mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 c77f85b347
			
		
	
	
		c77f85b347
		
	
	
	
	
		
			
			Replace `ListLinksSelfPtr::LIST_LINKS_SELF_PTR_OFFSET` with `unsafe fn
raw_get_self_ptr` which returns a pointer to the field rather than
requiring the caller to do pointer arithmetic.
Implement `HasListLinks::raw_get_list_links` in `impl_has_list_links!`,
narrowing the interface of `HasListLinks` and replacing pointer
arithmetic with `container_of!`.
Modify `impl_list_item` to also invoke `impl_has_list_links!` or
`impl_has_list_links_self_ptr!`. This is necessary to allow
`impl_list_item` to see more of the tokens used by
`impl_has_list_links{,_self_ptr}!`.
A similar API change was discussed on the hrtimer series[1].
Link: https://lore.kernel.org/all/20250224-hrtimer-v3-v6-12-rc2-v9-1-5bd3bf0ce6cc@kernel.org/ [1]
Tested-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Tamir Duberstein <tamird@gmail.com>
Link: https://lore.kernel.org/r/20250709-list-no-offset-v4-6-a429e75840a9@gmail.com
[ Fixed broken intra-doc links. Used the renamed
  `Opaque::cast_into`. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
		
	
			
		
			
				
	
	
		
			1083 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1083 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| // Copyright (C) 2024 Google LLC.
 | |
| 
 | |
| //! A linked list implementation.
 | |
| 
 | |
| use crate::sync::ArcBorrow;
 | |
| use crate::types::Opaque;
 | |
| use core::iter::{DoubleEndedIterator, FusedIterator};
 | |
| use core::marker::PhantomData;
 | |
| use core::ptr;
 | |
| use pin_init::PinInit;
 | |
| 
 | |
| mod impl_list_item_mod;
 | |
| pub use self::impl_list_item_mod::{
 | |
|     impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
 | |
| };
 | |
| 
 | |
| mod arc;
 | |
| pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
 | |
| 
 | |
| mod arc_field;
 | |
| pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
 | |
| 
 | |
| /// A linked list.
 | |
| ///
 | |
| /// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
 | |
| /// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
 | |
| /// prev/next pointers are not used for several linked lists.
 | |
| ///
 | |
| /// # Invariants
 | |
| ///
 | |
| /// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
 | |
| ///   field of the first element in the list.
 | |
| /// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
 | |
| /// * For every item in the list, the list owns the associated [`ListArc`] reference and has
 | |
| ///   exclusive access to the `ListLinks` field.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// use kernel::list::*;
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct BasicItem {
 | |
| ///     value: i32,
 | |
| ///     #[pin]
 | |
| ///     links: ListLinks,
 | |
| /// }
 | |
| ///
 | |
| /// impl BasicItem {
 | |
| ///     fn new(value: i32) -> Result<ListArc<Self>> {
 | |
| ///         ListArc::pin_init(try_pin_init!(Self {
 | |
| ///             value,
 | |
| ///             links <- ListLinks::new(),
 | |
| ///         }), GFP_KERNEL)
 | |
| ///     }
 | |
| /// }
 | |
| ///
 | |
| /// impl_list_arc_safe! {
 | |
| ///     impl ListArcSafe<0> for BasicItem { untracked; }
 | |
| /// }
 | |
| /// impl_list_item! {
 | |
| ///     impl ListItem<0> for BasicItem { using ListLinks { self.links }; }
 | |
| /// }
 | |
| ///
 | |
| /// // Create a new empty list.
 | |
| /// let mut list = List::new();
 | |
| /// {
 | |
| ///     assert!(list.is_empty());
 | |
| /// }
 | |
| ///
 | |
| /// // Insert 3 elements using `push_back()`.
 | |
| /// list.push_back(BasicItem::new(15)?);
 | |
| /// list.push_back(BasicItem::new(10)?);
 | |
| /// list.push_back(BasicItem::new(30)?);
 | |
| ///
 | |
| /// // Iterate over the list to verify the nodes were inserted correctly.
 | |
| /// // [15, 10, 30]
 | |
| /// {
 | |
| ///     let mut iter = list.iter();
 | |
| ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 15);
 | |
| ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 10);
 | |
| ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 30);
 | |
| ///     assert!(iter.next().is_none());
 | |
| ///
 | |
| ///     // Verify the length of the list.
 | |
| ///     assert_eq!(list.iter().count(), 3);
 | |
| /// }
 | |
| ///
 | |
| /// // Pop the items from the list using `pop_back()` and verify the content.
 | |
| /// {
 | |
| ///     assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 30);
 | |
| ///     assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 10);
 | |
| ///     assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 15);
 | |
| /// }
 | |
| ///
 | |
| /// // Insert 3 elements using `push_front()`.
 | |
| /// list.push_front(BasicItem::new(15)?);
 | |
| /// list.push_front(BasicItem::new(10)?);
 | |
| /// list.push_front(BasicItem::new(30)?);
 | |
| ///
 | |
| /// // Iterate over the list to verify the nodes were inserted correctly.
 | |
| /// // [30, 10, 15]
 | |
| /// {
 | |
| ///     let mut iter = list.iter();
 | |
| ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 30);
 | |
| ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 10);
 | |
| ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 15);
 | |
| ///     assert!(iter.next().is_none());
 | |
| ///
 | |
| ///     // Verify the length of the list.
