mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	printk_safe_flush_on_panic() caused the following deadlock on our
server:
CPU0:                                         CPU1:
panic                                         rcu_dump_cpu_stacks
  kdump_nmi_shootdown_cpus                      nmi_trigger_cpumask_backtrace
    register_nmi_handler(crash_nmi_callback)      printk_safe_flush
                                                    __printk_safe_flush
                                                      raw_spin_lock_irqsave(&read_lock)
    // send NMI to other processors
    apic_send_IPI_allbutself(NMI_VECTOR)
                                                        // NMI interrupt, dead loop
                                                        crash_nmi_callback
  printk_safe_flush_on_panic
    printk_safe_flush
      __printk_safe_flush
        // deadlock
        raw_spin_lock_irqsave(&read_lock)
DEADLOCK: read_lock is taken on CPU1 and will never get released.
It happens when panic() stops a CPU by NMI while it has been in
the middle of printk_safe_flush().
Handle the lock the same way as logbuf_lock. The printk_safe buffers
are flushed only when both locks can be safely taken. It can avoid
the deadlock _in this particular case_ at expense of losing contents
of printk_safe buffers.
Note: It would actually be safe to re-init the locks when all CPUs were
      stopped by NMI. But it would require passing this information
      from arch-specific code. It is not worth the complexity.
      Especially because logbuf_lock and printk_safe buffers have been
      obsoleted by the lockless ring buffer.
Fixes: cf9b1106c8 ("printk/nmi: flush NMI messages on the system panic")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: <stable@vger.kernel.org>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20210210034823.64867-1-songmuchun@bytedance.com
		
	
			
		
			
				
	
	
		
			422 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			422 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
 * printk_safe.c - Safe printk for printk-deadlock-prone contexts
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/preempt.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/debug_locks.h>
 | 
						|
#include <linux/kdb.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/irq_work.h>
 | 
						|
#include <linux/printk.h>
 | 
						|
#include <linux/kprobes.h>
 | 
						|
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * printk() could not take logbuf_lock in NMI context. Instead,
 | 
						|
 * it uses an alternative implementation that temporary stores
 | 
						|
 * the strings into a per-CPU buffer. The content of the buffer
 | 
						|
 * is later flushed into the main ring buffer via IRQ work.
 | 
						|
 *
 | 
						|
 * The alternative implementation is chosen transparently
 | 
						|
 * by examining current printk() context mask stored in @printk_context
 | 
						|
 * per-CPU variable.
 | 
						|
 *
 | 
						|
 * The implementation allows to flush the strings also from another CPU.
 | 
						|
 * There are situations when we want to make sure that all buffers
 | 
						|
 * were handled or when IRQs are blocked.
 | 
						|
 */
 | 
						|
 | 
						|
#define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) -	\
 | 
						|
				sizeof(atomic_t) -			\
 | 
						|
				sizeof(atomic_t) -			\
 | 
						|
				sizeof(struct irq_work))
 | 
						|
 | 
						|
struct printk_safe_seq_buf {
 | 
						|
	atomic_t		len;	/* length of written data */
 | 
						|
	atomic_t		message_lost;
 | 
						|
	struct irq_work		work;	/* IRQ work that flushes the buffer */
 | 
						|
	unsigned char		buffer[SAFE_LOG_BUF_LEN];
 | 
						|
};
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
 | 
						|
static DEFINE_PER_CPU(int, printk_context);
 | 
						|
 | 
						|
static DEFINE_RAW_SPINLOCK(safe_read_lock);
 | 
						|
 | 
						|
#ifdef CONFIG_PRINTK_NMI
 | 
						|
static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
 | 
						|
#endif
 | 
						|
 | 
						|
/* Get flushed in a more safe context. */
 | 
						|
static void queue_flush_work(struct printk_safe_seq_buf *s)
 | 
						|
{
 | 
						|
	if (printk_percpu_data_ready())
 | 
						|
		irq_work_queue(&s->work);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a message to per-CPU context-dependent buffer. NMI and printk-safe
 | 
						|
 * have dedicated buffers, because otherwise printk-safe preempted by
 | 
						|
 * NMI-printk would have overwritten the NMI messages.
