.pop(), None);
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn pop(&mut self) -> Option<T> {
 | |
|         if self.is_empty() {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         let removed: *mut T = {
 | |
|             // SAFETY: We just checked that the length is at least one.
 | |
|             let slice = unsafe { self.dec_len(1) };
 | |
|             // SAFETY: The argument to `dec_len` was 1 so this returns a slice of length 1.
 | |
|             unsafe { slice.get_unchecked_mut(0) }
 | |
|         };
 | |
| 
 | |
|         // SAFETY: The guarantees of `dec_len` allow us to take ownership of this value.
 | |
|         Some(unsafe { removed.read() })
 | |
|     }
 | |
| 
 | |
|     /// Removes the element at the given index.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = kernel::kvec![1, 2, 3]?;
 | |
|     /// assert_eq!(v.remove(1)?, 2);
 | |
|     /// assert_eq!(v, [1, 3]);
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn remove(&mut self, i: usize) -> Result<T, RemoveError> {
 | |
|         let value = {
 | |
|             let value_ref = self.get(i).ok_or(RemoveError)?;
 | |
|             // INVARIANT: This breaks the invariants by invalidating the value at index `i`, but we
 | |
|             // restore the invariants below.
 | |
|             // SAFETY: The value at index `i` is valid, because otherwise we would have already
 | |
|             // failed with `RemoveError`.
 | |
|             unsafe { ptr::read(value_ref) }
 | |
|         };
 | |
| 
 | |
|         // SAFETY: We checked that `i` is in-bounds.
 | |
|         let p = unsafe { self.as_mut_ptr().add(i) };
 | |
| 
 | |
|         // INVARIANT: After this call, the invalid value is at the last slot, so the Vec invariants
 | |
|         // are restored after the below call to `dec_len(1)`.
 | |
|         // SAFETY: `p.add(1).add(self.len - i - 1)` is `i+1+len-i-1 == len` elements after the
 | |
|         // beginning of the vector, so this is in-bounds of the vector's allocation.
 | |
|         unsafe { ptr::copy(p.add(1), p, self.len - i - 1) };
 | |
| 
 | |
|         // SAFETY: Since the check at the beginning of this call did not fail with `RemoveError`,
 | |
|         // the length is at least one.
 | |
|         unsafe { self.dec_len(1) };
 | |
| 
 | |
|         Ok(value)
 | |
|     }
 | |
| 
 | |
|     /// Creates a new [`Vec`] instance with at least the given capacity.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
 | |
|     ///
 | |
|     /// assert!(v.capacity() >= 20);
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
 | |
|         let mut v = Vec::new();
 | |
| 
 | |
|         v.reserve(capacity, flags)?;
 | |
| 
 | |
|         Ok(v)
 | |
|     }
 | |
| 
 | |
|     /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = kernel::kvec![1, 2, 3]?;
 | |
|     /// v.reserve(1, GFP_KERNEL)?;
 | |
|     ///
 | |
|     /// let (mut ptr, mut len, cap) = v.into_raw_parts();
 | |
|     ///
 | |
|     /// // SAFETY: We've just reserved memory for another element.
 | |
|     /// unsafe { ptr.add(len).write(4) };
 | |
|     /// len += 1;
 | |
|     ///
 | |
|     /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
 | |
|     /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
 | |
|     /// // from the exact same raw parts.
 | |
|     /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
 | |
|     ///
 | |
|     /// assert_eq!(v, [1, 2, 3, 4]);
 | |
|     ///
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// If `T` is a ZST:
 | |
|     ///
 | |
|     /// - `ptr` must be a dangling, well aligned pointer.
 | |
|     ///
 | |
|     /// Otherwise:
 | |
|     ///
 | |
|     /// - `ptr` must have been allocated with the allocator `A`.
 | |
|     /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
 | |
|     /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
 | |
|     /// - The allocated size in bytes must not be larger than `isize::MAX`.
 | |
|     /// - `length` must be less than or equal to `capacity`.
 | |
|     /// - The first `length` elements must be initialized values of type `T`.
 | |
|     ///
 | |
|     /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
 | |
|     /// `cap` and `len`.
