mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-02 17:49:03 +02:00 
			
		
		
		
	Don't do that - it does GFP_KERNEL allocations, for a start. (Reported by Guillaume Thouvenin <guillaume.thouvenin@bull.net>) Acked-by: Matt Helsley <matthltc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			1314 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1314 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/kernel/fork.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1991, 1992  Linus Torvalds
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 *  'fork.c' contains the help-routines for the 'fork' system call
 | 
						|
 * (see also entry.S and others).
 | 
						|
 * Fork is rather simple, once you get the hang of it, but the memory
 | 
						|
 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/config.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/unistd.h>
 | 
						|
#include <linux/smp_lock.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/completion.h>
 | 
						|
#include <linux/namespace.h>
 | 
						|
#include <linux/personality.h>
 | 
						|
#include <linux/mempolicy.h>
 | 
						|
#include <linux/sem.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/key.h>
 | 
						|
#include <linux/binfmts.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/cpuset.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/jiffies.h>
 | 
						|
#include <linux/futex.h>
 | 
						|
#include <linux/rcupdate.h>
 | 
						|
#include <linux/ptrace.h>
 | 
						|
#include <linux/mount.h>
 | 
						|
#include <linux/audit.h>
 | 
						|
#include <linux/profile.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include <linux/acct.h>
 | 
						|
#include <linux/cn_proc.h>
 | 
						|
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/mmu_context.h>
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Protected counters by write_lock_irq(&tasklist_lock)
 | 
						|
 */
 | 
						|
unsigned long total_forks;	/* Handle normal Linux uptimes. */
 | 
						|
int nr_threads; 		/* The idle threads do not count.. */
 | 
						|
 | 
						|
int max_threads;		/* tunable limit on nr_threads */
 | 
						|
 | 
						|
DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 | 
						|
 | 
						|
 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 | 
						|
 | 
						|
EXPORT_SYMBOL(tasklist_lock);
 | 
						|
 | 
						|
int nr_processes(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	int total = 0;
 | 
						|
 | 
						|
	for_each_online_cpu(cpu)
 | 
						|
		total += per_cpu(process_counts, cpu);
 | 
						|
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 | 
						|
# define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
 | 
						|
# define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
 | 
						|
static kmem_cache_t *task_struct_cachep;
 | 
						|
#endif
 | 
						|
 | 
						|
/* SLAB cache for signal_struct structures (tsk->signal) */
 | 
						|
kmem_cache_t *signal_cachep;
 | 
						|
 | 
						|
/* SLAB cache for sighand_struct structures (tsk->sighand) */
 | 
						|
kmem_cache_t *sighand_cachep;
 | 
						|
 | 
						|
/* SLAB cache for files_struct structures (tsk->files) */
 | 
						|
kmem_cache_t *files_cachep;
 | 
						|
 | 
						|
/* SLAB cache for fs_struct structures (tsk->fs) */
 | 
						|
kmem_cache_t *fs_cachep;
 | 
						|
 | 
						|
/* SLAB cache for vm_area_struct structures */
 | 
						|
kmem_cache_t *vm_area_cachep;
 | 
						|
 | 
						|
/* SLAB cache for mm_struct structures (tsk->mm) */
 | 
						|
static kmem_cache_t *mm_cachep;
 | 
						|
 | 
						|
void free_task(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	free_thread_info(tsk->thread_info);
 | 
						|
	free_task_struct(tsk);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(free_task);
 | 
						|
 | 
						|
void __put_task_struct(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
 | 
						|
	WARN_ON(atomic_read(&tsk->usage));
 | 
						|
	WARN_ON(tsk == current);
 | 
						|
 | 
						|
	if (unlikely(tsk->audit_context))
 | 
						|
		audit_free(tsk);
 | 
						|
	security_task_free(tsk);
 | 
						|
	free_uid(tsk->user);
 | 
						|
	put_group_info(tsk->group_info);
 | 
						|
 | 
						|
	if (!profile_handoff_task(tsk))
 | 
						|
		free_task(tsk);
 | 
						|
}
 | 
						|
 | 
						|
void __init fork_init(unsigned long mempages)
 | 
						|
{
 | 
						|
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 | 
						|
#ifndef ARCH_MIN_TASKALIGN
 | 
						|
#define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
 | 
						|
#endif
 | 
						|
	/* create a slab on which task_structs can be allocated */
 | 
						|
	task_struct_cachep =
 | 
						|
		kmem_cache_create("task_struct", sizeof(struct task_struct),
 | 
						|
			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The default maximum number of threads is set to a safe
 | 
						|
	 * value: the thread structures can take up at most half
 | 
						|
	 * of memory.