 | |
| ///     assert_eq!(list.iter().count(), 3);
 | |
| /// }
 | |
| ///
 | |
| /// // Pop the items from the list using `pop_front()` and verify the content.
 | |
| /// {
 | |
| ///     assert_eq!(list.pop_front().ok_or(EINVAL)?.value, 30);
 | |
| ///     assert_eq!(list.pop_front().ok_or(EINVAL)?.value, 10);
 | |
| /// }
 | |
| ///
 | |
| /// // Push `list2` to `list` through `push_all_back()`.
 | |
| /// // list: [15]
 | |
| /// // list2: [25, 35]
 | |
| /// {
 | |
| ///     let mut list2 = List::new();
 | |
| ///     list2.push_back(BasicItem::new(25)?);
 | |
| ///     list2.push_back(BasicItem::new(35)?);
 | |
| ///
 | |
| ///     list.push_all_back(&mut list2);
 | |
| ///
 | |
| ///     // list: [15, 25, 35]
 | |
| ///     // list2: []
 | |
| ///     let mut iter = list.iter();
 | |
| ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 15);
 | |
| ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 25);
 | |
| ///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 35);
 | |
| ///     assert!(iter.next().is_none());
 | |
| ///     assert!(list2.is_empty());
 | |
| /// }
 | |
| /// # Result::<(), Error>::Ok(())
 | |
| /// ```
 | |
| pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
 | |
|     first: *mut ListLinksFields,
 | |
|     _ty: PhantomData<ListArc<T, ID>>,
 | |
| }
 | |
| 
 | |
| // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
 | |
| // type of access to the `ListArc<T, ID>` elements.
 | |
| unsafe impl<T, const ID: u64> Send for List<T, ID>
 | |
| where
 | |
|     ListArc<T, ID>: Send,
 | |
|     T: ?Sized + ListItem<ID>,
 | |
| {
 | |
| }
 | |
| // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
 | |
| // type of access to the `ListArc<T, ID>` elements.
 | |
| unsafe impl<T, const ID: u64> Sync for List<T, ID>
 | |
| where
 | |
|     ListArc<T, ID>: Sync,
 | |
|     T: ?Sized + ListItem<ID>,
 | |
| {
 | |
| }
 | |
| 
 | |
| /// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
 | |
| ///
 | |
| /// # Safety
 | |
| ///
 | |
| /// Implementers must ensure that they provide the guarantees documented on methods provided by
 | |
| /// this trait.
 | |
| ///
 | |
| /// [`ListArc<Self>`]: ListArc
 | |
| pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
 | |
|     /// Views the [`ListLinks`] for this value.
 | |
|     ///
 | |
|     /// # Guarantees
 | |
|     ///
 | |
|     /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
 | |
|     /// since the most recent such call, then this returns the same pointer as the one returned by
 | |
|     /// the most recent call to `prepare_to_insert`.
 | |
|     ///
 | |
|     /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
 | |
|     unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
 | |
| 
 | |
|     /// View the full value given its [`ListLinks`] field.
 | |
|     ///
 | |
|     /// Can only be used when the value is in a list.
 | |
|     ///
 | |
|     /// # Guarantees
 | |
|     ///
 | |
|     /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
 | |
|     /// * The returned pointer is valid until the next call to `post_remove`.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
 | |
|     ///   from a call to `view_links` that happened after the most recent call to
 | |
|     ///   `prepare_to_insert`.
 | |
|     /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
 | |
|     ///   been called.
 | |
|     unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
 | |
| 
 | |
|     /// This is called when an item is inserted into a [`List`].
 | |
|     ///
 | |
|     /// # Guarantees
 | |
|     ///
 | |
|     /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
 | |
|     /// called.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// * The provided pointer must point at a valid value in an [`Arc`].
 | |
|     /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
 | |
|     /// * The caller must own the [`ListArc`] for this value.
 | |
|     /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
 | |
|     ///   called after this call to `prepare_to_insert`.
 | |
|     ///
 | |
|     /// [`Arc`]: crate::sync::Arc
 | |
|     unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
 | |
| 
 | |
|     /// This undoes a previous call to `prepare_to_insert`.
 | |
|     ///
 | |
|     /// # Guarantees
 | |
|     ///
 | |
|     /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The provided pointer must be the pointer returned by the most recent call to
 | |
|     /// `prepare_to_insert`.
 | |
|     unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
 | |
| }
 | |
| 
 | |
| #[repr(C)]
 | |
| #[derive(Copy, Clone)]
 | |
| struct ListLinksFields {
 | |
|     next: *mut ListLinksFields,
 | |
|     prev: *mut ListLinksFields,
 | |
| }
 | |
| 
 | |
| /// The prev/next pointers for an item in a linked list.
 | |
| ///
 | |
| /// # Invariants
 | |
| ///
 | |
| /// The fields are null if and only if this item is not in a list.
 | |
| #[repr(transparent)]
 | |
| pub struct ListLinks<const ID: u64 = 0> {
 | |
|     // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
 | |
|     // list.
