mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	The helper function hrtimer_callback_running() is used in kernel/hrtimer.c as well as in the updated net/can/bcm.c which now supports hrtimers. Moving the helper function to hrtimer.h removes the duplicate definition in the C-files. Signed-off-by: Oliver Hartkopp <oliver@hartkopp.net> Cc: David Miller <davem@davemloft.net> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
		
			
				
	
	
		
			1675 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1675 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/kernel/hrtimer.c
 | 
						|
 *
 | 
						|
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 | 
						|
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 | 
						|
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 | 
						|
 *
 | 
						|
 *  High-resolution kernel timers
 | 
						|
 *
 | 
						|
 *  In contrast to the low-resolution timeout API implemented in
 | 
						|
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 | 
						|
 *  depending on system configuration and capabilities.
 | 
						|
 *
 | 
						|
 *  These timers are currently used for:
 | 
						|
 *   - itimers
 | 
						|
 *   - POSIX timers
 | 
						|
 *   - nanosleep
 | 
						|
 *   - precise in-kernel timing
 | 
						|
 *
 | 
						|
 *  Started by: Thomas Gleixner and Ingo Molnar
 | 
						|
 *
 | 
						|
 *  Credits:
 | 
						|
 *	based on kernel/timer.c
 | 
						|
 *
 | 
						|
 *	Help, testing, suggestions, bugfixes, improvements were
 | 
						|
 *	provided by:
 | 
						|
 *
 | 
						|
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 | 
						|
 *	et. al.
 | 
						|
 *
 | 
						|
 *  For licencing details see kernel-base/COPYING
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/irq.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/hrtimer.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/kallsyms.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/tick.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/debugobjects.h>
 | 
						|
 | 
						|
#include <asm/uaccess.h>
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get - get the monotonic time in ktime_t format
 | 
						|
 *
 | 
						|
 * returns the time in ktime_t format
 | 
						|
 */
 | 
						|
ktime_t ktime_get(void)
 | 
						|
{
 | 
						|
	struct timespec now;
 | 
						|
 | 
						|
	ktime_get_ts(&now);
 | 
						|
 | 
						|
	return timespec_to_ktime(now);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get);
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_real - get the real (wall-) time in ktime_t format
 | 
						|
 *
 | 
						|
 * returns the time in ktime_t format
 | 
						|
 */
 | 
						|
ktime_t ktime_get_real(void)
 | 
						|
{
 | 
						|
	struct timespec now;
 | 
						|
 | 
						|
	getnstimeofday(&now);
 | 
						|
 | 
						|
	return timespec_to_ktime(now);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_real);
 | 
						|
 | 
						|
/*
 | 
						|
 * The timer bases:
 | 
						|
 *
 | 
						|
 * Note: If we want to add new timer bases, we have to skip the two
 | 
						|
 * clock ids captured by the cpu-timers. We do this by holding empty
 | 
						|
 * entries rather than doing math adjustment of the clock ids.
 | 
						|
 * This ensures that we capture erroneous accesses to these clock ids
 | 
						|
 * rather than moving them into the range of valid clock id's.
 | 
						|
 */
 | 
						|
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
 | 
						|
{
 | 
						|
 | 
						|
	.clock_base =
 | 
						|
	{
 | 
						|
		{
 | 
						|
			.index = CLOCK_REALTIME,
 | 
						|
			.get_time = &ktime_get_real,
 | 
						|
			.resolution = KTIME_LOW_RES,
 | 
						|
		},
 | 
						|
		{
 | 
						|
			.index = CLOCK_MONOTONIC,
 | 
						|
			.get_time = &ktime_get,
 | 
						|
			.resolution = KTIME_LOW_RES,
 | 
						|
		},
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_ts - get the monotonic clock in timespec format
 | 
						|
 * @ts:		pointer to timespec variable
 | 
						|
 *
 | 
						|
 * The function calculates the monotonic clock from the realtime
 | 
						|
 * clock and the wall_to_monotonic offset and stores the result
 | 
						|
 * in normalized timespec format in the variable pointed to by @ts.
 | 
						|
 */
 | 
						|
void ktime_get_ts(struct timespec *ts)
 | 
						|
{
 | 
						|
	struct timespec tomono;
 | 
						|
	unsigned long seq;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqbegin(&xtime_lock);
 | 
						|
		getnstimeofday(ts);
 | 
						|
		tomono = wall_to_monotonic;
 | 
						|
 | 
						|
	} while (read_seqretry(&xtime_lock, seq));
 | 
						|
 | 
						|
	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
 | 
						|
				ts->tv_nsec + tomono.tv_nsec);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_ts);
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the coarse grained time at the softirq based on xtime and
 | 
						|
 * wall_to_monotonic.
 | 
						|
 */
 | 
						|
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
 | 
						|
{
 | 
						|
	ktime_t xtim, tomono;
 | 
						|
	struct timespec xts, tom;
 | 
						|
	unsigned long seq;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqbegin(&xtime_lock);
 | 
						|
		xts = current_kernel_time();
 | 
						|
		tom = wall_to_monotonic;
 | 
						|
	} while (read_seqretry(&xtime_lock, seq));
 | 
						|
 | 
						|
	xtim = timespec_to_ktime(xts);
 | 
						|
	tomono = timespec_to_ktime(tom);
 | 
						|
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
 | 
						|
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
 | 
						|
		ktime_add(xtim, tomono);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Functions and macros which are different for UP/SMP systems are kept in a
 | 
						|
 * single place
 | 
						|
 */
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
 | 
						|
/*
 | 
						|
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 | 
						|
 * means that all timers which are tied to this base via timer->base are
 | 
						|
 * locked, and the base itself is locked too.
 | 
						|
 *
 | 
						|
 * So __run_timers/migrate_timers can safely modify all timers which could
 | 
						|
 * be found on the lists/queues.
 | 
						|
 *
 | 
						|
 * When the timer's base is locked, and the timer removed from list, it is
 | 
						|
 * possible to set timer->base = NULL and drop the lock: the timer remains
 | 
						|
 * locked.
 | 
						|
 */
 | 
						|
static
 | 
						|
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 | 
						|
					     unsigned long *flags)
 | 
						|
{
 | 
						|
	struct hrtimer_clock_base *base;
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		base = timer->base;
 | 
						|
		if (likely(base != NULL)) {
 | 
						|
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
 | 
						|
			if (likely(base == timer->base))
 | 
						|
				return base;
 | 
						|
			/* The timer has migrated to another CPU: */
 | 
						|
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 | 
						|
		}
 | 
						|
		cpu_relax();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Switch the timer base to the current CPU when possible.
 | 
						|
 */
 | 
						|
static inline struct hrtimer_clock_base *
 | 
						|
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
 | 
						|
{
 | 
						|
	struct hrtimer_clock_base *new_base;
 | 
						|
	struct hrtimer_cpu_base *new_cpu_base;
 | 
						|
 | 
						|
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
 | 
						|
	new_base = &new_cpu_base->clock_base[base->index];
 | 
						|
 | 
						|
	if (base != new_base) {
 | 
						|
		/*
 | 
						|
		 * We are trying to schedule the timer on the local CPU.