 | 
						|
	 */
 | 
						|
	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we need to allow at least 20 threads to boot a system
 | 
						|
	 */
 | 
						|
	if(max_threads < 20)
 | 
						|
		max_threads = 20;
 | 
						|
 | 
						|
	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 | 
						|
	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 | 
						|
	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 | 
						|
		init_task.signal->rlim[RLIMIT_NPROC];
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct *dup_task_struct(struct task_struct *orig)
 | 
						|
{
 | 
						|
	struct task_struct *tsk;
 | 
						|
	struct thread_info *ti;
 | 
						|
 | 
						|
	prepare_to_copy(orig);
 | 
						|
 | 
						|
	tsk = alloc_task_struct();
 | 
						|
	if (!tsk)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	ti = alloc_thread_info(tsk);
 | 
						|
	if (!ti) {
 | 
						|
		free_task_struct(tsk);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	*tsk = *orig;
 | 
						|
	tsk->thread_info = ti;
 | 
						|
	setup_thread_stack(tsk, orig);
 | 
						|
 | 
						|
	/* One for us, one for whoever does the "release_task()" (usually parent) */
 | 
						|
	atomic_set(&tsk->usage,2);
 | 
						|
	atomic_set(&tsk->fs_excl, 0);
 | 
						|
	return tsk;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 | 
						|
{
 | 
						|
	struct vm_area_struct *mpnt, *tmp, **pprev;
 | 
						|
	struct rb_node **rb_link, *rb_parent;
 | 
						|
	int retval;
 | 
						|
	unsigned long charge;
 | 
						|
	struct mempolicy *pol;
 | 
						|
 | 
						|
	down_write(&oldmm->mmap_sem);
 | 
						|
	flush_cache_mm(oldmm);
 | 
						|
	down_write(&mm->mmap_sem);
 | 
						|
 | 
						|
	mm->locked_vm = 0;
 | 
						|
	mm->mmap = NULL;
 | 
						|
	mm->mmap_cache = NULL;
 | 
						|
	mm->free_area_cache = oldmm->mmap_base;
 | 
						|
	mm->cached_hole_size = ~0UL;
 | 
						|
	mm->map_count = 0;
 | 
						|
	cpus_clear(mm->cpu_vm_mask);
 | 
						|
	mm->mm_rb = RB_ROOT;
 | 
						|
	rb_link = &mm->mm_rb.rb_node;
 | 
						|
	rb_parent = NULL;
 | 
						|
	pprev = &mm->mmap;
 | 
						|
 | 
						|
	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 | 
						|
		struct file *file;
 | 
						|
 | 
						|
		if (mpnt->vm_flags & VM_DONTCOPY) {
 | 
						|
			long pages = vma_pages(mpnt);
 | 
						|
			mm->total_vm -= pages;
 | 
						|
			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
 | 
						|
								-pages);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		charge = 0;
 | 
						|
		if (mpnt->vm_flags & VM_ACCOUNT) {
 | 
						|
			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
 | 
						|
			if (security_vm_enough_memory(len))
 | 
						|
				goto fail_nomem;
 | 
						|
			charge = len;
 | 
						|
		}
 | 
						|
		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
 | 
						|
		if (!tmp)
 | 
						|
			goto fail_nomem;
 | 
						|
		*tmp = *mpnt;
 | 
						|
		pol = mpol_copy(vma_policy(mpnt));
 | 
						|
		retval = PTR_ERR(pol);
 | 
						|
		if (IS_ERR(pol))
 | 
						|
			goto fail_nomem_policy;
 | 
						|
		vma_set_policy(tmp, pol);
 | 
						|
		tmp->vm_flags &= ~VM_LOCKED;
 | 
						|
		tmp->vm_mm = mm;
 | 
						|
		tmp->vm_next = NULL;
 | 
						|
		anon_vma_link(tmp);
 | 
						|
		file = tmp->vm_file;
 | 
						|
		if (file) {
 | 
						|
			struct inode *inode = file->f_dentry->d_inode;
 | 
						|
			get_file(file);
 | 
						|
			if (tmp->vm_flags & VM_DENYWRITE)
 | 
						|
				atomic_dec(&inode->i_writecount);
 | 
						|
      
 | 
						|
			/* insert tmp into the share list, just after mpnt */
 | 
						|
			spin_lock(&file->f_mapping->i_mmap_lock);
 | 
						|
			tmp->vm_truncate_count = mpnt->vm_truncate_count;
 | 
						|
			flush_dcache_mmap_lock(file->f_mapping);
 | 
						|
			vma_prio_tree_add(tmp, mpnt);
 | 
						|
			flush_dcache_mmap_unlock(file->f_mapping);
 | 
						|
			spin_unlock(&file->f_mapping->i_mmap_lock);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Link in the new vma and copy the page table entries.
 | 
						|
		 */
 | 
						|
		*pprev = tmp;
 | 
						|
		pprev = &tmp->vm_next;
 | 
						|
 | 
						|
		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 | 
						|
		rb_link = &tmp->vm_rb.rb_right;
 | 
						|
		rb_parent = &tmp->vm_rb;
 | 
						|
 | 
						|
		mm->map_count++;
 | 
						|
		retval = copy_page_range(mm, oldmm, mpnt);
 | 
						|
 | 
						|
		if (tmp->vm_ops && tmp->vm_ops->open)
 | 
						|
			tmp->vm_ops->open(tmp);
 | 
						|
 | 
						|
		if (retval)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
	retval = 0;
 | 
						|
out:
 | 
						|
	up_write(&mm->mmap_sem);
 | 
						|
	flush_tlb_mm(oldmm);
 | 
						|
	up_write(&oldmm->mmap_sem);
 | 
						|
	return retval;
 | 
						|
fail_nomem_policy:
 | 
						|
	kmem_cache_free(vm_area_cachep, tmp);
 | 
						|
fail_nomem:
 | 
						|
	retval = -ENOMEM;
 | 
						|
	vm_unacct_memory(charge);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
static inline int mm_alloc_pgd(struct mm_struct * mm)
 | 
						|
{
 | 
						|
	mm->pgd = pgd_alloc(mm);
 | 
						|
	if (unlikely(!mm->pgd))
 | 
						|
		return -ENOMEM;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void mm_free_pgd(struct mm_struct * mm)
 | 
						|
{
 | 
						|
	pgd_free(mm->pgd);
 | 
						|
}
 | 
						|
#else
 | 
						|
#define dup_mmap(mm, oldmm)	(0)
 | 
						|
#define mm_alloc_pgd(mm)	(0)
 | 
						|
#define mm_free_pgd(mm)
 | 
						|
#endif /* CONFIG_MMU */
 | 
						|
 | 
						|
 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 | 
						|
 | 
						|
#define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
 | 
						|
#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 | 
						|
 | 
						|
#include <linux/init_task.h>
 | 
						|
 | 
						|
static struct mm_struct * mm_init(struct mm_struct * mm)
 | 
						|
{
 | 
						|
	atomic_set(&mm->mm_users, 1);
 | 
						|
	atomic_set(&mm->mm_count, 1);
 | 
						|
	init_rwsem(&mm->mmap_sem);
 | 
						|
	INIT_LIST_HEAD(&mm->mmlist);
 | 
						|
	mm->core_waiters = 0;
 | 
						|
	mm->nr_ptes = 0;
 | 
						|
	set_mm_counter(mm, file_rss, 0);
 | 
						|
	set_mm_counter(mm, anon_rss, 0);
 | 
						|
	spin_lock_init(&mm->page_table_lock);
 | 
						|
	rwlock_init(&mm->ioctx_list_lock);
 | 
						|
	mm->ioctx_list = NULL;
 | 
						|
	mm->free_area_cache = TASK_UNMAPPED_BASE;
 | 
						|
	mm->cached_hole_size = ~0UL;
 | 
						|
 | 
						|
	if (likely(!mm_alloc_pgd(mm))) {
 | 
						|
		mm->def_flags = 0;
 | 
						|
		return mm;
 | 
						|
	}
 | 
						|
	free_mm(mm);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate and initialize an mm_struct.
 | 
						|
 */
 | 
						|
struct mm_struct * mm_alloc(void)
 | 
						|
{
 | 
						|
	struct mm_struct * mm;
 | 
						|
 | 
						|
	mm = allocate_mm();
 | 
						|
	if (mm) {
 | 
						|
		memset(mm, 0, sizeof(*mm));
 | 
						|
		mm = mm_init(mm);
 | 
						|
	}
 | 
						|
	return mm;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called when the last reference to the mm
 | 
						|
 * is dropped: either by a lazy thread or by
 | 
						|
 * mmput. Free the page directory and the mm.
