mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	When REGULATOR_CHANGE_DRMS is not set, drms_uA_update is a no-op.
It used to print a debug message, which was dropped in commit
8a34e979f6 ("regulator: refactor valid_ops_mask checking code")
Let's bring the debug message back, because it helps find missing
regulator-allow-set-load properties.
Signed-off-by: Marc Gonzalez <marc.w.gonzalez@free.fr>
Signed-off-by: Mark Brown <broonie@kernel.org>
		
	
			
		
			
				
	
	
		
			5572 lines
		
	
	
	
		
			142 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5572 lines
		
	
	
	
		
			142 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * core.c  --  Voltage/Current Regulator framework.
 | 
						|
 *
 | 
						|
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
 | 
						|
 * Copyright 2008 SlimLogic Ltd.
 | 
						|
 *
 | 
						|
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
 | 
						|
 *
 | 
						|
 *  This program is free software; you can redistribute  it and/or modify it
 | 
						|
 *  under  the terms of  the GNU General  Public License as published by the
 | 
						|
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 | 
						|
 *  option) any later version.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/debugfs.h>
 | 
						|
#include <linux/device.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/async.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/suspend.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/gpio/consumer.h>
 | 
						|
#include <linux/of.h>
 | 
						|
#include <linux/regmap.h>
 | 
						|
#include <linux/regulator/of_regulator.h>
 | 
						|
#include <linux/regulator/consumer.h>
 | 
						|
#include <linux/regulator/driver.h>
 | 
						|
#include <linux/regulator/machine.h>
 | 
						|
#include <linux/module.h>
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include <trace/events/regulator.h>
 | 
						|
 | 
						|
#include "dummy.h"
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
#define rdev_crit(rdev, fmt, ...)					\
 | 
						|
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
 | 
						|
#define rdev_err(rdev, fmt, ...)					\
 | 
						|
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
 | 
						|
#define rdev_warn(rdev, fmt, ...)					\
 | 
						|
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
 | 
						|
#define rdev_info(rdev, fmt, ...)					\
 | 
						|
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
 | 
						|
#define rdev_dbg(rdev, fmt, ...)					\
 | 
						|
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
 | 
						|
 | 
						|
static DEFINE_WW_CLASS(regulator_ww_class);
 | 
						|
static DEFINE_MUTEX(regulator_nesting_mutex);
 | 
						|
static DEFINE_MUTEX(regulator_list_mutex);
 | 
						|
static LIST_HEAD(regulator_map_list);
 | 
						|
static LIST_HEAD(regulator_ena_gpio_list);
 | 
						|
static LIST_HEAD(regulator_supply_alias_list);
 | 
						|
static bool has_full_constraints;
 | 
						|
 | 
						|
static struct dentry *debugfs_root;
 | 
						|
 | 
						|
/*
 | 
						|
 * struct regulator_map
 | 
						|
 *
 | 
						|
 * Used to provide symbolic supply names to devices.
 | 
						|
 */
 | 
						|
struct regulator_map {
 | 
						|
	struct list_head list;
 | 
						|
	const char *dev_name;   /* The dev_name() for the consumer */
 | 
						|
	const char *supply;
 | 
						|
	struct regulator_dev *regulator;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * struct regulator_enable_gpio
 | 
						|
 *
 | 
						|
 * Management for shared enable GPIO pin
 | 
						|
 */
 | 
						|
struct regulator_enable_gpio {
 | 
						|
	struct list_head list;
 | 
						|
	struct gpio_desc *gpiod;
 | 
						|
	u32 enable_count;	/* a number of enabled shared GPIO */
 | 
						|
	u32 request_count;	/* a number of requested shared GPIO */
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * struct regulator_supply_alias
 | 
						|
 *
 | 
						|
 * Used to map lookups for a supply onto an alternative device.
 | 
						|
 */
 | 
						|
struct regulator_supply_alias {
 | 
						|
	struct list_head list;
 | 
						|
	struct device *src_dev;
 | 
						|
	const char *src_supply;
 | 
						|
	struct device *alias_dev;
 | 
						|
	const char *alias_supply;
 | 
						|
};
 | 
						|
 | 
						|
static int _regulator_is_enabled(struct regulator_dev *rdev);
 | 
						|
static int _regulator_disable(struct regulator *regulator);
 | 
						|
static int _regulator_get_voltage(struct regulator_dev *rdev);
 | 
						|
static int _regulator_get_current_limit(struct regulator_dev *rdev);
 | 
						|
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 | 
						|
static int _notifier_call_chain(struct regulator_dev *rdev,
 | 
						|
				  unsigned long event, void *data);
 | 
						|
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 | 
						|
				     int min_uV, int max_uV);
 | 
						|
static int regulator_balance_voltage(struct regulator_dev *rdev,
 | 
						|
				     suspend_state_t state);
 | 
						|
static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
 | 
						|
				      int min_uV, int max_uV,
 | 
						|
				      suspend_state_t state);
 | 
						|
static struct regulator *create_regulator(struct regulator_dev *rdev,
 | 
						|
					  struct device *dev,
 | 
						|
					  const char *supply_name);
 | 
						|
static void _regulator_put(struct regulator *regulator);
 | 
						|
 | 
						|
static const char *rdev_get_name(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	if (rdev->constraints && rdev->constraints->name)
 | 
						|
		return rdev->constraints->name;
 | 
						|
	else if (rdev->desc->name)
 | 
						|
		return rdev->desc->name;
 | 
						|
	else
 | 
						|
		return "";
 | 
						|
}
 | 
						|
 | 
						|
static bool have_full_constraints(void)
 | 
						|
{
 | 
						|
	return has_full_constraints || of_have_populated_dt();
 | 
						|
}
 | 
						|
 | 
						|
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 | 
						|
{
 | 
						|
	if (!rdev->constraints) {
 | 
						|
		rdev_err(rdev, "no constraints\n");
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->constraints->valid_ops_mask & ops)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_lock_nested - lock a single regulator
 | 
						|
 * @rdev:		regulator source
 | 
						|
 * @ww_ctx:		w/w mutex acquire context
 | 
						|
 *
 | 
						|
 * This function can be called many times by one task on
 | 
						|
 * a single regulator and its mutex will be locked only
 | 
						|
 * once. If a task, which is calling this function is other
 | 
						|
 * than the one, which initially locked the mutex, it will
 | 
						|
 * wait on mutex.
 | 
						|
 */
 | 
						|
static inline int regulator_lock_nested(struct regulator_dev *rdev,
 | 
						|
					struct ww_acquire_ctx *ww_ctx)
 | 
						|
{
 | 
						|
	bool lock = false;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	mutex_lock(®ulator_nesting_mutex);
 | 
						|
 | 
						|
	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 | 
						|
		if (rdev->mutex_owner == current)
 | 
						|
			rdev->ref_cnt++;
 | 
						|
		else
 | 
						|
			lock = true;
 | 
						|
 | 
						|
		if (lock) {
 | 
						|
			mutex_unlock(®ulator_nesting_mutex);
 | 
						|
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 | 
						|
			mutex_lock(®ulator_nesting_mutex);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		lock = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (lock && ret != -EDEADLK) {
 | 
						|
		rdev->ref_cnt++;
 | 
						|
		rdev->mutex_owner = current;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_unlock(®ulator_nesting_mutex);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_lock - lock a single regulator
 | 
						|
 * @rdev:		regulator source
 | 
						|
 *
 | 
						|
 * This function can be called many times by one task on
 | 
						|
 * a single regulator and its mutex will be locked only
 | 
						|
 * once. If a task, which is calling this function is other
 | 
						|
 * than the one, which initially locked the mutex, it will
 | 
						|
 * wait on mutex.
 | 
						|
 */
 | 
						|
void regulator_lock(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	regulator_lock_nested(rdev, NULL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_lock);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_unlock - unlock a single regulator
 | 
						|
 * @rdev:		regulator_source
 | 
						|
 *
 | 
						|
 * This function unlocks the mutex when the
 | 
						|
 * reference counter reaches 0.
 | 
						|
 */
 | 
						|
void regulator_unlock(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	mutex_lock(®ulator_nesting_mutex);
 | 
						|
 | 
						|
	if (--rdev->ref_cnt == 0) {
 | 
						|
		rdev->mutex_owner = NULL;
 | 
						|
		ww_mutex_unlock(&rdev->mutex);
 | 
						|
	}
 | 
						|
 | 
						|
	WARN_ON_ONCE(rdev->ref_cnt < 0);
 | 
						|
 | 
						|
	mutex_unlock(®ulator_nesting_mutex);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_unlock);
 | 
						|
 | 
						|
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	struct regulator_dev *c_rdev;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 | 
						|
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 | 
						|
 | 
						|
		if (rdev->supply->rdev == c_rdev)
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static void regulator_unlock_recursive(struct regulator_dev *rdev,
 | 
						|
				       unsigned int n_coupled)
 | 
						|
{
 | 
						|
	struct regulator_dev *c_rdev;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = n_coupled; i > 0; i--) {
 | 
						|
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 | 
						|
 | 
						|
		if (!c_rdev)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
 | 
						|
			regulator_unlock_recursive(
 | 
						|
					c_rdev->supply->rdev,
 | 
						|
					c_rdev->coupling_desc.n_coupled);
 | 
						|
 | 
						|
		regulator_unlock(c_rdev);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_lock_recursive(struct regulator_dev *rdev,
 | 
						|
				    struct regulator_dev **new_contended_rdev,
 | 
						|
				    struct regulator_dev **old_contended_rdev,
 | 
						|
				    struct ww_acquire_ctx *ww_ctx)
 | 
						|
{
 | 
						|
	struct regulator_dev *c_rdev;
 | 
						|
	int i, err;
 | 
						|
 | 
						|
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 | 
						|
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 | 
						|
 | 
						|
		if (!c_rdev)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (c_rdev != *old_contended_rdev) {
 | 
						|
			err = regulator_lock_nested(c_rdev, ww_ctx);
 | 
						|
			if (err) {
 | 
						|
				if (err == -EDEADLK) {
 | 
						|
					*new_contended_rdev = c_rdev;
 | 
						|
					goto err_unlock;
 | 
						|
				}
 | 
						|
 | 
						|
				/* shouldn't happen */
 | 
						|
				WARN_ON_ONCE(err != -EALREADY);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			*old_contended_rdev = NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 | 
						|
			err = regulator_lock_recursive(c_rdev->supply->rdev,
 | 
						|
						       new_contended_rdev,
 | 
						|
						       old_contended_rdev,
 | 
						|
						       ww_ctx);
 | 
						|
			if (err) {
 | 
						|
				regulator_unlock(c_rdev);
 | 
						|
				goto err_unlock;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_unlock:
 | 
						|
	regulator_unlock_recursive(rdev, i);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 | 
						|
 *				regulators
 | 
						|
 * @rdev:			regulator source
 | 
						|
 * @ww_ctx:			w/w mutex acquire context
 | 
						|
 *
 | 
						|
 * Unlock all regulators related with rdev by coupling or supplying.
 | 
						|
 */
 | 
						|
static void regulator_unlock_dependent(struct regulator_dev *rdev,
 | 
						|
				       struct ww_acquire_ctx *ww_ctx)
 | 
						|
{
 | 
						|
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 | 
						|
	ww_acquire_fini(ww_ctx);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 | 
						|
 * @rdev:			regulator source
 | 
						|
 * @ww_ctx:			w/w mutex acquire context
 | 
						|
 *
 | 
						|
 * This function as a wrapper on regulator_lock_recursive(), which locks
 | 
						|
 * all regulators related with rdev by coupling or supplying.
 | 
						|
 */
 | 
						|
static void regulator_lock_dependent(struct regulator_dev *rdev,
 | 
						|
				     struct ww_acquire_ctx *ww_ctx)
 | 
						|
{
 | 
						|
	struct regulator_dev *new_contended_rdev = NULL;
 | 
						|
	struct regulator_dev *old_contended_rdev = NULL;
 | 
						|
	int err;
 | 
						|
 | 
						|
	mutex_lock(®ulator_list_mutex);
 | 
						|
 | 
						|
	ww_acquire_init(ww_ctx, ®ulator_ww_class);
 | 
						|
 | 
						|
	do {
 | 
						|
		if (new_contended_rdev) {
 | 
						|
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 | 
						|
			old_contended_rdev = new_contended_rdev;
 | 
						|
			old_contended_rdev->ref_cnt++;
 | 
						|
		}
 | 
						|
 | 
						|
		err = regulator_lock_recursive(rdev,
 | 
						|
					       &new_contended_rdev,
 | 
						|
					       &old_contended_rdev,
 | 
						|
					       ww_ctx);
 | 
						|
 | 
						|
		if (old_contended_rdev)
 | 
						|
			regulator_unlock(old_contended_rdev);
 | 
						|
 | 
						|
	} while (err == -EDEADLK);
 | 
						|
 | 
						|
	ww_acquire_done(ww_ctx);
 | 
						|
 | 
						|
	mutex_unlock(®ulator_list_mutex);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * of_get_child_regulator - get a child regulator device node
 | 
						|
 * based on supply name
 | 
						|
 * @parent: Parent device node
 | 
						|
 * @prop_name: Combination regulator supply name and "-supply"
 | 
						|
 *
 | 
						|
 * Traverse all child nodes.
 | 
						|
 * Extract the child regulator device node corresponding to the supply name.
 | 
						|
 * returns the device node corresponding to the regulator if found, else
 | 
						|
 * returns NULL.
 | 
						|
 */
 | 
						|
static struct device_node *of_get_child_regulator(struct device_node *parent,
 | 
						|
						  const char *prop_name)
 | 
						|
{
 | 
						|
	struct device_node *regnode = NULL;
 | 
						|
	struct device_node *child = NULL;
 | 
						|
 | 
						|
	for_each_child_of_node(parent, child) {
 | 
						|
		regnode = of_parse_phandle(child, prop_name, 0);
 | 
						|
 | 
						|
		if (!regnode) {
 | 
						|
			regnode = of_get_child_regulator(child, prop_name);
 | 
						|
			if (regnode)
 | 
						|
				return regnode;
 | 
						|
		} else {
 | 
						|
			return regnode;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * of_get_regulator - get a regulator device node based on supply name
 | 
						|
 * @dev: Device pointer for the consumer (of regulator) device
 | 
						|
 * @supply: regulator supply name
 | 
						|
 *
 | 
						|
 * Extract the regulator device node corresponding to the supply name.
 | 
						|
 * returns the device node corresponding to the regulator if found, else
 | 
						|
 * returns NULL.