 | 
						|
 *
 | 
						|
 * The messages are flushed from irq work (or from panic()), possibly,
 | 
						|
 * from other CPU, concurrently with printk_safe_log_store(). Should this
 | 
						|
 * happen, printk_safe_log_store() will notice the buffer->len mismatch
 | 
						|
 * and repeat the write.
 | 
						|
 */
 | 
						|
static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s,
 | 
						|
						const char *fmt, va_list args)
 | 
						|
{
 | 
						|
	int add;
 | 
						|
	size_t len;
 | 
						|
	va_list ap;
 | 
						|
 | 
						|
again:
 | 
						|
	len = atomic_read(&s->len);
 | 
						|
 | 
						|
	/* The trailing '\0' is not counted into len. */
 | 
						|
	if (len >= sizeof(s->buffer) - 1) {
 | 
						|
		atomic_inc(&s->message_lost);
 | 
						|
		queue_flush_work(s);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure that all old data have been read before the buffer
 | 
						|
	 * was reset. This is not needed when we just append data.
 | 
						|
	 */
 | 
						|
	if (!len)
 | 
						|
		smp_rmb();
 | 
						|
 | 
						|
	va_copy(ap, args);
 | 
						|
	add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap);
 | 
						|
	va_end(ap);
 | 
						|
	if (!add)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do it once again if the buffer has been flushed in the meantime.
 | 
						|
	 * Note that atomic_cmpxchg() is an implicit memory barrier that
 | 
						|
	 * makes sure that the data were written before updating s->len.
 | 
						|
	 */
 | 
						|
	if (atomic_cmpxchg(&s->len, len, len + add) != len)
 | 
						|
		goto again;
 | 
						|
 | 
						|
	queue_flush_work(s);
 | 
						|
	return add;
 | 
						|
}
 | 
						|
 | 
						|
static inline void printk_safe_flush_line(const char *text, int len)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Avoid any console drivers calls from here, because we may be
 | 
						|
	 * in NMI or printk_safe context (when in panic). The messages
 | 
						|
	 * must go only into the ring buffer at this stage.  Consoles will
 | 
						|
	 * get explicitly called later when a crashdump is not generated.
 | 
						|
	 */
 | 
						|
	printk_deferred("%.*s", len, text);
 | 
						|
}
 | 
						|
 | 
						|
/* printk part of the temporary buffer line by line */
 | 
						|
static int printk_safe_flush_buffer(const char *start, size_t len)
 | 
						|
{
 | 
						|
	const char *c, *end;
 | 
						|
	bool header;
 | 
						|
 | 
						|
	c = start;
 | 
						|
	end = start + len;
 | 
						|
	header = true;
 | 
						|
 | 
						|
	/* Print line by line. */
 | 
						|
	while (c < end) {
 | 
						|
		if (*c == '\n') {
 | 
						|
			printk_safe_flush_line(start, c - start + 1);
 | 
						|
			start = ++c;
 | 
						|
			header = true;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Handle continuous lines or missing new line. */
 | 
						|
		if ((c + 1 < end) && printk_get_level(c)) {
 | 
						|
			if (header) {
 | 
						|
				c = printk_skip_level(c);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			printk_safe_flush_line(start, c - start);
 | 
						|
			start = c++;
 | 
						|
			header = true;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		header = false;
 | 
						|
		c++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check if there was a partial line. Ignore pure header. */
 | 
						|
	if (start < end && !header) {
 | 
						|
		static const char newline[] = KERN_CONT "\n";
 | 
						|
 | 
						|
		printk_safe_flush_line(start, end - start);
 | 
						|
		printk_safe_flush_line(newline, strlen(newline));
 | 
						|
	}
 | 
						|
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
static void report_message_lost(struct printk_safe_seq_buf *s)
 | 
						|
{
 | 
						|
	int lost = atomic_xchg(&s->message_lost, 0);
 | 
						|
 | 
						|
	if (lost)
 | 
						|
		printk_deferred("Lost %d message(s)!\n", lost);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Flush data from the associated per-CPU buffer. The function
 | 
						|
 * can be called either via IRQ work or independently.