 | 
						|
 */
 | 
						|
void fastcall __mmdrop(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	BUG_ON(mm == &init_mm);
 | 
						|
	mm_free_pgd(mm);
 | 
						|
	destroy_context(mm);
 | 
						|
	free_mm(mm);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Decrement the use count and release all resources for an mm.
 | 
						|
 */
 | 
						|
void mmput(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	if (atomic_dec_and_test(&mm->mm_users)) {
 | 
						|
		exit_aio(mm);
 | 
						|
		exit_mmap(mm);
 | 
						|
		if (!list_empty(&mm->mmlist)) {
 | 
						|
			spin_lock(&mmlist_lock);
 | 
						|
			list_del(&mm->mmlist);
 | 
						|
			spin_unlock(&mmlist_lock);
 | 
						|
		}
 | 
						|
		put_swap_token(mm);
 | 
						|
		mmdrop(mm);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(mmput);
 | 
						|
 | 
						|
/**
 | 
						|
 * get_task_mm - acquire a reference to the task's mm
 | 
						|
 *
 | 
						|
 * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
 | 
						|
 * this kernel workthread has transiently adopted a user mm with use_mm,
 | 
						|
 * to do its AIO) is not set and if so returns a reference to it, after
 | 
						|
 * bumping up the use count.  User must release the mm via mmput()
 | 
						|
 * after use.  Typically used by /proc and ptrace.
 | 
						|
 */
 | 
						|
struct mm_struct *get_task_mm(struct task_struct *task)
 | 
						|
{
 | 
						|
	struct mm_struct *mm;
 | 
						|
 | 
						|
	task_lock(task);
 | 
						|
	mm = task->mm;
 | 
						|
	if (mm) {
 | 
						|
		if (task->flags & PF_BORROWED_MM)
 | 
						|
			mm = NULL;
 | 
						|
		else
 | 
						|
			atomic_inc(&mm->mm_users);
 | 
						|
	}
 | 
						|
	task_unlock(task);
 | 
						|
	return mm;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_task_mm);
 | 
						|
 | 
						|
/* Please note the differences between mmput and mm_release.
 | 
						|
 * mmput is called whenever we stop holding onto a mm_struct,
 | 
						|
 * error success whatever.
 | 
						|
 *
 | 
						|
 * mm_release is called after a mm_struct has been removed
 | 
						|
 * from the current process.
 | 
						|
 *
 | 
						|
 * This difference is important for error handling, when we
 | 
						|
 * only half set up a mm_struct for a new process and need to restore
 | 
						|
 * the old one.  Because we mmput the new mm_struct before
 | 
						|
 * restoring the old one. . .
 | 
						|
 * Eric Biederman 10 January 1998
 | 
						|
 */
 | 
						|
void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 | 
						|
{
 | 
						|
	struct completion *vfork_done = tsk->vfork_done;
 | 
						|
 | 
						|
	/* Get rid of any cached register state */
 | 
						|
	deactivate_mm(tsk, mm);
 | 
						|
 | 
						|
	/* notify parent sleeping on vfork() */
 | 
						|
	if (vfork_done) {
 | 
						|
		tsk->vfork_done = NULL;
 | 
						|
		complete(vfork_done);
 | 
						|
	}
 | 
						|
	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
 | 
						|
		u32 __user * tidptr = tsk->clear_child_tid;
 | 
						|
		tsk->clear_child_tid = NULL;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We don't check the error code - if userspace has
 | 
						|
		 * not set up a proper pointer then tough luck.
 | 
						|
		 */
 | 
						|
		put_user(0, tidptr);
 | 
						|
		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
 | 
						|
{
 | 
						|
	struct mm_struct * mm, *oldmm;
 | 
						|
	int retval;
 | 
						|
 | 
						|
	tsk->min_flt = tsk->maj_flt = 0;
 | 
						|
	tsk->nvcsw = tsk->nivcsw = 0;
 | 
						|
 | 
						|
	tsk->mm = NULL;
 | 
						|
	tsk->active_mm = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Are we cloning a kernel thread?
 | 
						|
	 *
 | 
						|
	 * We need to steal a active VM for that..
 | 
						|
	 */
 | 
						|
	oldmm = current->mm;
 | 
						|
	if (!oldmm)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (clone_flags & CLONE_VM) {
 | 
						|
		atomic_inc(&oldmm->mm_users);
 | 
						|
		mm = oldmm;
 | 
						|
		goto good_mm;
 | 
						|
	}
 | 
						|
 | 
						|
	retval = -ENOMEM;
 | 
						|
	mm = allocate_mm();
 | 
						|
	if (!mm)
 | 
						|
		goto fail_nomem;
 | 
						|
 | 
						|
	/* Copy the current MM stuff.. */
 | 
						|
	memcpy(mm, oldmm, sizeof(*mm));
 | 
						|
	if (!mm_init(mm))
 | 
						|
		goto fail_nomem;
 | 
						|
 | 
						|
	if (init_new_context(tsk,mm))
 | 
						|
		goto fail_nocontext;
 | 
						|
 | 
						|
	retval = dup_mmap(mm, oldmm);
 | 
						|
	if (retval)
 | 
						|
		goto free_pt;
 | 
						|
 | 
						|
	mm->hiwater_rss = get_mm_rss(mm);
 | 
						|
	mm->hiwater_vm = mm->total_vm;
 | 
						|
 | 
						|
good_mm:
 | 
						|
	tsk->mm = mm;
 | 
						|
	tsk->active_mm = mm;
 | 
						|
	return 0;
 | 
						|
 | 
						|
free_pt:
 | 
						|
	mmput(mm);
 | 
						|
fail_nomem:
 | 
						|
	return retval;
 | 
						|
 | 
						|
fail_nocontext:
 | 
						|
	/*
 | 
						|
	 * If init_new_context() failed, we cannot use mmput() to free the mm
 | 
						|
	 * because it calls destroy_context()
 | 
						|
	 */
 | 
						|
	mm_free_pgd(mm);
 | 
						|
	free_mm(mm);
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
 | 
						|
{
 | 
						|
	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
 | 
						|
	/* We don't need to lock fs - think why ;-) */
 | 
						|
	if (fs) {
 | 
						|
		atomic_set(&fs->count, 1);
 | 
						|
		rwlock_init(&fs->lock);
 | 
						|
		fs->umask = old->umask;
 | 
						|
		read_lock(&old->lock);