 | 
						|
 */
 | 
						|
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 | 
						|
{
 | 
						|
	struct device_node *regnode = NULL;
 | 
						|
	char prop_name[32]; /* 32 is max size of property name */
 | 
						|
 | 
						|
	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 | 
						|
 | 
						|
	snprintf(prop_name, 32, "%s-supply", supply);
 | 
						|
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 | 
						|
 | 
						|
	if (!regnode) {
 | 
						|
		regnode = of_get_child_regulator(dev->of_node, prop_name);
 | 
						|
		if (regnode)
 | 
						|
			return regnode;
 | 
						|
 | 
						|
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 | 
						|
				prop_name, dev->of_node);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return regnode;
 | 
						|
}
 | 
						|
 | 
						|
/* Platform voltage constraint check */
 | 
						|
static int regulator_check_voltage(struct regulator_dev *rdev,
 | 
						|
				   int *min_uV, int *max_uV)
 | 
						|
{
 | 
						|
	BUG_ON(*min_uV > *max_uV);
 | 
						|
 | 
						|
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 | 
						|
		rdev_err(rdev, "voltage operation not allowed\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	if (*max_uV > rdev->constraints->max_uV)
 | 
						|
		*max_uV = rdev->constraints->max_uV;
 | 
						|
	if (*min_uV < rdev->constraints->min_uV)
 | 
						|
		*min_uV = rdev->constraints->min_uV;
 | 
						|
 | 
						|
	if (*min_uV > *max_uV) {
 | 
						|
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 | 
						|
			 *min_uV, *max_uV);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* return 0 if the state is valid */
 | 
						|
static int regulator_check_states(suspend_state_t state)
 | 
						|
{
 | 
						|
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 | 
						|
}
 | 
						|
 | 
						|
/* Make sure we select a voltage that suits the needs of all
 | 
						|
 * regulator consumers
 | 
						|
 */
 | 
						|
static int regulator_check_consumers(struct regulator_dev *rdev,
 | 
						|
				     int *min_uV, int *max_uV,
 | 
						|
				     suspend_state_t state)
 | 
						|
{
 | 
						|
	struct regulator *regulator;
 | 
						|
	struct regulator_voltage *voltage;
 | 
						|
 | 
						|
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 | 
						|
		voltage = ®ulator->voltage[state];
 | 
						|
		/*
 | 
						|
		 * Assume consumers that didn't say anything are OK
 | 
						|
		 * with anything in the constraint range.
 | 
						|
		 */
 | 
						|
		if (!voltage->min_uV && !voltage->max_uV)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (*max_uV > voltage->max_uV)
 | 
						|
			*max_uV = voltage->max_uV;
 | 
						|
		if (*min_uV < voltage->min_uV)
 | 
						|
			*min_uV = voltage->min_uV;
 | 
						|
	}
 | 
						|
 | 
						|
	if (*min_uV > *max_uV) {
 | 
						|
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 | 
						|
			*min_uV, *max_uV);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* current constraint check */
 | 
						|
static int regulator_check_current_limit(struct regulator_dev *rdev,
 | 
						|
					int *min_uA, int *max_uA)
 | 
						|
{
 | 
						|
	BUG_ON(*min_uA > *max_uA);
 | 
						|
 | 
						|
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 | 
						|
		rdev_err(rdev, "current operation not allowed\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	if (*max_uA > rdev->constraints->max_uA)
 | 
						|
		*max_uA = rdev->constraints->max_uA;
 | 
						|
	if (*min_uA < rdev->constraints->min_uA)
 | 
						|
		*min_uA = rdev->constraints->min_uA;
 | 
						|
 | 
						|
	if (*min_uA > *max_uA) {
 | 
						|
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 | 
						|
			 *min_uA, *max_uA);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* operating mode constraint check */
 | 
						|
static int regulator_mode_constrain(struct regulator_dev *rdev,
 | 
						|
				    unsigned int *mode)
 | 
						|
{
 | 
						|
	switch (*mode) {
 | 
						|
	case REGULATOR_MODE_FAST:
 | 
						|
	case REGULATOR_MODE_NORMAL:
 | 
						|
	case REGULATOR_MODE_IDLE:
 | 
						|
	case REGULATOR_MODE_STANDBY:
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 | 
						|
		rdev_err(rdev, "mode operation not allowed\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	/* The modes are bitmasks, the most power hungry modes having
 | 
						|
	 * the lowest values. If the requested mode isn't supported
 | 
						|
	 * try higher modes. */
 | 
						|
	while (*mode) {
 | 
						|
		if (rdev->constraints->valid_modes_mask & *mode)
 | 
						|
			return 0;
 | 
						|
		*mode /= 2;
 | 
						|
	}
 | 
						|
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct regulator_state *
 | 
						|
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 | 
						|
{
 | 
						|
	if (rdev->constraints == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	switch (state) {
 | 
						|
	case PM_SUSPEND_STANDBY:
 | 
						|
		return &rdev->constraints->state_standby;
 | 
						|
	case PM_SUSPEND_MEM:
 | 
						|
		return &rdev->constraints->state_mem;
 | 
						|
	case PM_SUSPEND_MAX:
 | 
						|
		return &rdev->constraints->state_disk;
 | 
						|
	default:
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t regulator_uV_show(struct device *dev,
 | 
						|
				struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_uA_show(struct device *dev,
 | 
						|
				struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 | 
						|
}
 | 
						|
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 | 
						|
 | 
						|
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 | 
						|
			 char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 | 
						|
}
 | 
						|
static DEVICE_ATTR_RO(name);
 | 
						|
 | 
						|
static const char *regulator_opmode_to_str(int mode)
 | 
						|
{
 | 
						|
	switch (mode) {
 | 
						|
	case REGULATOR_MODE_FAST:
 | 
						|
		return "fast";
 | 
						|
	case REGULATOR_MODE_NORMAL:
 | 
						|
		return "normal";
 | 
						|
	case REGULATOR_MODE_IDLE:
 | 
						|
		return "idle";
 | 
						|
	case REGULATOR_MODE_STANDBY:
 | 
						|
		return "standby";
 | 
						|
	}
 | 
						|
	return "unknown";
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t regulator_print_opmode(char *buf, int mode)
 | 
						|
{
 | 
						|
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t regulator_opmode_show(struct device *dev,
 | 
						|
				    struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 | 
						|
}
 | 
						|
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_print_state(char *buf, int state)
 | 
						|
{
 | 
						|
	if (state > 0)
 | 
						|
		return sprintf(buf, "enabled\n");
 | 
						|
	else if (state == 0)
 | 
						|
		return sprintf(buf, "disabled\n");
 | 
						|
	else
 | 
						|
		return sprintf(buf, "unknown\n");
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t regulator_state_show(struct device *dev,
 | 
						|
				   struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_status_show(struct device *dev,
 | 
						|
				   struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
	int status;
 | 
						|
	char *label;
 | 
						|
 | 
						|
	status = rdev->desc->ops->get_status(rdev);
 | 
						|
	if (status < 0)
 | 
						|
		return status;
 | 
						|
 | 
						|
	switch (status) {
 | 
						|
	case REGULATOR_STATUS_OFF:
 | 
						|
		label = "off";
 | 
						|
		break;
 | 
						|
	case REGULATOR_STATUS_ON:
 | 
						|
		label = "on";
 | 
						|
		break;
 | 
						|
	case REGULATOR_STATUS_ERROR:
 | 
						|
		label = "error";
 | 
						|
		break;
 | 
						|
	case REGULATOR_STATUS_FAST:
 | 
						|
		label = "fast";
 | 
						|
		break;
 | 
						|
	case REGULATOR_STATUS_NORMAL:
 | 
						|
		label = "normal";
 | 
						|
		break;
 | 
						|
	case REGULATOR_STATUS_IDLE:
 | 
						|
		label = "idle";
 | 
						|
		break;
 | 
						|
	case REGULATOR_STATUS_STANDBY:
 | 
						|
		label = "standby";
 | 
						|
		break;
 | 
						|
	case REGULATOR_STATUS_BYPASS:
 | 
						|
		label = "bypass";
 | 
						|
		break;
 | 
						|
	case REGULATOR_STATUS_UNDEFINED:
 | 
						|
		label = "undefined";
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -ERANGE;
 | 
						|
	}
 | 
						|
 | 
						|
	return sprintf(buf, "%s\n", label);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_min_uA_show(struct device *dev,
 | 
						|
				    struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	if (!rdev->constraints)
 | 
						|
		return sprintf(buf, "constraint not defined\n");
 | 
						|
 | 
						|
	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_max_uA_show(struct device *dev,
 | 
						|
				    struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	if (!rdev->constraints)
 | 
						|
		return sprintf(buf, "constraint not defined\n");
 | 
						|
 | 
						|
	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_min_uV_show(struct device *dev,
 | 
						|
				    struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	if (!rdev->constraints)
 | 
						|
		return sprintf(buf, "constraint not defined\n");
 | 
						|
 | 
						|
	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_max_uV_show(struct device *dev,
 | 
						|
				    struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	if (!rdev->constraints)
 | 
						|
		return sprintf(buf, "constraint not defined\n");
 | 
						|
 | 
						|
	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_total_uA_show(struct device *dev,
 | 
						|
				      struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
	struct regulator *regulator;
 | 
						|
	int uA = 0;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 | 
						|
		if (regulator->enable_count)
 | 
						|
			uA += regulator->uA_load;
 | 
						|
	}
 | 
						|
	regulator_unlock(rdev);
 | 
						|
	return sprintf(buf, "%d\n", uA);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 | 
						|
 | 
						|
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 | 
						|
			      char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
	return sprintf(buf, "%d\n", rdev->use_count);
 | 
						|
}
 | 
						|
static DEVICE_ATTR_RO(num_users);
 | 
						|
 | 
						|
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 | 
						|
			 char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	switch (rdev->desc->type) {
 | 
						|
	case REGULATOR_VOLTAGE:
 | 
						|
		return sprintf(buf, "voltage\n");
 | 
						|
	case REGULATOR_CURRENT:
 | 
						|
		return sprintf(buf, "current\n");
 | 
						|
	}
 | 
						|
	return sprintf(buf, "unknown\n");
 | 
						|
}
 | 
						|
static DEVICE_ATTR_RO(type);
 | 
						|
 | 
						|
static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 | 
						|
				struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 | 
						|
		regulator_suspend_mem_uV_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 | 
						|
				struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 | 
						|
		regulator_suspend_disk_uV_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 | 
						|
				struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 | 
						|
		regulator_suspend_standby_uV_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 | 
						|
				struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return regulator_print_opmode(buf,
 | 
						|
		rdev->constraints->state_mem.mode);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(suspend_mem_mode, 0444,
 | 
						|
		regulator_suspend_mem_mode_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 | 
						|
				struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return regulator_print_opmode(buf,
 | 
						|
		rdev->constraints->state_disk.mode);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(suspend_disk_mode, 0444,
 | 
						|
		regulator_suspend_disk_mode_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 | 
						|
				struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return regulator_print_opmode(buf,
 | 
						|
		rdev->constraints->state_standby.mode);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(suspend_standby_mode, 0444,
 | 
						|
		regulator_suspend_standby_mode_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 | 
						|
				   struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return regulator_print_state(buf,
 | 
						|
			rdev->constraints->state_mem.enabled);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(suspend_mem_state, 0444,
 | 
						|
		regulator_suspend_mem_state_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 | 
						|
				   struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return regulator_print_state(buf,
 | 
						|
			rdev->constraints->state_disk.enabled);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(suspend_disk_state, 0444,
 | 
						|
		regulator_suspend_disk_state_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 | 
						|
				   struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	return regulator_print_state(buf,
 | 
						|
			rdev->constraints->state_standby.enabled);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(suspend_standby_state, 0444,
 | 
						|
		regulator_suspend_standby_state_show, NULL);
 | 
						|
 | 
						|
static ssize_t regulator_bypass_show(struct device *dev,
 | 
						|
				     struct device_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
	const char *report;
 | 
						|
	bool bypass;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 | 
						|
 | 
						|
	if (ret != 0)
 | 
						|
		report = "unknown";
 | 
						|
	else if (bypass)
 | 
						|
		report = "enabled";
 | 
						|
	else
 | 
						|
		report = "disabled";
 | 
						|
 | 
						|
	return sprintf(buf, "%s\n", report);
 | 
						|
}
 | 
						|
static DEVICE_ATTR(bypass, 0444,
 | 
						|
		   regulator_bypass_show, NULL);
 | 
						|
 | 
						|
/* Calculate the new optimum regulator operating mode based on the new total
 | 
						|
 * consumer load. All locks held by caller */
 | 
						|
static int drms_uA_update(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	struct regulator *sibling;
 | 
						|
	int current_uA = 0, output_uV, input_uV, err;
 | 
						|
	unsigned int mode;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * first check to see if we can set modes at all, otherwise just
 | 
						|
	 * tell the consumer everything is OK.
 | 
						|
	 */
 | 
						|
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 | 
						|
		rdev_dbg(rdev, "DRMS operation not allowed\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!rdev->desc->ops->get_optimum_mode &&
 | 
						|
	    !rdev->desc->ops->set_load)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!rdev->desc->ops->set_mode &&
 | 
						|
	    !rdev->desc->ops->set_load)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* calc total requested load */
 | 
						|
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 | 
						|
		if (sibling->enable_count)
 | 
						|
			current_uA += sibling->uA_load;
 | 
						|
	}
 | 
						|
 | 
						|
	current_uA += rdev->constraints->system_load;
 | 
						|
 | 
						|
	if (rdev->desc->ops->set_load) {
 | 
						|
		/* set the optimum mode for our new total regulator load */
 | 
						|
		err = rdev->desc->ops->set_load(rdev, current_uA);
 | 
						|
		if (err < 0)
 | 
						|
			rdev_err(rdev, "failed to set load %d\n", current_uA);
 | 
						|
	} else {
 | 
						|
		/* get output voltage */
 | 
						|
		output_uV = _regulator_get_voltage(rdev);
 | 
						|
		if (output_uV <= 0) {
 | 
						|
			rdev_err(rdev, "invalid output voltage found\n");
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		/* get input voltage */
 | 
						|
		input_uV = 0;
 | 
						|
		if (rdev->supply)
 | 
						|
			input_uV = regulator_get_voltage(rdev->supply);
 | 
						|
		if (input_uV <= 0)
 | 
						|
			input_uV = rdev->constraints->input_uV;
 | 
						|
		if (input_uV <= 0) {
 | 
						|
			rdev_err(rdev, "invalid input voltage found\n");
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		/* now get the optimum mode for our new total regulator load */
 | 
						|
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 | 
						|
							 output_uV, current_uA);
 | 
						|
 | 
						|
		/* check the new mode is allowed */
 | 
						|
		err = regulator_mode_constrain(rdev, &mode);
 | 
						|
		if (err < 0) {
 | 
						|
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 | 
						|
				 current_uA, input_uV, output_uV);
 | 
						|
			return err;
 | 
						|
		}
 | 
						|
 | 
						|
		err = rdev->desc->ops->set_mode(rdev, mode);
 | 
						|
		if (err < 0)
 | 
						|
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int suspend_set_state(struct regulator_dev *rdev,
 | 
						|
				    suspend_state_t state)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct regulator_state *rstate;
 | 
						|
 | 
						|
	rstate = regulator_get_suspend_state(rdev, state);
 | 
						|
	if (rstate == NULL)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* If we have no suspend mode configuration don't set anything;
 | 
						|
	 * only warn if the driver implements set_suspend_voltage or
 | 
						|
	 * set_suspend_mode callback.