 | 
						|
		 * However we can't change timer's base while it is running,
 | 
						|
		 * so we keep it on the same CPU. No hassle vs. reprogramming
 | 
						|
		 * the event source in the high resolution case. The softirq
 | 
						|
		 * code will take care of this when the timer function has
 | 
						|
		 * completed. There is no conflict as we hold the lock until
 | 
						|
		 * the timer is enqueued.
 | 
						|
		 */
 | 
						|
		if (unlikely(hrtimer_callback_running(timer)))
 | 
						|
			return base;
 | 
						|
 | 
						|
		/* See the comment in lock_timer_base() */
 | 
						|
		timer->base = NULL;
 | 
						|
		spin_unlock(&base->cpu_base->lock);
 | 
						|
		spin_lock(&new_base->cpu_base->lock);
 | 
						|
		timer->base = new_base;
 | 
						|
	}
 | 
						|
	return new_base;
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_SMP */
 | 
						|
 | 
						|
static inline struct hrtimer_clock_base *
 | 
						|
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 | 
						|
{
 | 
						|
	struct hrtimer_clock_base *base = timer->base;
 | 
						|
 | 
						|
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
 | 
						|
 | 
						|
	return base;
 | 
						|
}
 | 
						|
 | 
						|
# define switch_hrtimer_base(t, b)	(b)
 | 
						|
 | 
						|
#endif	/* !CONFIG_SMP */
 | 
						|
 | 
						|
/*
 | 
						|
 * Functions for the union type storage format of ktime_t which are
 | 
						|
 * too large for inlining:
 | 
						|
 */
 | 
						|
#if BITS_PER_LONG < 64
 | 
						|
# ifndef CONFIG_KTIME_SCALAR
 | 
						|
/**
 | 
						|
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 | 
						|
 * @kt:		addend
 | 
						|
 * @nsec:	the scalar nsec value to add
 | 
						|
 *
 | 
						|
 * Returns the sum of kt and nsec in ktime_t format
 | 
						|
 */
 | 
						|
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
 | 
						|
{
 | 
						|
	ktime_t tmp;
 | 
						|
 | 
						|
	if (likely(nsec < NSEC_PER_SEC)) {
 | 
						|
		tmp.tv64 = nsec;
 | 
						|
	} else {
 | 
						|
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 | 
						|
 | 
						|
		tmp = ktime_set((long)nsec, rem);
 | 
						|
	}
 | 
						|
 | 
						|
	return ktime_add(kt, tmp);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL_GPL(ktime_add_ns);
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 | 
						|
 * @kt:		minuend
 | 
						|
 * @nsec:	the scalar nsec value to subtract
 | 
						|
 *
 | 
						|
 * Returns the subtraction of @nsec from @kt in ktime_t format
 | 
						|
 */
 | 
						|
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
 | 
						|
{
 | 
						|
	ktime_t tmp;
 | 
						|
 | 
						|
	if (likely(nsec < NSEC_PER_SEC)) {
 | 
						|
		tmp.tv64 = nsec;
 | 
						|
	} else {
 | 
						|
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 | 
						|
 | 
						|
		tmp = ktime_set((long)nsec, rem);
 | 
						|
	}
 | 
						|
 | 
						|
	return ktime_sub(kt, tmp);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL_GPL(ktime_sub_ns);
 | 
						|
# endif /* !CONFIG_KTIME_SCALAR */
 | 
						|
 | 
						|
/*
 | 
						|
 * Divide a ktime value by a nanosecond value
 | 
						|
 */
 | 
						|
u64 ktime_divns(const ktime_t kt, s64 div)
 | 
						|
{
 | 
						|
	u64 dclc, inc, dns;
 | 
						|
	int sft = 0;
 | 
						|
 | 
						|
	dclc = dns = ktime_to_ns(kt);
 | 
						|
	inc = div;
 | 
						|
	/* Make sure the divisor is less than 2^32: */
 | 
						|
	while (div >> 32) {
 | 
						|
		sft++;
 | 
						|
		div >>= 1;
 | 
						|
	}
 | 
						|
	dclc >>= sft;
 | 
						|
	do_div(dclc, (unsigned long) div);
 | 
						|
 | 
						|
	return dclc;
 | 
						|
}
 | 
						|
#endif /* BITS_PER_LONG >= 64 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Add two ktime values and do a safety check for overflow:
 | 
						|
 */
 | 
						|
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 | 
						|
{
 | 
						|
	ktime_t res = ktime_add(lhs, rhs);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
 | 
						|
	 * return to user space in a timespec:
 | 
						|
	 */
 | 
						|
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 | 
						|
		res = ktime_set(KTIME_SEC_MAX, 0);
 | 
						|
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 | 
						|
 | 
						|
static struct debug_obj_descr hrtimer_debug_descr;
 | 
						|
 | 
						|
/*
 | 
						|
 * fixup_init is called when:
 | 
						|
 * - an active object is initialized
 | 
						|
 */
 | 
						|
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = addr;
 | 
						|
 | 
						|
	switch (state) {
 | 
						|
	case ODEBUG_STATE_ACTIVE:
 | 
						|
		hrtimer_cancel(timer);
 | 
						|
		debug_object_init(timer, &hrtimer_debug_descr);
 | 
						|
		return 1;
 | 
						|
	default:
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * fixup_activate is called when:
 | 
						|
 * - an active object is activated
 | 
						|
 * - an unknown object is activated (might be a statically initialized object)
 | 
						|
 */
 | 
						|
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 | 
						|
{
 | 
						|
	switch (state) {
 | 
						|
 | 
						|
	case ODEBUG_STATE_NOTAVAILABLE:
 | 
						|
		WARN_ON_ONCE(1);
 | 
						|
		return 0;
 | 
						|
 | 
						|
	case ODEBUG_STATE_ACTIVE:
 | 
						|
		WARN_ON(1);
 | 
						|
 | 
						|
	default:
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * fixup_free is called when:
 | 
						|
 * - an active object is freed
 | 
						|
 */
 | 
						|
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 | 
						|
{
 | 
						|
	struct hrtimer *timer = addr;
 | 
						|
 | 
						|
	switch (state) {
 | 
						|
	case ODEBUG_STATE_ACTIVE:
 | 
						|
		hrtimer_cancel(timer);
 | 
						|
		debug_object_free(timer, &hrtimer_debug_descr);
 | 
						|
		return 1;
 | 
						|
	default:
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct debug_obj_descr hrtimer_debug_descr = {
 | 
						|
	.name		= "hrtimer",
 | 
						|
	.fixup_init	= hrtimer_fixup_init,
 | 
						|
	.fixup_activate	= hrtimer_fixup_activate,
 | 
						|
	.fixup_free	= hrtimer_fixup_free,
 | 
						|
};
 | 
						|
 | 
						|
static inline void debug_hrtimer_init(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	debug_object_init(timer, &hrtimer_debug_descr);
 | 
						|
}
 | 
						|
 | 
						|
static inline void debug_hrtimer_activate(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	debug_object_activate(timer, &hrtimer_debug_descr);
 | 
						|
}
 | 
						|
 | 
						|
static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	debug_object_deactivate(timer, &hrtimer_debug_descr);
 | 
						|
}
 | 
						|
 | 
						|
static inline void debug_hrtimer_free(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	debug_object_free(timer, &hrtimer_debug_descr);
 | 
						|
}
 | 
						|
 | 
						|
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 | 
						|
			   enum hrtimer_mode mode);
 | 
						|
 | 
						|
void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 | 
						|
			   enum hrtimer_mode mode)
 | 
						|
{
 | 
						|
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 | 
						|
	__hrtimer_init(timer, clock_id, mode);
 | 
						|
}
 | 
						|
 | 
						|
void destroy_hrtimer_on_stack(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	debug_object_free(timer, &hrtimer_debug_descr);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 | 
						|
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 | 
						|
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Check, whether the timer is on the callback pending list
 | 
						|
 */
 | 
						|
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
 | 
						|
{
 | 
						|
	return timer->state & HRTIMER_STATE_PENDING;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove a timer from the callback pending list
 | 
						|
 */
 | 
						|
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	list_del_init(&timer->cb_entry);
 | 
						|
}
 | 
						|
 | 
						|
/* High resolution timer related functions */
 | 
						|
#ifdef CONFIG_HIGH_RES_TIMERS
 | 
						|
 | 
						|
/*
 | 
						|
 * High resolution timer enabled ?