 | 
						|
		fs->rootmnt = mntget(old->rootmnt);
 | 
						|
		fs->root = dget(old->root);
 | 
						|
		fs->pwdmnt = mntget(old->pwdmnt);
 | 
						|
		fs->pwd = dget(old->pwd);
 | 
						|
		if (old->altroot) {
 | 
						|
			fs->altrootmnt = mntget(old->altrootmnt);
 | 
						|
			fs->altroot = dget(old->altroot);
 | 
						|
		} else {
 | 
						|
			fs->altrootmnt = NULL;
 | 
						|
			fs->altroot = NULL;
 | 
						|
		}
 | 
						|
		read_unlock(&old->lock);
 | 
						|
	}
 | 
						|
	return fs;
 | 
						|
}
 | 
						|
 | 
						|
struct fs_struct *copy_fs_struct(struct fs_struct *old)
 | 
						|
{
 | 
						|
	return __copy_fs_struct(old);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL_GPL(copy_fs_struct);
 | 
						|
 | 
						|
static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
 | 
						|
{
 | 
						|
	if (clone_flags & CLONE_FS) {
 | 
						|
		atomic_inc(¤t->fs->count);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	tsk->fs = __copy_fs_struct(current->fs);
 | 
						|
	if (!tsk->fs)
 | 
						|
		return -ENOMEM;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int count_open_files(struct fdtable *fdt)
 | 
						|
{
 | 
						|
	int size = fdt->max_fdset;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Find the last open fd */
 | 
						|
	for (i = size/(8*sizeof(long)); i > 0; ) {
 | 
						|
		if (fdt->open_fds->fds_bits[--i])
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	i = (i+1) * 8 * sizeof(long);
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
static struct files_struct *alloc_files(void)
 | 
						|
{
 | 
						|
	struct files_struct *newf;
 | 
						|
	struct fdtable *fdt;
 | 
						|
 | 
						|
	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
 | 
						|
	if (!newf)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	atomic_set(&newf->count, 1);
 | 
						|
 | 
						|
	spin_lock_init(&newf->file_lock);
 | 
						|
	fdt = &newf->fdtab;
 | 
						|
	fdt->next_fd = 0;
 | 
						|
	fdt->max_fds = NR_OPEN_DEFAULT;
 | 
						|
	fdt->max_fdset = __FD_SETSIZE;
 | 
						|
	fdt->close_on_exec = &newf->close_on_exec_init;
 | 
						|
	fdt->open_fds = &newf->open_fds_init;
 | 
						|
	fdt->fd = &newf->fd_array[0];
 | 
						|
	INIT_RCU_HEAD(&fdt->rcu);
 | 
						|
	fdt->free_files = NULL;
 | 
						|
	fdt->next = NULL;
 | 
						|
	rcu_assign_pointer(newf->fdt, fdt);
 | 
						|
out:
 | 
						|
	return newf;
 | 
						|
}
 | 
						|
 | 
						|
static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
 | 
						|
{
 | 
						|
	struct files_struct *oldf, *newf;
 | 
						|
	struct file **old_fds, **new_fds;
 | 
						|
	int open_files, size, i, error = 0, expand;
 | 
						|
	struct fdtable *old_fdt, *new_fdt;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A background process may not have any files ...
 | 
						|
	 */
 | 
						|
	oldf = current->files;
 | 
						|
	if (!oldf)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (clone_flags & CLONE_FILES) {
 | 
						|
		atomic_inc(&oldf->count);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Note: we may be using current for both targets (See exec.c)
 | 
						|
	 * This works because we cache current->files (old) as oldf. Don't
 | 
						|
	 * break this.
 | 
						|
	 */
 | 
						|
	tsk->files = NULL;
 | 
						|
	error = -ENOMEM;
 | 
						|
	newf = alloc_files();
 | 
						|
	if (!newf)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	spin_lock(&oldf->file_lock);
 | 
						|
	old_fdt = files_fdtable(oldf);
 | 
						|
	new_fdt = files_fdtable(newf);
 | 
						|
	size = old_fdt->max_fdset;
 | 
						|
	open_files = count_open_files(old_fdt);
 | 
						|
	expand = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check whether we need to allocate a larger fd array or fd set.
 | 
						|
	 * Note: we're not a clone task, so the open count won't  change.
 | 
						|
	 */
 | 
						|
	if (open_files > new_fdt->max_fdset) {
 | 
						|
		new_fdt->max_fdset = 0;
 | 
						|
		expand = 1;
 | 
						|
	}
 | 
						|
	if (open_files > new_fdt->max_fds) {
 | 
						|
		new_fdt->max_fds = 0;
 | 
						|
		expand = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
 | 
						|
	if (expand) {
 | 
						|
		spin_unlock(&oldf->file_lock);
 | 
						|
		spin_lock(&newf->file_lock);
 | 
						|
		error = expand_files(newf, open_files-1);
 | 
						|
		spin_unlock(&newf->file_lock);
 | 
						|
		if (error < 0)
 | 
						|
			goto out_release;
 | 
						|
		new_fdt = files_fdtable(newf);
 | 
						|
		/*
 | 
						|
		 * Reacquire the oldf lock and a pointer to its fd table
 | 
						|
		 * who knows it may have a new bigger fd table. We need
 | 
						|
		 * the latest pointer.
 | 
						|
		 */
 | 
						|
		spin_lock(&oldf->file_lock);
 | 
						|
		old_fdt = files_fdtable(oldf);
 | 
						|
	}
 | 
						|
 | 
						|
	old_fds = old_fdt->fd;
 | 
						|
	new_fds = new_fdt->fd;
 | 
						|
 | 
						|
	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
 | 
						|
	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
 | 
						|
 | 
						|
	for (i = open_files; i != 0; i--) {
 | 
						|
		struct file *f = *old_fds++;
 | 
						|
		if (f) {
 | 
						|
			get_file(f);
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * The fd may be claimed in the fd bitmap but not yet
 | 
						|
			 * instantiated in the files array if a sibling thread
 | 
						|
			 * is partway through open().  So make sure that this
 | 
						|
			 * fd is available to the new process.