 | |
|     inner: Opaque<ListLinksFields>,
 | |
| }
 | |
| 
 | |
| // SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
 | |
| // associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
 | |
| // move this an instance of this type to a different thread if the pointees are `!Send`.
 | |
| unsafe impl<const ID: u64> Send for ListLinks<ID> {}
 | |
| // SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
 | |
| // okay to have immutable access to a ListLinks from several threads at once.
 | |
| unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
 | |
| 
 | |
| impl<const ID: u64> ListLinks<ID> {
 | |
|     /// Creates a new initializer for this type.
 | |
|     pub fn new() -> impl PinInit<Self> {
 | |
|         // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
 | |
|         // not be constructed in an `Arc` that already has a `ListArc`.
 | |
|         ListLinks {
 | |
|             inner: Opaque::new(ListLinksFields {
 | |
|                 prev: ptr::null_mut(),
 | |
|                 next: ptr::null_mut(),
 | |
|             }),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// `me` must be dereferenceable.
 | |
|     #[inline]
 | |
|     unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
 | |
|         // SAFETY: The caller promises that the pointer is valid.
 | |
|         unsafe { Opaque::cast_into(ptr::addr_of!((*me).inner)) }
 | |
|     }
 | |
| 
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// `me` must be dereferenceable.
 | |
|     #[inline]
 | |
|     unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
 | |
|         me.cast()
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Similar to [`ListLinks`], but also contains a pointer to the full value.
 | |
| ///
 | |
| /// This type can be used instead of [`ListLinks`] to support lists with trait objects.
 | |
| #[repr(C)]
 | |
| pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
 | |
|     /// The `ListLinks` field inside this value.
 | |
|     ///
 | |
|     /// This is public so that it can be used with `impl_has_list_links!`.
 | |
|     pub inner: ListLinks<ID>,
 | |
|     // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
 | |
|     // `ptr::null()` doesn't work for `T: ?Sized`.
 | |
|     self_ptr: Opaque<*const T>,
 | |
| }
 | |
| 
 | |
| // SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
 | |
| unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
 | |
| // SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
 | |
| // it's okay to have immutable access to a ListLinks from several threads at once.
 | |
| //
 | |
| // Note that `inner` being a public field does not prevent this type from being opaque, since
 | |
| // `inner` is a opaque type.
 | |
| unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
 | |
| 
 | |
| impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
 | |
|     /// Creates a new initializer for this type.
 | |
|     pub fn new() -> impl PinInit<Self> {
 | |
|         // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
 | |
|         // not be constructed in an `Arc` that already has a `ListArc`.
 | |
|         Self {
 | |
|             inner: ListLinks {
 | |
|                 inner: Opaque::new(ListLinksFields {
 | |
|                     prev: ptr::null_mut(),
 | |
|                     next: ptr::null_mut(),
 | |
|                 }),
 | |
|             },
 | |
|             self_ptr: Opaque::uninit(),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Returns a pointer to the self pointer.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The provided pointer must point at a valid struct of type `Self`.
 | |
|     pub unsafe fn raw_get_self_ptr(me: *const Self) -> *const Opaque<*const T> {
 | |
|         // SAFETY: The caller promises that the pointer is valid.
 | |
|         unsafe { ptr::addr_of!((*me).self_ptr) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
 | |
|     /// Creates a new empty list.
 | |
|     pub const fn new() -> Self {
 | |
|         Self {
 | |
|             first: ptr::null_mut(),
 | |
|             _ty: PhantomData,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Returns whether this list is empty.
 | |
|     pub fn is_empty(&self) -> bool {
 | |
|         self.first.is_null()
 | |
|     }
 | |
| 
 | |
|     /// Inserts `item` before `next` in the cycle.
 | |
|     ///
 | |
|     /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list
 | |
|     /// is empty.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// * `next` must be an element in this list or null.
 | |
|     /// * if `next` is null, then the list must be empty.
 | |
|     unsafe fn insert_inner(
 | |
|         &mut self,
 | |
|         item: ListArc<T, ID>,
 | |
|         next: *mut ListLinksFields,
 | |
|     ) -> *mut ListLinksFields {
 | |
|         let raw_item = ListArc::into_raw(item);
 | |
|         // SAFETY:
 | |
|         // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
 | |
|         // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
 | |
|         //   the most recent call to `prepare_to_insert`, if any.
 | |
|         // * We own the `ListArc`.
 | |
|         // * Removing items from this list is always done using `remove_internal_inner`, which
 | |
|         //   calls `post_remove` before giving up ownership.
 | |
|         let list_links = unsafe { T::prepare_to_insert(raw_item) };
 | |
|         // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
 | |
|         let item = unsafe { ListLinks::fields(list_links) };
 | |
| 
 | |
|         // Check if the list is empty.
 | |
|         if next.is_null() {
 | |
|             // SAFETY: The caller just gave us ownership of these fields.
 | |
|             // INVARIANT: A linked list with one item should be cyclic.
 | |
|             unsafe {
 | |
|                 (*item).next = item;
 | |
|                 (*item).prev = item;
 | |
|             }
 | |
|             self.first = item;
 | |
|         } else {
 | |
|             // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
 | |
|             // it's not null, so it must be valid.
 | |
|             let prev = unsafe { (*next).prev };
 | |
|             // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
 | |
|             // ownership of the fields on `item`.
