mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 c2d8b2a57c
			
		
	
	
		c2d8b2a57c
		
	
	
	
	
		
			
			Many scx schedulers implement their own hard or soft-affinity rules to support topology characteristics, such as heterogeneous architectures (e.g., big.LITTLE, P-cores/E-cores), or to categorize tasks based on specific properties (e.g., running certain tasks only in a subset of CPUs). Currently, there is no mechanism that allows to use the built-in idle CPU selection policy to an arbitrary subset of CPUs. As a result, schedulers often implement their own idle CPU selection policies, which are typically similar to one another, leading to a lot of code duplication. To address this, modify scx_select_cpu_dfl() to accept an arbitrary cpumask, that can be used by the BPF schedulers to apply the existent built-in idle CPU selection policy to a subset of allowed CPUs. With this concept the idle CPU selection policy becomes the following: - always prioritize CPUs from fully idle SMT cores (if SMT is enabled), - select the same CPU if it's idle and in the allowed CPUs, - select an idle CPU within the same LLC, if the LLC cpumask is a subset of the allowed CPUs, - select an idle CPU within the same node, if the node cpumask is a subset of the allowed CPUs, - select an idle CPU within the allowed CPUs. This functionality will be exposed through a dedicated kfunc in a separate patch. Signed-off-by: Andrea Righi <arighi@nvidia.com> Signed-off-by: Tejun Heo <tj@kernel.org>
		
			
				
	
	
		
			1240 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1240 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
 | |
|  *
 | |
|  * Built-in idle CPU tracking policy.
 | |
|  *
 | |
|  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
 | |
|  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
 | |
|  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
 | |
|  * Copyright (c) 2024 Andrea Righi <arighi@nvidia.com>
 | |
|  */
 | |
| #include "ext_idle.h"
 | |
| 
 | |
| /* Enable/disable built-in idle CPU selection policy */
 | |
| static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
 | |
| 
 | |
| /* Enable/disable per-node idle cpumasks */
 | |
| static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /* Enable/disable LLC aware optimizations */
 | |
| static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
 | |
| 
 | |
| /* Enable/disable NUMA aware optimizations */
 | |
| static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
 | |
| 
 | |
| /*
 | |
|  * cpumasks to track idle CPUs within each NUMA node.
 | |
|  *
 | |
|  * If SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled, a single global cpumask
 | |
|  * from is used to track all the idle CPUs in the system.
 | |
|  */
 | |
| struct scx_idle_cpus {
 | |
| 	cpumask_var_t cpu;
 | |
| 	cpumask_var_t smt;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Global host-wide idle cpumasks (used when SCX_OPS_BUILTIN_IDLE_PER_NODE
 | |
|  * is not enabled).
 | |
|  */
 | |
| static struct scx_idle_cpus scx_idle_global_masks;
 | |
| 
 | |
| /*
 | |
|  * Per-node idle cpumasks.
 | |
|  */
 | |
| static struct scx_idle_cpus **scx_idle_node_masks;
 | |
| 
 | |
| /*
 | |
|  * Local per-CPU cpumasks (used to generate temporary idle cpumasks).
 | |
|  */
 | |
| static DEFINE_PER_CPU(cpumask_var_t, local_idle_cpumask);
 | |
| static DEFINE_PER_CPU(cpumask_var_t, local_llc_idle_cpumask);
 | |
| static DEFINE_PER_CPU(cpumask_var_t, local_numa_idle_cpumask);
 | |
| 
 | |
| /*
 | |
|  * Return the idle masks associated to a target @node.
 | |
|  *
 | |
|  * NUMA_NO_NODE identifies the global idle cpumask.
 | |
|  */
 | |
| static struct scx_idle_cpus *idle_cpumask(int node)
 | |
| {
 | |
| 	return node == NUMA_NO_NODE ? &scx_idle_global_masks : scx_idle_node_masks[node];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the NUMA node ID associated with a @cpu, or NUMA_NO_NODE if
 | |
|  * per-node idle cpumasks are disabled.
 | |
|  */
 | |
| static int scx_cpu_node_if_enabled(int cpu)
 | |
| {
 | |
| 	if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node))
 | |
| 		return NUMA_NO_NODE;
 | |
| 
 | |
| 	return cpu_to_node(cpu);
 | |
| }
 | |
| 
 | |
| bool scx_idle_test_and_clear_cpu(int cpu)
 | |
| {
 | |
| 	int node = scx_cpu_node_if_enabled(cpu);
 | |
| 	struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	/*
 | |
| 	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
 | |
| 	 * cluster is not wholly idle either way. This also prevents
 | |
| 	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
 | |
| 	 */
 | |
| 	if (sched_smt_active()) {
 | |
| 		const struct cpumask *smt = cpu_smt_mask(cpu);
 | |
| 		struct cpumask *idle_smts = idle_cpumask(node)->smt;
 | |
| 
 | |
| 		/*
 | |
| 		 * If offline, @cpu is not its own sibling and
 | |
| 		 * scx_pick_idle_cpu() can get caught in an infinite loop as
 | |
| 		 * @cpu is never cleared from the idle SMT mask. Ensure that
 | |
| 		 * @cpu is eventually cleared.
 | |
| 		 *
 | |
| 		 * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to
 | |
| 		 * reduce memory writes, which may help alleviate cache
 | |
| 		 * coherence pressure.
 | |
| 		 */
 | |
| 		if (cpumask_intersects(smt, idle_smts))
 | |
| 			cpumask_andnot(idle_smts, idle_smts, smt);
 | |
| 		else if (cpumask_test_cpu(cpu, idle_smts))
 | |
| 			__cpumask_clear_cpu(cpu, idle_smts);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return cpumask_test_and_clear_cpu(cpu, idle_cpus);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pick an idle CPU in a specific NUMA node.