 | 
						|
 */
 | 
						|
static int hrtimer_hres_enabled __read_mostly  = 1;
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable / Disable high resolution mode
 | 
						|
 */
 | 
						|
static int __init setup_hrtimer_hres(char *str)
 | 
						|
{
 | 
						|
	if (!strcmp(str, "off"))
 | 
						|
		hrtimer_hres_enabled = 0;
 | 
						|
	else if (!strcmp(str, "on"))
 | 
						|
		hrtimer_hres_enabled = 1;
 | 
						|
	else
 | 
						|
		return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
__setup("highres=", setup_hrtimer_hres);
 | 
						|
 | 
						|
/*
 | 
						|
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 | 
						|
 */
 | 
						|
static inline int hrtimer_is_hres_enabled(void)
 | 
						|
{
 | 
						|
	return hrtimer_hres_enabled;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Is the high resolution mode active ?
 | 
						|
 */
 | 
						|
static inline int hrtimer_hres_active(void)
 | 
						|
{
 | 
						|
	return __get_cpu_var(hrtimer_bases).hres_active;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reprogram the event source with checking both queues for the
 | 
						|
 * next event
 | 
						|
 * Called with interrupts disabled and base->lock held
 | 
						|
 */
 | 
						|
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct hrtimer_clock_base *base = cpu_base->clock_base;
 | 
						|
	ktime_t expires;
 | 
						|
 | 
						|
	cpu_base->expires_next.tv64 = KTIME_MAX;
 | 
						|
 | 
						|
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 | 
						|
		struct hrtimer *timer;
 | 
						|
 | 
						|
		if (!base->first)
 | 
						|
			continue;
 | 
						|
		timer = rb_entry(base->first, struct hrtimer, node);
 | 
						|
		expires = ktime_sub(timer->expires, base->offset);
 | 
						|
		if (expires.tv64 < cpu_base->expires_next.tv64)
 | 
						|
			cpu_base->expires_next = expires;
 | 
						|
	}
 | 
						|
 | 
						|
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
 | 
						|
		tick_program_event(cpu_base->expires_next, 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Shared reprogramming for clock_realtime and clock_monotonic
 | 
						|
 *
 | 
						|
 * When a timer is enqueued and expires earlier than the already enqueued
 | 
						|
 * timers, we have to check, whether it expires earlier than the timer for
 | 
						|
 * which the clock event device was armed.
 | 
						|
 *
 | 
						|
 * Called with interrupts disabled and base->cpu_base.lock held
 | 
						|
 */
 | 
						|
static int hrtimer_reprogram(struct hrtimer *timer,
 | 
						|
			     struct hrtimer_clock_base *base)
 | 
						|
{
 | 
						|
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
 | 
						|
	ktime_t expires = ktime_sub(timer->expires, base->offset);
 | 
						|
	int res;
 | 
						|
 | 
						|
	WARN_ON_ONCE(timer->expires.tv64 < 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When the callback is running, we do not reprogram the clock event
 | 
						|
	 * device. The timer callback is either running on a different CPU or
 | 
						|
	 * the callback is executed in the hrtimer_interrupt context. The
 | 
						|
	 * reprogramming is handled either by the softirq, which called the
 | 
						|
	 * callback or at the end of the hrtimer_interrupt.
 | 
						|
	 */
 | 
						|
	if (hrtimer_callback_running(timer))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * CLOCK_REALTIME timer might be requested with an absolute
 | 
						|
	 * expiry time which is less than base->offset. Nothing wrong
 | 
						|
	 * about that, just avoid to call into the tick code, which
 | 
						|
	 * has now objections against negative expiry values.
 | 
						|
	 */
 | 
						|
	if (expires.tv64 < 0)
 | 
						|
		return -ETIME;
 | 
						|
 | 
						|
	if (expires.tv64 >= expires_next->tv64)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clockevents returns -ETIME, when the event was in the past.
 | 
						|
	 */
 | 
						|
	res = tick_program_event(expires, 0);
 | 
						|
	if (!IS_ERR_VALUE(res))
 | 
						|
		*expires_next = expires;
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Retrigger next event is called after clock was set
 | 
						|
 *
 | 
						|
 * Called with interrupts disabled via on_each_cpu()
 | 
						|
 */
 | 
						|
static void retrigger_next_event(void *arg)
 | 
						|
{
 | 
						|
	struct hrtimer_cpu_base *base;
 | 
						|
	struct timespec realtime_offset;
 | 
						|
	unsigned long seq;
 | 
						|
 | 
						|
	if (!hrtimer_hres_active())
 | 
						|
		return;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqbegin(&xtime_lock);
 | 
						|
		set_normalized_timespec(&realtime_offset,
 | 
						|
					-wall_to_monotonic.tv_sec,
 | 
						|
					-wall_to_monotonic.tv_nsec);
 | 
						|
	} while (read_seqretry(&xtime_lock, seq));
 | 
						|
 | 
						|
	base = &__get_cpu_var(hrtimer_bases);
 | 
						|
 | 
						|
	/* Adjust CLOCK_REALTIME offset */
 | 
						|
	spin_lock(&base->lock);
 | 
						|
	base->clock_base[CLOCK_REALTIME].offset =
 | 
						|
		timespec_to_ktime(realtime_offset);
 | 
						|
 | 
						|
	hrtimer_force_reprogram(base);
 | 
						|
	spin_unlock(&base->lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clock realtime was set
 | 
						|
 *
 | 
						|
 * Change the offset of the realtime clock vs. the monotonic
 | 
						|
 * clock.
 | 
						|
 *
 | 
						|
 * We might have to reprogram the high resolution timer interrupt. On
 | 
						|
 * SMP we call the architecture specific code to retrigger _all_ high
 | 
						|
 * resolution timer interrupts. On UP we just disable interrupts and
 | 
						|
 * call the high resolution interrupt code.