 | |
|             // INVARIANT: This correctly inserts `item` between `prev` and `next`.
 | |
|             unsafe {
 | |
|                 (*item).next = next;
 | |
|                 (*item).prev = prev;
 | |
|                 (*prev).next = item;
 | |
|                 (*next).prev = item;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         item
 | |
|     }
 | |
| 
 | |
|     /// Add the provided item to the back of the list.
 | |
|     pub fn push_back(&mut self, item: ListArc<T, ID>) {
 | |
|         // SAFETY:
 | |
|         // * `self.first` is null or in the list.
 | |
|         // * `self.first` is only null if the list is empty.
 | |
|         unsafe { self.insert_inner(item, self.first) };
 | |
|     }
 | |
| 
 | |
|     /// Add the provided item to the front of the list.
 | |
|     pub fn push_front(&mut self, item: ListArc<T, ID>) {
 | |
|         // SAFETY:
 | |
|         // * `self.first` is null or in the list.
 | |
|         // * `self.first` is only null if the list is empty.
 | |
|         let new_elem = unsafe { self.insert_inner(item, self.first) };
 | |
| 
 | |
|         // INVARIANT: `new_elem` is in the list because we just inserted it.
 | |
|         self.first = new_elem;
 | |
|     }
 | |
| 
 | |
|     /// Removes the last item from this list.
 | |
|     pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
 | |
|         if self.is_empty() {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         // SAFETY: We just checked that the list is not empty.
 | |
|         let last = unsafe { (*self.first).prev };
 | |
|         // SAFETY: The last item of this list is in this list.
 | |
|         Some(unsafe { self.remove_internal(last) })
 | |
|     }
 | |
| 
 | |
|     /// Removes the first item from this list.
 | |
|     pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
 | |
|         if self.is_empty() {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         // SAFETY: The first item of this list is in this list.
 | |
|         Some(unsafe { self.remove_internal(self.first) })
 | |
|     }
 | |
| 
 | |
|     /// Removes the provided item from this list and returns it.
 | |
|     ///
 | |
|     /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
 | |
|     /// this means that the item is not in any list.)
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// `item` must not be in a different linked list (with the same id).
 | |
|     pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
 | |
|         // SAFETY: TODO.
 | |
|         let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
 | |
|         // SAFETY: The user provided a reference, and reference are never dangling.
 | |
|         //
 | |
|         // As for why this is not a data race, there are two cases:
 | |
|         //
 | |
|         //  * If `item` is not in any list, then these fields are read-only and null.
 | |
|         //  * If `item` is in this list, then we have exclusive access to these fields since we
 | |
|         //    have a mutable reference to the list.
 | |
|         //
 | |
|         // In either case, there's no race.
 | |
|         let ListLinksFields { next, prev } = unsafe { *item };
 | |
| 
 | |
|         debug_assert_eq!(next.is_null(), prev.is_null());
 | |
|         if !next.is_null() {
 | |
|             // This is really a no-op, but this ensures that `item` is a raw pointer that was
 | |
|             // obtained without going through a pointer->reference->pointer conversion roundtrip.
 | |
|             // This ensures that the list is valid under the more restrictive strict provenance
 | |
|             // ruleset.
 | |
|             //
 | |
|             // SAFETY: We just checked that `next` is not null, and it's not dangling by the
 | |
|             // list invariants.
 | |
|             unsafe {
 | |
|                 debug_assert_eq!(item, (*next).prev);
 | |
|                 item = (*next).prev;
 | |
|             }
 | |
| 
 | |
|             // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
 | |
|             // is in this list. The pointers are in the right order.
 | |
|             Some(unsafe { self.remove_internal_inner(item, next, prev) })
 | |
|         } else {
 | |
|             None
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Removes the provided item from the list.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// `item` must point at an item in this list.
 | |
|     unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
 | |
|         // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
 | |
|         // since we have a mutable reference to the list containing `item`.
 | |
|         let ListLinksFields { next, prev } = unsafe { *item };
 | |
|         // SAFETY: The pointers are ok and in the right order.
 | |
|         unsafe { self.remove_internal_inner(item, next, prev) }
 | |
|     }
 | |
| 
 | |
|     /// Removes the provided item from the list.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
 | |
|     /// next` and `(*item).prev == prev`.
 | |
|     unsafe fn remove_internal_inner(
 | |
|         &mut self,
 | |
|         item: *mut ListLinksFields,
 | |
|         next: *mut ListLinksFields,
 | |
|         prev: *mut ListLinksFields,
 | |
|     ) -> ListArc<T, ID> {
 | |
|         // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
 | |
|         // pointers are always valid for items in a list.
 | |
|         //
 | |
|         // INVARIANT: There are three cases:
 | |
|         //  * If the list has at least three items, then after removing the item, `prev` and `next`
 | |
|         //    will be next to each other.
 | |
|         //  * If the list has two items, then the remaining item will point at itself.
 | |
|         //  * If the list has one item, then `next == prev == item`, so these writes have no
 | |
|         //    effect. The list remains unchanged and `item` is still in the list for now.
 | |
|         unsafe {
 | |
|             (*next).prev = prev;
 | |
|             (*prev).next = next;
 | |
|         }
 | |
|         // SAFETY: We have exclusive access to items in the list.