 | |
|     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
 | |
|         let layout = if Self::is_zst() {
 | |
|             ArrayLayout::empty()
 | |
|         } else {
 | |
|             // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
 | |
|             // smaller than `isize::MAX`.
 | |
|             unsafe { ArrayLayout::new_unchecked(capacity) }
 | |
|         };
 | |
| 
 | |
|         // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
 | |
|         // covered by the safety requirements of this function.
 | |
|         Self {
 | |
|             // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
 | |
|             // memory allocation, allocated with `A`.
 | |
|             ptr: unsafe { NonNull::new_unchecked(ptr) },
 | |
|             layout,
 | |
|             len: length,
 | |
|             _p: PhantomData::<A>,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
 | |
|     ///
 | |
|     /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
 | |
|     /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
 | |
|     /// elements and free the allocation, if any.
 | |
|     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
 | |
|         let mut me = ManuallyDrop::new(self);
 | |
|         let len = me.len();
 | |
|         let capacity = me.capacity();
 | |
|         let ptr = me.as_mut_ptr();
 | |
|         (ptr, len, capacity)
 | |
|     }
 | |
| 
 | |
|     /// Clears the vector, removing all values.
 | |
|     ///
 | |
|     /// Note that this method has no effect on the allocated capacity
 | |
|     /// of the vector.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = kernel::kvec![1, 2, 3]?;
 | |
|     ///
 | |
|     /// v.clear();
 | |
|     ///
 | |
|     /// assert!(v.is_empty());
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     pub fn clear(&mut self) {
 | |
|         self.truncate(0);
 | |
|     }
 | |
| 
 | |
|     /// Ensures that the capacity exceeds the length by at least `additional` elements.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = KVec::new();
 | |
|     /// v.push(1, GFP_KERNEL)?;
 | |
|     ///
 | |
|     /// v.reserve(10, GFP_KERNEL)?;
 | |
|     /// let cap = v.capacity();
 | |
|     /// assert!(cap >= 10);
 | |
|     ///
 | |
|     /// v.reserve(10, GFP_KERNEL)?;
 | |
|     /// let new_cap = v.capacity();
 | |
|     /// assert_eq!(new_cap, cap);
 | |
|     ///
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
 | |
|         let len = self.len();
 | |
|         let cap = self.capacity();
 | |
| 
 | |
|         if cap - len >= additional {
 | |
|             return Ok(());
 | |
|         }
 | |
| 
 | |
|         if Self::is_zst() {
 | |
|             // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
 | |
|             return Err(AllocError);
 | |
|         }
 | |
| 
 | |
|         // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
 | |
|         // multiplication by two won't overflow.
 | |
|         let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
 | |
|         let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
 | |
| 
 | |
|         // SAFETY:
 | |
|         // - `ptr` is valid because it's either `None` or comes from a previous call to
 | |
|         //   `A::realloc`.
 | |
|         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
 | |
|         let ptr = unsafe {
 | |
|             A::realloc(
 | |
|                 Some(self.ptr.cast()),
 | |
|                 layout.into(),
 | |
|                 self.layout.into(),
 | |
|                 flags,
 | |
|             )?
 | |
|         };
 | |
| 
 | |
|         // INVARIANT:
 | |
|         // - `layout` is some `ArrayLayout::<T>`,
 | |
|         // - `ptr` has been created by `A::realloc` from `layout`.
 | |
|         self.ptr = ptr.cast();
 | |
|         self.layout = layout;
 | |
| 
 | |
|         Ok(())
 | |
|     }
 | |
| 
 | |
|     /// Shortens the vector, setting the length to `len` and drops the removed values.
 | |
|     /// If `len` is greater than or equal to the current length, this does nothing.
 | |
|     ///
 | |
|     /// This has no effect on the capacity and will not allocate.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = kernel::kvec![1, 2, 3]?;
 | |
|     /// v.truncate(1);
 | |
|     /// assert_eq!(v.len(), 1);
 | |
|     /// assert_eq!(&v, &[1]);
 | |
|     ///
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn truncate(&mut self, len: usize) {
 | |
|         if let Some(count) = self.len().checked_sub(len) {
 | |
|             // SAFETY: `count` is `self.len() - len` so it is guaranteed to be less than or
 | |
|             // equal to `self.len()`.