 | 
						|
			 */
 | 
						|
			FD_CLR(open_files - i, new_fdt->open_fds);
 | 
						|
		}
 | 
						|
		rcu_assign_pointer(*new_fds++, f);
 | 
						|
	}
 | 
						|
	spin_unlock(&oldf->file_lock);
 | 
						|
 | 
						|
	/* compute the remainder to be cleared */
 | 
						|
	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
 | 
						|
 | 
						|
	/* This is long word aligned thus could use a optimized version */ 
 | 
						|
	memset(new_fds, 0, size); 
 | 
						|
 | 
						|
	if (new_fdt->max_fdset > open_files) {
 | 
						|
		int left = (new_fdt->max_fdset-open_files)/8;
 | 
						|
		int start = open_files / (8 * sizeof(unsigned long));
 | 
						|
 | 
						|
		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
 | 
						|
		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
 | 
						|
	}
 | 
						|
 | 
						|
	tsk->files = newf;
 | 
						|
	error = 0;
 | 
						|
out:
 | 
						|
	return error;
 | 
						|
 | 
						|
out_release:
 | 
						|
	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
 | 
						|
	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
 | 
						|
	free_fd_array(new_fdt->fd, new_fdt->max_fds);
 | 
						|
	kmem_cache_free(files_cachep, newf);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *	Helper to unshare the files of the current task.
 | 
						|
 *	We don't want to expose copy_files internals to
 | 
						|
 *	the exec layer of the kernel.
 | 
						|
 */
 | 
						|
 | 
						|
int unshare_files(void)
 | 
						|
{
 | 
						|
	struct files_struct *files  = current->files;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	if(!files)
 | 
						|
		BUG();
 | 
						|
 | 
						|
	/* This can race but the race causes us to copy when we don't
 | 
						|
	   need to and drop the copy */
 | 
						|
	if(atomic_read(&files->count) == 1)
 | 
						|
	{
 | 
						|
		atomic_inc(&files->count);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	rc = copy_files(0, current);
 | 
						|
	if(rc)
 | 
						|
		current->files = files;
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(unshare_files);
 | 
						|
 | 
						|
static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
 | 
						|
{
 | 
						|
	struct sighand_struct *sig;
 | 
						|
 | 
						|
	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
 | 
						|
		atomic_inc(¤t->sighand->count);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 | 
						|
	tsk->sighand = sig;
 | 
						|
	if (!sig)
 | 
						|
		return -ENOMEM;
 | 
						|
	spin_lock_init(&sig->siglock);
 | 
						|
	atomic_set(&sig->count, 1);
 | 
						|
	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
 | 
						|
{
 | 
						|
	struct signal_struct *sig;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (clone_flags & CLONE_THREAD) {
 | 
						|
		atomic_inc(¤t->signal->count);
 | 
						|
		atomic_inc(¤t->signal->live);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
 | 
						|
	tsk->signal = sig;
 | 
						|
	if (!sig)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = copy_thread_group_keys(tsk);
 | 
						|
	if (ret < 0) {
 | 
						|
		kmem_cache_free(signal_cachep, sig);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_set(&sig->count, 1);
 | 
						|
	atomic_set(&sig->live, 1);
 | 
						|
	init_waitqueue_head(&sig->wait_chldexit);
 | 
						|
	sig->flags = 0;
 | 
						|
	sig->group_exit_code = 0;
 | 
						|
	sig->group_exit_task = NULL;
 | 
						|
	sig->group_stop_count = 0;
 | 
						|
	sig->curr_target = NULL;
 | 
						|
	init_sigpending(&sig->shared_pending);
 | 
						|
	INIT_LIST_HEAD(&sig->posix_timers);
 | 
						|
 | 
						|
	sig->it_real_value = sig->it_real_incr = 0;
 | 
						|
	sig->real_timer.function = it_real_fn;
 | 
						|
	sig->real_timer.data = (unsigned long) tsk;
 | 
						|
	init_timer(&sig->real_timer);
 | 
						|
 | 
						|
	sig->it_virt_expires = cputime_zero;
 | 
						|
	sig->it_virt_incr = cputime_zero;
 | 
						|
	sig->it_prof_expires = cputime_zero;
 | 
						|
	sig->it_prof_incr = cputime_zero;
 | 
						|
 | 
						|
	sig->tty = current->signal->tty;
 | 
						|
	sig->pgrp = process_group(current);
 | 
						|
	sig->session = current->signal->session;
 | 
						|
	sig->leader = 0;	/* session leadership doesn't inherit */
 | 
						|
	sig->tty_old_pgrp = 0;
 | 
						|
 | 
						|
	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
 | 
						|
	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
 | 
						|
	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
 | 
						|
	sig->sched_time = 0;
 | 
						|
	INIT_LIST_HEAD(&sig->cpu_timers[0]);
 | 
						|
	INIT_LIST_HEAD(&sig->cpu_timers[1]);
 | 
						|
	INIT_LIST_HEAD(&sig->cpu_timers[2]);
 | 
						|
 | 
						|
	task_lock(current->group_leader);
 | 
						|
	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
 | 
						|
	task_unlock(current->group_leader);
 | 
						|
 | 
						|
	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
 | 
						|
		/*
 | 
						|
		 * New sole thread in the process gets an expiry time
 | 
						|
		 * of the whole CPU time limit.
 | 
						|
		 */
 | 
						|
		tsk->it_prof_expires =
 | 
						|
			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
 | 
						|
{
 | 
						|
	unsigned long new_flags = p->flags;
 | 
						|
 | 
						|
	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
 | 
						|
	new_flags |= PF_FORKNOEXEC;
 | 
						|
	if (!(clone_flags & CLONE_PTRACE))
 | 
						|
		p->ptrace = 0;
 | 
						|
	p->flags = new_flags;
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage long sys_set_tid_address(int __user *tidptr)
 | 
						|
{
 | 
						|
	current->clear_child_tid = tidptr;
 | 
						|
 | 
						|
	return current->pid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This creates a new process as a copy of the old one,
 | 
						|
 * but does not actually start it yet.
 | 
						|
 *
 | 
						|
 * It copies the registers, and all the appropriate
 | 
						|
 * parts of the process environment (as per the clone
 | 
						|
 * flags). The actual kick-off is left to the caller.
 | 
						|
 */
 | 
						|
static task_t *copy_process(unsigned long clone_flags,
 | 
						|
				 unsigned long stack_start,
 | 
						|
				 struct pt_regs *regs,
 | 
						|
				 unsigned long stack_size,
 | 
						|
				 int __user *parent_tidptr,
 | 
						|
				 int __user *child_tidptr,
 | 
						|
				 int pid)
 | 
						|
{
 | 
						|
	int retval;
 | 
						|
	struct task_struct *p = NULL;
 | 
						|
 | 
						|
	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Thread groups must share signals as well, and detached threads
 | 
						|
	 * can only be started up within the thread group.