 | 
						|
 */
 | 
						|
void clock_was_set(void)
 | 
						|
{
 | 
						|
	/* Retrigger the CPU local events everywhere */
 | 
						|
	on_each_cpu(retrigger_next_event, NULL, 0, 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * During resume we might have to reprogram the high resolution timer
 | 
						|
 * interrupt (on the local CPU):
 | 
						|
 */
 | 
						|
void hres_timers_resume(void)
 | 
						|
{
 | 
						|
	WARN_ON_ONCE(num_online_cpus() > 1);
 | 
						|
 | 
						|
	/* Retrigger the CPU local events: */
 | 
						|
	retrigger_next_event(NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize the high resolution related parts of cpu_base
 | 
						|
 */
 | 
						|
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 | 
						|
{
 | 
						|
	base->expires_next.tv64 = KTIME_MAX;
 | 
						|
	base->hres_active = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize the high resolution related parts of a hrtimer
 | 
						|
 */
 | 
						|
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When High resolution timers are active, try to reprogram. Note, that in case
 | 
						|
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 | 
						|
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 | 
						|
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 | 
						|
 */
 | 
						|
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 | 
						|
					    struct hrtimer_clock_base *base)
 | 
						|
{
 | 
						|
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
 | 
						|
 | 
						|
		/* Timer is expired, act upon the callback mode */
 | 
						|
		switch(timer->cb_mode) {
 | 
						|
		case HRTIMER_CB_IRQSAFE_NO_RESTART:
 | 
						|
			debug_hrtimer_deactivate(timer);
 | 
						|
			/*
 | 
						|
			 * We can call the callback from here. No restart
 | 
						|
			 * happens, so no danger of recursion
 | 
						|
			 */
 | 
						|
			BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
 | 
						|
			return 1;
 | 
						|
		case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
 | 
						|
			/*
 | 
						|
			 * This is solely for the sched tick emulation with
 | 
						|
			 * dynamic tick support to ensure that we do not
 | 
						|
			 * restart the tick right on the edge and end up with
 | 
						|
			 * the tick timer in the softirq ! The calling site
 | 
						|
			 * takes care of this.
 | 
						|
			 */
 | 
						|
			debug_hrtimer_deactivate(timer);
 | 
						|
			return 1;
 | 
						|
		case HRTIMER_CB_IRQSAFE:
 | 
						|
		case HRTIMER_CB_SOFTIRQ:
 | 
						|
			/*
 | 
						|
			 * Move everything else into the softirq pending list !
 | 
						|
			 */
 | 
						|
			list_add_tail(&timer->cb_entry,
 | 
						|
				      &base->cpu_base->cb_pending);
 | 
						|
			timer->state = HRTIMER_STATE_PENDING;
 | 
						|
			return 1;
 | 
						|
		default:
 | 
						|
			BUG();
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Switch to high resolution mode
 | 
						|
 */
 | 
						|
static int hrtimer_switch_to_hres(void)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (base->hres_active)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
 | 
						|
	if (tick_init_highres()) {
 | 
						|
		local_irq_restore(flags);
 | 
						|
		printk(KERN_WARNING "Could not switch to high resolution "
 | 
						|
				    "mode on CPU %d\n", cpu);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	base->hres_active = 1;
 | 
						|
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
 | 
						|
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
 | 
						|
 | 
						|
	tick_setup_sched_timer();
 | 
						|
 | 
						|
	/* "Retrigger" the interrupt to get things going */
 | 
						|
	retrigger_next_event(NULL);
 | 
						|
	local_irq_restore(flags);
 | 
						|
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
 | 
						|
	       smp_processor_id());
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline void hrtimer_raise_softirq(void)
 | 
						|
{
 | 
						|
	raise_softirq(HRTIMER_SOFTIRQ);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static inline int hrtimer_hres_active(void) { return 0; }
 | 
						|
static inline int hrtimer_is_hres_enabled(void) { return 0; }
 | 
						|
static inline int hrtimer_switch_to_hres(void) { return 0; }
 | 
						|
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
 | 
						|
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 | 
						|
					    struct hrtimer_clock_base *base)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 | 
						|
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
 | 
						|
static inline int hrtimer_reprogram(struct hrtimer *timer,
 | 
						|
				    struct hrtimer_clock_base *base)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline void hrtimer_raise_softirq(void) { }
 | 
						|
 | 
						|
#endif /* CONFIG_HIGH_RES_TIMERS */
 | 
						|
 | 
						|
#ifdef CONFIG_TIMER_STATS
 | 
						|
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
 | 
						|
{
 | 
						|
	if (timer->start_site)
 | 
						|
		return;
 | 
						|
 | 
						|
	timer->start_site = addr;
 | 
						|
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 | 
						|
	timer->start_pid = current->pid;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Counterpart to lock_hrtimer_base above:
 | 
						|
 */
 | 
						|
static inline
 | 
						|
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 | 
						|
{
 | 
						|
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * hrtimer_forward - forward the timer expiry
 | 
						|
 * @timer:	hrtimer to forward
 | 
						|
 * @now:	forward past this time
 | 
						|
 * @interval:	the interval to forward
 | 
						|
 *
 | 
						|
 * Forward the timer expiry so it will expire in the future.
 | 
						|
 * Returns the number of overruns.
 | 
						|
 */
 | 
						|
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 | 
						|
{
 | 
						|
	u64 orun = 1;
 | 
						|
	ktime_t delta;
 | 
						|
 | 
						|
	delta = ktime_sub(now, timer->expires);
 | 
						|
 | 
						|
	if (delta.tv64 < 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (interval.tv64 < timer->base->resolution.tv64)
 | 
						|
		interval.tv64 = timer->base->resolution.tv64;
 | 
						|
 | 
						|
	if (unlikely(delta.tv64 >= interval.tv64)) {
 | 
						|
		s64 incr = ktime_to_ns(interval);
 | 
						|
 | 
						|
		orun = ktime_divns(delta, incr);
 | 
						|
		timer->expires = ktime_add_ns(timer->expires, incr * orun);
 | 
						|
		if (timer->expires.tv64 > now.tv64)
 | 
						|
			return orun;
 | 
						|
		/*
 | 
						|
		 * This (and the ktime_add() below) is the
 | 
						|
		 * correction for exact:
 | 
						|
		 */
 | 
						|
		orun++;
 | 
						|
	}
 | 
						|
	timer->expires = ktime_add_safe(timer->expires, interval);
 | 
						|
 | 
						|
	return orun;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hrtimer_forward);
 | 
						|
 | 
						|
/*
 | 
						|
 * enqueue_hrtimer - internal function to (re)start a timer
 | 
						|
 *
 | 
						|
 * The timer is inserted in expiry order. Insertion into the
 | 
						|
 * red black tree is O(log(n)). Must hold the base lock.
 | 
						|
 */
 | 
						|
static void enqueue_hrtimer(struct hrtimer *timer,
 | 
						|
			    struct hrtimer_clock_base *base, int reprogram)
 | 
						|
{
 | 
						|
	struct rb_node **link = &base->active.rb_node;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	struct hrtimer *entry;
 | 
						|
	int leftmost = 1;
 | 
						|
 | 
						|
	debug_hrtimer_activate(timer);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find the right place in the rbtree:
 | 
						|
	 */
 | 
						|
	while (*link) {
 | 
						|
		parent = *link;
 | 
						|
		entry = rb_entry(parent, struct hrtimer, node);
 | 
						|
		/*
 | 
						|
		 * We dont care about collisions. Nodes with
 | 
						|
		 * the same expiry time stay together.