 | |
|             let ptr: *mut [T] = unsafe { self.dec_len(count) };
 | |
| 
 | |
|             // SAFETY: the contract of `dec_len` guarantees that the elements in `ptr` are
 | |
|             // valid elements whose ownership has been transferred to the caller.
 | |
|             unsafe { ptr::drop_in_place(ptr) };
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Takes ownership of all items in this vector without consuming the allocation.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = kernel::kvec![0, 1, 2, 3]?;
 | |
|     ///
 | |
|     /// for (i, j) in v.drain_all().enumerate() {
 | |
|     ///     assert_eq!(i, j);
 | |
|     /// }
 | |
|     ///
 | |
|     /// assert!(v.capacity() >= 4);
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn drain_all(&mut self) -> DrainAll<'_, T> {
 | |
|         // SAFETY: This does not underflow the length.
 | |
|         let elems = unsafe { self.dec_len(self.len()) };
 | |
|         // INVARIANT: The first `len` elements of the spare capacity are valid values, and as we
 | |
|         // just set the length to zero, we may transfer ownership to the `DrainAll` object.
 | |
|         DrainAll {
 | |
|             elements: elems.iter_mut(),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Removes all elements that don't match the provided closure.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = kernel::kvec![1, 2, 3, 4]?;
 | |
|     /// v.retain(|i| *i % 2 == 0);
 | |
|     /// assert_eq!(v, [2, 4]);
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn retain(&mut self, mut f: impl FnMut(&mut T) -> bool) {
 | |
|         let mut num_kept = 0;
 | |
|         let mut next_to_check = 0;
 | |
|         while let Some(to_check) = self.get_mut(next_to_check) {
 | |
|             if f(to_check) {
 | |
|                 self.swap(num_kept, next_to_check);
 | |
|                 num_kept += 1;
 | |
|             }
 | |
|             next_to_check += 1;
 | |
|         }
 | |
|         self.truncate(num_kept);
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Clone, A: Allocator> Vec<T, A> {
 | |
|     /// Extend the vector by `n` clones of `value`.
 | |
|     pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
 | |
|         if n == 0 {
 | |
|             return Ok(());
 | |
|         }
 | |
| 
 | |
|         self.reserve(n, flags)?;
 | |
| 
 | |
|         let spare = self.spare_capacity_mut();
 | |
| 
 | |
|         for item in spare.iter_mut().take(n - 1) {
 | |
|             item.write(value.clone());
 | |
|         }
 | |
| 
 | |
|         // We can write the last element directly without cloning needlessly.
 | |
|         spare[n - 1].write(value);
 | |
| 
 | |
|         // SAFETY:
 | |
|         // - `self.len() + n < self.capacity()` due to the call to reserve above,
 | |
|         // - the loop and the line above initialized the next `n` elements.
 | |
|         unsafe { self.inc_len(n) };
 | |
| 
 | |
|         Ok(())
 | |
|     }
 | |
| 
 | |
|     /// Pushes clones of the elements of slice into the [`Vec`] instance.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = KVec::new();
 | |
|     /// v.push(1, GFP_KERNEL)?;
 | |
|     ///
 | |
|     /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
 | |
|     /// assert_eq!(&v, &[1, 20, 30, 40]);
 | |
|     ///
 | |
|     /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
 | |
|     /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
 | |
|         self.reserve(other.len(), flags)?;
 | |
|         for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
 | |
|             slot.write(item.clone());
 | |
|         }
 | |
| 
 | |
|         // SAFETY:
 | |
|         // - `other.len()` spare entries have just been initialized, so it is safe to increase
 | |
|         //   the length by the same number.
 | |
|         // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
 | |
|         //   call.
 | |
|         unsafe { self.inc_len(other.len()) };
 | |
|         Ok(())
 | |
|     }
 | |
| 
 | |
|     /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
 | |
|     pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
 | |
|         let mut v = Self::with_capacity(n, flags)?;
 | |
| 
 | |
|         v.extend_with(n, value, flags)?;
 | |
| 
 | |
|         Ok(v)
 | |
|     }
 | |
| 
 | |
|     /// Resizes the [`Vec`] so that `len` is equal to `new_len`.