 | |
|         // INVARIANT: `item` is being removed, so the pointers should be null.
 | |
|         unsafe {
 | |
|             (*item).prev = ptr::null_mut();
 | |
|             (*item).next = ptr::null_mut();
 | |
|         }
 | |
|         // INVARIANT: There are three cases:
 | |
|         //  * If `item` was not the first item, then `self.first` should remain unchanged.
 | |
|         //  * If `item` was the first item and there is another item, then we just updated
 | |
|         //    `prev->next` to `next`, which is the new first item, and setting `item->next` to null
 | |
|         //    did not modify `prev->next`.
 | |
|         //  * If `item` was the only item in the list, then `prev == item`, and we just set
 | |
|         //    `item->next` to null, so this correctly sets `first` to null now that the list is
 | |
|         //    empty.
 | |
|         if self.first == item {
 | |
|             // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
 | |
|             // list, so it must be valid. There is no race since `prev` is still in the list and we
 | |
|             // still have exclusive access to the list.
 | |
|             self.first = unsafe { (*prev).next };
 | |
|         }
 | |
| 
 | |
|         // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
 | |
|         // of `List`.
 | |
|         let list_links = unsafe { ListLinks::from_fields(item) };
 | |
|         // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
 | |
|         let raw_item = unsafe { T::post_remove(list_links) };
 | |
|         // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
 | |
|         unsafe { ListArc::from_raw(raw_item) }
 | |
|     }
 | |
| 
 | |
|     /// Moves all items from `other` into `self`.
 | |
|     ///
 | |
|     /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
 | |
|     /// the last item of `self`.
 | |
|     pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
 | |
|         // First, we insert the elements into `self`. At the end, we make `other` empty.
 | |
|         if self.is_empty() {
 | |
|             // INVARIANT: All of the elements in `other` become elements of `self`.
 | |
|             self.first = other.first;
 | |
|         } else if !other.is_empty() {
 | |
|             let other_first = other.first;
 | |
|             // SAFETY: The other list is not empty, so this pointer is valid.
 | |
|             let other_last = unsafe { (*other_first).prev };
 | |
|             let self_first = self.first;
 | |
|             // SAFETY: The self list is not empty, so this pointer is valid.
 | |
|             let self_last = unsafe { (*self_first).prev };
 | |
| 
 | |
|             // SAFETY: We have exclusive access to both lists, so we can update the pointers.
 | |
|             // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
 | |
|             // update `self.first` because the first element of `self` does not change.
 | |
|             unsafe {
 | |
|                 (*self_first).prev = other_last;
 | |
|                 (*other_last).next = self_first;
 | |
|                 (*self_last).next = other_first;
 | |
|                 (*other_first).prev = self_last;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // INVARIANT: The other list is now empty, so update its pointer.
 | |
|         other.first = ptr::null_mut();
 | |
|     }
 | |
| 
 | |
|     /// Returns a cursor that points before the first element of the list.
 | |
|     pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> {
 | |
|         // INVARIANT: `self.first` is in this list.
 | |
|         Cursor {
 | |
|             next: self.first,
 | |
|             list: self,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Returns a cursor that points after the last element in the list.
 | |
|     pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> {
 | |
|         // INVARIANT: `next` is allowed to be null.
 | |
|         Cursor {
 | |
|             next: core::ptr::null_mut(),
 | |
|             list: self,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Creates an iterator over the list.
 | |
|     pub fn iter(&self) -> Iter<'_, T, ID> {
 | |
|         // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
 | |
|         // at the first element of the same list.
 | |
|         Iter {
 | |
|             current: self.first,
 | |
|             stop: self.first,
 | |
|             _ty: PhantomData,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
 | |
|     fn default() -> Self {
 | |
|         List::new()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
 | |
|     fn drop(&mut self) {
 | |
|         while let Some(item) = self.pop_front() {
 | |
|             drop(item);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// An iterator over a [`List`].
 | |
| ///
 | |
| /// # Invariants
 | |
| ///
 | |
| /// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
 | |
| /// * The `current` pointer is null or points at a value in that [`List`].
 | |
| /// * The `stop` pointer is equal to the `first` field of that [`List`].
 | |
| #[derive(Clone)]
 | |
| pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
 | |
|     current: *mut ListLinksFields,
 | |
|     stop: *mut ListLinksFields,
 | |
|     _ty: PhantomData<&'a ListArc<T, ID>>,
 | |
| }
 | |
| 
 | |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
 | |
|     type Item = ArcBorrow<'a, T>;
 | |
| 
 | |
|     fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
 | |
|         if self.current.is_null() {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         let current = self.current;
 | |
| 
 | |
|         // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
 | |
|         // dangling. There's no race because the iterator holds an immutable borrow to the list.
 | |
|         let next = unsafe { (*current).next };
 | |
|         // INVARIANT: If `current` was the last element of the list, then this updates it to null.
 | |
|         // Otherwise, we update it to the next element.
 | |
|         self.current = if next != self.stop {
 | |
|             next
 | |
|         } else {
 | |
|             ptr::null_mut()
 | |
|         };
 | |
| 
 | |
|         // SAFETY: The `current` pointer points at a value in the list.
 | |
|         let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
 | |
|         // SAFETY:
 | |
|         // * All values in a list are stored in an `Arc`.