 | 
						|
		 */
 | 
						|
		if (timer->expires.tv64 < entry->expires.tv64) {
 | 
						|
			link = &(*link)->rb_left;
 | 
						|
		} else {
 | 
						|
			link = &(*link)->rb_right;
 | 
						|
			leftmost = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Insert the timer to the rbtree and check whether it
 | 
						|
	 * replaces the first pending timer
 | 
						|
	 */
 | 
						|
	if (leftmost) {
 | 
						|
		/*
 | 
						|
		 * Reprogram the clock event device. When the timer is already
 | 
						|
		 * expired hrtimer_enqueue_reprogram has either called the
 | 
						|
		 * callback or added it to the pending list and raised the
 | 
						|
		 * softirq.
 | 
						|
		 *
 | 
						|
		 * This is a NOP for !HIGHRES
 | 
						|
		 */
 | 
						|
		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
 | 
						|
			return;
 | 
						|
 | 
						|
		base->first = &timer->node;
 | 
						|
	}
 | 
						|
 | 
						|
	rb_link_node(&timer->node, parent, link);
 | 
						|
	rb_insert_color(&timer->node, &base->active);
 | 
						|
	/*
 | 
						|
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
 | 
						|
	 * state of a possibly running callback.
 | 
						|
	 */
 | 
						|
	timer->state |= HRTIMER_STATE_ENQUEUED;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __remove_hrtimer - internal function to remove a timer
 | 
						|
 *
 | 
						|
 * Caller must hold the base lock.
 | 
						|
 *
 | 
						|
 * High resolution timer mode reprograms the clock event device when the
 | 
						|
 * timer is the one which expires next. The caller can disable this by setting
 | 
						|
 * reprogram to zero. This is useful, when the context does a reprogramming
 | 
						|
 * anyway (e.g. timer interrupt)
 | 
						|
 */
 | 
						|
static void __remove_hrtimer(struct hrtimer *timer,
 | 
						|
			     struct hrtimer_clock_base *base,
 | 
						|
			     unsigned long newstate, int reprogram)
 | 
						|
{
 | 
						|
	/* High res. callback list. NOP for !HIGHRES */
 | 
						|
	if (hrtimer_cb_pending(timer))
 | 
						|
		hrtimer_remove_cb_pending(timer);
 | 
						|
	else {
 | 
						|
		/*
 | 
						|
		 * Remove the timer from the rbtree and replace the
 | 
						|
		 * first entry pointer if necessary.
 | 
						|
		 */
 | 
						|
		if (base->first == &timer->node) {
 | 
						|
			base->first = rb_next(&timer->node);
 | 
						|
			/* Reprogram the clock event device. if enabled */
 | 
						|
			if (reprogram && hrtimer_hres_active())
 | 
						|
				hrtimer_force_reprogram(base->cpu_base);
 | 
						|
		}
 | 
						|
		rb_erase(&timer->node, &base->active);
 | 
						|
	}
 | 
						|
	timer->state = newstate;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * remove hrtimer, called with base lock held
 | 
						|
 */
 | 
						|
static inline int
 | 
						|
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
 | 
						|
{
 | 
						|
	if (hrtimer_is_queued(timer)) {
 | 
						|
		int reprogram;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Remove the timer and force reprogramming when high
 | 
						|
		 * resolution mode is active and the timer is on the current
 | 
						|
		 * CPU. If we remove a timer on another CPU, reprogramming is
 | 
						|
		 * skipped. The interrupt event on this CPU is fired and
 | 
						|
		 * reprogramming happens in the interrupt handler. This is a
 | 
						|
		 * rare case and less expensive than a smp call.
 | 
						|
		 */
 | 
						|
		debug_hrtimer_deactivate(timer);
 | 
						|
		timer_stats_hrtimer_clear_start_info(timer);
 | 
						|
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
 | 
						|
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
 | 
						|
				 reprogram);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * hrtimer_start - (re)start an relative timer on the current CPU
 | 
						|
 * @timer:	the timer to be added
 | 
						|
 * @tim:	expiry time
 | 
						|
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 | 
						|
 *
 | 
						|
 * Returns:
 | 
						|
 *  0 on success
 | 
						|
 *  1 when the timer was active
 | 
						|
 */
 | 
						|
int
 | 
						|
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
 | 
						|
{
 | 
						|
	struct hrtimer_clock_base *base, *new_base;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret, raise;
 | 
						|
 | 
						|
	base = lock_hrtimer_base(timer, &flags);
 | 
						|
 | 
						|
	/* Remove an active timer from the queue: */
 | 
						|
	ret = remove_hrtimer(timer, base);
 | 
						|
 | 
						|
	/* Switch the timer base, if necessary: */
 | 
						|
	new_base = switch_hrtimer_base(timer, base);
 | 
						|
 | 
						|
	if (mode == HRTIMER_MODE_REL) {
 | 
						|
		tim = ktime_add_safe(tim, new_base->get_time());
 | 
						|
		/*
 | 
						|
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 | 
						|
		 * to signal that they simply return xtime in
 | 
						|
		 * do_gettimeoffset(). In this case we want to round up by
 | 
						|
		 * resolution when starting a relative timer, to avoid short
 | 
						|
		 * timeouts. This will go away with the GTOD framework.
 | 
						|
		 */
 | 
						|
#ifdef CONFIG_TIME_LOW_RES
 | 
						|
		tim = ktime_add_safe(tim, base->resolution);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	timer->expires = tim;
 | 
						|
 | 
						|
	timer_stats_hrtimer_set_start_info(timer);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Only allow reprogramming if the new base is on this CPU.
 | 
						|
	 * (it might still be on another CPU if the timer was pending)
 | 
						|
	 */
 | 
						|
	enqueue_hrtimer(timer, new_base,
 | 
						|
			new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The timer may be expired and moved to the cb_pending
 | 
						|
	 * list. We can not raise the softirq with base lock held due
 | 
						|
	 * to a possible deadlock with runqueue lock.
 | 
						|
	 */
 | 
						|
	raise = timer->state == HRTIMER_STATE_PENDING;
 | 
						|
 | 
						|
	unlock_hrtimer_base(timer, &flags);
 | 
						|
 | 
						|
	if (raise)
 | 
						|
		hrtimer_raise_softirq();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hrtimer_start);
 | 
						|
 | 
						|
/**
 | 
						|
 * hrtimer_try_to_cancel - try to deactivate a timer
 | 
						|
 * @timer:	hrtimer to stop
 | 
						|
 *
 | 
						|
 * Returns:
 | 
						|
 *  0 when the timer was not active
 | 
						|
 *  1 when the timer was active
 | 
						|
 * -1 when the timer is currently excuting the callback function and
 | 
						|
 *    cannot be stopped
 | 
						|
 */
 | 
						|
int hrtimer_try_to_cancel(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	struct hrtimer_clock_base *base;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = -1;
 | 
						|
 | 
						|
	base = lock_hrtimer_base(timer, &flags);
 | 
						|
 | 
						|
	if (!hrtimer_callback_running(timer))
 | 
						|
		ret = remove_hrtimer(timer, base);
 | 
						|
 | 
						|
	unlock_hrtimer_base(timer, &flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
 | 
						|
 | 
						|
/**
 | 
						|
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 | 
						|
 * @timer:	the timer to be cancelled
 | 
						|
 *
 | 
						|
 * Returns:
 | 
						|
 *  0 when the timer was not active
 | 
						|
 *  1 when the timer was active
 | 
						|
 */
 | 
						|
int hrtimer_cancel(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	for (;;) {
 | 
						|
		int ret = hrtimer_try_to_cancel(timer);
 | 
						|
 | 
						|
		if (ret >= 0)
 | 
						|
			return ret;
 | 
						|
		cpu_relax();
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hrtimer_cancel);
 | 
						|
 | 
						|
/**
 | 
						|
 * hrtimer_get_remaining - get remaining time for the timer
 | 
						|
 * @timer:	the timer to read
 | 
						|
 */
 | 
						|
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
 | 
						|
{
 | 
						|
	struct hrtimer_clock_base *base;
 | 
						|
	unsigned long flags;
 | 
						|
	ktime_t rem;
 | 
						|
 | 
						|
	base = lock_hrtimer_base(timer, &flags);
 | 
						|
	rem = ktime_sub(timer->expires, base->get_time());
 | 
						|
	unlock_hrtimer_base(timer, &flags);
 | 
						|
 | 
						|
	return rem;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
 | 
						|
 | 
						|
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
 | 
						|
/**
 | 
						|
 * hrtimer_get_next_event - get the time until next expiry event
 | 
						|
 *
 | 
						|
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 | 
						|
 * is pending.