 | |
|  */
 | |
| static s32 pick_idle_cpu_in_node(const struct cpumask *cpus_allowed, int node, u64 flags)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| retry:
 | |
| 	if (sched_smt_active()) {
 | |
| 		cpu = cpumask_any_and_distribute(idle_cpumask(node)->smt, cpus_allowed);
 | |
| 		if (cpu < nr_cpu_ids)
 | |
| 			goto found;
 | |
| 
 | |
| 		if (flags & SCX_PICK_IDLE_CORE)
 | |
| 			return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	cpu = cpumask_any_and_distribute(idle_cpumask(node)->cpu, cpus_allowed);
 | |
| 	if (cpu >= nr_cpu_ids)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| found:
 | |
| 	if (scx_idle_test_and_clear_cpu(cpu))
 | |
| 		return cpu;
 | |
| 	else
 | |
| 		goto retry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tracks nodes that have not yet been visited when searching for an idle
 | |
|  * CPU across all available nodes.
 | |
|  */
 | |
| static DEFINE_PER_CPU(nodemask_t, per_cpu_unvisited);
 | |
| 
 | |
| /*
 | |
|  * Search for an idle CPU across all nodes, excluding @node.
 | |
|  */
 | |
| static s32 pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags)
 | |
| {
 | |
| 	nodemask_t *unvisited;
 | |
| 	s32 cpu = -EBUSY;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	unvisited = this_cpu_ptr(&per_cpu_unvisited);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restrict the search to the online nodes (excluding the current
 | |
| 	 * node that has been visited already).
 | |
| 	 */
 | |
| 	nodes_copy(*unvisited, node_states[N_ONLINE]);
 | |
| 	node_clear(node, *unvisited);
 | |
| 
 | |
| 	/*
 | |
| 	 * Traverse all nodes in order of increasing distance, starting
 | |
| 	 * from @node.
 | |
| 	 *
 | |
| 	 * This loop is O(N^2), with N being the amount of NUMA nodes,
 | |
| 	 * which might be quite expensive in large NUMA systems. However,
 | |
| 	 * this complexity comes into play only when a scheduler enables
 | |
| 	 * SCX_OPS_BUILTIN_IDLE_PER_NODE and it's requesting an idle CPU
 | |
| 	 * without specifying a target NUMA node, so it shouldn't be a
 | |
| 	 * bottleneck is most cases.
 | |
| 	 *
 | |
| 	 * As a future optimization we may want to cache the list of nodes
 | |
| 	 * in a per-node array, instead of actually traversing them every
 | |
| 	 * time.
 | |
| 	 */
 | |
| 	for_each_node_numadist(node, *unvisited) {
 | |
| 		cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
 | |
| 		if (cpu >= 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find an idle CPU in the system, starting from @node.
 | |
|  */
 | |
| s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, int node, u64 flags)
 | |
| {
 | |
| 	s32 cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Always search in the starting node first (this is an
 | |
| 	 * optimization that can save some cycles even when the search is
 | |
| 	 * not limited to a single node).
 | |
| 	 */
 | |
| 	cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
 | |
| 	if (cpu >= 0)
 | |
| 		return cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Stop the search if we are using only a single global cpumask
 | |
| 	 * (NUMA_NO_NODE) or if the search is restricted to the first node
 | |
| 	 * only.
 | |
| 	 */
 | |
| 	if (node == NUMA_NO_NODE || flags & SCX_PICK_IDLE_IN_NODE)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/*
 | |
| 	 * Extend the search to the other online nodes.
 | |
| 	 */
 | |
| 	return pick_idle_cpu_from_online_nodes(cpus_allowed, node, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC
 | |
|  * domain is not defined).
 | |
|  */
 | |
| static unsigned int llc_weight(s32 cpu)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
 | |
| 	if (!sd)
 | |
| 		return 0;
 | |
| 
 | |
| 	return sd->span_weight;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC
 | |
|  * domain is not defined).
 | |
|  */
 | |
| static struct cpumask *llc_span(s32 cpu)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
 | |
| 	if (!sd)
 | |
| 		return 0;
 | |
| 
 | |
| 	return sched_domain_span(sd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the
 | |
|  * NUMA domain is not defined).
 | |
|  */
 | |
| static unsigned int numa_weight(s32 cpu)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	struct sched_group *sg;
 | |
| 
 | |
| 	sd = rcu_dereference(per_cpu(sd_numa, cpu));
 | |
| 	if (!sd)
 | |
| 		return 0;
 | |
| 	sg = sd->groups;
 | |
| 	if (!sg)
 | |
| 		return 0;
 | |
| 
 | |
| 	return sg->group_weight;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA
 | |
|  * domain is not defined).
 | |
|  */
 | |
| static struct cpumask *numa_span(s32 cpu)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	struct sched_group *sg;
 | |
| 
 | |
| 	sd = rcu_dereference(per_cpu(sd_numa, cpu));
 | |
| 	if (!sd)
 | |
| 		return NULL;
 | |
| 	sg = sd->groups;
 | |
| 	if (!sg)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return sched_group_span(sg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the LLC domains do not perfectly overlap with the NUMA
 | |
|  * domains, false otherwise.
 | |
|  */
 | |
| static bool llc_numa_mismatch(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to scan all online CPUs to verify whether their scheduling
 | |
| 	 * domains overlap.
 | |
| 	 *
 | |
| 	 * While it is rare to encounter architectures with asymmetric NUMA
 | |
| 	 * topologies, CPU hotplugging or virtualized environments can result
 | |
| 	 * in asymmetric configurations.
 | |
| 	 *
 | |
| 	 * For example:
 | |
| 	 *
 | |
| 	 *  NUMA 0:
 | |
| 	 *    - LLC 0: cpu0..cpu7
 | |
| 	 *    - LLC 1: cpu8..cpu15 [offline]
 | |
| 	 *
 | |
| 	 *  NUMA 1:
 | |
| 	 *    - LLC 0: cpu16..cpu23
 | |
| 	 *    - LLC 1: cpu24..cpu31
 | |
| 	 *
 | |
| 	 * In this case, if we only check the first online CPU (cpu0), we might
 | |
| 	 * incorrectly assume that the LLC and NUMA domains are fully
 | |
| 	 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
 | |
| 	 * domains).