 | 
						|
	 */
 | 
						|
	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Shared signal handlers imply shared VM. By way of the above,
 | 
						|
	 * thread groups also imply shared VM. Blocking this case allows
 | 
						|
	 * for various simplifications in other code.
 | 
						|
	 */
 | 
						|
	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	retval = security_task_create(clone_flags);
 | 
						|
	if (retval)
 | 
						|
		goto fork_out;
 | 
						|
 | 
						|
	retval = -ENOMEM;
 | 
						|
	p = dup_task_struct(current);
 | 
						|
	if (!p)
 | 
						|
		goto fork_out;
 | 
						|
 | 
						|
	retval = -EAGAIN;
 | 
						|
	if (atomic_read(&p->user->processes) >=
 | 
						|
			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
 | 
						|
		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
 | 
						|
				p->user != &root_user)
 | 
						|
			goto bad_fork_free;
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_inc(&p->user->__count);
 | 
						|
	atomic_inc(&p->user->processes);
 | 
						|
	get_group_info(p->group_info);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If multiple threads are within copy_process(), then this check
 | 
						|
	 * triggers too late. This doesn't hurt, the check is only there
 | 
						|
	 * to stop root fork bombs.
 | 
						|
	 */
 | 
						|
	if (nr_threads >= max_threads)
 | 
						|
		goto bad_fork_cleanup_count;
 | 
						|
 | 
						|
	if (!try_module_get(task_thread_info(p)->exec_domain->module))
 | 
						|
		goto bad_fork_cleanup_count;
 | 
						|
 | 
						|
	if (p->binfmt && !try_module_get(p->binfmt->module))
 | 
						|
		goto bad_fork_cleanup_put_domain;
 | 
						|
 | 
						|
	p->did_exec = 0;
 | 
						|
	copy_flags(clone_flags, p);
 | 
						|
	p->pid = pid;
 | 
						|
	retval = -EFAULT;
 | 
						|
	if (clone_flags & CLONE_PARENT_SETTID)
 | 
						|
		if (put_user(p->pid, parent_tidptr))
 | 
						|
			goto bad_fork_cleanup;
 | 
						|
 | 
						|
	p->proc_dentry = NULL;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&p->children);
 | 
						|
	INIT_LIST_HEAD(&p->sibling);
 | 
						|
	p->vfork_done = NULL;
 | 
						|
	spin_lock_init(&p->alloc_lock);
 | 
						|
	spin_lock_init(&p->proc_lock);
 | 
						|
 | 
						|
	clear_tsk_thread_flag(p, TIF_SIGPENDING);
 | 
						|
	init_sigpending(&p->pending);
 | 
						|
 | 
						|
	p->utime = cputime_zero;
 | 
						|
	p->stime = cputime_zero;
 | 
						|
 	p->sched_time = 0;
 | 
						|
	p->rchar = 0;		/* I/O counter: bytes read */
 | 
						|
	p->wchar = 0;		/* I/O counter: bytes written */
 | 
						|
	p->syscr = 0;		/* I/O counter: read syscalls */
 | 
						|
	p->syscw = 0;		/* I/O counter: write syscalls */
 | 
						|
	acct_clear_integrals(p);
 | 
						|
 | 
						|
 	p->it_virt_expires = cputime_zero;
 | 
						|
	p->it_prof_expires = cputime_zero;
 | 
						|
 	p->it_sched_expires = 0;
 | 
						|
 	INIT_LIST_HEAD(&p->cpu_timers[0]);
 | 
						|
 	INIT_LIST_HEAD(&p->cpu_timers[1]);
 | 
						|
 	INIT_LIST_HEAD(&p->cpu_timers[2]);
 | 
						|
 | 
						|
	p->lock_depth = -1;		/* -1 = no lock */
 | 
						|
	do_posix_clock_monotonic_gettime(&p->start_time);
 | 
						|
	p->security = NULL;
 | 
						|
	p->io_context = NULL;
 | 
						|
	p->io_wait = NULL;
 | 
						|
	p->audit_context = NULL;
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
 	p->mempolicy = mpol_copy(p->mempolicy);
 | 
						|
 	if (IS_ERR(p->mempolicy)) {
 | 
						|
 		retval = PTR_ERR(p->mempolicy);
 | 
						|
 		p->mempolicy = NULL;
 | 
						|
 		goto bad_fork_cleanup;
 | 
						|
 	}
 | 
						|
#endif
 | 
						|
 | 
						|
	p->tgid = p->pid;
 | 
						|
	if (clone_flags & CLONE_THREAD)
 | 
						|
		p->tgid = current->tgid;
 | 
						|
 | 
						|
	if ((retval = security_task_alloc(p)))
 | 
						|
		goto bad_fork_cleanup_policy;
 | 
						|
	if ((retval = audit_alloc(p)))
 | 
						|
		goto bad_fork_cleanup_security;
 | 
						|
	/* copy all the process information */
 | 
						|
	if ((retval = copy_semundo(clone_flags, p)))
 | 
						|
		goto bad_fork_cleanup_audit;
 | 
						|
	if ((retval = copy_files(clone_flags, p)))
 | 
						|
		goto bad_fork_cleanup_semundo;
 | 
						|
	if ((retval = copy_fs(clone_flags, p)))
 | 
						|
		goto bad_fork_cleanup_files;
 | 
						|
	if ((retval = copy_sighand(clone_flags, p)))
 | 
						|
		goto bad_fork_cleanup_fs;
 | 
						|
	if ((retval = copy_signal(clone_flags, p)))
 | 
						|
		goto bad_fork_cleanup_sighand;
 | 
						|
	if ((retval = copy_mm(clone_flags, p)))
 | 
						|
		goto bad_fork_cleanup_signal;
 | 
						|
	if ((retval = copy_keys(clone_flags, p)))
 | 
						|
		goto bad_fork_cleanup_mm;
 | 
						|
	if ((retval = copy_namespace(clone_flags, p)))
 | 
						|
		goto bad_fork_cleanup_keys;
 | 
						|
	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
 | 
						|
	if (retval)
 | 
						|
		goto bad_fork_cleanup_namespace;
 | 
						|
 | 
						|
	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
 | 
						|
	/*
 | 
						|
	 * Clear TID on mm_release()?
 | 
						|
	 */
 | 
						|
	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Syscall tracing should be turned off in the child regardless
 | 
						|
	 * of CLONE_PTRACE.