 | 
						|
 */
 | 
						|
ktime_t hrtimer_get_next_event(void)
 | 
						|
{
 | 
						|
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 | 
						|
	struct hrtimer_clock_base *base = cpu_base->clock_base;
 | 
						|
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
 | 
						|
	unsigned long flags;
 | 
						|
	int i;
 | 
						|
 | 
						|
	spin_lock_irqsave(&cpu_base->lock, flags);
 | 
						|
 | 
						|
	if (!hrtimer_hres_active()) {
 | 
						|
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 | 
						|
			struct hrtimer *timer;
 | 
						|
 | 
						|
			if (!base->first)
 | 
						|
				continue;
 | 
						|
 | 
						|
			timer = rb_entry(base->first, struct hrtimer, node);
 | 
						|
			delta.tv64 = timer->expires.tv64;
 | 
						|
			delta = ktime_sub(delta, base->get_time());
 | 
						|
			if (delta.tv64 < mindelta.tv64)
 | 
						|
				mindelta.tv64 = delta.tv64;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock_irqrestore(&cpu_base->lock, flags);
 | 
						|
 | 
						|
	if (mindelta.tv64 < 0)
 | 
						|
		mindelta.tv64 = 0;
 | 
						|
	return mindelta;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 | 
						|
			   enum hrtimer_mode mode)
 | 
						|
{
 | 
						|
	struct hrtimer_cpu_base *cpu_base;
 | 
						|
 | 
						|
	memset(timer, 0, sizeof(struct hrtimer));
 | 
						|
 | 
						|
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
 | 
						|
 | 
						|
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
 | 
						|
		clock_id = CLOCK_MONOTONIC;
 | 
						|
 | 
						|
	timer->base = &cpu_base->clock_base[clock_id];
 | 
						|
	INIT_LIST_HEAD(&timer->cb_entry);
 | 
						|
	hrtimer_init_timer_hres(timer);
 | 
						|
 | 
						|
#ifdef CONFIG_TIMER_STATS
 | 
						|
	timer->start_site = NULL;
 | 
						|
	timer->start_pid = -1;
 | 
						|
	memset(timer->start_comm, 0, TASK_COMM_LEN);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * hrtimer_init - initialize a timer to the given clock
 | 
						|
 * @timer:	the timer to be initialized
 | 
						|
 * @clock_id:	the clock to be used
 | 
						|
 * @mode:	timer mode abs/rel
 | 
						|
 */
 | 
						|
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 | 
						|
		  enum hrtimer_mode mode)
 | 
						|
{
 | 
						|
	debug_hrtimer_init(timer);
 | 
						|
	__hrtimer_init(timer, clock_id, mode);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hrtimer_init);
 | 
						|
 | 
						|
/**
 | 
						|
 * hrtimer_get_res - get the timer resolution for a clock
 | 
						|
 * @which_clock: which clock to query
 | 
						|
 * @tp:		 pointer to timespec variable to store the resolution
 | 
						|
 *
 | 
						|
 * Store the resolution of the clock selected by @which_clock in the
 | 
						|
 * variable pointed to by @tp.
 | 
						|
 */
 | 
						|
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
 | 
						|
{
 | 
						|
	struct hrtimer_cpu_base *cpu_base;
 | 
						|
 | 
						|
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
 | 
						|
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hrtimer_get_res);
 | 
						|
 | 
						|
static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
 | 
						|
{
 | 
						|
	spin_lock_irq(&cpu_base->lock);
 | 
						|
 | 
						|
	while (!list_empty(&cpu_base->cb_pending)) {
 | 
						|
		enum hrtimer_restart (*fn)(struct hrtimer *);
 | 
						|
		struct hrtimer *timer;
 | 
						|
		int restart;
 | 
						|
 | 
						|
		timer = list_entry(cpu_base->cb_pending.next,
 | 
						|
				   struct hrtimer, cb_entry);
 | 
						|
 | 
						|
		debug_hrtimer_deactivate(timer);
 | 
						|
		timer_stats_account_hrtimer(timer);
 | 
						|
 | 
						|
		fn = timer->function;
 | 
						|
		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
 | 
						|
		spin_unlock_irq(&cpu_base->lock);
 | 
						|
 | 
						|
		restart = fn(timer);
 | 
						|
 | 
						|
		spin_lock_irq(&cpu_base->lock);
 | 
						|
 | 
						|
		timer->state &= ~HRTIMER_STATE_CALLBACK;
 | 
						|
		if (restart == HRTIMER_RESTART) {
 | 
						|
			BUG_ON(hrtimer_active(timer));
 | 
						|
			/*
 | 
						|
			 * Enqueue the timer, allow reprogramming of the event
 | 
						|
			 * device
 | 
						|
			 */
 | 
						|
			enqueue_hrtimer(timer, timer->base, 1);
 | 
						|
		} else if (hrtimer_active(timer)) {
 | 
						|
			/*
 | 
						|
			 * If the timer was rearmed on another CPU, reprogram
 | 
						|
			 * the event device.
 | 
						|
			 */
 | 
						|
			struct hrtimer_clock_base *base = timer->base;
 | 
						|
 | 
						|
			if (base->first == &timer->node &&
 | 
						|
			    hrtimer_reprogram(timer, base)) {
 | 
						|
				/*
 | 
						|
				 * Timer is expired. Thus move it from tree to
 | 
						|
				 * pending list again.
 | 
						|
				 */
 | 
						|
				__remove_hrtimer(timer, base,
 | 
						|
						 HRTIMER_STATE_PENDING, 0);
 | 
						|
				list_add_tail(&timer->cb_entry,
 | 
						|
					      &base->cpu_base->cb_pending);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock_irq(&cpu_base->lock);
 | 
						|
}
 | 
						|
 | 
						|
static void __run_hrtimer(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	struct hrtimer_clock_base *base = timer->base;
 | 
						|
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 | 
						|
	enum hrtimer_restart (*fn)(struct hrtimer *);
 | 
						|
	int restart;
 | 
						|
 | 
						|
	debug_hrtimer_deactivate(timer);
 | 
						|
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
 | 
						|
	timer_stats_account_hrtimer(timer);
 | 
						|
 | 
						|
	fn = timer->function;
 | 
						|
	if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
 | 
						|
		/*
 | 
						|
		 * Used for scheduler timers, avoid lock inversion with
 | 
						|
		 * rq->lock and tasklist_lock.