 | |
|         // * The value cannot be removed from the list for the duration of the lifetime annotated
 | |
|         //   on the returned `ArcBorrow`, because removing it from the list would require mutable
 | |
|         //   access to the list. However, the `ArcBorrow` is annotated with the iterator's
 | |
|         //   lifetime, and the list is immutably borrowed for that lifetime.
 | |
|         // * Values in a list never have a `UniqueArc` reference.
 | |
|         Some(unsafe { ArcBorrow::from_raw(item) })
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// A cursor into a [`List`].
 | |
| ///
 | |
| /// A cursor always rests between two elements in the list. This means that a cursor has a previous
 | |
| /// and next element, but no current element. It also means that it's possible to have a cursor
 | |
| /// into an empty list.
 | |
| ///
 | |
| /// # Examples
 | |
| ///
 | |
| /// ```
 | |
| /// use kernel::prelude::*;
 | |
| /// use kernel::list::{List, ListArc, ListLinks};
 | |
| ///
 | |
| /// #[pin_data]
 | |
| /// struct ListItem {
 | |
| ///     value: u32,
 | |
| ///     #[pin]
 | |
| ///     links: ListLinks,
 | |
| /// }
 | |
| ///
 | |
| /// impl ListItem {
 | |
| ///     fn new(value: u32) -> Result<ListArc<Self>> {
 | |
| ///         ListArc::pin_init(try_pin_init!(Self {
 | |
| ///             value,
 | |
| ///             links <- ListLinks::new(),
 | |
| ///         }), GFP_KERNEL)
 | |
| ///     }
 | |
| /// }
 | |
| ///
 | |
| /// kernel::list::impl_list_arc_safe! {
 | |
| ///     impl ListArcSafe<0> for ListItem { untracked; }
 | |
| /// }
 | |
| /// kernel::list::impl_list_item! {
 | |
| ///     impl ListItem<0> for ListItem { using ListLinks { self.links }; }
 | |
| /// }
 | |
| ///
 | |
| /// // Use a cursor to remove the first element with the given value.
 | |
| /// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
 | |
| ///     let mut cursor = list.cursor_front();
 | |
| ///     while let Some(next) = cursor.peek_next() {
 | |
| ///         if next.value == value {
 | |
| ///             return Some(next.remove());
 | |
| ///         }
 | |
| ///         cursor.move_next();
 | |
| ///     }
 | |
| ///     None
 | |
| /// }
 | |
| ///
 | |
| /// // Use a cursor to remove the last element with the given value.
 | |
| /// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
 | |
| ///     let mut cursor = list.cursor_back();
 | |
| ///     while let Some(prev) = cursor.peek_prev() {
 | |
| ///         if prev.value == value {
 | |
| ///             return Some(prev.remove());
 | |
| ///         }
 | |
| ///         cursor.move_prev();
 | |
| ///     }
 | |
| ///     None
 | |
| /// }
 | |
| ///
 | |
| /// // Use a cursor to remove all elements with the given value. The removed elements are moved to
 | |
| /// // a new list.
 | |
| /// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> {
 | |
| ///     let mut out = List::new();
 | |
| ///     let mut cursor = list.cursor_front();
 | |
| ///     while let Some(next) = cursor.peek_next() {
 | |
| ///         if next.value == value {
 | |
| ///             out.push_back(next.remove());
 | |
| ///         } else {
 | |
| ///             cursor.move_next();
 | |
| ///         }
 | |
| ///     }
 | |
| ///     out
 | |
| /// }
 | |
| ///
 | |
| /// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of
 | |
| /// // bounds.
 | |
| /// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result {
 | |
| ///     let mut cursor = list.cursor_front();
 | |
| ///     for _ in 0..idx {
 | |
| ///         if !cursor.move_next() {
 | |
| ///             return Err(EINVAL);
 | |
| ///         }
 | |
| ///     }
 | |
| ///     cursor.insert_next(new);
 | |
| ///     Ok(())
 | |
| /// }
 | |
| ///
 | |
| /// // Merge two sorted lists into a single sorted list.