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		if (llc_weight(cpu) != numa_weight(cpu))
 | |
| 			return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize topology-aware scheduling.
 | |
|  *
 | |
|  * Detect if the system has multiple LLC or multiple NUMA domains and enable
 | |
|  * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
 | |
|  * selection policy.
 | |
|  *
 | |
|  * Assumption: the kernel's internal topology representation assumes that each
 | |
|  * CPU belongs to a single LLC domain, and that each LLC domain is entirely
 | |
|  * contained within a single NUMA node.
 | |
|  */
 | |
| void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops)
 | |
| {
 | |
| 	bool enable_llc = false, enable_numa = false;
 | |
| 	unsigned int nr_cpus;
 | |
| 	s32 cpu = cpumask_first(cpu_online_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable LLC domain optimization only when there are multiple LLC
 | |
| 	 * domains among the online CPUs. If all online CPUs are part of a
 | |
| 	 * single LLC domain, the idle CPU selection logic can choose any
 | |
| 	 * online CPU without bias.
 | |
| 	 *
 | |
| 	 * Note that it is sufficient to check the LLC domain of the first
 | |
| 	 * online CPU to determine whether a single LLC domain includes all
 | |
| 	 * CPUs.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	nr_cpus = llc_weight(cpu);
 | |
| 	if (nr_cpus > 0) {
 | |
| 		if (nr_cpus < num_online_cpus())
 | |
| 			enable_llc = true;
 | |
| 		pr_debug("sched_ext: LLC=%*pb weight=%u\n",
 | |
| 			 cpumask_pr_args(llc_span(cpu)), llc_weight(cpu));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable NUMA optimization only when there are multiple NUMA domains
 | |
| 	 * among the online CPUs and the NUMA domains don't perfectly overlaps
 | |
| 	 * with the LLC domains.
 | |
| 	 *
 | |
| 	 * If all CPUs belong to the same NUMA node and the same LLC domain,
 | |
| 	 * enabling both NUMA and LLC optimizations is unnecessary, as checking
 | |
| 	 * for an idle CPU in the same domain twice is redundant.
 | |
| 	 *
 | |
| 	 * If SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled ignore the NUMA
 | |
| 	 * optimization, as we would naturally select idle CPUs within
 | |
| 	 * specific NUMA nodes querying the corresponding per-node cpumask.
 | |
| 	 */
 | |
| 	if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
 | |
| 		nr_cpus = numa_weight(cpu);
 | |
| 		if (nr_cpus > 0) {
 | |
| 			if (nr_cpus < num_online_cpus() && llc_numa_mismatch())
 | |
| 				enable_numa = true;
 | |
| 			pr_debug("sched_ext: NUMA=%*pb weight=%u\n",
 | |
| 				 cpumask_pr_args(numa_span(cpu)), nr_cpus);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	pr_debug("sched_ext: LLC idle selection %s\n",
 | |
| 		 str_enabled_disabled(enable_llc));
 | |
| 	pr_debug("sched_ext: NUMA idle selection %s\n",
 | |
| 		 str_enabled_disabled(enable_numa));
 | |
| 
 | |
| 	if (enable_llc)
 | |
| 		static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
 | |
| 	else
 | |
| 		static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
 | |
| 	if (enable_numa)
 | |
| 		static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
 | |
| 	else
 | |
| 		static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if @p can run on all possible CPUs, false otherwise.
 | |
|  */
 | |
| static inline bool task_affinity_all(const struct task_struct *p)
 | |
| {
 | |
| 	return p->nr_cpus_allowed >= num_possible_cpus();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Built-in CPU idle selection policy:
 | |
|  *
 | |
|  * 1. Prioritize full-idle cores:
 | |
|  *   - always prioritize CPUs from fully idle cores (both logical CPUs are
 | |
|  *     idle) to avoid interference caused by SMT.
 | |
|  *
 | |
|  * 2. Reuse the same CPU:
 | |
|  *   - prefer the last used CPU to take advantage of cached data (L1, L2) and
 | |
|  *     branch prediction optimizations.
 | |
|  *
 | |
|  * 3. Pick a CPU within the same LLC (Last-Level Cache):
 | |
|  *   - if the above conditions aren't met, pick a CPU that shares the same
 | |
|  *     LLC, if the LLC domain is a subset of @cpus_allowed, to maintain
 | |
|  *     cache locality.
 | |
|  *
 | |
|  * 4. Pick a CPU within the same NUMA node, if enabled:
 | |
|  *   - choose a CPU from the same NUMA node, if the node cpumask is a
 | |
|  *     subset of @cpus_allowed, to reduce memory access latency.
 | |
|  *
 | |
|  * 5. Pick any idle CPU within the @cpus_allowed domain.
 | |
|  *
 | |
|  * Step 3 and 4 are performed only if the system has, respectively,
 | |
|  * multiple LLCs / multiple NUMA nodes (see scx_selcpu_topo_llc and
 | |
|  * scx_selcpu_topo_numa) and they don't contain the same subset of CPUs.