 | 
						|
		 *
 | 
						|
		 * These timers are required to deal with enqueue expiry
 | 
						|
		 * themselves and are not allowed to migrate.
 | 
						|
		 */
 | 
						|
		spin_unlock(&cpu_base->lock);
 | 
						|
		restart = fn(timer);
 | 
						|
		spin_lock(&cpu_base->lock);
 | 
						|
	} else
 | 
						|
		restart = fn(timer);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
 | 
						|
	 * reprogramming of the event hardware. This happens at the end of this
 | 
						|
	 * function anyway.
 | 
						|
	 */
 | 
						|
	if (restart != HRTIMER_NORESTART) {
 | 
						|
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 | 
						|
		enqueue_hrtimer(timer, base, 0);
 | 
						|
	}
 | 
						|
	timer->state &= ~HRTIMER_STATE_CALLBACK;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HIGH_RES_TIMERS
 | 
						|
 | 
						|
/*
 | 
						|
 * High resolution timer interrupt
 | 
						|
 * Called with interrupts disabled
 | 
						|
 */
 | 
						|
void hrtimer_interrupt(struct clock_event_device *dev)
 | 
						|
{
 | 
						|
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 | 
						|
	struct hrtimer_clock_base *base;
 | 
						|
	ktime_t expires_next, now;
 | 
						|
	int i, raise = 0;
 | 
						|
 | 
						|
	BUG_ON(!cpu_base->hres_active);
 | 
						|
	cpu_base->nr_events++;
 | 
						|
	dev->next_event.tv64 = KTIME_MAX;
 | 
						|
 | 
						|
 retry:
 | 
						|
	now = ktime_get();
 | 
						|
 | 
						|
	expires_next.tv64 = KTIME_MAX;
 | 
						|
 | 
						|
	base = cpu_base->clock_base;
 | 
						|
 | 
						|
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
 | 
						|
		ktime_t basenow;
 | 
						|
		struct rb_node *node;
 | 
						|
 | 
						|
		spin_lock(&cpu_base->lock);
 | 
						|
 | 
						|
		basenow = ktime_add(now, base->offset);
 | 
						|
 | 
						|
		while ((node = base->first)) {
 | 
						|
			struct hrtimer *timer;
 | 
						|
 | 
						|
			timer = rb_entry(node, struct hrtimer, node);
 | 
						|
 | 
						|
			if (basenow.tv64 < timer->expires.tv64) {
 | 
						|
				ktime_t expires;
 | 
						|
 | 
						|
				expires = ktime_sub(timer->expires,
 | 
						|
						    base->offset);
 | 
						|
				if (expires.tv64 < expires_next.tv64)
 | 
						|
					expires_next = expires;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Move softirq callbacks to the pending list */
 | 
						|
			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
 | 
						|
				__remove_hrtimer(timer, base,
 | 
						|
						 HRTIMER_STATE_PENDING, 0);
 | 
						|
				list_add_tail(&timer->cb_entry,
 | 
						|
					      &base->cpu_base->cb_pending);
 | 
						|
				raise = 1;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			__run_hrtimer(timer);
 | 
						|
		}
 | 
						|
		spin_unlock(&cpu_base->lock);
 | 
						|
		base++;
 | 
						|
	}
 | 
						|
 | 
						|
	cpu_base->expires_next = expires_next;
 | 
						|
 | 
						|
	/* Reprogramming necessary ? */
 | 
						|
	if (expires_next.tv64 != KTIME_MAX) {
 | 
						|
		if (tick_program_event(expires_next, 0))
 | 
						|
			goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Raise softirq ? */
 | 
						|
	if (raise)
 | 
						|
		raise_softirq(HRTIMER_SOFTIRQ);
 | 
						|
}
 | 
						|
 | 
						|
static void run_hrtimer_softirq(struct softirq_action *h)
 | 
						|
{
 | 
						|
	run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
 | 
						|
}
 | 
						|
 | 
						|
#endif	/* CONFIG_HIGH_RES_TIMERS */
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from timer softirq every jiffy, expire hrtimers:
 | 
						|
 *
 | 
						|
 * For HRT its the fall back code to run the softirq in the timer
 | 
						|
 * softirq context in case the hrtimer initialization failed or has
 | 
						|
 * not been done yet.
 | 
						|
 */
 | 
						|
void hrtimer_run_pending(void)
 | 
						|
{
 | 
						|
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 | 
						|
 | 
						|
	if (hrtimer_hres_active())
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This _is_ ugly: We have to check in the softirq context,
 | 
						|
	 * whether we can switch to highres and / or nohz mode. The
 | 
						|
	 * clocksource switch happens in the timer interrupt with
 | 
						|
	 * xtime_lock held. Notification from there only sets the
 | 
						|
	 * check bit in the tick_oneshot code, otherwise we might
 | 
						|
	 * deadlock vs. xtime_lock.
 | 
						|
	 */
 | 
						|
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
 | 
						|
		hrtimer_switch_to_hres();
 | 
						|
 | 
						|
	run_hrtimer_pending(cpu_base);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from hardirq context every jiffy
 | 
						|
 */
 | 
						|
void hrtimer_run_queues(void)
 | 
						|
{
 | 
						|
	struct rb_node *node;
 | 
						|
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 | 
						|
	struct hrtimer_clock_base *base;
 | 
						|
	int index, gettime = 1;
 | 
						|
 | 
						|
	if (hrtimer_hres_active())
 | 
						|
		return;
 | 
						|
 | 
						|
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
 | 
						|
		base = &cpu_base->clock_base[index];
 | 
						|
 | 
						|
		if (!base->first)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (base->get_softirq_time)
 | 
						|
			base->softirq_time = base->get_softirq_time();
 | 
						|
		else if (gettime) {
 | 
						|
			hrtimer_get_softirq_time(cpu_base);
 | 
						|
			gettime = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		spin_lock(&cpu_base->lock);
 | 
						|
 | 
						|
		while ((node = base->first)) {
 | 
						|
			struct hrtimer *timer;
 | 
						|
 | 
						|
			timer = rb_entry(node, struct hrtimer, node);
 | 
						|
			if (base->softirq_time.tv64 <= timer->expires.tv64)
 | 
						|
				break;
 | 
						|
 | 
						|
			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
 | 
						|
				__remove_hrtimer(timer, base,
 | 
						|
					HRTIMER_STATE_PENDING, 0);
 | 
						|
				list_add_tail(&timer->cb_entry,
 | 
						|
					&base->cpu_base->cb_pending);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			__run_hrtimer(timer);
 | 
						|
		}
 | 
						|
		spin_unlock(&cpu_base->lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sleep related functions:
 | 
						|
 */
 | 
						|
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	struct hrtimer_sleeper *t =
 | 
						|
		container_of(timer, struct hrtimer_sleeper, timer);
 | 
						|
	struct task_struct *task = t->task;
 | 
						|
 | 
						|
	t->task = NULL;
 | 
						|
	if (task)
 | 
						|
		wake_up_process(task);
 | 
						|
 | 
						|
	return HRTIMER_NORESTART;
 | 
						|
}
 | 
						|
 | 
						|
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
 | 
						|
{
 | 
						|
	sl->timer.function = hrtimer_wakeup;