 | |
|     ///
 | |
|     /// If `new_len` is smaller than `len`, the `Vec` is [`Vec::truncate`]d.
 | |
|     /// If `new_len` is larger, each new slot is filled with clones of `value`.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let mut v = kernel::kvec![1, 2, 3]?;
 | |
|     /// v.resize(1, 42, GFP_KERNEL)?;
 | |
|     /// assert_eq!(&v, &[1]);
 | |
|     ///
 | |
|     /// v.resize(3, 42, GFP_KERNEL)?;
 | |
|     /// assert_eq!(&v, &[1, 42, 42]);
 | |
|     ///
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     pub fn resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError> {
 | |
|         match new_len.checked_sub(self.len()) {
 | |
|             Some(n) => self.extend_with(n, value, flags),
 | |
|             None => {
 | |
|                 self.truncate(new_len);
 | |
|                 Ok(())
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A> Drop for Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     fn drop(&mut self) {
 | |
|         // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
 | |
|         unsafe {
 | |
|             ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
 | |
|                 self.as_mut_ptr(),
 | |
|                 self.len,
 | |
|             ))
 | |
|         };
 | |
| 
 | |
|         // SAFETY:
 | |
|         // - `self.ptr` was previously allocated with `A`.
 | |
|         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
 | |
|         unsafe { A::free(self.ptr.cast(), self.layout.into()) };
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     fn from(b: Box<[T; N], A>) -> Vec<T, A> {
 | |
|         let len = b.len();
 | |
|         let ptr = Box::into_raw(b);
 | |
| 
 | |
|         // SAFETY:
 | |
|         // - `b` has been allocated with `A`,
 | |
|         // - `ptr` fulfills the alignment requirements for `T`,
 | |
|         // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
 | |
|         // - all elements within `b` are initialized values of `T`,
 | |
|         // - `len` does not exceed `isize::MAX`.
 | |
|         unsafe { Vec::from_raw_parts(ptr as _, len, len) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A: Allocator> Default for Vec<T, A> {
 | |
|     #[inline]
 | |
|     fn default() -> Self {
 | |
|         Self::new()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
 | |
|     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         fmt::Debug::fmt(&**self, f)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A> Deref for Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     type Target = [T];
 | |
| 
 | |
|     #[inline]
 | |
|     fn deref(&self) -> &[T] {
 | |
|         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
 | |
|         // initialized elements of type `T`.
 | |
|         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A> DerefMut for Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     #[inline]
 | |
|     fn deref_mut(&mut self) -> &mut [T] {
 | |
|         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
 | |
|         // initialized elements of type `T`.
 | |
|         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// # use core::borrow::Borrow;
 | |
| /// struct Foo<B: Borrow<[u32]>>(B);
 | |
| ///
 | |
| /// // Owned array.
 | |
| /// let owned_array = Foo([1, 2, 3]);
 | |
| ///
 | |
| /// // Owned vector.
 | |
| /// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
 | |
| ///
 | |
| /// let arr = [1, 2, 3];
 | |
| /// // Borrowed slice from `arr`.
 | |
| /// let borrowed_slice = Foo(&arr[..]);
 | |
| /// # Ok::<(), Error>(())
 | |
| /// ```
 | |
| impl<T, A> Borrow<[T]> for Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     fn borrow(&self) -> &[T] {
 | |
|         self.as_slice()
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// # use core::borrow::BorrowMut;
 | |
| /// struct Foo<B: BorrowMut<[u32]>>(B);
 | |
| ///
 | |
| /// // Owned array.
 | |
| /// let owned_array = Foo([1, 2, 3]);
 | |
| ///
 | |
| /// // Owned vector.
 | |
| /// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
 | |
| ///
 | |
| /// let mut arr = [1, 2, 3];
 | |
| /// // Borrowed slice from `arr`.