 | 
						|
	 */
 | 
						|
	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
 | 
						|
#ifdef TIF_SYSCALL_EMU
 | 
						|
	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Our parent execution domain becomes current domain
 | 
						|
	   These must match for thread signalling to apply */
 | 
						|
	   
 | 
						|
	p->parent_exec_id = p->self_exec_id;
 | 
						|
 | 
						|
	/* ok, now we should be set up.. */
 | 
						|
	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
 | 
						|
	p->pdeath_signal = 0;
 | 
						|
	p->exit_state = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ok, make it visible to the rest of the system.
 | 
						|
	 * We dont wake it up yet.
 | 
						|
	 */
 | 
						|
	p->group_leader = p;
 | 
						|
	INIT_LIST_HEAD(&p->ptrace_children);
 | 
						|
	INIT_LIST_HEAD(&p->ptrace_list);
 | 
						|
 | 
						|
	/* Perform scheduler related setup. Assign this task to a CPU. */
 | 
						|
	sched_fork(p, clone_flags);
 | 
						|
 | 
						|
	/* Need tasklist lock for parent etc handling! */
 | 
						|
	write_lock_irq(&tasklist_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The task hasn't been attached yet, so its cpus_allowed mask will
 | 
						|
	 * not be changed, nor will its assigned CPU.
 | 
						|
	 *
 | 
						|
	 * The cpus_allowed mask of the parent may have changed after it was
 | 
						|
	 * copied first time - so re-copy it here, then check the child's CPU
 | 
						|
	 * to ensure it is on a valid CPU (and if not, just force it back to
 | 
						|
	 * parent's CPU). This avoids alot of nasty races.
 | 
						|
	 */
 | 
						|
	p->cpus_allowed = current->cpus_allowed;
 | 
						|
	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
 | 
						|
			!cpu_online(task_cpu(p))))
 | 
						|
		set_task_cpu(p, smp_processor_id());
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for pending SIGKILL! The new thread should not be allowed
 | 
						|
	 * to slip out of an OOM kill. (or normal SIGKILL.)
 | 
						|
	 */
 | 
						|
	if (sigismember(¤t->pending.signal, SIGKILL)) {
 | 
						|
		write_unlock_irq(&tasklist_lock);
 | 
						|
		retval = -EINTR;
 | 
						|
		goto bad_fork_cleanup_namespace;
 | 
						|
	}
 | 
						|
 | 
						|
	/* CLONE_PARENT re-uses the old parent */
 | 
						|
	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
 | 
						|
		p->real_parent = current->real_parent;
 | 
						|
	else
 | 
						|
		p->real_parent = current;
 | 
						|
	p->parent = p->real_parent;
 | 
						|
 | 
						|
	if (clone_flags & CLONE_THREAD) {
 | 
						|
		spin_lock(¤t->sighand->siglock);
 | 
						|
		/*
 | 
						|
		 * Important: if an exit-all has been started then
 | 
						|
		 * do not create this new thread - the whole thread
 | 
						|
		 * group is supposed to exit anyway.
 | 
						|
		 */
 | 
						|
		if (current->signal->flags & SIGNAL_GROUP_EXIT) {
 | 
						|
			spin_unlock(¤t->sighand->siglock);
 | 
						|
			write_unlock_irq(&tasklist_lock);
 | 
						|
			retval = -EAGAIN;
 | 
						|
			goto bad_fork_cleanup_namespace;
 | 
						|
		}
 | 
						|
		p->group_leader = current->group_leader;
 | 
						|
 | 
						|
		if (current->signal->group_stop_count > 0) {
 | 
						|
			/*
 | 
						|
			 * There is an all-stop in progress for the group.
 | 
						|
			 * We ourselves will stop as soon as we check signals.
 | 
						|
			 * Make the new thread part of that group stop too.
 | 
						|
			 */
 | 
						|
			current->signal->group_stop_count++;
 | 
						|
			set_tsk_thread_flag(p, TIF_SIGPENDING);
 | 
						|
		}
 | 
						|
 | 
						|
		if (!cputime_eq(current->signal->it_virt_expires,
 | 
						|
				cputime_zero) ||
 | 
						|
		    !cputime_eq(current->signal->it_prof_expires,
 | 
						|
				cputime_zero) ||
 | 
						|
		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
 | 
						|
		    !list_empty(¤t->signal->cpu_timers[0]) ||
 | 
						|
		    !list_empty(¤t->signal->cpu_timers[1]) ||
 | 
						|
		    !list_empty(¤t->signal->cpu_timers[2])) {
 | 
						|
			/*
 | 
						|
			 * Have child wake up on its first tick to check
 | 
						|
			 * for process CPU timers.
 | 
						|
			 */
 | 
						|
			p->it_prof_expires = jiffies_to_cputime(1);
 | 
						|
		}
 | 
						|
 | 
						|
		spin_unlock(¤t->sighand->siglock);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * inherit ioprio
 | 
						|
	 */
 | 
						|
	p->ioprio = current->ioprio;
 | 
						|
 | 
						|
	SET_LINKS(p);
 | 
						|
	if (unlikely(p->ptrace & PT_PTRACED))
 | 
						|
		__ptrace_link(p, current->parent);
 | 
						|
 | 
						|
	cpuset_fork(p);
 | 
						|
 | 
						|
	attach_pid(p, PIDTYPE_PID, p->pid);
 | 
						|
	attach_pid(p, PIDTYPE_TGID, p->tgid);
 | 
						|
	if (thread_group_leader(p)) {
 | 
						|
		attach_pid(p, PIDTYPE_PGID, process_group(p));
 | 
						|
		attach_pid(p, PIDTYPE_SID, p->signal->session);
 | 
						|
		if (p->pid)
 | 
						|
			__get_cpu_var(process_counts)++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!current->signal->tty && p->signal->tty)
 | 
						|
		p->signal->tty = NULL;
 | 
						|
 | 
						|
	nr_threads++;
 | 
						|
	total_forks++;
 | 
						|
	write_unlock_irq(&tasklist_lock);
 | 
						|
	proc_fork_connector(p);
 | 
						|
	retval = 0;
 | 
						|
 | 
						|
fork_out:
 | 
						|
	if (retval)
 | 
						|
		return ERR_PTR(retval);
 | 
						|
	return p;
 | 
						|
 | 
						|
bad_fork_cleanup_namespace:
 | 
						|
	exit_namespace(p);
 | 
						|
bad_fork_cleanup_keys:
 | 
						|
	exit_keys(p);
 | 
						|
bad_fork_cleanup_mm:
 | 
						|
	if (p->mm)
 | 
						|
		mmput(p->mm);
 | 
						|
bad_fork_cleanup_signal:
 | 
						|