 | |
| /// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) {
 | |
| ///     let mut cursor = list.cursor_front();
 | |
| ///     for to_insert in merge {
 | |
| ///         while let Some(next) = cursor.peek_next() {
 | |
| ///             if to_insert.value < next.value {
 | |
| ///                 break;
 | |
| ///             }
 | |
| ///             cursor.move_next();
 | |
| ///         }
 | |
| ///         cursor.insert_prev(to_insert);
 | |
| ///     }
 | |
| /// }
 | |
| ///
 | |
| /// let mut list = List::new();
 | |
| /// list.push_back(ListItem::new(14)?);
 | |
| /// list.push_back(ListItem::new(12)?);
 | |
| /// list.push_back(ListItem::new(10)?);
 | |
| /// list.push_back(ListItem::new(12)?);
 | |
| /// list.push_back(ListItem::new(15)?);
 | |
| /// list.push_back(ListItem::new(14)?);
 | |
| /// assert_eq!(remove_all(&mut list, 12).iter().count(), 2);
 | |
| /// // [14, 10, 15, 14]
 | |
| /// assert!(remove_first(&mut list, 14).is_some());
 | |
| /// // [10, 15, 14]
 | |
| /// insert_at(&mut list, ListItem::new(12)?, 2)?;
 | |
| /// // [10, 15, 12, 14]
 | |
| /// assert!(remove_last(&mut list, 15).is_some());
 | |
| /// // [10, 12, 14]
 | |
| ///
 | |
| /// let mut list2 = List::new();
 | |
| /// list2.push_back(ListItem::new(11)?);
 | |
| /// list2.push_back(ListItem::new(13)?);
 | |
| /// merge_sorted(&mut list, list2);
 | |
| ///
 | |
| /// let mut items = list.into_iter();
 | |
| /// assert_eq!(items.next().ok_or(EINVAL)?.value, 10);
 | |
| /// assert_eq!(items.next().ok_or(EINVAL)?.value, 11);
 | |
| /// assert_eq!(items.next().ok_or(EINVAL)?.value, 12);
 | |
| /// assert_eq!(items.next().ok_or(EINVAL)?.value, 13);
 | |
| /// assert_eq!(items.next().ok_or(EINVAL)?.value, 14);
 | |
| /// assert!(items.next().is_none());
 | |
| /// # Result::<(), Error>::Ok(())
 | |
| /// ```
 | |
| ///
 | |
| /// # Invariants
 | |
| ///
 | |
| /// The `next` pointer is null or points a value in `list`.
 | |
| pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
 | |
|     list: &'a mut List<T, ID>,
 | |
|     /// Points at the element after this cursor, or null if the cursor is after the last element.
 | |
|     next: *mut ListLinksFields,
 | |
| }
 | |
| 
 | |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
 | |
|     /// Returns a pointer to the element before the cursor.
 | |
|     ///
 | |
|     /// Returns null if there is no element before the cursor.
 | |
|     fn prev_ptr(&self) -> *mut ListLinksFields {
 | |
|         let mut next = self.next;
 | |
|         let first = self.list.first;
 | |
|         if next == first {
 | |
|             // We are before the first element.
 | |
|             return core::ptr::null_mut();
 | |
|         }
 | |
| 
 | |
|         if next.is_null() {
 | |
|             // We are after the last element, so we need a pointer to the last element, which is
 | |
|             // the same as `(*first).prev`.
 | |
|             next = first;
 | |
|         }
 | |
| 
 | |
|         // SAFETY: `next` can't be null, because then `first` must also be null, but in that case
 | |
|         // we would have exited at the `next == first` check. Thus, `next` is an element in the
 | |
|         // list, so we can access its `prev` pointer.
 | |
|         unsafe { (*next).prev }
 | |
|     }
 | |
| 
 | |
|     /// Access the element after this cursor.
 | |
|     pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> {
 | |
|         if self.next.is_null() {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         // INVARIANT:
 | |
|         // * We just checked that `self.next` is non-null, so it must be in `self.list`.
 | |
|         // * `ptr` is equal to `self.next`.
 | |
|         Some(CursorPeek {
 | |
|             ptr: self.next,
 | |
|             cursor: self,
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     /// Access the element before this cursor.
 | |
|     pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> {
 | |
|         let prev = self.prev_ptr();
 | |
| 
 | |
|         if prev.is_null() {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         // INVARIANT:
 | |
|         // * We just checked that `prev` is non-null, so it must be in `self.list`.
 | |
|         // * `self.prev_ptr()` never returns `self.next`.
 | |
|         Some(CursorPeek {
 | |
|             ptr: prev,
 | |
|             cursor: self,
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     /// Move the cursor one element forward.
 | |
|     ///
 | |
|     /// If the cursor is after the last element, then this call does nothing. This call returns
 | |
|     /// `true` if the cursor's position was changed.
 | |
|     pub fn move_next(&mut self) -> bool {
 | |
|         if self.next.is_null() {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can
 | |
|         // access the `next` field.
 | |
|         let mut next = unsafe { (*self.next).next };
 | |
| 
 | |
|         if next == self.list.first {
 | |
|             next = core::ptr::null_mut();
 | |
|         }
 | |
| 
 | |
|         // INVARIANT: `next` is either null or the next element after an element in the list.
 | |
|         self.next = next;
 | |
|         true
 | |
|     }
 | |
| 
 | |
|     /// Move the cursor one element backwards.
 | |
|     ///
 | |
|     /// If the cursor is before the first element, then this call does nothing. This call returns
 | |
|     /// `true` if the cursor's position was changed.
 | |
|     pub fn move_prev(&mut self) -> bool {
 | |
|         if self.next == self.list.first {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list.
 | |
|         self.next = self.prev_ptr();
 | |
|         true
 | |
|     }
 | |
| 
 | |
|     /// Inserts an element where the cursor is pointing and get a pointer to the new element.
 | |
|     fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields {
 | |
|         let ptr = if self.next.is_null() {
 | |
|             self.list.first
 | |
|         } else {
 | |
|             self.next
 | |
|         };
 | |
|         // SAFETY:
 | |
|         // * `ptr` is an element in the list or null.
 | |
|         // * if `ptr` is null, then `self.list.first` is null so the list is empty.
 | |
|         let item = unsafe { self.list.insert_inner(item, ptr) };
 | |
|         if self.next == self.list.first {
 | |
|             // INVARIANT: We just inserted `item`, so it's a member of list.