 | |
|  *
 | |
|  * If %SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled, the search will always
 | |
|  * begin in @prev_cpu's node and proceed to other nodes in order of
 | |
|  * increasing distance.
 | |
|  *
 | |
|  * Return the picked CPU if idle, or a negative value otherwise.
 | |
|  *
 | |
|  * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
 | |
|  * we never call ops.select_cpu() for them, see select_task_rq().
 | |
|  */
 | |
| s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
 | |
| 		       const struct cpumask *cpus_allowed, u64 flags)
 | |
| {
 | |
| 	const struct cpumask *llc_cpus = NULL, *numa_cpus = NULL;
 | |
| 	const struct cpumask *allowed = cpus_allowed ?: p->cpus_ptr;
 | |
| 	int node = scx_cpu_node_if_enabled(prev_cpu);
 | |
| 	s32 cpu;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the subset of CPUs usable by @p within @cpus_allowed.
 | |
| 	 */
 | |
| 	if (allowed != p->cpus_ptr) {
 | |
| 		struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_idle_cpumask);
 | |
| 
 | |
| 		if (task_affinity_all(p)) {
 | |
| 			allowed = cpus_allowed;
 | |
| 		} else if (cpumask_and(local_cpus, cpus_allowed, p->cpus_ptr)) {
 | |
| 			allowed = local_cpus;
 | |
| 		} else {
 | |
| 			cpu = -EBUSY;
 | |
| 			goto out_enable;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If @prev_cpu is not in the allowed CPUs, skip topology
 | |
| 		 * optimizations and try to pick any idle CPU usable by the
 | |
| 		 * task.
 | |
| 		 *
 | |
| 		 * If %SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled, prioritize
 | |
| 		 * the current node, as it may optimize some waker->wakee
 | |
| 		 * workloads.
 | |
| 		 */
 | |
| 		if (!cpumask_test_cpu(prev_cpu, allowed)) {
 | |
| 			node = scx_cpu_node_if_enabled(smp_processor_id());
 | |
| 			cpu = scx_pick_idle_cpu(allowed, node, flags);
 | |
| 			goto out_enable;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This is necessary to protect llc_cpus.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the subset of CPUs that the task can use in its
 | |
| 	 * current LLC and node.
 | |
| 	 *
 | |
| 	 * If the task can run on all CPUs, use the node and LLC cpumasks
 | |
| 	 * directly.
 | |
| 	 */
 | |
| 	if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) {
 | |
| 		struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_numa_idle_cpumask);
 | |
| 		const struct cpumask *cpus = numa_span(prev_cpu);
 | |
| 
 | |
| 		if (allowed == p->cpus_ptr && task_affinity_all(p))
 | |
| 			numa_cpus = cpus;
 | |
| 		else if (cpus && cpumask_and(local_cpus, allowed, cpus))
 | |
| 			numa_cpus = local_cpus;
 | |
| 	}
 | |
| 
 | |
| 	if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) {
 | |
| 		struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_llc_idle_cpumask);
 | |
| 		const struct cpumask *cpus = llc_span(prev_cpu);
 | |
| 
 | |
| 		if (allowed == p->cpus_ptr && task_affinity_all(p))
 | |
| 			llc_cpus = cpus;
 | |
| 		else if (cpus && cpumask_and(local_cpus, allowed, cpus))
 | |
| 			llc_cpus = local_cpus;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
 | |
| 	 */
 | |
| 	if (wake_flags & SCX_WAKE_SYNC) {
 | |
| 		int waker_node;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the waker's CPU is cache affine and prev_cpu is idle,
 | |
| 		 * then avoid a migration.
 | |
| 		 */
 | |
| 		cpu = smp_processor_id();
 | |
| 		if (cpus_share_cache(cpu, prev_cpu) &&
 | |
| 		    scx_idle_test_and_clear_cpu(prev_cpu)) {
 | |
| 			cpu = prev_cpu;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the waker's local DSQ is empty, and the system is under
 | |
| 		 * utilized, try to wake up @p to the local DSQ of the waker.
 | |
| 		 *
 | |
| 		 * Checking only for an empty local DSQ is insufficient as it
 | |
| 		 * could give the wakee an unfair advantage when the system is
 | |
| 		 * oversaturated.
 | |
| 		 *
 | |
| 		 * Checking only for the presence of idle CPUs is also
 | |
| 		 * insufficient as the local DSQ of the waker could have tasks
 | |
| 		 * piled up on it even if there is an idle core elsewhere on
 | |
| 		 * the system.
 | |
| 		 */
 | |
| 		waker_node = cpu_to_node(cpu);
 | |
| 		if (!(current->flags & PF_EXITING) &&
 | |
| 		    cpu_rq(cpu)->scx.local_dsq.nr == 0 &&
 | |
| 		    (!(flags & SCX_PICK_IDLE_IN_NODE) || (waker_node == node)) &&
 | |
| 		    !cpumask_empty(idle_cpumask(waker_node)->cpu)) {
 | |
| 			if (cpumask_test_cpu(cpu, allowed))
 | |
| 				goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
 | |
| 	 * partially idle @prev_cpu.
 | |
| 	 */
 | |
| 	if (sched_smt_active()) {
 | |
| 		/*
 | |
| 		 * Keep using @prev_cpu if it's part of a fully idle core.
 | |
| 		 */
 | |
| 		if (cpumask_test_cpu(prev_cpu, idle_cpumask(node)->smt) &&
 | |
| 		    scx_idle_test_and_clear_cpu(prev_cpu)) {
 | |
| 			cpu = prev_cpu;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Search for any fully idle core in the same LLC domain.