 | |
| /// let borrowed_slice = Foo(&mut arr[..]);
 | |
| /// # Ok::<(), Error>(())
 | |
| /// ```
 | |
| impl<T, A> BorrowMut<[T]> for Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     fn borrow_mut(&mut self) -> &mut [T] {
 | |
|         self.as_mut_slice()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
 | |
| 
 | |
| impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     type Output = I::Output;
 | |
| 
 | |
|     #[inline]
 | |
|     fn index(&self, index: I) -> &Self::Output {
 | |
|         Index::index(&**self, index)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     #[inline]
 | |
|     fn index_mut(&mut self, index: I) -> &mut Self::Output {
 | |
|         IndexMut::index_mut(&mut **self, index)
 | |
|     }
 | |
| }
 | |
| 
 | |
| macro_rules! impl_slice_eq {
 | |
|     ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
 | |
|         $(
 | |
|             impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
 | |
|             where
 | |
|                 T: PartialEq<U>,
 | |
|             {
 | |
|                 #[inline]
 | |
|                 fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
 | |
|             }
 | |
|         )*
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl_slice_eq! {
 | |
|     [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
 | |
|     [A: Allocator] Vec<T, A>, &[U],
 | |
|     [A: Allocator] Vec<T, A>, &mut [U],
 | |
|     [A: Allocator] &[T], Vec<U, A>,
 | |
|     [A: Allocator] &mut [T], Vec<U, A>,
 | |
|     [A: Allocator] Vec<T, A>, [U],
 | |
|     [A: Allocator] [T], Vec<U, A>,
 | |
|     [A: Allocator, const N: usize] Vec<T, A>, [U; N],
 | |
|     [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
 | |
| }
 | |
| 
 | |
| impl<'a, T, A> IntoIterator for &'a Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     type Item = &'a T;
 | |
|     type IntoIter = slice::Iter<'a, T>;
 | |
| 
 | |
|     fn into_iter(self) -> Self::IntoIter {
 | |
|         self.iter()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     type Item = &'a mut T;
 | |
|     type IntoIter = slice::IterMut<'a, T>;
 | |
| 
 | |
|     fn into_iter(self) -> Self::IntoIter {
 | |
|         self.iter_mut()
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
 | |
| ///
 | |
| /// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
 | |
| /// [`IntoIterator`] trait).
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// let v = kernel::kvec![0, 1, 2]?;
 | |
| /// let iter = v.into_iter();
 | |
| ///
 | |
| /// # Ok::<(), Error>(())
 | |
| /// ```
 | |
| pub struct IntoIter<T, A: Allocator> {
 | |
|     ptr: *mut T,
 | |
|     buf: NonNull<T>,
 | |
|     len: usize,
 | |
|     layout: ArrayLayout<T>,
 | |
|     _p: PhantomData<A>,
 | |
| }
 | |
| 
 | |
| impl<T, A> IntoIter<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
 | |
|         let me = ManuallyDrop::new(self);
 | |
|         let ptr = me.ptr;
 | |
|         let buf = me.buf;
 | |
|         let len = me.len;
 | |
|         let cap = me.layout.len();
 | |
|         (ptr, buf, len, cap)
 | |
|     }
 | |
| 
 | |
|     /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let v = kernel::kvec![1, 2, 3]?;
 | |
|     /// let mut it = v.into_iter();
 | |
|     ///
 | |
|     /// assert_eq!(it.next(), Some(1));
 | |
|     ///
 | |
|     /// let v = it.collect(GFP_KERNEL);
 | |
|     /// assert_eq!(v, [2, 3]);
 | |
|     ///
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     ///
 | |
|     /// # Implementation details
 | |
|     ///
 | |
|     /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
 | |
|     /// in the kernel, namely:
 | |
|     ///
 | |
|     /// - Rust's specialization feature is unstable. This prevents us to optimize for the special
 | |
|     ///   case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
 | |
|     /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
 | |
|     ///   doesn't require this type to be `'static`.
 | |
|     /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
 | |
|     ///   we can't properly handle allocation failures.
 | |
|     /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
 | |
|     ///   flags.
 | |
|     ///
 | |
|     /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
 | |
|     /// `Vec` again.
 | |
|     ///
 | |
|     /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
 | |
|     /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
 | |
|     pub fn collect(self, flags: Flags) -> Vec<T, A> {
 | |
|         let old_layout = self.layout;
 | |
|         let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
 | |
|         let has_advanced = ptr != buf.as_ptr();
 | |
| 
 | |
|         if has_advanced {
 | |
|             // Copy the contents we have advanced to at the beginning of the buffer.