 | 
						|
	 */
 | 
						|
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 | 
						|
	    rstate->enabled != DISABLE_IN_SUSPEND) {
 | 
						|
		if (rdev->desc->ops->set_suspend_voltage ||
 | 
						|
		    rdev->desc->ops->set_suspend_mode)
 | 
						|
			rdev_warn(rdev, "No configuration\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
 | 
						|
		rdev->desc->ops->set_suspend_enable)
 | 
						|
		ret = rdev->desc->ops->set_suspend_enable(rdev);
 | 
						|
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
 | 
						|
		rdev->desc->ops->set_suspend_disable)
 | 
						|
		ret = rdev->desc->ops->set_suspend_disable(rdev);
 | 
						|
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 | 
						|
		ret = 0;
 | 
						|
 | 
						|
	if (ret < 0) {
 | 
						|
		rdev_err(rdev, "failed to enabled/disable\n");
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 | 
						|
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 | 
						|
		if (ret < 0) {
 | 
						|
			rdev_err(rdev, "failed to set voltage\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 | 
						|
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 | 
						|
		if (ret < 0) {
 | 
						|
			rdev_err(rdev, "failed to set mode\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void print_constraints(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	struct regulation_constraints *constraints = rdev->constraints;
 | 
						|
	char buf[160] = "";
 | 
						|
	size_t len = sizeof(buf) - 1;
 | 
						|
	int count = 0;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (constraints->min_uV && constraints->max_uV) {
 | 
						|
		if (constraints->min_uV == constraints->max_uV)
 | 
						|
			count += scnprintf(buf + count, len - count, "%d mV ",
 | 
						|
					   constraints->min_uV / 1000);
 | 
						|
		else
 | 
						|
			count += scnprintf(buf + count, len - count,
 | 
						|
					   "%d <--> %d mV ",
 | 
						|
					   constraints->min_uV / 1000,
 | 
						|
					   constraints->max_uV / 1000);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!constraints->min_uV ||
 | 
						|
	    constraints->min_uV != constraints->max_uV) {
 | 
						|
		ret = _regulator_get_voltage(rdev);
 | 
						|
		if (ret > 0)
 | 
						|
			count += scnprintf(buf + count, len - count,
 | 
						|
					   "at %d mV ", ret / 1000);
 | 
						|
	}
 | 
						|
 | 
						|
	if (constraints->uV_offset)
 | 
						|
		count += scnprintf(buf + count, len - count, "%dmV offset ",
 | 
						|
				   constraints->uV_offset / 1000);
 | 
						|
 | 
						|
	if (constraints->min_uA && constraints->max_uA) {
 | 
						|
		if (constraints->min_uA == constraints->max_uA)
 | 
						|
			count += scnprintf(buf + count, len - count, "%d mA ",
 | 
						|
					   constraints->min_uA / 1000);
 | 
						|
		else
 | 
						|
			count += scnprintf(buf + count, len - count,
 | 
						|
					   "%d <--> %d mA ",
 | 
						|
					   constraints->min_uA / 1000,
 | 
						|
					   constraints->max_uA / 1000);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!constraints->min_uA ||
 | 
						|
	    constraints->min_uA != constraints->max_uA) {
 | 
						|
		ret = _regulator_get_current_limit(rdev);
 | 
						|
		if (ret > 0)
 | 
						|
			count += scnprintf(buf + count, len - count,
 | 
						|
					   "at %d mA ", ret / 1000);
 | 
						|
	}
 | 
						|
 | 
						|
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 | 
						|
		count += scnprintf(buf + count, len - count, "fast ");
 | 
						|
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 | 
						|
		count += scnprintf(buf + count, len - count, "normal ");
 | 
						|
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 | 
						|
		count += scnprintf(buf + count, len - count, "idle ");
 | 
						|
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 | 
						|
		count += scnprintf(buf + count, len - count, "standby");
 | 
						|
 | 
						|
	if (!count)
 | 
						|
		scnprintf(buf, len, "no parameters");
 | 
						|
 | 
						|
	rdev_dbg(rdev, "%s\n", buf);
 | 
						|
 | 
						|
	if ((constraints->min_uV != constraints->max_uV) &&
 | 
						|
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
 | 
						|
		rdev_warn(rdev,
 | 
						|
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 | 
						|
}
 | 
						|
 | 
						|
static int machine_constraints_voltage(struct regulator_dev *rdev,
 | 
						|
	struct regulation_constraints *constraints)
 | 
						|
{
 | 
						|
	const struct regulator_ops *ops = rdev->desc->ops;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* do we need to apply the constraint voltage */
 | 
						|
	if (rdev->constraints->apply_uV &&
 | 
						|
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
 | 
						|
		int target_min, target_max;
 | 
						|
		int current_uV = _regulator_get_voltage(rdev);
 | 
						|
 | 
						|
		if (current_uV == -ENOTRECOVERABLE) {
 | 
						|
			/* This regulator can't be read and must be initialized */
 | 
						|
			rdev_info(rdev, "Setting %d-%duV\n",
 | 
						|
				  rdev->constraints->min_uV,
 | 
						|
				  rdev->constraints->max_uV);
 | 
						|
			_regulator_do_set_voltage(rdev,
 | 
						|
						  rdev->constraints->min_uV,
 | 
						|
						  rdev->constraints->max_uV);
 | 
						|
			current_uV = _regulator_get_voltage(rdev);
 | 
						|
		}
 | 
						|
 | 
						|
		if (current_uV < 0) {
 | 
						|
			rdev_err(rdev,
 | 
						|
				 "failed to get the current voltage(%d)\n",
 | 
						|
				 current_uV);
 | 
						|
			return current_uV;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we're below the minimum voltage move up to the
 | 
						|
		 * minimum voltage, if we're above the maximum voltage
 | 
						|
		 * then move down to the maximum.
 | 
						|
		 */
 | 
						|
		target_min = current_uV;
 | 
						|
		target_max = current_uV;
 | 
						|
 | 
						|
		if (current_uV < rdev->constraints->min_uV) {
 | 
						|
			target_min = rdev->constraints->min_uV;
 | 
						|
			target_max = rdev->constraints->min_uV;
 | 
						|
		}
 | 
						|
 | 
						|
		if (current_uV > rdev->constraints->max_uV) {
 | 
						|
			target_min = rdev->constraints->max_uV;
 | 
						|
			target_max = rdev->constraints->max_uV;
 | 
						|
		}
 | 
						|
 | 
						|
		if (target_min != current_uV || target_max != current_uV) {
 | 
						|
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
 | 
						|
				  current_uV, target_min, target_max);
 | 
						|
			ret = _regulator_do_set_voltage(
 | 
						|
				rdev, target_min, target_max);
 | 
						|
			if (ret < 0) {
 | 
						|
				rdev_err(rdev,
 | 
						|
					"failed to apply %d-%duV constraint(%d)\n",
 | 
						|
					target_min, target_max, ret);
 | 
						|
				return ret;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* constrain machine-level voltage specs to fit
 | 
						|
	 * the actual range supported by this regulator.
 | 
						|
	 */
 | 
						|
	if (ops->list_voltage && rdev->desc->n_voltages) {
 | 
						|
		int	count = rdev->desc->n_voltages;
 | 
						|
		int	i;
 | 
						|
		int	min_uV = INT_MAX;
 | 
						|
		int	max_uV = INT_MIN;
 | 
						|
		int	cmin = constraints->min_uV;
 | 
						|
		int	cmax = constraints->max_uV;
 | 
						|
 | 
						|
		/* it's safe to autoconfigure fixed-voltage supplies
 | 
						|
		   and the constraints are used by list_voltage. */
 | 
						|
		if (count == 1 && !cmin) {
 | 
						|
			cmin = 1;
 | 
						|
			cmax = INT_MAX;
 | 
						|
			constraints->min_uV = cmin;
 | 
						|
			constraints->max_uV = cmax;
 | 
						|
		}
 | 
						|
 | 
						|
		/* voltage constraints are optional */
 | 
						|
		if ((cmin == 0) && (cmax == 0))
 | 
						|
			return 0;
 | 
						|
 | 
						|
		/* else require explicit machine-level constraints */
 | 
						|
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 | 
						|
			rdev_err(rdev, "invalid voltage constraints\n");
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 | 
						|
		for (i = 0; i < count; i++) {
 | 
						|
			int	value;
 | 
						|
 | 
						|
			value = ops->list_voltage(rdev, i);
 | 
						|
			if (value <= 0)
 | 
						|
				continue;
 | 
						|
 | 
						|
			/* maybe adjust [min_uV..max_uV] */
 | 
						|
			if (value >= cmin && value < min_uV)
 | 
						|
				min_uV = value;
 | 
						|
			if (value <= cmax && value > max_uV)
 | 
						|
				max_uV = value;
 | 
						|
		}
 | 
						|
 | 
						|
		/* final: [min_uV..max_uV] valid iff constraints valid */
 | 
						|
		if (max_uV < min_uV) {
 | 
						|
			rdev_err(rdev,
 | 
						|
				 "unsupportable voltage constraints %u-%uuV\n",
 | 
						|
				 min_uV, max_uV);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		/* use regulator's subset of machine constraints */
 | 
						|
		if (constraints->min_uV < min_uV) {
 | 
						|
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 | 
						|
				 constraints->min_uV, min_uV);
 | 
						|
			constraints->min_uV = min_uV;
 | 
						|
		}
 | 
						|
		if (constraints->max_uV > max_uV) {
 | 
						|
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 | 
						|
				 constraints->max_uV, max_uV);
 | 
						|
			constraints->max_uV = max_uV;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int machine_constraints_current(struct regulator_dev *rdev,
 | 
						|
	struct regulation_constraints *constraints)
 | 
						|
{
 | 
						|
	const struct regulator_ops *ops = rdev->desc->ops;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!constraints->min_uA && !constraints->max_uA)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (constraints->min_uA > constraints->max_uA) {
 | 
						|
		rdev_err(rdev, "Invalid current constraints\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!ops->set_current_limit || !ops->get_current_limit) {
 | 
						|
		rdev_warn(rdev, "Operation of current configuration missing\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set regulator current in constraints range */
 | 
						|
	ret = ops->set_current_limit(rdev, constraints->min_uA,
 | 
						|
			constraints->max_uA);
 | 
						|
	if (ret < 0) {
 | 
						|
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int _regulator_do_enable(struct regulator_dev *rdev);
 | 
						|
 | 
						|
/**
 | 
						|
 * set_machine_constraints - sets regulator constraints
 | 
						|
 * @rdev: regulator source
 | 
						|
 * @constraints: constraints to apply
 | 
						|
 *
 | 
						|
 * Allows platform initialisation code to define and constrain
 | 
						|
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 | 
						|
 * Constraints *must* be set by platform code in order for some
 | 
						|
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 | 
						|
 * set_mode.
 | 
						|
 */
 | 
						|
static int set_machine_constraints(struct regulator_dev *rdev,
 | 
						|
	const struct regulation_constraints *constraints)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	const struct regulator_ops *ops = rdev->desc->ops;
 | 
						|
 | 
						|
	if (constraints)
 | 
						|
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 | 
						|
					    GFP_KERNEL);
 | 
						|
	else
 | 
						|
		rdev->constraints = kzalloc(sizeof(*constraints),
 | 
						|
					    GFP_KERNEL);
 | 
						|
	if (!rdev->constraints)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = machine_constraints_voltage(rdev, rdev->constraints);
 | 
						|
	if (ret != 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = machine_constraints_current(rdev, rdev->constraints);
 | 
						|
	if (ret != 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
 | 
						|
		ret = ops->set_input_current_limit(rdev,
 | 
						|
						   rdev->constraints->ilim_uA);
 | 
						|
		if (ret < 0) {
 | 
						|
			rdev_err(rdev, "failed to set input limit\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* do we need to setup our suspend state */
 | 
						|
	if (rdev->constraints->initial_state) {
 | 
						|
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
 | 
						|
		if (ret < 0) {
 | 
						|
			rdev_err(rdev, "failed to set suspend state\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->constraints->initial_mode) {
 | 
						|
		if (!ops->set_mode) {
 | 
						|
			rdev_err(rdev, "no set_mode operation\n");
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 | 
						|
		if (ret < 0) {
 | 
						|
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	} else if (rdev->constraints->system_load) {
 | 
						|
		/*
 | 
						|
		 * We'll only apply the initial system load if an
 | 
						|
		 * initial mode wasn't specified.
 | 
						|
		 */
 | 
						|
		regulator_lock(rdev);
 | 
						|
		drms_uA_update(rdev);
 | 
						|
		regulator_unlock(rdev);
 | 
						|
	}
 | 
						|
 | 
						|
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
 | 
						|
		&& ops->set_ramp_delay) {
 | 
						|
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
 | 
						|
		if (ret < 0) {
 | 
						|
			rdev_err(rdev, "failed to set ramp_delay\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->constraints->pull_down && ops->set_pull_down) {
 | 
						|
		ret = ops->set_pull_down(rdev);
 | 
						|
		if (ret < 0) {
 | 
						|
			rdev_err(rdev, "failed to set pull down\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->constraints->soft_start && ops->set_soft_start) {
 | 
						|
		ret = ops->set_soft_start(rdev);
 | 
						|
		if (ret < 0) {
 | 
						|
			rdev_err(rdev, "failed to set soft start\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->constraints->over_current_protection
 | 
						|
		&& ops->set_over_current_protection) {
 | 
						|
		ret = ops->set_over_current_protection(rdev);
 | 
						|
		if (ret < 0) {
 | 
						|
			rdev_err(rdev, "failed to set over current protection\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
 | 
						|
		bool ad_state = (rdev->constraints->active_discharge ==
 | 
						|
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
 | 
						|
 | 
						|
		ret = ops->set_active_discharge(rdev, ad_state);
 | 
						|
		if (ret < 0) {
 | 
						|
			rdev_err(rdev, "failed to set active discharge\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* If the constraints say the regulator should be on at this point
 | 
						|
	 * and we have control then make sure it is enabled.
 | 
						|
	 */
 | 
						|
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
 | 
						|
		if (rdev->supply) {
 | 
						|
			ret = regulator_enable(rdev->supply);
 | 
						|
			if (ret < 0) {
 | 
						|
				_regulator_put(rdev->supply);
 | 
						|
				rdev->supply = NULL;
 | 
						|
				return ret;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		ret = _regulator_do_enable(rdev);
 | 
						|
		if (ret < 0 && ret != -EINVAL) {
 | 
						|
			rdev_err(rdev, "failed to enable\n");
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
		rdev->use_count++;
 | 
						|
	}
 | 
						|
 | 
						|
	print_constraints(rdev);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * set_supply - set regulator supply regulator
 | 
						|
 * @rdev: regulator name
 | 
						|
 * @supply_rdev: supply regulator name
 | 
						|
 *
 | 
						|
 * Called by platform initialisation code to set the supply regulator for this
 | 
						|
 * regulator. This ensures that a regulators supply will also be enabled by the
 | 
						|
 * core if it's child is enabled.