 | 
						|
 */
 | 
						|
static void __printk_safe_flush(struct irq_work *work)
 | 
						|
{
 | 
						|
	struct printk_safe_seq_buf *s =
 | 
						|
		container_of(work, struct printk_safe_seq_buf, work);
 | 
						|
	unsigned long flags;
 | 
						|
	size_t len;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The lock has two functions. First, one reader has to flush all
 | 
						|
	 * available message to make the lockless synchronization with
 | 
						|
	 * writers easier. Second, we do not want to mix messages from
 | 
						|
	 * different CPUs. This is especially important when printing
 | 
						|
	 * a backtrace.
 | 
						|
	 */
 | 
						|
	raw_spin_lock_irqsave(&safe_read_lock, flags);
 | 
						|
 | 
						|
	i = 0;
 | 
						|
more:
 | 
						|
	len = atomic_read(&s->len);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is just a paranoid check that nobody has manipulated
 | 
						|
	 * the buffer an unexpected way. If we printed something then
 | 
						|
	 * @len must only increase. Also it should never overflow the
 | 
						|
	 * buffer size.
 | 
						|
	 */
 | 
						|
	if ((i && i >= len) || len > sizeof(s->buffer)) {
 | 
						|
		const char *msg = "printk_safe_flush: internal error\n";
 | 
						|
 | 
						|
		printk_safe_flush_line(msg, strlen(msg));
 | 
						|
		len = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!len)
 | 
						|
		goto out; /* Someone else has already flushed the buffer. */
 | 
						|
 | 
						|
	/* Make sure that data has been written up to the @len */
 | 
						|
	smp_rmb();
 | 
						|
	i += printk_safe_flush_buffer(s->buffer + i, len - i);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check that nothing has got added in the meantime and truncate
 | 
						|
	 * the buffer. Note that atomic_cmpxchg() is an implicit memory
 | 
						|
	 * barrier that makes sure that the data were copied before
 | 
						|
	 * updating s->len.
 | 
						|
	 */
 | 
						|
	if (atomic_cmpxchg(&s->len, len, 0) != len)
 | 
						|
		goto more;
 | 
						|
 | 
						|
out:
 | 
						|
	report_message_lost(s);
 | 
						|
	raw_spin_unlock_irqrestore(&safe_read_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * printk_safe_flush - flush all per-cpu nmi buffers.
 | 
						|
 *
 | 
						|
 * The buffers are flushed automatically via IRQ work. This function
 | 
						|
 * is useful only when someone wants to be sure that all buffers have
 | 
						|
 * been flushed at some point.
 | 
						|
 */
 | 
						|
void printk_safe_flush(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
#ifdef CONFIG_PRINTK_NMI
 | 
						|
		__printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
 | 
						|
#endif
 | 
						|
		__printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
 | 
						|
 *	goes down.
 | 
						|
 *
 | 
						|
 * Similar to printk_safe_flush() but it can be called even in NMI context when
 | 
						|
 * the system goes down. It does the best effort to get NMI messages into
 | 
						|
 * the main ring buffer.
 | 
						|
 *
 | 
						|
 * Note that it could try harder when there is only one CPU online.
 | 
						|
 */
 | 
						|
void printk_safe_flush_on_panic(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Make sure that we could access the main ring buffer.
 | 
						|
	 * Do not risk a double release when more CPUs are up.
 | 
						|
	 */
 | 
						|
	if (raw_spin_is_locked(&logbuf_lock)) {
 | 
						|
		if (num_online_cpus() > 1)
 | 
						|
			return;
 | 
						|
 | 
						|
		debug_locks_off();
 | 
						|
		raw_spin_lock_init(&logbuf_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (raw_spin_is_locked(&safe_read_lock)) {
 | 
						|
		if (num_online_cpus() > 1)
 | 
						|
			return;
 | 
						|
 | 
						|
		debug_locks_off();
 | 
						|
		raw_spin_lock_init(&safe_read_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	printk_safe_flush();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PRINTK_NMI
 | 
						|
/*
 | 
						|
 * Safe printk() for NMI context. It uses a per-CPU buffer to
 | 
						|
 * store the message. NMIs are not nested, so there is always only
 | 
						|
 * one writer running. But the buffer might get flushed from another
 | 
						|
 * CPU, so we need to be careful.