 | 
						|
	sl->task = task;
 | 
						|
#ifdef CONFIG_HIGH_RES_TIMERS
 | 
						|
	sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
 | 
						|
{
 | 
						|
	hrtimer_init_sleeper(t, current);
 | 
						|
 | 
						|
	do {
 | 
						|
		set_current_state(TASK_INTERRUPTIBLE);
 | 
						|
		hrtimer_start(&t->timer, t->timer.expires, mode);
 | 
						|
		if (!hrtimer_active(&t->timer))
 | 
						|
			t->task = NULL;
 | 
						|
 | 
						|
		if (likely(t->task))
 | 
						|
			schedule();
 | 
						|
 | 
						|
		hrtimer_cancel(&t->timer);
 | 
						|
		mode = HRTIMER_MODE_ABS;
 | 
						|
 | 
						|
	} while (t->task && !signal_pending(current));
 | 
						|
 | 
						|
	__set_current_state(TASK_RUNNING);
 | 
						|
 | 
						|
	return t->task == NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
 | 
						|
{
 | 
						|
	struct timespec rmt;
 | 
						|
	ktime_t rem;
 | 
						|
 | 
						|
	rem = ktime_sub(timer->expires, timer->base->get_time());
 | 
						|
	if (rem.tv64 <= 0)
 | 
						|
		return 0;
 | 
						|
	rmt = ktime_to_timespec(rem);
 | 
						|
 | 
						|
	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
 | 
						|
{
 | 
						|
	struct hrtimer_sleeper t;
 | 
						|
	struct timespec __user  *rmtp;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
 | 
						|
				HRTIMER_MODE_ABS);
 | 
						|
	t.timer.expires.tv64 = restart->nanosleep.expires;
 | 
						|
 | 
						|
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	rmtp = restart->nanosleep.rmtp;
 | 
						|
	if (rmtp) {
 | 
						|
		ret = update_rmtp(&t.timer, rmtp);
 | 
						|
		if (ret <= 0)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* The other values in restart are already filled in */
 | 
						|
	ret = -ERESTART_RESTARTBLOCK;
 | 
						|
out:
 | 
						|
	destroy_hrtimer_on_stack(&t.timer);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
 | 
						|
		       const enum hrtimer_mode mode, const clockid_t clockid)
 | 
						|
{
 | 
						|
	struct restart_block *restart;
 | 
						|
	struct hrtimer_sleeper t;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	hrtimer_init_on_stack(&t.timer, clockid, mode);
 | 
						|
	t.timer.expires = timespec_to_ktime(*rqtp);
 | 
						|
	if (do_nanosleep(&t, mode))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Absolute timers do not update the rmtp value and restart: */
 | 
						|
	if (mode == HRTIMER_MODE_ABS) {
 | 
						|
		ret = -ERESTARTNOHAND;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (rmtp) {
 | 
						|
		ret = update_rmtp(&t.timer, rmtp);
 | 
						|
		if (ret <= 0)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	restart = ¤t_thread_info()->restart_block;
 | 
						|
	restart->fn = hrtimer_nanosleep_restart;
 | 
						|
	restart->nanosleep.index = t.timer.base->index;
 | 
						|
	restart->nanosleep.rmtp = rmtp;
 | 
						|
	restart->nanosleep.expires = t.timer.expires.tv64;
 | 
						|
 | 
						|
	ret = -ERESTART_RESTARTBLOCK;
 | 
						|
out:
 | 
						|
	destroy_hrtimer_on_stack(&t.timer);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage long
 | 
						|
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
 | 
						|
{
 | 
						|
	struct timespec tu;
 | 
						|
 | 
						|
	if (copy_from_user(&tu, rqtp, sizeof(tu)))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (!timespec_valid(&tu))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Functions related to boot-time initialization:
 | 
						|
 */
 | 
						|
static void __cpuinit init_hrtimers_cpu(int cpu)
 | 
						|
{
 | 
						|
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
 | 
						|
	int i;
 | 
						|
 | 
						|
	spin_lock_init(&cpu_base->lock);
 | 
						|
 | 
						|
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
 | 
						|
		cpu_base->clock_base[i].cpu_base = cpu_base;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&cpu_base->cb_pending);
 | 
						|
	hrtimer_init_hres(cpu_base);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
 | 
						|
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
 | 
						|
				struct hrtimer_clock_base *new_base)
 | 
						|
{
 | 
						|
	struct hrtimer *timer;
 | 
						|
	struct rb_node *node;
 | 
						|
 | 
						|
	while ((node = rb_first(&old_base->active))) {
 | 
						|
		timer = rb_entry(node, struct hrtimer, node);
 | 
						|
		BUG_ON(hrtimer_callback_running(timer));
 | 
						|
		debug_hrtimer_deactivate(timer);
 | 
						|
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
 | 
						|
		timer->base = new_base;
 | 
						|
		/*
 | 
						|
		 * Enqueue the timer. Allow reprogramming of the event device
 | 
						|
		 */
 | 
						|
		enqueue_hrtimer(timer, new_base, 1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void migrate_hrtimers(int cpu)
 | 
						|
{
 | 
						|
	struct hrtimer_cpu_base *old_base, *new_base;
 | 
						|
	int i;
 | 
						|
 | 
						|
	BUG_ON(cpu_online(cpu));
 | 
						|
	old_base = &per_cpu(hrtimer_bases, cpu);
 | 
						|
	new_base = &get_cpu_var(hrtimer_bases);
 | 
						|
 | 
						|
	tick_cancel_sched_timer(cpu);
 | 
						|
 | 
						|
	local_irq_disable();
 | 
						|
	spin_lock(&new_base->lock);
 | 
						|
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
 | 
						|
 | 
						|
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
 | 
						|
		migrate_hrtimer_list(&old_base->clock_base[i],
 | 
						|
				     &new_base->clock_base[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&old_base->lock);
 | 
						|
	spin_unlock(&new_base->lock);
 | 
						|
	local_irq_enable();
 | 
						|
	put_cpu_var(hrtimer_bases);
 | 
						|
}
 | 
						|
#endif /* CONFIG_HOTPLUG_CPU */
 | 
						|
 | 
						|
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
 | 
						|
					unsigned long action, void *hcpu)
 | 
						|
{
 | 
						|
	unsigned int cpu = (long)hcpu;
 | 
						|
 | 
						|
	switch (action) {
 | 
						|
 | 
						|
	case CPU_UP_PREPARE:
 | 
						|
	case CPU_UP_PREPARE_FROZEN:
 | 
						|
		init_hrtimers_cpu(cpu);
 | 
						|
		break;
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
	case CPU_DEAD:
 | 
						|
	case CPU_DEAD_FROZEN:
 | 
						|
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
 | 
						|
		migrate_hrtimers(cpu);
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
static struct notifier_block __cpuinitdata hrtimers_nb = {
 | 
						|
	.notifier_call = hrtimer_cpu_notify,
 | 
						|
};
 | 
						|
 | 
						|
void __init hrtimers_init(void)
 | 
						|
{
 | 
						|
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
 | 
						|
			  (void *)(long)smp_processor_id());
 | 
						|
	register_cpu_notifier(&hrtimers_nb);
 | 
						|
#ifdef CONFIG_HIGH_RES_TIMERS
 | 
						|
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 |