 | 
						|
 */
 | 
						|
static int set_supply(struct regulator_dev *rdev,
 | 
						|
		      struct regulator_dev *supply_rdev)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 | 
						|
 | 
						|
	if (!try_module_get(supply_rdev->owner))
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 | 
						|
	if (rdev->supply == NULL) {
 | 
						|
		err = -ENOMEM;
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
	supply_rdev->open_count++;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 | 
						|
 * @rdev:         regulator source
 | 
						|
 * @consumer_dev_name: dev_name() string for device supply applies to
 | 
						|
 * @supply:       symbolic name for supply
 | 
						|
 *
 | 
						|
 * Allows platform initialisation code to map physical regulator
 | 
						|
 * sources to symbolic names for supplies for use by devices.  Devices
 | 
						|
 * should use these symbolic names to request regulators, avoiding the
 | 
						|
 * need to provide board-specific regulator names as platform data.
 | 
						|
 */
 | 
						|
static int set_consumer_device_supply(struct regulator_dev *rdev,
 | 
						|
				      const char *consumer_dev_name,
 | 
						|
				      const char *supply)
 | 
						|
{
 | 
						|
	struct regulator_map *node;
 | 
						|
	int has_dev;
 | 
						|
 | 
						|
	if (supply == NULL)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (consumer_dev_name != NULL)
 | 
						|
		has_dev = 1;
 | 
						|
	else
 | 
						|
		has_dev = 0;
 | 
						|
 | 
						|
	list_for_each_entry(node, ®ulator_map_list, list) {
 | 
						|
		if (node->dev_name && consumer_dev_name) {
 | 
						|
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
 | 
						|
				continue;
 | 
						|
		} else if (node->dev_name || consumer_dev_name) {
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (strcmp(node->supply, supply) != 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
 | 
						|
			 consumer_dev_name,
 | 
						|
			 dev_name(&node->regulator->dev),
 | 
						|
			 node->regulator->desc->name,
 | 
						|
			 supply,
 | 
						|
			 dev_name(&rdev->dev), rdev_get_name(rdev));
 | 
						|
		return -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
 | 
						|
	if (node == NULL)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	node->regulator = rdev;
 | 
						|
	node->supply = supply;
 | 
						|
 | 
						|
	if (has_dev) {
 | 
						|
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
 | 
						|
		if (node->dev_name == NULL) {
 | 
						|
			kfree(node);
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	list_add(&node->list, ®ulator_map_list);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void unset_regulator_supplies(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	struct regulator_map *node, *n;
 | 
						|
 | 
						|
	list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
 | 
						|
		if (rdev == node->regulator) {
 | 
						|
			list_del(&node->list);
 | 
						|
			kfree(node->dev_name);
 | 
						|
			kfree(node);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_FS
 | 
						|
static ssize_t constraint_flags_read_file(struct file *file,
 | 
						|
					  char __user *user_buf,
 | 
						|
					  size_t count, loff_t *ppos)
 | 
						|
{
 | 
						|
	const struct regulator *regulator = file->private_data;
 | 
						|
	const struct regulation_constraints *c = regulator->rdev->constraints;
 | 
						|
	char *buf;
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	if (!c)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | 
						|
	if (!buf)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ret = snprintf(buf, PAGE_SIZE,
 | 
						|
			"always_on: %u\n"
 | 
						|
			"boot_on: %u\n"
 | 
						|
			"apply_uV: %u\n"
 | 
						|
			"ramp_disable: %u\n"
 | 
						|
			"soft_start: %u\n"
 | 
						|
			"pull_down: %u\n"
 | 
						|
			"over_current_protection: %u\n",
 | 
						|
			c->always_on,
 | 
						|
			c->boot_on,
 | 
						|
			c->apply_uV,
 | 
						|
			c->ramp_disable,
 | 
						|
			c->soft_start,
 | 
						|
			c->pull_down,
 | 
						|
			c->over_current_protection);
 | 
						|
 | 
						|
	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
 | 
						|
	kfree(buf);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static const struct file_operations constraint_flags_fops = {
 | 
						|
#ifdef CONFIG_DEBUG_FS
 | 
						|
	.open = simple_open,
 | 
						|
	.read = constraint_flags_read_file,
 | 
						|
	.llseek = default_llseek,
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
#define REG_STR_SIZE	64
 | 
						|
 | 
						|
static struct regulator *create_regulator(struct regulator_dev *rdev,
 | 
						|
					  struct device *dev,
 | 
						|
					  const char *supply_name)
 | 
						|
{
 | 
						|
	struct regulator *regulator;
 | 
						|
	char buf[REG_STR_SIZE];
 | 
						|
	int err, size;
 | 
						|
 | 
						|
	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
 | 
						|
	if (regulator == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
	regulator->rdev = rdev;
 | 
						|
	list_add(®ulator->list, &rdev->consumer_list);
 | 
						|
 | 
						|
	if (dev) {
 | 
						|
		regulator->dev = dev;
 | 
						|
 | 
						|
		/* Add a link to the device sysfs entry */
 | 
						|
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
 | 
						|
				dev->kobj.name, supply_name);
 | 
						|
		if (size >= REG_STR_SIZE)
 | 
						|
			goto overflow_err;
 | 
						|
 | 
						|
		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
 | 
						|
		if (regulator->supply_name == NULL)
 | 
						|
			goto overflow_err;
 | 
						|
 | 
						|
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
 | 
						|
					buf);
 | 
						|
		if (err) {
 | 
						|
			rdev_dbg(rdev, "could not add device link %s err %d\n",
 | 
						|
				  dev->kobj.name, err);
 | 
						|
			/* non-fatal */
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
 | 
						|
		if (regulator->supply_name == NULL)
 | 
						|
			goto overflow_err;
 | 
						|
	}
 | 
						|
 | 
						|
	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
 | 
						|
						rdev->debugfs);
 | 
						|
	if (!regulator->debugfs) {
 | 
						|
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
 | 
						|
	} else {
 | 
						|
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
 | 
						|
				   ®ulator->uA_load);
 | 
						|
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
 | 
						|
				   ®ulator->voltage[PM_SUSPEND_ON].min_uV);
 | 
						|
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
 | 
						|
				   ®ulator->voltage[PM_SUSPEND_ON].max_uV);
 | 
						|
		debugfs_create_file("constraint_flags", 0444,
 | 
						|
				    regulator->debugfs, regulator,
 | 
						|
				    &constraint_flags_fops);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check now if the regulator is an always on regulator - if
 | 
						|
	 * it is then we don't need to do nearly so much work for
 | 
						|
	 * enable/disable calls.
 | 
						|
	 */
 | 
						|
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
 | 
						|
	    _regulator_is_enabled(rdev))
 | 
						|
		regulator->always_on = true;
 | 
						|
 | 
						|
	regulator_unlock(rdev);
 | 
						|
	return regulator;
 | 
						|
overflow_err:
 | 
						|
	list_del(®ulator->list);
 | 
						|
	kfree(regulator);
 | 
						|
	regulator_unlock(rdev);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int _regulator_get_enable_time(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	if (rdev->constraints && rdev->constraints->enable_time)
 | 
						|
		return rdev->constraints->enable_time;
 | 
						|
	if (!rdev->desc->ops->enable_time)
 | 
						|
		return rdev->desc->enable_time;
 | 
						|
	return rdev->desc->ops->enable_time(rdev);
 | 
						|
}
 | 
						|
 | 
						|
static struct regulator_supply_alias *regulator_find_supply_alias(
 | 
						|
		struct device *dev, const char *supply)
 | 
						|
{
 | 
						|
	struct regulator_supply_alias *map;
 | 
						|
 | 
						|
	list_for_each_entry(map, ®ulator_supply_alias_list, list)
 | 
						|
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
 | 
						|
			return map;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void regulator_supply_alias(struct device **dev, const char **supply)
 | 
						|
{
 | 
						|
	struct regulator_supply_alias *map;
 | 
						|
 | 
						|
	map = regulator_find_supply_alias(*dev, *supply);
 | 
						|
	if (map) {
 | 
						|
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
 | 
						|
				*supply, map->alias_supply,
 | 
						|
				dev_name(map->alias_dev));
 | 
						|
		*dev = map->alias_dev;
 | 
						|
		*supply = map->alias_supply;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_match(struct device *dev, const void *data)
 | 
						|
{
 | 
						|
	struct regulator_dev *r = dev_to_rdev(dev);
 | 
						|
 | 
						|
	return strcmp(rdev_get_name(r), data) == 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct regulator_dev *regulator_lookup_by_name(const char *name)
 | 
						|
{
 | 
						|
	struct device *dev;
 | 
						|
 | 
						|
	dev = class_find_device(®ulator_class, NULL, name, regulator_match);
 | 
						|
 | 
						|
	return dev ? dev_to_rdev(dev) : NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_dev_lookup - lookup a regulator device.
 | 
						|
 * @dev: device for regulator "consumer".
 | 
						|
 * @supply: Supply name or regulator ID.
 | 
						|
 *
 | 
						|
 * If successful, returns a struct regulator_dev that corresponds to the name
 | 
						|
 * @supply and with the embedded struct device refcount incremented by one.
 | 
						|
 * The refcount must be dropped by calling put_device().
 | 
						|
 * On failure one of the following ERR-PTR-encoded values is returned:
 | 
						|
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 | 
						|
 * in the future.
 | 
						|
 */
 | 
						|
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
 | 
						|
						  const char *supply)
 | 
						|
{
 | 
						|
	struct regulator_dev *r = NULL;
 | 
						|
	struct device_node *node;
 | 
						|
	struct regulator_map *map;
 | 
						|
	const char *devname = NULL;
 | 
						|
 | 
						|
	regulator_supply_alias(&dev, &supply);
 | 
						|
 | 
						|
	/* first do a dt based lookup */
 | 
						|
	if (dev && dev->of_node) {
 | 
						|
		node = of_get_regulator(dev, supply);
 | 
						|
		if (node) {
 | 
						|
			r = of_find_regulator_by_node(node);
 | 
						|
			if (r)
 | 
						|
				return r;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We have a node, but there is no device.
 | 
						|
			 * assume it has not registered yet.
 | 
						|
			 */
 | 
						|
			return ERR_PTR(-EPROBE_DEFER);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* if not found, try doing it non-dt way */
 | 
						|
	if (dev)
 | 
						|
		devname = dev_name(dev);
 | 
						|
 | 
						|
	mutex_lock(®ulator_list_mutex);
 | 
						|
	list_for_each_entry(map, ®ulator_map_list, list) {
 | 
						|
		/* If the mapping has a device set up it must match */
 | 
						|
		if (map->dev_name &&
 | 
						|
		    (!devname || strcmp(map->dev_name, devname)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (strcmp(map->supply, supply) == 0 &&
 | 
						|
		    get_device(&map->regulator->dev)) {
 | 
						|
			r = map->regulator;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mutex_unlock(®ulator_list_mutex);
 | 
						|
 | 
						|
	if (r)
 | 
						|
		return r;
 | 
						|
 | 
						|
	r = regulator_lookup_by_name(supply);
 | 
						|
	if (r)
 | 
						|
		return r;
 | 
						|
 | 
						|
	return ERR_PTR(-ENODEV);
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_resolve_supply(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	struct regulator_dev *r;
 | 
						|
	struct device *dev = rdev->dev.parent;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* No supply to resolve? */
 | 
						|
	if (!rdev->supply_name)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Supply already resolved? */
 | 
						|
	if (rdev->supply)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	r = regulator_dev_lookup(dev, rdev->supply_name);
 | 
						|
	if (IS_ERR(r)) {
 | 
						|
		ret = PTR_ERR(r);
 | 
						|
 | 
						|
		/* Did the lookup explicitly defer for us? */
 | 
						|
		if (ret == -EPROBE_DEFER)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		if (have_full_constraints()) {
 | 
						|
			r = dummy_regulator_rdev;
 | 
						|
			get_device(&r->dev);
 | 
						|
		} else {
 | 
						|
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
 | 
						|
				rdev->supply_name, rdev->desc->name);
 | 
						|
			return -EPROBE_DEFER;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the supply's parent device is not the same as the
 | 
						|
	 * regulator's parent device, then ensure the parent device
 | 
						|
	 * is bound before we resolve the supply, in case the parent
 | 
						|
	 * device get probe deferred and unregisters the supply.
 | 
						|
	 */
 | 
						|
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
 | 
						|
		if (!device_is_bound(r->dev.parent)) {
 | 
						|
			put_device(&r->dev);
 | 
						|
			return -EPROBE_DEFER;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Recursively resolve the supply of the supply */
 | 
						|
	ret = regulator_resolve_supply(r);
 | 
						|
	if (ret < 0) {
 | 
						|
		put_device(&r->dev);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = set_supply(rdev, r);
 | 
						|
	if (ret < 0) {
 | 
						|
		put_device(&r->dev);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In set_machine_constraints() we may have turned this regulator on
 | 
						|
	 * but we couldn't propagate to the supply if it hadn't been resolved
 | 
						|
	 * yet.  Do it now.
 | 
						|
	 */
 | 
						|
	if (rdev->use_count) {
 | 
						|
		ret = regulator_enable(rdev->supply);
 | 
						|
		if (ret < 0) {
 | 
						|
			_regulator_put(rdev->supply);
 | 
						|
			rdev->supply = NULL;
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Internal regulator request function */
 | 
						|
struct regulator *_regulator_get(struct device *dev, const char *id,
 | 
						|
				 enum regulator_get_type get_type)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev;
 | 
						|
	struct regulator *regulator;
 | 
						|
	const char *devname = dev ? dev_name(dev) : "deviceless";
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (get_type >= MAX_GET_TYPE) {
 | 
						|
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
	}
 | 
						|
 | 
						|
	if (id == NULL) {
 | 
						|
		pr_err("get() with no identifier\n");
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
	}
 | 
						|
 | 
						|
	rdev = regulator_dev_lookup(dev, id);
 | 
						|
	if (IS_ERR(rdev)) {
 | 
						|
		ret = PTR_ERR(rdev);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If regulator_dev_lookup() fails with error other
 | 
						|
		 * than -ENODEV our job here is done, we simply return it.
 | 
						|
		 */
 | 
						|
		if (ret != -ENODEV)
 | 
						|
			return ERR_PTR(ret);
 | 
						|
 | 
						|
		if (!have_full_constraints()) {
 | 
						|
			dev_warn(dev,
 | 
						|
				 "incomplete constraints, dummy supplies not allowed\n");
 | 
						|
			return ERR_PTR(-ENODEV);
 | 
						|
		}
 | 
						|
 | 
						|
		switch (get_type) {
 | 
						|
		case NORMAL_GET:
 | 
						|
			/*
 | 
						|
			 * Assume that a regulator is physically present and
 | 
						|
			 * enabled, even if it isn't hooked up, and just
 | 
						|
			 * provide a dummy.