 | |
|             //
 | |
|             // SAFETY:
 | |
|             // - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
 | |
|             // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
 | |
|             // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
 | |
|             //   each other,
 | |
|             // - both `ptr` and `buf.ptr()` are properly aligned.
 | |
|             unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
 | |
|             ptr = buf.as_ptr();
 | |
| 
 | |
|             // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()` by the type
 | |
|             // invariant.
 | |
|             let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
 | |
| 
 | |
|             // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed by
 | |
|             // the type invariant to be smaller than `cap`. Depending on `realloc` this operation
 | |
|             // may shrink the buffer or leave it as it is.
 | |
|             ptr = match unsafe {
 | |
|                 A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
 | |
|             } {
 | |
|                 // If we fail to shrink, which likely can't even happen, continue with the existing
 | |
|                 // buffer.
 | |
|                 Err(_) => ptr,
 | |
|                 Ok(ptr) => {
 | |
|                     cap = len;
 | |
|                     ptr.as_ptr().cast()
 | |
|                 }
 | |
|             };
 | |
|         }
 | |
| 
 | |
|         // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
 | |
|         // the beginning of the buffer and `len` has been adjusted accordingly.
 | |
|         //
 | |
|         // - `ptr` is guaranteed to point to the start of the backing buffer.
 | |
|         // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
 | |
|         // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
 | |
|         //   `Vec`.
 | |
|         unsafe { Vec::from_raw_parts(ptr, len, cap) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A> Iterator for IntoIter<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     type Item = T;
 | |
| 
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let v = kernel::kvec![1, 2, 3]?;
 | |
|     /// let mut it = v.into_iter();
 | |
|     ///
 | |
|     /// assert_eq!(it.next(), Some(1));
 | |
|     /// assert_eq!(it.next(), Some(2));
 | |
|     /// assert_eq!(it.next(), Some(3));
 | |
|     /// assert_eq!(it.next(), None);
 | |
|     ///
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     fn next(&mut self) -> Option<T> {
 | |
|         if self.len == 0 {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         let current = self.ptr;
 | |
| 
 | |
|         // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
 | |
|         // by one guarantees that.
 | |
|         unsafe { self.ptr = self.ptr.add(1) };
 | |
| 
 | |
|         self.len -= 1;
 | |
| 
 | |
|         // SAFETY: `current` is guaranteed to point at a valid element within the buffer.
 | |
|         Some(unsafe { current.read() })
 | |
|     }
 | |
| 
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
 | |
|     /// let mut iter = v.into_iter();
 | |
|     /// let size = iter.size_hint().0;
 | |
|     ///
 | |
|     /// iter.next();
 | |
|     /// assert_eq!(iter.size_hint().0, size - 1);
 | |
|     ///
 | |
|     /// iter.next();
 | |
|     /// assert_eq!(iter.size_hint().0, size - 2);
 | |
|     ///
 | |
|     /// iter.next();
 | |
|     /// assert_eq!(iter.size_hint().0, size - 3);
 | |
|     ///
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     fn size_hint(&self) -> (usize, Option<usize>) {
 | |
|         (self.len, Some(self.len))
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A> Drop for IntoIter<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     fn drop(&mut self) {
 | |
|         // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
 | |
|         unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
 | |
| 
 | |
|         // SAFETY:
 | |
|         // - `self.buf` was previously allocated with `A`.
 | |
|         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
 | |
|         unsafe { A::free(self.buf.cast(), self.layout.into()) };
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A> IntoIterator for Vec<T, A>
 | |
| where
 | |
|     A: Allocator,
 | |
| {
 | |
|     type Item = T;
 | |
|     type IntoIter = IntoIter<T, A>;
 | |
| 
 | |
|     /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
 | |
|     /// vector (from start to end).