 | |
| 		 */
 | |
| 		if (llc_cpus) {
 | |
| 			cpu = pick_idle_cpu_in_node(llc_cpus, node, SCX_PICK_IDLE_CORE);
 | |
| 			if (cpu >= 0)
 | |
| 				goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Search for any fully idle core in the same NUMA node.
 | |
| 		 */
 | |
| 		if (numa_cpus) {
 | |
| 			cpu = pick_idle_cpu_in_node(numa_cpus, node, SCX_PICK_IDLE_CORE);
 | |
| 			if (cpu >= 0)
 | |
| 				goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Search for any full-idle core usable by the task.
 | |
| 		 *
 | |
| 		 * If the node-aware idle CPU selection policy is enabled
 | |
| 		 * (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always
 | |
| 		 * begin in prev_cpu's node and proceed to other nodes in
 | |
| 		 * order of increasing distance.
 | |
| 		 */
 | |
| 		cpu = scx_pick_idle_cpu(allowed, node, flags | SCX_PICK_IDLE_CORE);
 | |
| 		if (cpu >= 0)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		/*
 | |
| 		 * Give up if we're strictly looking for a full-idle SMT
 | |
| 		 * core.
 | |
| 		 */
 | |
| 		if (flags & SCX_PICK_IDLE_CORE) {
 | |
| 			cpu = -EBUSY;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use @prev_cpu if it's idle.
 | |
| 	 */
 | |
| 	if (scx_idle_test_and_clear_cpu(prev_cpu)) {
 | |
| 		cpu = prev_cpu;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search for any idle CPU in the same LLC domain.
 | |
| 	 */
 | |
| 	if (llc_cpus) {
 | |
| 		cpu = pick_idle_cpu_in_node(llc_cpus, node, 0);
 | |
| 		if (cpu >= 0)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search for any idle CPU in the same NUMA node.
 | |
| 	 */
 | |
| 	if (numa_cpus) {
 | |
| 		cpu = pick_idle_cpu_in_node(numa_cpus, node, 0);
 | |
| 		if (cpu >= 0)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search for any idle CPU usable by the task.
 | |
| 	 *
 | |
| 	 * If the node-aware idle CPU selection policy is enabled
 | |
| 	 * (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always begin
 | |
| 	 * in prev_cpu's node and proceed to other nodes in order of
 | |
| 	 * increasing distance.
 | |
| 	 */
 | |
| 	cpu = scx_pick_idle_cpu(allowed, node, flags);
 | |
| 
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| out_enable:
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize global and per-node idle cpumasks.
 | |
|  */
 | |
| void scx_idle_init_masks(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Allocate global idle cpumasks */
 | |
| 	BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.cpu, GFP_KERNEL));
 | |
| 	BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.smt, GFP_KERNEL));
 | |
| 
 | |
| 	/* Allocate per-node idle cpumasks */
 | |
| 	scx_idle_node_masks = kcalloc(num_possible_nodes(),
 | |
| 				      sizeof(*scx_idle_node_masks), GFP_KERNEL);
 | |
| 	BUG_ON(!scx_idle_node_masks);
 | |
| 
 | |
| 	for_each_node(i) {
 | |
| 		scx_idle_node_masks[i] = kzalloc_node(sizeof(**scx_idle_node_masks),
 | |
| 							 GFP_KERNEL, i);
 | |
| 		BUG_ON(!scx_idle_node_masks[i]);
 | |
| 
 | |
| 		BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[i]->cpu, GFP_KERNEL, i));
 | |
| 		BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[i]->smt, GFP_KERNEL, i));
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate local per-cpu idle cpumasks */
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_idle_cpumask, i),
 | |
| 					       GFP_KERNEL, cpu_to_node(i)));
 | |
| 		BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_llc_idle_cpumask, i),
 | |
| 					       GFP_KERNEL, cpu_to_node(i)));
 | |
| 		BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_numa_idle_cpumask, i),
 | |
| 					       GFP_KERNEL, cpu_to_node(i)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_builtin_idle(int cpu, bool idle)
 | |
| {
 | |
| 	int node = scx_cpu_node_if_enabled(cpu);
 | |
| 	struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
 | |
| 
 | |
| 	assign_cpu(cpu, idle_cpus, idle);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	if (sched_smt_active()) {
 | |
| 		const struct cpumask *smt = cpu_smt_mask(cpu);
 | |
| 		struct cpumask *idle_smts = idle_cpumask(node)->smt;
 | |
| 
 | |
| 		if (idle) {
 | |
| 			/*
 | |
| 			 * idle_smt handling is racy but that's fine as it's
 | |
| 			 * only for optimization and self-correcting.
 | |
| 			 */
 | |
| 			if (!cpumask_subset(smt, idle_cpus))
 | |
| 				return;
 | |
| 			cpumask_or(idle_smts, idle_smts, smt);
 | |
| 		} else {
 | |
| 			cpumask_andnot(idle_smts, idle_smts, smt);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the idle state of a CPU to @idle.
 | |
|  *
 | |
|  * If @do_notify is true, ops.update_idle() is invoked to notify the scx
 | |
|  * scheduler of an actual idle state transition (idle to busy or vice
 | |
|  * versa). If @do_notify is false, only the idle state in the idle masks is
 | |
|  * refreshed without invoking ops.update_idle().
 | |
|  *
 | |
|  * This distinction is necessary, because an idle CPU can be "reserved" and
 | |
|  * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as
 | |
|  * busy even if no tasks are dispatched. In this case, the CPU may return
 | |
|  * to idle without a true state transition. Refreshing the idle masks
 | |
|  * without invoking ops.update_idle() ensures accurate idle state tracking
 | |
|  * while avoiding unnecessary updates and maintaining balanced state
 | |
|  * transitions.