 | 
						|
			 */
 | 
						|
			dev_warn(dev,
 | 
						|
				 "%s supply %s not found, using dummy regulator\n",
 | 
						|
				 devname, id);
 | 
						|
			rdev = dummy_regulator_rdev;
 | 
						|
			get_device(&rdev->dev);
 | 
						|
			break;
 | 
						|
 | 
						|
		case EXCLUSIVE_GET:
 | 
						|
			dev_warn(dev,
 | 
						|
				 "dummy supplies not allowed for exclusive requests\n");
 | 
						|
			/* fall through */
 | 
						|
 | 
						|
		default:
 | 
						|
			return ERR_PTR(-ENODEV);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->exclusive) {
 | 
						|
		regulator = ERR_PTR(-EPERM);
 | 
						|
		put_device(&rdev->dev);
 | 
						|
		return regulator;
 | 
						|
	}
 | 
						|
 | 
						|
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
 | 
						|
		regulator = ERR_PTR(-EBUSY);
 | 
						|
		put_device(&rdev->dev);
 | 
						|
		return regulator;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_lock(®ulator_list_mutex);
 | 
						|
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
 | 
						|
	mutex_unlock(®ulator_list_mutex);
 | 
						|
 | 
						|
	if (ret != 0) {
 | 
						|
		regulator = ERR_PTR(-EPROBE_DEFER);
 | 
						|
		put_device(&rdev->dev);
 | 
						|
		return regulator;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = regulator_resolve_supply(rdev);
 | 
						|
	if (ret < 0) {
 | 
						|
		regulator = ERR_PTR(ret);
 | 
						|
		put_device(&rdev->dev);
 | 
						|
		return regulator;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!try_module_get(rdev->owner)) {
 | 
						|
		regulator = ERR_PTR(-EPROBE_DEFER);
 | 
						|
		put_device(&rdev->dev);
 | 
						|
		return regulator;
 | 
						|
	}
 | 
						|
 | 
						|
	regulator = create_regulator(rdev, dev, id);
 | 
						|
	if (regulator == NULL) {
 | 
						|
		regulator = ERR_PTR(-ENOMEM);
 | 
						|
		put_device(&rdev->dev);
 | 
						|
		module_put(rdev->owner);
 | 
						|
		return regulator;
 | 
						|
	}
 | 
						|
 | 
						|
	rdev->open_count++;
 | 
						|
	if (get_type == EXCLUSIVE_GET) {
 | 
						|
		rdev->exclusive = 1;
 | 
						|
 | 
						|
		ret = _regulator_is_enabled(rdev);
 | 
						|
		if (ret > 0)
 | 
						|
			rdev->use_count = 1;
 | 
						|
		else
 | 
						|
			rdev->use_count = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
 | 
						|
 | 
						|
	return regulator;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get - lookup and obtain a reference to a regulator.
 | 
						|
 * @dev: device for regulator "consumer"
 | 
						|
 * @id: Supply name or regulator ID.
 | 
						|
 *
 | 
						|
 * Returns a struct regulator corresponding to the regulator producer,
 | 
						|
 * or IS_ERR() condition containing errno.
 | 
						|
 *
 | 
						|
 * Use of supply names configured via regulator_set_device_supply() is
 | 
						|
 * strongly encouraged.  It is recommended that the supply name used
 | 
						|
 * should match the name used for the supply and/or the relevant
 | 
						|
 * device pins in the datasheet.
 | 
						|
 */
 | 
						|
struct regulator *regulator_get(struct device *dev, const char *id)
 | 
						|
{
 | 
						|
	return _regulator_get(dev, id, NORMAL_GET);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 | 
						|
 * @dev: device for regulator "consumer"
 | 
						|
 * @id: Supply name or regulator ID.
 | 
						|
 *
 | 
						|
 * Returns a struct regulator corresponding to the regulator producer,
 | 
						|
 * or IS_ERR() condition containing errno.  Other consumers will be
 | 
						|
 * unable to obtain this regulator while this reference is held and the
 | 
						|
 * use count for the regulator will be initialised to reflect the current
 | 
						|
 * state of the regulator.
 | 
						|
 *
 | 
						|
 * This is intended for use by consumers which cannot tolerate shared
 | 
						|
 * use of the regulator such as those which need to force the
 | 
						|
 * regulator off for correct operation of the hardware they are
 | 
						|
 * controlling.
 | 
						|
 *
 | 
						|
 * Use of supply names configured via regulator_set_device_supply() is
 | 
						|
 * strongly encouraged.  It is recommended that the supply name used
 | 
						|
 * should match the name used for the supply and/or the relevant
 | 
						|
 * device pins in the datasheet.
 | 
						|
 */
 | 
						|
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
 | 
						|
{
 | 
						|
	return _regulator_get(dev, id, EXCLUSIVE_GET);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get_exclusive);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_optional - obtain optional access to a regulator.
 | 
						|
 * @dev: device for regulator "consumer"
 | 
						|
 * @id: Supply name or regulator ID.
 | 
						|
 *
 | 
						|
 * Returns a struct regulator corresponding to the regulator producer,
 | 
						|
 * or IS_ERR() condition containing errno.
 | 
						|
 *
 | 
						|
 * This is intended for use by consumers for devices which can have
 | 
						|
 * some supplies unconnected in normal use, such as some MMC devices.
 | 
						|
 * It can allow the regulator core to provide stub supplies for other
 | 
						|
 * supplies requested using normal regulator_get() calls without
 | 
						|
 * disrupting the operation of drivers that can handle absent
 | 
						|
 * supplies.
 | 
						|
 *
 | 
						|
 * Use of supply names configured via regulator_set_device_supply() is
 | 
						|
 * strongly encouraged.  It is recommended that the supply name used
 | 
						|
 * should match the name used for the supply and/or the relevant
 | 
						|
 * device pins in the datasheet.
 | 
						|
 */
 | 
						|
struct regulator *regulator_get_optional(struct device *dev, const char *id)
 | 
						|
{
 | 
						|
	return _regulator_get(dev, id, OPTIONAL_GET);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get_optional);
 | 
						|
 | 
						|
/* regulator_list_mutex lock held by regulator_put() */
 | 
						|
static void _regulator_put(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev;
 | 
						|
 | 
						|
	if (IS_ERR_OR_NULL(regulator))
 | 
						|
		return;
 | 
						|
 | 
						|
	lockdep_assert_held_once(®ulator_list_mutex);
 | 
						|
 | 
						|
	/* Docs say you must disable before calling regulator_put() */
 | 
						|
	WARN_ON(regulator->enable_count);
 | 
						|
 | 
						|
	rdev = regulator->rdev;
 | 
						|
 | 
						|
	debugfs_remove_recursive(regulator->debugfs);
 | 
						|
 | 
						|
	if (regulator->dev) {
 | 
						|
		device_link_remove(regulator->dev, &rdev->dev);
 | 
						|
 | 
						|
		/* remove any sysfs entries */
 | 
						|
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
 | 
						|
	}
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
	list_del(®ulator->list);
 | 
						|
 | 
						|
	rdev->open_count--;
 | 
						|
	rdev->exclusive = 0;
 | 
						|
	put_device(&rdev->dev);
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	kfree_const(regulator->supply_name);
 | 
						|
	kfree(regulator);
 | 
						|
 | 
						|
	module_put(rdev->owner);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_put - "free" the regulator source
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Note: drivers must ensure that all regulator_enable calls made on this
 | 
						|
 * regulator source are balanced by regulator_disable calls prior to calling
 | 
						|
 * this function.
 | 
						|
 */
 | 
						|
void regulator_put(struct regulator *regulator)
 | 
						|
{
 | 
						|
	mutex_lock(®ulator_list_mutex);
 | 
						|
	_regulator_put(regulator);
 | 
						|
	mutex_unlock(®ulator_list_mutex);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_put);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_register_supply_alias - Provide device alias for supply lookup
 | 
						|
 *
 | 
						|
 * @dev: device that will be given as the regulator "consumer"
 | 
						|
 * @id: Supply name or regulator ID
 | 
						|
 * @alias_dev: device that should be used to lookup the supply
 | 
						|
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 | 
						|
 * supply
 | 
						|
 *
 | 
						|
 * All lookups for id on dev will instead be conducted for alias_id on
 | 
						|
 * alias_dev.
 | 
						|
 */
 | 
						|
int regulator_register_supply_alias(struct device *dev, const char *id,
 | 
						|
				    struct device *alias_dev,
 | 
						|
				    const char *alias_id)
 | 
						|
{
 | 
						|
	struct regulator_supply_alias *map;
 | 
						|
 | 
						|
	map = regulator_find_supply_alias(dev, id);
 | 
						|
	if (map)
 | 
						|
		return -EEXIST;
 | 
						|
 | 
						|
	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
 | 
						|
	if (!map)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	map->src_dev = dev;
 | 
						|
	map->src_supply = id;
 | 
						|
	map->alias_dev = alias_dev;
 | 
						|
	map->alias_supply = alias_id;
 | 
						|
 | 
						|
	list_add(&map->list, ®ulator_supply_alias_list);
 | 
						|
 | 
						|
	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
 | 
						|
		id, dev_name(dev), alias_id, dev_name(alias_dev));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_unregister_supply_alias - Remove device alias
 | 
						|
 *
 | 
						|
 * @dev: device that will be given as the regulator "consumer"
 | 
						|
 * @id: Supply name or regulator ID
 | 
						|
 *
 | 
						|
 * Remove a lookup alias if one exists for id on dev.
 | 
						|
 */
 | 
						|
void regulator_unregister_supply_alias(struct device *dev, const char *id)
 | 
						|
{
 | 
						|
	struct regulator_supply_alias *map;
 | 
						|
 | 
						|
	map = regulator_find_supply_alias(dev, id);
 | 
						|
	if (map) {
 | 
						|
		list_del(&map->list);
 | 
						|
		kfree(map);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_bulk_register_supply_alias - register multiple aliases
 | 
						|
 *
 | 
						|
 * @dev: device that will be given as the regulator "consumer"
 | 
						|
 * @id: List of supply names or regulator IDs
 | 
						|
 * @alias_dev: device that should be used to lookup the supply
 | 
						|
 * @alias_id: List of supply names or regulator IDs that should be used to
 | 
						|
 * lookup the supply
 | 
						|
 * @num_id: Number of aliases to register
 | 
						|
 *
 | 
						|
 * @return 0 on success, an errno on failure.
 | 
						|
 *
 | 
						|
 * This helper function allows drivers to register several supply
 | 
						|
 * aliases in one operation.  If any of the aliases cannot be
 | 
						|
 * registered any aliases that were registered will be removed
 | 
						|
 * before returning to the caller.
 | 
						|
 */
 | 
						|
int regulator_bulk_register_supply_alias(struct device *dev,
 | 
						|
					 const char *const *id,
 | 
						|
					 struct device *alias_dev,
 | 
						|
					 const char *const *alias_id,
 | 
						|
					 int num_id)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	for (i = 0; i < num_id; ++i) {
 | 
						|
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
 | 
						|
						      alias_id[i]);
 | 
						|
		if (ret < 0)
 | 
						|
			goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err:
 | 
						|
	dev_err(dev,
 | 
						|
		"Failed to create supply alias %s,%s -> %s,%s\n",
 | 
						|
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
 | 
						|
 | 
						|
	while (--i >= 0)
 | 
						|
		regulator_unregister_supply_alias(dev, id[i]);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 | 
						|
 *
 | 
						|
 * @dev: device that will be given as the regulator "consumer"
 | 
						|
 * @id: List of supply names or regulator IDs
 | 
						|
 * @num_id: Number of aliases to unregister
 | 
						|
 *
 | 
						|
 * This helper function allows drivers to unregister several supply
 | 
						|
 * aliases in one operation.
 | 
						|
 */
 | 
						|
void regulator_bulk_unregister_supply_alias(struct device *dev,
 | 
						|
					    const char *const *id,
 | 
						|
					    int num_id)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < num_id; ++i)
 | 
						|
		regulator_unregister_supply_alias(dev, id[i]);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
 | 
						|
 | 
						|
 | 
						|
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
 | 
						|
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
 | 
						|
				const struct regulator_config *config)
 | 
						|
{
 | 
						|
	struct regulator_enable_gpio *pin;
 | 
						|
	struct gpio_desc *gpiod;
 | 
						|
 | 
						|
	gpiod = config->ena_gpiod;
 | 
						|
 | 
						|
	list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
 | 
						|
		if (pin->gpiod == gpiod) {
 | 
						|
			rdev_dbg(rdev, "GPIO is already used\n");
 | 
						|
			goto update_ena_gpio_to_rdev;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
 | 
						|
	if (pin == NULL)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	pin->gpiod = gpiod;
 | 
						|
	list_add(&pin->list, ®ulator_ena_gpio_list);
 | 
						|
 | 
						|
update_ena_gpio_to_rdev:
 | 
						|
	pin->request_count++;
 | 
						|
	rdev->ena_pin = pin;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void regulator_ena_gpio_free(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	struct regulator_enable_gpio *pin, *n;
 | 
						|
 | 
						|
	if (!rdev->ena_pin)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Free the GPIO only in case of no use */
 | 
						|
	list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
 | 
						|
		if (pin->gpiod == rdev->ena_pin->gpiod) {
 | 
						|
			if (pin->request_count <= 1) {
 | 
						|
				pin->request_count = 0;
 | 
						|
				list_del(&pin->list);
 | 
						|
				kfree(pin);
 | 
						|
				rdev->ena_pin = NULL;
 | 
						|
				return;
 | 
						|
			} else {
 | 
						|
				pin->request_count--;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 | 
						|
 * @rdev: regulator_dev structure
 | 
						|
 * @enable: enable GPIO at initial use?
 | 
						|
 *
 | 
						|
 * GPIO is enabled in case of initial use. (enable_count is 0)
 | 
						|
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 | 
						|
 */
 | 
						|
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
 | 
						|
{
 | 
						|
	struct regulator_enable_gpio *pin = rdev->ena_pin;
 | 
						|
 | 
						|
	if (!pin)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (enable) {
 | 
						|
		/* Enable GPIO at initial use */
 | 
						|
		if (pin->enable_count == 0)
 | 
						|
			gpiod_set_value_cansleep(pin->gpiod, 1);
 | 
						|
 | 
						|
		pin->enable_count++;
 | 
						|
	} else {
 | 
						|
		if (pin->enable_count > 1) {
 | 
						|
			pin->enable_count--;
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Disable GPIO if not used */
 | 
						|
		if (pin->enable_count <= 1) {
 | 
						|
			gpiod_set_value_cansleep(pin->gpiod, 0);
 | 
						|
			pin->enable_count = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * _regulator_enable_delay - a delay helper function
 | 
						|
 * @delay: time to delay in microseconds
 | 
						|
 *
 | 
						|
 * Delay for the requested amount of time as per the guidelines in:
 | 
						|
 *
 | 
						|
 *     Documentation/timers/timers-howto.txt
 | 
						|
 *
 | 
						|
 * The assumption here is that regulators will never be enabled in
 | 
						|
 * atomic context and therefore sleeping functions can be used.