 | 
						|
 */
 | 
						|
static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
 | 
						|
{
 | 
						|
	struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);
 | 
						|
 | 
						|
	return printk_safe_log_store(s, fmt, args);
 | 
						|
}
 | 
						|
 | 
						|
void noinstr printk_nmi_enter(void)
 | 
						|
{
 | 
						|
	this_cpu_add(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
 | 
						|
}
 | 
						|
 | 
						|
void noinstr printk_nmi_exit(void)
 | 
						|
{
 | 
						|
	this_cpu_sub(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Marks a code that might produce many messages in NMI context
 | 
						|
 * and the risk of losing them is more critical than eventual
 | 
						|
 * reordering.
 | 
						|
 *
 | 
						|
 * It has effect only when called in NMI context. Then printk()
 | 
						|
 * will try to store the messages into the main logbuf directly
 | 
						|
 * and use the per-CPU buffers only as a fallback when the lock
 | 
						|
 * is not available.
 | 
						|
 */
 | 
						|
void printk_nmi_direct_enter(void)
 | 
						|
{
 | 
						|
	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
 | 
						|
		this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK);
 | 
						|
}
 | 
						|
 | 
						|
void printk_nmi_direct_exit(void)
 | 
						|
{
 | 
						|
	this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_PRINTK_NMI */
 | 
						|
 | 
						|
/*
 | 
						|
 * Lock-less printk(), to avoid deadlocks should the printk() recurse
 | 
						|
 * into itself. It uses a per-CPU buffer to store the message, just like
 | 
						|
 * NMI.
 | 
						|
 */
 | 
						|
static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args)
 | 
						|
{
 | 
						|
	struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);
 | 
						|
 | 
						|
	return printk_safe_log_store(s, fmt, args);
 | 
						|
}
 | 
						|
 | 
						|
/* Can be preempted by NMI. */
 | 
						|
void __printk_safe_enter(void)
 | 
						|
{
 | 
						|
	this_cpu_inc(printk_context);
 | 
						|
}
 | 
						|
 | 
						|
/* Can be preempted by NMI. */
 | 
						|
void __printk_safe_exit(void)
 | 
						|
{
 | 
						|
	this_cpu_dec(printk_context);
 | 
						|
}
 | 
						|
 | 
						|
__printf(1, 0) int vprintk_func(const char *fmt, va_list args)
 | 
						|
{
 | 
						|
#ifdef CONFIG_KGDB_KDB
 | 
						|
	/* Allow to pass printk() to kdb but avoid a recursion. */
 | 
						|
	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0))
 | 
						|
		return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Try to use the main logbuf even in NMI. But avoid calling console
 | 
						|
	 * drivers that might have their own locks.
 | 
						|
	 */
 | 
						|
	if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) &&
 | 
						|
	    raw_spin_trylock(&logbuf_lock)) {
 | 
						|
		int len;
 | 
						|
 | 
						|
		len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
 | 
						|
		raw_spin_unlock(&logbuf_lock);
 | 
						|
		defer_console_output();
 | 
						|
		return len;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */
 | 
						|
	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
 | 
						|
		return vprintk_nmi(fmt, args);
 | 
						|
 | 
						|
	/* Use extra buffer to prevent a recursion deadlock in safe mode. */
 | 
						|
	if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
 | 
						|
		return vprintk_safe(fmt, args);
 | 
						|
 | 
						|
	/* No obstacles. */
 | 
						|
	return vprintk_default(fmt, args);
 | 
						|
}
 | 
						|
 | 
						|
void __init printk_safe_init(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct printk_safe_seq_buf *s;
 | 
						|
 | 
						|
		s = &per_cpu(safe_print_seq, cpu);
 | 
						|
		init_irq_work(&s->work, __printk_safe_flush);
 | 
						|
 | 
						|
#ifdef CONFIG_PRINTK_NMI
 | 
						|
		s = &per_cpu(nmi_print_seq, cpu);
 | 
						|
		init_irq_work(&s->work, __printk_safe_flush);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/* Flush pending messages that did not have scheduled IRQ works. */
 | 
						|
	printk_safe_flush();
 | 
						|
}
 |