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let v = kernel::kvec![1, 2]?;
 | |
|     /// let mut v_iter = v.into_iter();
 | |
|     ///
 | |
|     /// let first_element: Option<u32> = v_iter.next();
 | |
|     ///
 | |
|     /// assert_eq!(first_element, Some(1));
 | |
|     /// assert_eq!(v_iter.next(), Some(2));
 | |
|     /// assert_eq!(v_iter.next(), None);
 | |
|     ///
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let v = kernel::kvec![];
 | |
|     /// let mut v_iter = v.into_iter();
 | |
|     ///
 | |
|     /// let first_element: Option<u32> = v_iter.next();
 | |
|     ///
 | |
|     /// assert_eq!(first_element, None);
 | |
|     ///
 | |
|     /// # Ok::<(), Error>(())
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     fn into_iter(self) -> Self::IntoIter {
 | |
|         let buf = self.ptr;
 | |
|         let layout = self.layout;
 | |
|         let (ptr, len, _) = self.into_raw_parts();
 | |
| 
 | |
|         IntoIter {
 | |
|             ptr,
 | |
|             buf,
 | |
|             len,
 | |
|             layout,
 | |
|             _p: PhantomData::<A>,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// An iterator that owns all items in a vector, but does not own its allocation.
 | |
| ///
 | |
| /// # Invariants
 | |
| ///
 | |
| /// Every `&mut T` returned by the iterator references a `T` that the iterator may take ownership
 | |
| /// of.
 | |
| pub struct DrainAll<'vec, T> {
 | |
|     elements: slice::IterMut<'vec, T>,
 | |
| }
 | |
| 
 | |
| impl<'vec, T> Iterator for DrainAll<'vec, T> {
 | |
|     type Item = T;
 | |
| 
 | |
|     fn next(&mut self) -> Option<T> {
 | |
|         let elem: *mut T = self.elements.next()?;
 | |
|         // SAFETY: By the type invariants, we may take ownership of this value.
 | |
|         Some(unsafe { elem.read() })
 | |
|     }
 | |
| 
 | |
|     fn size_hint(&self) -> (usize, Option<usize>) {
 | |
|         self.elements.size_hint()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'vec, T> Drop for DrainAll<'vec, T> {
 | |
|     fn drop(&mut self) {
 | |
|         if core::mem::needs_drop::<T>() {
 | |
|             let iter = core::mem::take(&mut self.elements);
 | |
|             let ptr: *mut [T] = iter.into_slice();
 | |
|             // SAFETY: By the type invariants, we own these values so we may destroy them.
 | |
|             unsafe { ptr::drop_in_place(ptr) };
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[macros::kunit_tests(rust_kvec_kunit)]
 | |
| mod tests {
 | |
|     use super::*;
 | |
|     use crate::prelude::*;
 | |
| 
 | |
|     #[test]
 | |
|     fn test_kvec_retain() {
 | |
|         /// Verify correctness for one specific function.
 | |
|         #[expect(clippy::needless_range_loop)]
 | |
|         fn verify(c: &[bool]) {
 | |
|             let mut vec1: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
 | |
|             let mut vec2: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
 | |
| 
 | |
|             for i in 0..c.len() {
 | |
|                 vec1.push_within_capacity(i).unwrap();
 | |
|                 if c[i] {
 | |
|                     vec2.push_within_capacity(i).unwrap();
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             vec1.retain(|i| c[*i]);
 | |
| 
 | |
|             assert_eq!(vec1, vec2);
 | |
|         }
 | |
| 
 | |
|         /// Add one to a binary integer represented as a boolean array.
 | |
|         fn add(value: &mut [bool]) {
 | |
|             let mut carry = true;
 | |
|             for v in value {
 | |
|                 let new_v = carry != *v;
 | |
|                 carry = carry && *v;
 | |
|                 *v = new_v;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // This boolean array represents a function from index to boolean. We check that `retain`
 | |
|         // behaves correctly for all possible boolean arrays of every possible length less than
 | |
|         // ten.
 | |
|         let mut func = KVec::with_capacity(10, GFP_KERNEL).unwrap();
 | |
|         for len in 0..10 {
 | |
|             for _ in 0u32..1u32 << len {
 | |
|                 verify(&func);
 | |
|                 add(&mut func);
 | |
|             }
 | |
|             func.push_within_capacity(false).unwrap();
 | |
|         }
 | |
|     }
 | |
| }
 |