 | 
						|
 */
 | 
						|
static void _regulator_enable_delay(unsigned int delay)
 | 
						|
{
 | 
						|
	unsigned int ms = delay / 1000;
 | 
						|
	unsigned int us = delay % 1000;
 | 
						|
 | 
						|
	if (ms > 0) {
 | 
						|
		/*
 | 
						|
		 * For small enough values, handle super-millisecond
 | 
						|
		 * delays in the usleep_range() call below.
 | 
						|
		 */
 | 
						|
		if (ms < 20)
 | 
						|
			us += ms * 1000;
 | 
						|
		else
 | 
						|
			msleep(ms);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Give the scheduler some room to coalesce with any other
 | 
						|
	 * wakeup sources. For delays shorter than 10 us, don't even
 | 
						|
	 * bother setting up high-resolution timers and just busy-
 | 
						|
	 * loop.
 | 
						|
	 */
 | 
						|
	if (us >= 10)
 | 
						|
		usleep_range(us, us + 100);
 | 
						|
	else
 | 
						|
		udelay(us);
 | 
						|
}
 | 
						|
 | 
						|
static int _regulator_do_enable(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	int ret, delay;
 | 
						|
 | 
						|
	/* Query before enabling in case configuration dependent.  */
 | 
						|
	ret = _regulator_get_enable_time(rdev);
 | 
						|
	if (ret >= 0) {
 | 
						|
		delay = ret;
 | 
						|
	} else {
 | 
						|
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
 | 
						|
		delay = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	trace_regulator_enable(rdev_get_name(rdev));
 | 
						|
 | 
						|
	if (rdev->desc->off_on_delay) {
 | 
						|
		/* if needed, keep a distance of off_on_delay from last time
 | 
						|
		 * this regulator was disabled.
 | 
						|
		 */
 | 
						|
		unsigned long start_jiffy = jiffies;
 | 
						|
		unsigned long intended, max_delay, remaining;
 | 
						|
 | 
						|
		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
 | 
						|
		intended = rdev->last_off_jiffy + max_delay;
 | 
						|
 | 
						|
		if (time_before(start_jiffy, intended)) {
 | 
						|
			/* calc remaining jiffies to deal with one-time
 | 
						|
			 * timer wrapping.
 | 
						|
			 * in case of multiple timer wrapping, either it can be
 | 
						|
			 * detected by out-of-range remaining, or it cannot be
 | 
						|
			 * detected and we get a penalty of
 | 
						|
			 * _regulator_enable_delay().
 | 
						|
			 */
 | 
						|
			remaining = intended - start_jiffy;
 | 
						|
			if (remaining <= max_delay)
 | 
						|
				_regulator_enable_delay(
 | 
						|
						jiffies_to_usecs(remaining));
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->ena_pin) {
 | 
						|
		if (!rdev->ena_gpio_state) {
 | 
						|
			ret = regulator_ena_gpio_ctrl(rdev, true);
 | 
						|
			if (ret < 0)
 | 
						|
				return ret;
 | 
						|
			rdev->ena_gpio_state = 1;
 | 
						|
		}
 | 
						|
	} else if (rdev->desc->ops->enable) {
 | 
						|
		ret = rdev->desc->ops->enable(rdev);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
	} else {
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Allow the regulator to ramp; it would be useful to extend
 | 
						|
	 * this for bulk operations so that the regulators can ramp
 | 
						|
	 * together.  */
 | 
						|
	trace_regulator_enable_delay(rdev_get_name(rdev));
 | 
						|
 | 
						|
	_regulator_enable_delay(delay);
 | 
						|
 | 
						|
	trace_regulator_enable_complete(rdev_get_name(rdev));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Some things on a regulator consumer (like the contribution towards total
 | 
						|
 * load on the regulator) only have an effect when the consumer wants the
 | 
						|
 * regulator enabled.  Explained in example with two consumers of the same
 | 
						|
 * regulator:
 | 
						|
 *   consumer A: set_load(100);       => total load = 0
 | 
						|
 *   consumer A: regulator_enable();  => total load = 100
 | 
						|
 *   consumer B: set_load(1000);      => total load = 100
 | 
						|
 *   consumer B: regulator_enable();  => total load = 1100
 | 
						|
 *   consumer A: regulator_disable(); => total_load = 1000
 | 
						|
 *
 | 
						|
 * This function (together with _regulator_handle_consumer_disable) is
 | 
						|
 * responsible for keeping track of the refcount for a given regulator consumer
 | 
						|
 * and applying / unapplying these things.
 | 
						|
 *
 | 
						|
 * Returns 0 upon no error; -error upon error.
 | 
						|
 */
 | 
						|
static int _regulator_handle_consumer_enable(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
 | 
						|
	lockdep_assert_held_once(&rdev->mutex.base);
 | 
						|
 | 
						|
	regulator->enable_count++;
 | 
						|
	if (regulator->uA_load && regulator->enable_count == 1)
 | 
						|
		return drms_uA_update(rdev);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * The opposite of _regulator_handle_consumer_enable().
 | 
						|
 *
 | 
						|
 * Returns 0 upon no error; -error upon error.
 | 
						|
 */
 | 
						|
static int _regulator_handle_consumer_disable(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
 | 
						|
	lockdep_assert_held_once(&rdev->mutex.base);
 | 
						|
 | 
						|
	if (!regulator->enable_count) {
 | 
						|
		rdev_err(rdev, "Underflow of regulator enable count\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	regulator->enable_count--;
 | 
						|
	if (regulator->uA_load && regulator->enable_count == 0)
 | 
						|
		return drms_uA_update(rdev);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* locks held by regulator_enable() */
 | 
						|
static int _regulator_enable(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	lockdep_assert_held_once(&rdev->mutex.base);
 | 
						|
 | 
						|
	if (rdev->use_count == 0 && rdev->supply) {
 | 
						|
		ret = _regulator_enable(rdev->supply);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/* balance only if there are regulators coupled */
 | 
						|
	if (rdev->coupling_desc.n_coupled > 1) {
 | 
						|
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
 | 
						|
		if (ret < 0)
 | 
						|
			goto err_disable_supply;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = _regulator_handle_consumer_enable(regulator);
 | 
						|
	if (ret < 0)
 | 
						|
		goto err_disable_supply;
 | 
						|
 | 
						|
	if (rdev->use_count == 0) {
 | 
						|
		/* The regulator may on if it's not switchable or left on */
 | 
						|
		ret = _regulator_is_enabled(rdev);
 | 
						|
		if (ret == -EINVAL || ret == 0) {
 | 
						|
			if (!regulator_ops_is_valid(rdev,
 | 
						|
					REGULATOR_CHANGE_STATUS)) {
 | 
						|
				ret = -EPERM;
 | 
						|
				goto err_consumer_disable;
 | 
						|
			}
 | 
						|
 | 
						|
			ret = _regulator_do_enable(rdev);
 | 
						|
			if (ret < 0)
 | 
						|
				goto err_consumer_disable;
 | 
						|
 | 
						|
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
 | 
						|
					     NULL);
 | 
						|
		} else if (ret < 0) {
 | 
						|
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
 | 
						|
			goto err_consumer_disable;
 | 
						|
		}
 | 
						|
		/* Fallthrough on positive return values - already enabled */
 | 
						|
	}
 | 
						|
 | 
						|
	rdev->use_count++;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_consumer_disable:
 | 
						|
	_regulator_handle_consumer_disable(regulator);
 | 
						|
 | 
						|
err_disable_supply:
 | 
						|
	if (rdev->use_count == 0 && rdev->supply)
 | 
						|
		_regulator_disable(rdev->supply);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_enable - enable regulator output
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Request that the regulator be enabled with the regulator output at
 | 
						|
 * the predefined voltage or current value.  Calls to regulator_enable()
 | 
						|
 * must be balanced with calls to regulator_disable().
 | 
						|
 *
 | 
						|
 * NOTE: the output value can be set by other drivers, boot loader or may be
 | 
						|
 * hardwired in the regulator.
 | 
						|
 */
 | 
						|
int regulator_enable(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	struct ww_acquire_ctx ww_ctx;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	regulator_lock_dependent(rdev, &ww_ctx);
 | 
						|
	ret = _regulator_enable(regulator);
 | 
						|
	regulator_unlock_dependent(rdev, &ww_ctx);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_enable);
 | 
						|
 | 
						|
static int _regulator_do_disable(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	trace_regulator_disable(rdev_get_name(rdev));
 | 
						|
 | 
						|
	if (rdev->ena_pin) {
 | 
						|
		if (rdev->ena_gpio_state) {
 | 
						|
			ret = regulator_ena_gpio_ctrl(rdev, false);
 | 
						|
			if (ret < 0)
 | 
						|
				return ret;
 | 
						|
			rdev->ena_gpio_state = 0;
 | 
						|
		}
 | 
						|
 | 
						|
	} else if (rdev->desc->ops->disable) {
 | 
						|
		ret = rdev->desc->ops->disable(rdev);
 | 
						|
		if (ret != 0)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/* cares about last_off_jiffy only if off_on_delay is required by
 | 
						|
	 * device.
 | 
						|
	 */
 | 
						|
	if (rdev->desc->off_on_delay)
 | 
						|
		rdev->last_off_jiffy = jiffies;
 | 
						|
 | 
						|
	trace_regulator_disable_complete(rdev_get_name(rdev));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* locks held by regulator_disable() */
 | 
						|
static int _regulator_disable(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	lockdep_assert_held_once(&rdev->mutex.base);
 | 
						|
 | 
						|
	if (WARN(rdev->use_count <= 0,
 | 
						|
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	/* are we the last user and permitted to disable ? */
 | 
						|
	if (rdev->use_count == 1 &&
 | 
						|
	    (rdev->constraints && !rdev->constraints->always_on)) {
 | 
						|
 | 
						|
		/* we are last user */
 | 
						|
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
 | 
						|
			ret = _notifier_call_chain(rdev,
 | 
						|
						   REGULATOR_EVENT_PRE_DISABLE,
 | 
						|
						   NULL);
 | 
						|
			if (ret & NOTIFY_STOP_MASK)
 | 
						|
				return -EINVAL;
 | 
						|
 | 
						|
			ret = _regulator_do_disable(rdev);
 | 
						|
			if (ret < 0) {
 | 
						|
				rdev_err(rdev, "failed to disable\n");
 | 
						|
				_notifier_call_chain(rdev,
 | 
						|
						REGULATOR_EVENT_ABORT_DISABLE,
 | 
						|
						NULL);
 | 
						|
				return ret;
 | 
						|
			}
 | 
						|
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
 | 
						|
					NULL);
 | 
						|
		}
 | 
						|
 | 
						|
		rdev->use_count = 0;
 | 
						|
	} else if (rdev->use_count > 1) {
 | 
						|
		rdev->use_count--;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret == 0)
 | 
						|
		ret = _regulator_handle_consumer_disable(regulator);
 | 
						|
 | 
						|
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
 | 
						|
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
 | 
						|
 | 
						|
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
 | 
						|
		ret = _regulator_disable(rdev->supply);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_disable - disable regulator output
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Disable the regulator output voltage or current.  Calls to
 | 
						|
 * regulator_enable() must be balanced with calls to
 | 
						|
 * regulator_disable().
 | 
						|
 *
 | 
						|
 * NOTE: this will only disable the regulator output if no other consumer
 | 
						|
 * devices have it enabled, the regulator device supports disabling and
 | 
						|
 * machine constraints permit this operation.
 | 
						|
 */
 | 
						|
int regulator_disable(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	struct ww_acquire_ctx ww_ctx;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	regulator_lock_dependent(rdev, &ww_ctx);
 | 
						|
	ret = _regulator_disable(regulator);
 | 
						|
	regulator_unlock_dependent(rdev, &ww_ctx);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_disable);
 | 
						|
 | 
						|
/* locks held by regulator_force_disable() */
 | 
						|
static int _regulator_force_disable(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	lockdep_assert_held_once(&rdev->mutex.base);
 | 
						|
 | 
						|
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
 | 
						|
			REGULATOR_EVENT_PRE_DISABLE, NULL);
 | 
						|
	if (ret & NOTIFY_STOP_MASK)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ret = _regulator_do_disable(rdev);
 | 
						|
	if (ret < 0) {
 | 
						|
		rdev_err(rdev, "failed to force disable\n");
 | 
						|
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
 | 
						|
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
 | 
						|
			REGULATOR_EVENT_DISABLE, NULL);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_force_disable - force disable regulator output
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Forcibly disable the regulator output voltage or current.
 | 
						|
 * NOTE: this *will* disable the regulator output even if other consumer
 | 
						|
 * devices have it enabled. This should be used for situations when device
 | 
						|
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 | 
						|
 */
 | 
						|
int regulator_force_disable(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	struct ww_acquire_ctx ww_ctx;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	regulator_lock_dependent(rdev, &ww_ctx);
 | 
						|
 | 
						|
	ret = _regulator_force_disable(regulator->rdev);
 | 
						|
 | 
						|
	if (rdev->coupling_desc.n_coupled > 1)
 | 
						|
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
 | 
						|
 | 
						|
	if (regulator->uA_load) {
 | 
						|
		regulator->uA_load = 0;
 | 
						|
		ret = drms_uA_update(rdev);
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->use_count != 0 && rdev->supply)
 | 
						|
		_regulator_disable(rdev->supply);
 | 
						|
 | 
						|
	regulator_unlock_dependent(rdev, &ww_ctx);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_force_disable);
 | 
						|
 | 
						|
static void regulator_disable_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
 | 
						|
						  disable_work.work);
 | 
						|
	struct ww_acquire_ctx ww_ctx;
 | 
						|
	int count, i, ret;
 | 
						|
	struct regulator *regulator;
 | 
						|
	int total_count = 0;
 | 
						|
 | 
						|
	regulator_lock_dependent(rdev, &ww_ctx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Workqueue functions queue the new work instance while the previous
 | 
						|
	 * work instance is being processed. Cancel the queued work instance
 | 
						|
	 * as the work instance under processing does the job of the queued
 | 
						|
	 * work instance.
 | 
						|
	 */
 | 
						|
	cancel_delayed_work(&rdev->disable_work);
 | 
						|
 | 
						|
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 | 
						|
		count = regulator->deferred_disables;
 | 
						|
 | 
						|
		if (!count)
 | 
						|
			continue;
 | 
						|
 | 
						|
		total_count += count;
 | 
						|
		regulator->deferred_disables = 0;
 | 
						|
 | 
						|
		for (i = 0; i < count; i++) {
 | 
						|
			ret = _regulator_disable(regulator);
 | 
						|
			if (ret != 0)
 | 
						|
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	WARN_ON(!total_count);
 | 
						|
 | 
						|
	if (rdev->coupling_desc.n_coupled > 1)
 | 
						|
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
 | 
						|
 | 
						|
	regulator_unlock_dependent(rdev, &ww_ctx);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_disable_deferred - disable regulator output with delay
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @ms: milliseconds until the regulator is disabled
 | 
						|
 *
 | 
						|
 * Execute regulator_disable() on the regulator after a delay.  This
 | 
						|
 * is intended for use with devices that require some time to quiesce.