 | |
|  */
 | |
| void __scx_update_idle(struct rq *rq, bool idle, bool do_notify)
 | |
| {
 | |
| 	int cpu = cpu_of(rq);
 | |
| 
 | |
| 	lockdep_assert_rq_held(rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Trigger ops.update_idle() only when transitioning from a task to
 | |
| 	 * the idle thread and vice versa.
 | |
| 	 *
 | |
| 	 * Idle transitions are indicated by do_notify being set to true,
 | |
| 	 * managed by put_prev_task_idle()/set_next_task_idle().
 | |
| 	 */
 | |
| 	if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq))
 | |
| 		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the idle masks:
 | |
| 	 * - for real idle transitions (do_notify == true)
 | |
| 	 * - for idle-to-idle transitions (indicated by the previous task
 | |
| 	 *   being the idle thread, managed by pick_task_idle())
 | |
| 	 *
 | |
| 	 * Skip updating idle masks if the previous task is not the idle
 | |
| 	 * thread, since set_next_task_idle() has already handled it when
 | |
| 	 * transitioning from a task to the idle thread (calling this
 | |
| 	 * function with do_notify == true).
 | |
| 	 *
 | |
| 	 * In this way we can avoid updating the idle masks twice,
 | |
| 	 * unnecessarily.
 | |
| 	 */
 | |
| 	if (static_branch_likely(&scx_builtin_idle_enabled))
 | |
| 		if (do_notify || is_idle_task(rq->curr))
 | |
| 			update_builtin_idle(cpu, idle);
 | |
| }
 | |
| 
 | |
| static void reset_idle_masks(struct sched_ext_ops *ops)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	/*
 | |
| 	 * Consider all online cpus idle. Should converge to the actual state
 | |
| 	 * quickly.
 | |
| 	 */
 | |
| 	if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
 | |
| 		cpumask_copy(idle_cpumask(NUMA_NO_NODE)->cpu, cpu_online_mask);
 | |
| 		cpumask_copy(idle_cpumask(NUMA_NO_NODE)->smt, cpu_online_mask);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node(node) {
 | |
| 		const struct cpumask *node_mask = cpumask_of_node(node);
 | |
| 
 | |
| 		cpumask_and(idle_cpumask(node)->cpu, cpu_online_mask, node_mask);
 | |
| 		cpumask_and(idle_cpumask(node)->smt, cpu_online_mask, node_mask);
 | |
| 	}
 | |
| }
 | |
| #endif	/* CONFIG_SMP */
 | |
| 
 | |
| void scx_idle_enable(struct sched_ext_ops *ops)
 | |
| {
 | |
| 	if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))
 | |
| 		static_branch_enable_cpuslocked(&scx_builtin_idle_enabled);
 | |
| 	else
 | |
| 		static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
 | |
| 
 | |
| 	if (ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)
 | |
| 		static_branch_enable_cpuslocked(&scx_builtin_idle_per_node);
 | |
| 	else
 | |
| 		static_branch_disable_cpuslocked(&scx_builtin_idle_per_node);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	reset_idle_masks(ops);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void scx_idle_disable(void)
 | |
| {
 | |
| 	static_branch_disable(&scx_builtin_idle_enabled);
 | |
| 	static_branch_disable(&scx_builtin_idle_per_node);
 | |
| }
 | |
| 
 | |
| /********************************************************************************
 | |
|  * Helpers that can be called from the BPF scheduler.
 | |
|  */
 | |
| 
 | |
| static int validate_node(int node)
 | |
| {
 | |
| 	if (!static_branch_likely(&scx_builtin_idle_per_node)) {
 | |
| 		scx_error("per-node idle tracking is disabled");
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	/* Return no entry for NUMA_NO_NODE (not a critical scx error) */
 | |
| 	if (node == NUMA_NO_NODE)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/* Make sure node is in a valid range */
 | |
| 	if (node < 0 || node >= nr_node_ids) {
 | |
| 		scx_error("invalid node %d", node);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure the node is part of the set of possible nodes */
 | |
| 	if (!node_possible(node)) {
 | |
| 		scx_error("unavailable node %d", node);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_start_defs();
 | |
| 
 | |
| static bool check_builtin_idle_enabled(void)
 | |
| {
 | |
| 	if (static_branch_likely(&scx_builtin_idle_enabled))
 | |
| 		return true;
 | |
| 
 | |
| 	scx_error("built-in idle tracking is disabled");
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_cpu_node - Return the NUMA node the given @cpu belongs to, or
 | |
|  *		      trigger an error if @cpu is invalid
 | |
|  * @cpu: target CPU
 | |
|  */
 | |
| __bpf_kfunc int scx_bpf_cpu_node(s32 cpu)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	if (!ops_cpu_valid(cpu, NULL))
 | |
| 		return NUMA_NO_NODE;
 | |
| 
 | |
| 	return cpu_to_node(cpu);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
 | |
|  * @p: task_struct to select a CPU for
 | |
|  * @prev_cpu: CPU @p was on previously
 | |
|  * @wake_flags: %SCX_WAKE_* flags
 | |
|  * @is_idle: out parameter indicating whether the returned CPU is idle
 | |
|  *
 | |
|  * Can only be called from ops.select_cpu() if the built-in CPU selection is
 | |
|  * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
 | |
|  * @p, @prev_cpu and @wake_flags match ops.select_cpu().
 | |
|  *
 | |
|  * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
 | |
|  * currently idle and thus a good candidate for direct dispatching.