 | |
|             self.list.first = item;
 | |
|         }
 | |
|         item
 | |
|     }
 | |
| 
 | |
|     /// Insert an element at this cursor's location.
 | |
|     pub fn insert(mut self, item: ListArc<T, ID>) {
 | |
|         // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it
 | |
|         // reduces confusion when the last operation on the cursor is an insertion; in that case,
 | |
|         // you just want to insert the element at the cursor, and it is confusing that the call
 | |
|         // involves the word prev or next.
 | |
|         self.insert_inner(item);
 | |
|     }
 | |
| 
 | |
|     /// Inserts an element after this cursor.
 | |
|     ///
 | |
|     /// After insertion, the new element will be after the cursor.
 | |
|     pub fn insert_next(&mut self, item: ListArc<T, ID>) {
 | |
|         self.next = self.insert_inner(item);
 | |
|     }
 | |
| 
 | |
|     /// Inserts an element before this cursor.
 | |
|     ///
 | |
|     /// After insertion, the new element will be before the cursor.
 | |
|     pub fn insert_prev(&mut self, item: ListArc<T, ID>) {
 | |
|         self.insert_inner(item);
 | |
|     }
 | |
| 
 | |
|     /// Remove the next element from the list.
 | |
|     pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> {
 | |
|         self.peek_next().map(|v| v.remove())
 | |
|     }
 | |
| 
 | |
|     /// Remove the previous element from the list.
 | |
|     pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> {
 | |
|         self.peek_prev().map(|v| v.remove())
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// References the element in the list next to the cursor.
 | |
| ///
 | |
| /// # Invariants
 | |
| ///
 | |
| /// * `ptr` is an element in `self.cursor.list`.
 | |
| /// * `ISNEXT == (self.ptr == self.cursor.next)`.
 | |
| pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> {
 | |
|     cursor: &'a mut Cursor<'b, T, ID>,
 | |
|     ptr: *mut ListLinksFields,
 | |
| }
 | |
| 
 | |
| impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64>
 | |
|     CursorPeek<'a, 'b, T, ISNEXT, ID>
 | |
| {
 | |
|     /// Remove the element from the list.
 | |
|     pub fn remove(self) -> ListArc<T, ID> {
 | |
|         if ISNEXT {
 | |
|             self.cursor.move_next();
 | |
|         }
 | |
| 
 | |
|         // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next`
 | |
|         // call.
 | |
|         // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of
 | |
|         // `self.cursor.list` by the type invariants of `Cursor`.
 | |
|         unsafe { self.cursor.list.remove_internal(self.ptr) }
 | |
|     }
 | |
| 
 | |
|     /// Access this value as an [`ArcBorrow`].
 | |
|     pub fn arc(&self) -> ArcBorrow<'_, T> {
 | |
|         // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
 | |
|         let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
 | |
|         // SAFETY:
 | |
|         // * All values in a list are stored in an `Arc`.
 | |
|         // * The value cannot be removed from the list for the duration of the lifetime annotated
 | |
|         //   on the returned `ArcBorrow`, because removing it from the list would require mutable
 | |
|         //   access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds
 | |
|         //   an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
 | |
|         //   `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable
 | |
|         //   access requires first releasing the immutable borrow on the `CursorPeek`.
 | |
|         // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
 | |
|         //   reference, and `UniqueArc` references must be unique.
 | |
|         unsafe { ArcBorrow::from_raw(me) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref
 | |
|     for CursorPeek<'a, 'b, T, ISNEXT, ID>
 | |
| {
 | |
|     // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could
 | |
|     // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`.
 | |
|     // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>`
 | |
|     // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be
 | |
|     // unsound.
 | |
|     type Target = T;
 | |
| 
 | |
|     fn deref(&self) -> &T {
 | |
|         // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
 | |
|         let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
 | |
| 
 | |
|         // SAFETY: The value cannot be removed from the list for the duration of the lifetime
 | |
|         // annotated on the returned `&T`, because removing it from the list would require mutable
 | |
|         // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an
 | |
|         // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
 | |
|         // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access
 | |
|         // requires first releasing the immutable borrow on the `CursorPeek`.
 | |
|         unsafe { &*me }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
 | |
| 
 | |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
 | |
|     type IntoIter = Iter<'a, T, ID>;
 | |
|     type Item = ArcBorrow<'a, T>;
 | |
| 
 | |
|     fn into_iter(self) -> Iter<'a, T, ID> {
 | |
|         self.iter()
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// An owning iterator into a [`List`].
 | |
| pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
 | |
|     list: List<T, ID>,
 | |
| }
 | |
| 
 | |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
 | |
|     type Item = ListArc<T, ID>;
 | |
| 
 | |
|     fn next(&mut self) -> Option<ListArc<T, ID>> {
 | |
|         self.list.pop_front()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
 | |
| 
 | |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
 | |
|     fn next_back(&mut self) -> Option<ListArc<T, ID>> {
 | |
|         self.list.pop_back()
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
 | |
|     type IntoIter = IntoIter<T, ID>;
 | |
|     type Item = ListArc<T, ID>;
 | |
| 
 | |
|     fn into_iter(self) -> IntoIter<T, ID> {
 | |
|         IntoIter { list: self }
 | |
|     }
 | |
| }
 |