 | 
						|
 *
 | 
						|
 * NOTE: this will only disable the regulator output if no other consumer
 | 
						|
 * devices have it enabled, the regulator device supports disabling and
 | 
						|
 * machine constraints permit this operation.
 | 
						|
 */
 | 
						|
int regulator_disable_deferred(struct regulator *regulator, int ms)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
 | 
						|
	if (!ms)
 | 
						|
		return regulator_disable(regulator);
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
	regulator->deferred_disables++;
 | 
						|
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
 | 
						|
			 msecs_to_jiffies(ms));
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_disable_deferred);
 | 
						|
 | 
						|
static int _regulator_is_enabled(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	/* A GPIO control always takes precedence */
 | 
						|
	if (rdev->ena_pin)
 | 
						|
		return rdev->ena_gpio_state;
 | 
						|
 | 
						|
	/* If we don't know then assume that the regulator is always on */
 | 
						|
	if (!rdev->desc->ops->is_enabled)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return rdev->desc->ops->is_enabled(rdev);
 | 
						|
}
 | 
						|
 | 
						|
static int _regulator_list_voltage(struct regulator_dev *rdev,
 | 
						|
				   unsigned selector, int lock)
 | 
						|
{
 | 
						|
	const struct regulator_ops *ops = rdev->desc->ops;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
 | 
						|
		return rdev->desc->fixed_uV;
 | 
						|
 | 
						|
	if (ops->list_voltage) {
 | 
						|
		if (selector >= rdev->desc->n_voltages)
 | 
						|
			return -EINVAL;
 | 
						|
		if (lock)
 | 
						|
			regulator_lock(rdev);
 | 
						|
		ret = ops->list_voltage(rdev, selector);
 | 
						|
		if (lock)
 | 
						|
			regulator_unlock(rdev);
 | 
						|
	} else if (rdev->is_switch && rdev->supply) {
 | 
						|
		ret = _regulator_list_voltage(rdev->supply->rdev,
 | 
						|
					      selector, lock);
 | 
						|
	} else {
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret > 0) {
 | 
						|
		if (ret < rdev->constraints->min_uV)
 | 
						|
			ret = 0;
 | 
						|
		else if (ret > rdev->constraints->max_uV)
 | 
						|
			ret = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_is_enabled - is the regulator output enabled
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Returns positive if the regulator driver backing the source/client
 | 
						|
 * has requested that the device be enabled, zero if it hasn't, else a
 | 
						|
 * negative errno code.
 | 
						|
 *
 | 
						|
 * Note that the device backing this regulator handle can have multiple
 | 
						|
 * users, so it might be enabled even if regulator_enable() was never
 | 
						|
 * called for this particular source.
 | 
						|
 */
 | 
						|
int regulator_is_enabled(struct regulator *regulator)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (regulator->always_on)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	regulator_lock(regulator->rdev);
 | 
						|
	ret = _regulator_is_enabled(regulator->rdev);
 | 
						|
	regulator_unlock(regulator->rdev);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_is_enabled);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_count_voltages - count regulator_list_voltage() selectors
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Returns number of selectors, or negative errno.  Selectors are
 | 
						|
 * numbered starting at zero, and typically correspond to bitfields
 | 
						|
 * in hardware registers.
 | 
						|
 */
 | 
						|
int regulator_count_voltages(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev	*rdev = regulator->rdev;
 | 
						|
 | 
						|
	if (rdev->desc->n_voltages)
 | 
						|
		return rdev->desc->n_voltages;
 | 
						|
 | 
						|
	if (!rdev->is_switch || !rdev->supply)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return regulator_count_voltages(rdev->supply);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_count_voltages);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_list_voltage - enumerate supported voltages
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @selector: identify voltage to list
 | 
						|
 * Context: can sleep
 | 
						|
 *
 | 
						|
 * Returns a voltage that can be passed to @regulator_set_voltage(),
 | 
						|
 * zero if this selector code can't be used on this system, or a
 | 
						|
 * negative errno.
 | 
						|
 */
 | 
						|
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
 | 
						|
{
 | 
						|
	return _regulator_list_voltage(regulator->rdev, selector, 1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_list_voltage);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_regmap - get the regulator's register map
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Returns the register map for the given regulator, or an ERR_PTR value
 | 
						|
 * if the regulator doesn't use regmap.
 | 
						|
 */
 | 
						|
struct regmap *regulator_get_regmap(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regmap *map = regulator->rdev->regmap;
 | 
						|
 | 
						|
	return map ? map : ERR_PTR(-EOPNOTSUPP);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @vsel_reg: voltage selector register, output parameter
 | 
						|
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 | 
						|
 *
 | 
						|
 * Returns the hardware register offset and bitmask used for setting the
 | 
						|
 * regulator voltage. This might be useful when configuring voltage-scaling
 | 
						|
 * hardware or firmware that can make I2C requests behind the kernel's back,
 | 
						|
 * for example.
 | 
						|
 *
 | 
						|
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 | 
						|
 * and 0 is returned, otherwise a negative errno is returned.
 | 
						|
 */
 | 
						|
int regulator_get_hardware_vsel_register(struct regulator *regulator,
 | 
						|
					 unsigned *vsel_reg,
 | 
						|
					 unsigned *vsel_mask)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	const struct regulator_ops *ops = rdev->desc->ops;
 | 
						|
 | 
						|
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	*vsel_reg = rdev->desc->vsel_reg;
 | 
						|
	*vsel_mask = rdev->desc->vsel_mask;
 | 
						|
 | 
						|
	 return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @selector: identify voltage to list
 | 
						|
 *
 | 
						|
 * Converts the selector to a hardware-specific voltage selector that can be
 | 
						|
 * directly written to the regulator registers. The address of the voltage
 | 
						|
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 | 
						|
 *
 | 
						|
 * On error a negative errno is returned.
 | 
						|
 */
 | 
						|
int regulator_list_hardware_vsel(struct regulator *regulator,
 | 
						|
				 unsigned selector)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	const struct regulator_ops *ops = rdev->desc->ops;
 | 
						|
 | 
						|
	if (selector >= rdev->desc->n_voltages)
 | 
						|
		return -EINVAL;
 | 
						|
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
 | 
						|
	return selector;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_linear_step - return the voltage step size between VSEL values
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Returns the voltage step size between VSEL values for linear
 | 
						|
 * regulators, or return 0 if the regulator isn't a linear regulator.
 | 
						|
 */
 | 
						|
unsigned int regulator_get_linear_step(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
 | 
						|
	return rdev->desc->uV_step;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get_linear_step);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_is_supported_voltage - check if a voltage range can be supported
 | 
						|
 *
 | 
						|
 * @regulator: Regulator to check.
 | 
						|
 * @min_uV: Minimum required voltage in uV.
 | 
						|
 * @max_uV: Maximum required voltage in uV.
 | 
						|
 *
 | 
						|
 * Returns a boolean or a negative error code.
 | 
						|
 */
 | 
						|
int regulator_is_supported_voltage(struct regulator *regulator,
 | 
						|
				   int min_uV, int max_uV)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	int i, voltages, ret;
 | 
						|
 | 
						|
	/* If we can't change voltage check the current voltage */
 | 
						|
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 | 
						|
		ret = regulator_get_voltage(regulator);
 | 
						|
		if (ret >= 0)
 | 
						|
			return min_uV <= ret && ret <= max_uV;
 | 
						|
		else
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Any voltage within constrains range is fine? */
 | 
						|
	if (rdev->desc->continuous_voltage_range)
 | 
						|
		return min_uV >= rdev->constraints->min_uV &&
 | 
						|
				max_uV <= rdev->constraints->max_uV;
 | 
						|
 | 
						|
	ret = regulator_count_voltages(regulator);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
	voltages = ret;
 | 
						|
 | 
						|
	for (i = 0; i < voltages; i++) {
 | 
						|
		ret = regulator_list_voltage(regulator, i);
 | 
						|
 | 
						|
		if (ret >= min_uV && ret <= max_uV)
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
 | 
						|
 | 
						|
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
 | 
						|
				 int max_uV)
 | 
						|
{
 | 
						|
	const struct regulator_desc *desc = rdev->desc;
 | 
						|
 | 
						|
	if (desc->ops->map_voltage)
 | 
						|
		return desc->ops->map_voltage(rdev, min_uV, max_uV);
 | 
						|
 | 
						|
	if (desc->ops->list_voltage == regulator_list_voltage_linear)
 | 
						|
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
 | 
						|
 | 
						|
	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
 | 
						|
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
 | 
						|
 | 
						|
	if (desc->ops->list_voltage ==
 | 
						|
		regulator_list_voltage_pickable_linear_range)
 | 
						|
		return regulator_map_voltage_pickable_linear_range(rdev,
 | 
						|
							min_uV, max_uV);
 | 
						|
 | 
						|
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
 | 
						|
}
 | 
						|
 | 
						|
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
 | 
						|
				       int min_uV, int max_uV,
 | 
						|
				       unsigned *selector)
 | 
						|
{
 | 
						|
	struct pre_voltage_change_data data;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	data.old_uV = _regulator_get_voltage(rdev);
 | 
						|
	data.min_uV = min_uV;
 | 
						|
	data.max_uV = max_uV;
 | 
						|
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
 | 
						|
				   &data);
 | 
						|
	if (ret & NOTIFY_STOP_MASK)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
 | 
						|
	if (ret >= 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
 | 
						|
			     (void *)data.old_uV);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
 | 
						|
					   int uV, unsigned selector)
 | 
						|
{
 | 
						|
	struct pre_voltage_change_data data;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	data.old_uV = _regulator_get_voltage(rdev);
 | 
						|
	data.min_uV = uV;
 | 
						|
	data.max_uV = uV;
 | 
						|
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
 | 
						|
				   &data);
 | 
						|
	if (ret & NOTIFY_STOP_MASK)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
 | 
						|
	if (ret >= 0)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
 | 
						|
			     (void *)data.old_uV);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
 | 
						|
				       int old_uV, int new_uV)
 | 
						|
{
 | 
						|
	unsigned int ramp_delay = 0;
 | 
						|
 | 
						|
	if (rdev->constraints->ramp_delay)
 | 
						|
		ramp_delay = rdev->constraints->ramp_delay;
 | 
						|
	else if (rdev->desc->ramp_delay)
 | 
						|
		ramp_delay = rdev->desc->ramp_delay;
 | 
						|
	else if (rdev->constraints->settling_time)
 | 
						|
		return rdev->constraints->settling_time;
 | 
						|
	else if (rdev->constraints->settling_time_up &&
 | 
						|
		 (new_uV > old_uV))
 | 
						|
		return rdev->constraints->settling_time_up;
 | 
						|
	else if (rdev->constraints->settling_time_down &&
 | 
						|
		 (new_uV < old_uV))
 | 
						|
		return rdev->constraints->settling_time_down;
 | 
						|
 | 
						|
	if (ramp_delay == 0) {
 | 
						|
		rdev_dbg(rdev, "ramp_delay not set\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
 | 
						|
}
 | 
						|
 | 
						|
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 | 
						|
				     int min_uV, int max_uV)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	int delay = 0;
 | 
						|
	int best_val = 0;
 | 
						|
	unsigned int selector;
 | 
						|
	int old_selector = -1;
 | 
						|
	const struct regulator_ops *ops = rdev->desc->ops;
 | 
						|
	int old_uV = _regulator_get_voltage(rdev);
 | 
						|
 | 
						|
	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
 | 
						|
 | 
						|
	min_uV += rdev->constraints->uV_offset;
 | 
						|
	max_uV += rdev->constraints->uV_offset;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we can't obtain the old selector there is not enough
 | 
						|
	 * info to call set_voltage_time_sel().
 | 
						|
	 */
 | 
						|
	if (_regulator_is_enabled(rdev) &&
 | 
						|
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
 | 
						|
		old_selector = ops->get_voltage_sel(rdev);
 | 
						|
		if (old_selector < 0)
 | 
						|
			return old_selector;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ops->set_voltage) {
 | 
						|
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
 | 
						|
						  &selector);
 | 
						|
 | 
						|
		if (ret >= 0) {
 | 
						|
			if (ops->list_voltage)
 | 
						|
				best_val = ops->list_voltage(rdev,
 | 
						|
							     selector);
 | 
						|
			else
 | 
						|
				best_val = _regulator_get_voltage(rdev);
 | 
						|
		}
 | 
						|
 | 
						|
	} else if (ops->set_voltage_sel) {
 | 
						|
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
 | 
						|
		if (ret >= 0) {
 | 
						|
			best_val = ops->list_voltage(rdev, ret);
 | 
						|
			if (min_uV <= best_val && max_uV >= best_val) {
 | 
						|
				selector = ret;
 | 
						|
				if (old_selector == selector)
 | 
						|
					ret = 0;
 | 
						|
				else
 | 
						|
					ret = _regulator_call_set_voltage_sel(
 | 
						|
						rdev, best_val, selector);
 | 
						|
			} else {
 | 
						|
				ret = -EINVAL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		ret = -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (ops->set_voltage_time_sel) {
 | 
						|
		/*
 | 
						|
		 * Call set_voltage_time_sel if successfully obtained
 | 
						|
		 * old_selector
 | 
						|
		 */
 | 
						|
		if (old_selector >= 0 && old_selector != selector)
 | 
						|
			delay = ops->set_voltage_time_sel(rdev, old_selector,
 | 
						|
							  selector);
 | 
						|
	} else {
 | 
						|
		if (old_uV != best_val) {
 | 
						|
			if (ops->set_voltage_time)
 | 
						|
				delay = ops->set_voltage_time(rdev, old_uV,
 | 
						|
							      best_val);
 | 
						|
			else
 | 
						|
				delay = _regulator_set_voltage_time(rdev,
 | 
						|
								    old_uV,
 | 
						|
								    best_val);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (delay < 0) {
 | 
						|
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
 | 
						|
		delay = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Insert any necessary delays */
 | 
						|
	if (delay >= 1000) {
 | 
						|
		mdelay(delay / 1000);
 | 
						|
		udelay(delay % 1000);
 | 
						|
	} else if (delay) {
 | 
						|
		udelay(delay);
 | 
						|
	}
 | 
						|
 | 
						|
	if (best_val >= 0) {
 | 
						|
		unsigned long data = best_val;
 | 
						|
 | 
						|
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
 | 
						|
				     (void *)data);
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
 | 
						|
				  int min_uV, int max_uV, suspend_state_t state)
 | 
						|
{
 | 
						|
	struct regulator_state *rstate;
 | 
						|
	int uV, sel;
 | 
						|
 | 
						|
	rstate = regulator_get_suspend_state(rdev, state);
 | 
						|
	if (rstate == NULL)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (min_uV < rstate->min_uV)
 | 
						|
		min_uV = rstate->min_uV;
 | 
						|
	if (max_uV > rstate->max_uV)
 | 
						|
		max_uV = rstate->max_uV;
 | 
						|
 | 
						|
	sel = regulator_map_voltage(rdev, min_uV, max_uV);
 | 
						|
	if (sel < 0)
 | 
						|
		return sel;
 | 
						|
 | 
						|
	uV = rdev->desc->ops->list_voltage(rdev, sel);
 | 
						|
	if (uV >= min_uV && uV <= max_uV)
 | 
						|
		rstate->uV = uV;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_set_voltage_unlocked(struct regulator *regulator,
 | 
						|
					  int min_uV, int max_uV,
 | 
						|
					  suspend_state_t state)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	struct regulator_voltage *voltage = ®ulator->voltage[state];
 | 
						|
	int ret = 0;
 | 
						|
	int old_min_uV, old_max_uV;
 | 
						|
	int current_uV;
 | 
						|
 | 
						|
	/* If we're setting the same range as last time the change
 | 
						|
	 * should be a noop (some cpufreq implementations use the same
 | 
						|
	 * voltage for multiple frequencies, for example).