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
 | |
| 				       u64 wake_flags, bool *is_idle)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	s32 cpu;
 | |
| #endif
 | |
| 	if (!ops_cpu_valid(prev_cpu, NULL))
 | |
| 		goto prev_cpu;
 | |
| 
 | |
| 	if (!check_builtin_idle_enabled())
 | |
| 		goto prev_cpu;
 | |
| 
 | |
| 	if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
 | |
| 		goto prev_cpu;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0);
 | |
| 	if (cpu >= 0) {
 | |
| 		*is_idle = true;
 | |
| 		return cpu;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| prev_cpu:
 | |
| 	*is_idle = false;
 | |
| 	return prev_cpu;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_get_idle_cpumask_node - Get a referenced kptr to the
 | |
|  * idle-tracking per-CPU cpumask of a target NUMA node.
 | |
|  * @node: target NUMA node
 | |
|  *
 | |
|  * Returns an empty cpumask if idle tracking is not enabled, if @node is
 | |
|  * not valid, or running on a UP kernel. In this case the actual error will
 | |
|  * be reported to the BPF scheduler via scx_error().
 | |
|  */
 | |
| __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask_node(int node)
 | |
| {
 | |
| 	node = validate_node(node);
 | |
| 	if (node < 0)
 | |
| 		return cpu_none_mask;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	return idle_cpumask(node)->cpu;
 | |
| #else
 | |
| 	return cpu_none_mask;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
 | |
|  * per-CPU cpumask.
 | |
|  *
 | |
|  * Returns an empty mask if idle tracking is not enabled, or running on a
 | |
|  * UP kernel.
 | |
|  */
 | |
| __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
 | |
| {
 | |
| 	if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
 | |
| 		scx_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
 | |
| 		return cpu_none_mask;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_builtin_idle_enabled())
 | |
| 		return cpu_none_mask;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	return idle_cpumask(NUMA_NO_NODE)->cpu;
 | |
| #else
 | |
| 	return cpu_none_mask;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_get_idle_smtmask_node - Get a referenced kptr to the
 | |
|  * idle-tracking, per-physical-core cpumask of a target NUMA node. Can be
 | |
|  * used to determine if an entire physical core is free.
 | |
|  * @node: target NUMA node
 | |
|  *
 | |
|  * Returns an empty cpumask if idle tracking is not enabled, if @node is
 | |
|  * not valid, or running on a UP kernel. In this case the actual error will
 | |
|  * be reported to the BPF scheduler via scx_error().
 | |
|  */
 | |
| __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask_node(int node)
 | |
| {
 | |
| 	node = validate_node(node);
 | |
| 	if (node < 0)
 | |
| 		return cpu_none_mask;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (sched_smt_active())
 | |
| 		return idle_cpumask(node)->smt;
 | |
| 	else
 | |
| 		return idle_cpumask(node)->cpu;
 | |
| #else
 | |
| 	return cpu_none_mask;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
 | |
|  * per-physical-core cpumask. Can be used to determine if an entire physical
 | |
|  * core is free.
 | |
|  *
 | |
|  * Returns an empty mask if idle tracking is not enabled, or running on a
 | |
|  * UP kernel.
 | |
|  */
 | |
| __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
 | |
| {
 | |
| 	if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
 | |
| 		scx_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
 | |
| 		return cpu_none_mask;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_builtin_idle_enabled())
 | |
| 		return cpu_none_mask;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (sched_smt_active())
 | |
| 		return idle_cpumask(NUMA_NO_NODE)->smt;
 | |
| 	else
 | |
| 		return idle_cpumask(NUMA_NO_NODE)->cpu;
 | |
| #else
 | |
| 	return cpu_none_mask;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
 | |
|  * either the percpu, or SMT idle-tracking cpumask.
 | |
|  * @idle_mask: &cpumask to use
 | |
|  */
 | |
| __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
 | |
| {
 | |
| 	/*
 | |
| 	 * Empty function body because we aren't actually acquiring or releasing
 | |
| 	 * a reference to a global idle cpumask, which is read-only in the
 | |
| 	 * caller and is never released. The acquire / release semantics here
 | |
| 	 * are just used to make the cpumask a trusted pointer in the caller.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
 | |
|  * @cpu: cpu to test and clear idle for
 | |
|  *
 | |
|  * Returns %true if @cpu was idle and its idle state was successfully cleared.
 | |
|  * %false otherwise.
 | |
|  *
 | |
|  * Unavailable if ops.update_idle() is implemented and
 | |
|  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
 | |
|  */
 | |
| __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
 | |
| {
 | |
| 	if (!check_builtin_idle_enabled())
 | |
| 		return false;
 | |
| 
 | |
| 	if (ops_cpu_valid(cpu, NULL))
 | |
| 		return scx_idle_test_and_clear_cpu(cpu);
 | |
| 	else
 | |
| 		return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_pick_idle_cpu_node - Pick and claim an idle cpu from @node
 | |
|  * @cpus_allowed: Allowed cpumask
 | |
|  * @node: target NUMA node
 | |
|  * @flags: %SCX_PICK_IDLE_* flags
 | |
|  *
 | |
|  * Pick and claim an idle cpu in @cpus_allowed from the NUMA node @node.
 | |
|  *
 | |
|  * Returns the picked idle cpu number on success, or -%EBUSY if no matching
 | |
|  * cpu was found.
 | |
|  *
 | |
|  * The search starts from @node and proceeds to other online NUMA nodes in
 | |
|  * order of increasing distance (unless SCX_PICK_IDLE_IN_NODE is specified,
 | |
|  * in which case the search is limited to the target @node).
 | |
|  *
 | |
|  * Always returns an error if ops.update_idle() is implemented and
 | |
|  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set, or if
 | |
|  * %SCX_OPS_BUILTIN_IDLE_PER_NODE is not set.