	exit_signal(p);
 | 
						|
bad_fork_cleanup_sighand:
 | 
						|
	exit_sighand(p);
 | 
						|
bad_fork_cleanup_fs:
 | 
						|
	exit_fs(p); /* blocking */
 | 
						|
bad_fork_cleanup_files:
 | 
						|
	exit_files(p); /* blocking */
 | 
						|
bad_fork_cleanup_semundo:
 | 
						|
	exit_sem(p);
 | 
						|
bad_fork_cleanup_audit:
 | 
						|
	audit_free(p);
 | 
						|
bad_fork_cleanup_security:
 | 
						|
	security_task_free(p);
 | 
						|
bad_fork_cleanup_policy:
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	mpol_free(p->mempolicy);
 | 
						|
#endif
 | 
						|
bad_fork_cleanup:
 | 
						|
	if (p->binfmt)
 | 
						|
		module_put(p->binfmt->module);
 | 
						|
bad_fork_cleanup_put_domain:
 | 
						|
	module_put(task_thread_info(p)->exec_domain->module);
 | 
						|
bad_fork_cleanup_count:
 | 
						|
	put_group_info(p->group_info);
 | 
						|
	atomic_dec(&p->user->processes);
 | 
						|
	free_uid(p->user);
 | 
						|
bad_fork_free:
 | 
						|
	free_task(p);
 | 
						|
	goto fork_out;
 | 
						|
}
 | 
						|
 | 
						|
struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	memset(regs, 0, sizeof(struct pt_regs));
 | 
						|
	return regs;
 | 
						|
}
 | 
						|
 | 
						|
task_t * __devinit fork_idle(int cpu)
 | 
						|
{
 | 
						|
	task_t *task;
 | 
						|
	struct pt_regs regs;
 | 
						|
 | 
						|
	task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, NULL, 0);
 | 
						|
	if (!task)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
	init_idle(task, cpu);
 | 
						|
	unhash_process(task);
 | 
						|
	return task;
 | 
						|
}
 | 
						|
 | 
						|
static inline int fork_traceflag (unsigned clone_flags)
 | 
						|
{
 | 
						|
	if (clone_flags & CLONE_UNTRACED)
 | 
						|
		return 0;
 | 
						|
	else if (clone_flags & CLONE_VFORK) {
 | 
						|
		if (current->ptrace & PT_TRACE_VFORK)
 | 
						|
			return PTRACE_EVENT_VFORK;
 | 
						|
	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
 | 
						|
		if (current->ptrace & PT_TRACE_CLONE)
 | 
						|
			return PTRACE_EVENT_CLONE;
 | 
						|
	} else if (current->ptrace & PT_TRACE_FORK)
 | 
						|
		return PTRACE_EVENT_FORK;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Ok, this is the main fork-routine.
 | 
						|
 *
 | 
						|
 * It copies the process, and if successful kick-starts
 | 
						|
 * it and waits for it to finish using the VM if required.
 | 
						|
 */
 | 
						|
long do_fork(unsigned long clone_flags,
 | 
						|
	      unsigned long stack_start,
 | 
						|
	      struct pt_regs *regs,
 | 
						|
	      unsigned long stack_size,
 | 
						|
	      int __user *parent_tidptr,
 | 
						|
	      int __user *child_tidptr)
 | 
						|
{
 | 
						|
	struct task_struct *p;
 | 
						|
	int trace = 0;
 | 
						|
	long pid = alloc_pidmap();
 | 
						|
 | 
						|
	if (pid < 0)
 | 
						|
		return -EAGAIN;
 | 
						|
	if (unlikely(current->ptrace)) {
 | 
						|
		trace = fork_traceflag (clone_flags);
 | 
						|
		if (trace)
 | 
						|
			clone_flags |= CLONE_PTRACE;
 | 
						|
	}
 | 
						|
 | 
						|
	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
 | 
						|
	/*
 | 
						|
	 * Do this prior waking up the new thread - the thread pointer
 | 
						|
	 * might get invalid after that point, if the thread exits quickly.
 | 
						|
	 */
 | 
						|
	if (!IS_ERR(p)) {
 | 
						|
		struct completion vfork;
 | 
						|
 | 
						|
		if (clone_flags & CLONE_VFORK) {
 | 
						|
			p->vfork_done = &vfork;
 | 
						|
			init_completion(&vfork);
 | 
						|
		}
 | 
						|
 | 
						|
		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
 | 
						|
			/*
 | 
						|
			 * We'll start up with an immediate SIGSTOP.
 | 
						|
			 */
 | 
						|
			sigaddset(&p->pending.signal, SIGSTOP);
 | 
						|
			set_tsk_thread_flag(p, TIF_SIGPENDING);
 | 
						|
		}
 | 
						|
 | 
						|
		if (!(clone_flags & CLONE_STOPPED))
 | 
						|
			wake_up_new_task(p, clone_flags);
 | 
						|
		else
 | 
						|
			p->state = TASK_STOPPED;
 | 
						|
 | 
						|
		if (unlikely (trace)) {
 | 
						|
			current->ptrace_message = pid;
 | 
						|
			ptrace_notify ((trace << 8) | SIGTRAP);
 | 
						|
		}
 | 
						|
 | 
						|
		if (clone_flags & CLONE_VFORK) {
 | 
						|
			wait_for_completion(&vfork);
 | 
						|
			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
 | 
						|
				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		free_pidmap(pid);
 | 
						|
		pid = PTR_ERR(p);
 | 
						|
	}
 | 
						|
	return pid;
 | 
						|
}
 | 
						|
 | 
						|
void __init proc_caches_init(void)
 | 
						|
{
 | 
						|
	sighand_cachep = kmem_cache_create("sighand_cache",
 | 
						|
			sizeof(struct sighand_struct), 0,
 | 
						|
			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
 | 
						|
	signal_cachep = kmem_cache_create("signal_cache",
 | 
						|
			sizeof(struct signal_struct), 0,
 | 
						|
			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
 | 
						|
	files_cachep = kmem_cache_create("files_cache", 
 | 
						|
			sizeof(struct files_struct), 0,
 | 
						|
			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
 | 
						|
	fs_cachep = kmem_cache_create("fs_cache", 
 | 
						|
			sizeof(struct fs_struct), 0,
 | 
						|
			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
 | 
						|
	vm_area_cachep = kmem_cache_create("vm_area_struct",
 | 
						|
			sizeof(struct vm_area_struct), 0,
 | 
						|
			SLAB_PANIC, NULL, NULL);
 | 
						|
	mm_cachep = kmem_cache_create("mm_struct",
 | 
						|
			sizeof(struct mm_struct), 0,
 | 
						|
			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
 | 
						|
}
 |