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_pick_idle_cpu_node(const struct cpumask *cpus_allowed,
 | |
| 					   int node, u64 flags)
 | |
| {
 | |
| 	node = validate_node(node);
 | |
| 	if (node < 0)
 | |
| 		return node;
 | |
| 
 | |
| 	return scx_pick_idle_cpu(cpus_allowed, node, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
 | |
|  * @cpus_allowed: Allowed cpumask
 | |
|  * @flags: %SCX_PICK_IDLE_CPU_* flags
 | |
|  *
 | |
|  * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
 | |
|  * number on success. -%EBUSY if no matching cpu was found.
 | |
|  *
 | |
|  * Idle CPU tracking may race against CPU scheduling state transitions. For
 | |
|  * example, this function may return -%EBUSY as CPUs are transitioning into the
 | |
|  * idle state. If the caller then assumes that there will be dispatch events on
 | |
|  * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
 | |
|  * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
 | |
|  * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
 | |
|  * event in the near future.
 | |
|  *
 | |
|  * Unavailable if ops.update_idle() is implemented and
 | |
|  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
 | |
|  *
 | |
|  * Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
 | |
|  * scx_bpf_pick_idle_cpu_node() instead.
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
 | |
| 				      u64 flags)
 | |
| {
 | |
| 	if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
 | |
| 		scx_error("per-node idle tracking is enabled");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_builtin_idle_enabled())
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_pick_any_cpu_node - Pick and claim an idle cpu if available
 | |
|  *			       or pick any CPU from @node
 | |
|  * @cpus_allowed: Allowed cpumask
 | |
|  * @node: target NUMA node
 | |
|  * @flags: %SCX_PICK_IDLE_CPU_* flags
 | |
|  *
 | |
|  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
 | |
|  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
 | |
|  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
 | |
|  * empty.
 | |
|  *
 | |
|  * The search starts from @node and proceeds to other online NUMA nodes in
 | |
|  * order of increasing distance (unless %SCX_PICK_IDLE_IN_NODE is specified,
 | |
|  * in which case the search is limited to the target @node, regardless of
 | |
|  * the CPU idle state).
 | |
|  *
 | |
|  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
 | |
|  * set, this function can't tell which CPUs are idle and will always pick any
 | |
|  * CPU.
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_pick_any_cpu_node(const struct cpumask *cpus_allowed,
 | |
| 					  int node, u64 flags)
 | |
| {
 | |
| 	s32 cpu;
 | |
| 
 | |
| 	node = validate_node(node);
 | |
| 	if (node < 0)
 | |
| 		return node;
 | |
| 
 | |
| 	cpu = scx_pick_idle_cpu(cpus_allowed, node, flags);
 | |
| 	if (cpu >= 0)
 | |
| 		return cpu;
 | |
| 
 | |
| 	if (flags & SCX_PICK_IDLE_IN_NODE)
 | |
| 		cpu = cpumask_any_and_distribute(cpumask_of_node(node), cpus_allowed);
 | |
| 	else
 | |
| 		cpu = cpumask_any_distribute(cpus_allowed);
 | |
| 	if (cpu < nr_cpu_ids)
 | |
| 		return cpu;
 | |
| 	else
 | |
| 		return -EBUSY;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
 | |
|  * @cpus_allowed: Allowed cpumask
 | |
|  * @flags: %SCX_PICK_IDLE_CPU_* flags
 | |
|  *
 | |
|  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
 | |
|  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
 | |
|  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
 | |
|  * empty.
 | |
|  *
 | |
|  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
 | |
|  * set, this function can't tell which CPUs are idle and will always pick any
 | |
|  * CPU.
 | |
|  *
 | |
|  * Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
 | |
|  * scx_bpf_pick_any_cpu_node() instead.
 | |
|  */
 | |
| __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
 | |
| 				     u64 flags)
 | |
| {
 | |
| 	s32 cpu;
 | |
| 
 | |
| 	if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
 | |
| 		scx_error("per-node idle tracking is enabled");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (static_branch_likely(&scx_builtin_idle_enabled)) {
 | |
| 		cpu = scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
 | |
| 		if (cpu >= 0)
 | |
| 			return cpu;
 | |
| 	}
 | |
| 
 | |
| 	cpu = cpumask_any_distribute(cpus_allowed);
 | |
| 	if (cpu < nr_cpu_ids)
 | |
| 		return cpu;
 | |
| 	else
 | |
| 		return -EBUSY;
 | |
| }
 | |
| 
 | |
| __bpf_kfunc_end_defs();
 | |
| 
 | |
| BTF_KFUNCS_START(scx_kfunc_ids_idle)
 | |
| BTF_ID_FLAGS(func, scx_bpf_cpu_node)
 | |
| BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask_node, KF_ACQUIRE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask_node, KF_ACQUIRE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
 | |
| BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
 | |
| BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu_node, KF_RCU)
 | |
| BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
 | |
| BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu_node, KF_RCU)
 | |
| BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
 | |
| BTF_KFUNCS_END(scx_kfunc_ids_idle)
 | |
| 
 | |
| static const struct btf_kfunc_id_set scx_kfunc_set_idle = {
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.set			= &scx_kfunc_ids_idle,
 | |
| };
 | |
| 
 | |
| BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
 | |
| BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
 | |
| BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
 | |
| 
 | |
| static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.set			= &scx_kfunc_ids_select_cpu,
 | |
| };
 | |
| 
 | |
| int scx_idle_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_select_cpu) ||
 | |
| 	      register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_idle) ||
 | |
| 	      register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_idle) ||
 | |
| 	      register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_idle);
 | |
| 
 | |
| 	return ret;
 | |
| }
 |