 | 
						|
	 */
 | 
						|
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* If we're trying to set a range that overlaps the current voltage,
 | 
						|
	 * return successfully even though the regulator does not support
 | 
						|
	 * changing the voltage.
 | 
						|
	 */
 | 
						|
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 | 
						|
		current_uV = _regulator_get_voltage(rdev);
 | 
						|
		if (min_uV <= current_uV && current_uV <= max_uV) {
 | 
						|
			voltage->min_uV = min_uV;
 | 
						|
			voltage->max_uV = max_uV;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* sanity check */
 | 
						|
	if (!rdev->desc->ops->set_voltage &&
 | 
						|
	    !rdev->desc->ops->set_voltage_sel) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* constraints check */
 | 
						|
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* restore original values in case of error */
 | 
						|
	old_min_uV = voltage->min_uV;
 | 
						|
	old_max_uV = voltage->max_uV;
 | 
						|
	voltage->min_uV = min_uV;
 | 
						|
	voltage->max_uV = max_uV;
 | 
						|
 | 
						|
	/* for not coupled regulators this will just set the voltage */
 | 
						|
	ret = regulator_balance_voltage(rdev, state);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out2;
 | 
						|
 | 
						|
out:
 | 
						|
	return 0;
 | 
						|
out2:
 | 
						|
	voltage->min_uV = old_min_uV;
 | 
						|
	voltage->max_uV = old_max_uV;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
 | 
						|
				      int max_uV, suspend_state_t state)
 | 
						|
{
 | 
						|
	int best_supply_uV = 0;
 | 
						|
	int supply_change_uV = 0;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (rdev->supply &&
 | 
						|
	    regulator_ops_is_valid(rdev->supply->rdev,
 | 
						|
				   REGULATOR_CHANGE_VOLTAGE) &&
 | 
						|
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
 | 
						|
					   rdev->desc->ops->get_voltage_sel))) {
 | 
						|
		int current_supply_uV;
 | 
						|
		int selector;
 | 
						|
 | 
						|
		selector = regulator_map_voltage(rdev, min_uV, max_uV);
 | 
						|
		if (selector < 0) {
 | 
						|
			ret = selector;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
 | 
						|
		if (best_supply_uV < 0) {
 | 
						|
			ret = best_supply_uV;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		best_supply_uV += rdev->desc->min_dropout_uV;
 | 
						|
 | 
						|
		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
 | 
						|
		if (current_supply_uV < 0) {
 | 
						|
			ret = current_supply_uV;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		supply_change_uV = best_supply_uV - current_supply_uV;
 | 
						|
	}
 | 
						|
 | 
						|
	if (supply_change_uV > 0) {
 | 
						|
		ret = regulator_set_voltage_unlocked(rdev->supply,
 | 
						|
				best_supply_uV, INT_MAX, state);
 | 
						|
		if (ret) {
 | 
						|
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
 | 
						|
					ret);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (state == PM_SUSPEND_ON)
 | 
						|
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 | 
						|
	else
 | 
						|
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
 | 
						|
							max_uV, state);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (supply_change_uV < 0) {
 | 
						|
		ret = regulator_set_voltage_unlocked(rdev->supply,
 | 
						|
				best_supply_uV, INT_MAX, state);
 | 
						|
		if (ret)
 | 
						|
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
 | 
						|
					ret);
 | 
						|
		/* No need to fail here */
 | 
						|
		ret = 0;
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
 | 
						|
					int *current_uV, int *min_uV)
 | 
						|
{
 | 
						|
	struct regulation_constraints *constraints = rdev->constraints;
 | 
						|
 | 
						|
	/* Limit voltage change only if necessary */
 | 
						|
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (*current_uV < 0) {
 | 
						|
		*current_uV = _regulator_get_voltage(rdev);
 | 
						|
 | 
						|
		if (*current_uV < 0)
 | 
						|
			return *current_uV;
 | 
						|
	}
 | 
						|
 | 
						|
	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/* Clamp target voltage within the given step */
 | 
						|
	if (*current_uV < *min_uV)
 | 
						|
		*min_uV = min(*current_uV + constraints->max_uV_step,
 | 
						|
			      *min_uV);
 | 
						|
	else
 | 
						|
		*min_uV = max(*current_uV - constraints->max_uV_step,
 | 
						|
			      *min_uV);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
 | 
						|
					 int *current_uV,
 | 
						|
					 int *min_uV, int *max_uV,
 | 
						|
					 suspend_state_t state,
 | 
						|
					 int n_coupled)
 | 
						|
{
 | 
						|
	struct coupling_desc *c_desc = &rdev->coupling_desc;
 | 
						|
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
 | 
						|
	struct regulation_constraints *constraints = rdev->constraints;
 | 
						|
	int max_spread = constraints->max_spread;
 | 
						|
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
 | 
						|
	int max_current_uV = 0, min_current_uV = INT_MAX;
 | 
						|
	int highest_min_uV = 0, target_uV, possible_uV;
 | 
						|
	int i, ret;
 | 
						|
	bool done;
 | 
						|
 | 
						|
	*current_uV = -1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there are no coupled regulators, simply set the voltage
 | 
						|
	 * demanded by consumers.
 | 
						|
	 */
 | 
						|
	if (n_coupled == 1) {
 | 
						|
		/*
 | 
						|
		 * If consumers don't provide any demands, set voltage
 | 
						|
		 * to min_uV
 | 
						|
		 */
 | 
						|
		desired_min_uV = constraints->min_uV;
 | 
						|
		desired_max_uV = constraints->max_uV;
 | 
						|
 | 
						|
		ret = regulator_check_consumers(rdev,
 | 
						|
						&desired_min_uV,
 | 
						|
						&desired_max_uV, state);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		possible_uV = desired_min_uV;
 | 
						|
		done = true;
 | 
						|
 | 
						|
		goto finish;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Find highest min desired voltage */
 | 
						|
	for (i = 0; i < n_coupled; i++) {
 | 
						|
		int tmp_min = 0;
 | 
						|
		int tmp_max = INT_MAX;
 | 
						|
 | 
						|
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
 | 
						|
 | 
						|
		ret = regulator_check_consumers(c_rdevs[i],
 | 
						|
						&tmp_min,
 | 
						|
						&tmp_max, state);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		highest_min_uV = max(highest_min_uV, tmp_min);
 | 
						|
 | 
						|
		if (i == 0) {
 | 
						|
			desired_min_uV = tmp_min;
 | 
						|
			desired_max_uV = tmp_max;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Let target_uV be equal to the desired one if possible.
 | 
						|
	 * If not, set it to minimum voltage, allowed by other coupled
 | 
						|
	 * regulators.
 | 
						|
	 */
 | 
						|
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find min and max voltages, which currently aren't violating
 | 
						|
	 * max_spread.
 | 
						|
	 */
 | 
						|
	for (i = 1; i < n_coupled; i++) {
 | 
						|
		int tmp_act;
 | 
						|
 | 
						|
		if (!_regulator_is_enabled(c_rdevs[i]))
 | 
						|
			continue;
 | 
						|
 | 
						|
		tmp_act = _regulator_get_voltage(c_rdevs[i]);
 | 
						|
		if (tmp_act < 0)
 | 
						|
			return tmp_act;
 | 
						|
 | 
						|
		min_current_uV = min(tmp_act, min_current_uV);
 | 
						|
		max_current_uV = max(tmp_act, max_current_uV);
 | 
						|
	}
 | 
						|
 | 
						|
	/* There aren't any other regulators enabled */
 | 
						|
	if (max_current_uV == 0) {
 | 
						|
		possible_uV = target_uV;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Correct target voltage, so as it currently isn't
 | 
						|
		 * violating max_spread
 | 
						|
		 */
 | 
						|
		possible_uV = max(target_uV, max_current_uV - max_spread);
 | 
						|
		possible_uV = min(possible_uV, min_current_uV + max_spread);
 | 
						|
	}
 | 
						|
 | 
						|
	if (possible_uV > desired_max_uV)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	done = (possible_uV == target_uV);
 | 
						|
	desired_min_uV = possible_uV;
 | 
						|
 | 
						|
finish:
 | 
						|
	/* Apply max_uV_step constraint if necessary */
 | 
						|
	if (state == PM_SUSPEND_ON) {
 | 
						|
		ret = regulator_limit_voltage_step(rdev, current_uV,
 | 
						|
						   &desired_min_uV);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		if (ret == 0)
 | 
						|
			done = false;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set current_uV if wasn't done earlier in the code and if necessary */
 | 
						|
	if (n_coupled > 1 && *current_uV == -1) {
 | 
						|
 | 
						|
		if (_regulator_is_enabled(rdev)) {
 | 
						|
			ret = _regulator_get_voltage(rdev);
 | 
						|
			if (ret < 0)
 | 
						|
				return ret;
 | 
						|
 | 
						|
			*current_uV = ret;
 | 
						|
		} else {
 | 
						|
			*current_uV = desired_min_uV;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	*min_uV = desired_min_uV;
 | 
						|
	*max_uV = desired_max_uV;
 | 
						|
 | 
						|
	return done;
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_balance_voltage(struct regulator_dev *rdev,
 | 
						|
				     suspend_state_t state)
 | 
						|
{
 | 
						|
	struct regulator_dev **c_rdevs;
 | 
						|
	struct regulator_dev *best_rdev;
 | 
						|
	struct coupling_desc *c_desc = &rdev->coupling_desc;
 | 
						|
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
 | 
						|
	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
 | 
						|
	unsigned int delta, best_delta;
 | 
						|
 | 
						|
	c_rdevs = c_desc->coupled_rdevs;
 | 
						|
	n_coupled = c_desc->n_coupled;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If system is in a state other than PM_SUSPEND_ON, don't check
 | 
						|
	 * other coupled regulators.
 | 
						|
	 */
 | 
						|
	if (state != PM_SUSPEND_ON)
 | 
						|
		n_coupled = 1;
 | 
						|
 | 
						|
	if (c_desc->n_resolved < n_coupled) {
 | 
						|
		rdev_err(rdev, "Not all coupled regulators registered\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < n_coupled; i++)
 | 
						|
		c_rdev_done[i] = false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find the best possible voltage change on each loop. Leave the loop
 | 
						|
	 * if there isn't any possible change.
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		best_c_rdev_done = false;
 | 
						|
		best_delta = 0;
 | 
						|
		best_min_uV = 0;
 | 
						|
		best_max_uV = 0;
 | 
						|
		best_c_rdev = 0;
 | 
						|
		best_rdev = NULL;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Find highest difference between optimal voltage
 | 
						|
		 * and current voltage.
 | 
						|
		 */
 | 
						|
		for (i = 0; i < n_coupled; i++) {
 | 
						|
			/*
 | 
						|
			 * optimal_uV is the best voltage that can be set for
 | 
						|
			 * i-th regulator at the moment without violating
 | 
						|
			 * max_spread constraint in order to balance
 | 
						|
			 * the coupled voltages.
 | 
						|
			 */
 | 
						|
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
 | 
						|
 | 
						|
			if (c_rdev_done[i])
 | 
						|
				continue;
 | 
						|
 | 
						|
			ret = regulator_get_optimal_voltage(c_rdevs[i],
 | 
						|
							    ¤t_uV,
 | 
						|
							    &optimal_uV,
 | 
						|
							    &optimal_max_uV,
 | 
						|
							    state, n_coupled);
 | 
						|
			if (ret < 0)
 | 
						|
				goto out;
 | 
						|
 | 
						|
			delta = abs(optimal_uV - current_uV);
 | 
						|
 | 
						|
			if (delta && best_delta <= delta) {
 | 
						|
				best_c_rdev_done = ret;
 | 
						|
				best_delta = delta;
 | 
						|
				best_rdev = c_rdevs[i];
 | 
						|
				best_min_uV = optimal_uV;
 | 
						|
				best_max_uV = optimal_max_uV;
 | 
						|
				best_c_rdev = i;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* Nothing to change, return successfully */
 | 
						|
		if (!best_rdev) {
 | 
						|
			ret = 0;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
 | 
						|
						 best_max_uV, state);
 | 
						|
 | 
						|
		if (ret < 0)
 | 
						|
			goto out;
 | 
						|
 | 
						|
		c_rdev_done[best_c_rdev] = best_c_rdev_done;
 | 
						|
 | 
						|
	} while (n_coupled > 1);
 | 
						|
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_set_voltage - set regulator output voltage
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @min_uV: Minimum required voltage in uV
 | 
						|
 * @max_uV: Maximum acceptable voltage in uV
 | 
						|
 *
 | 
						|
 * Sets a voltage regulator to the desired output voltage. This can be set
 | 
						|
 * during any regulator state. IOW, regulator can be disabled or enabled.
 | 
						|
 *
 | 
						|
 * If the regulator is enabled then the voltage will change to the new value
 | 
						|
 * immediately otherwise if the regulator is disabled the regulator will
 | 
						|
 * output at the new voltage when enabled.
 | 
						|
 *
 | 
						|
 * NOTE: If the regulator is shared between several devices then the lowest
 | 
						|
 * request voltage that meets the system constraints will be used.
 | 
						|
 * Regulator system constraints must be set for this regulator before
 | 
						|
 * calling this function otherwise this call will fail.
 | 
						|
 */
 | 
						|
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
 | 
						|
{
 | 
						|
	struct ww_acquire_ctx ww_ctx;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
 | 
						|
 | 
						|
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
 | 
						|
					     PM_SUSPEND_ON);
 | 
						|
 | 
						|
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_set_voltage);
 | 
						|
 | 
						|
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
 | 
						|
					   suspend_state_t state, bool en)
 | 
						|
{
 | 
						|
	struct regulator_state *rstate;
 | 
						|
 | 
						|
	rstate = regulator_get_suspend_state(rdev, state);
 | 
						|
	if (rstate == NULL)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (!rstate->changeable)
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int regulator_suspend_enable(struct regulator_dev *rdev,
 | 
						|
				    suspend_state_t state)
 | 
						|
{
 | 
						|
	return regulator_suspend_toggle(rdev, state, true);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_suspend_enable);
 | 
						|
 | 
						|
int regulator_suspend_disable(struct regulator_dev *rdev,
 | 
						|
				     suspend_state_t state)
 | 
						|
{
 | 
						|
	struct regulator *regulator;
 | 
						|
	struct regulator_voltage *voltage;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if any consumer wants this regulator device keeping on in
 | 
						|
	 * suspend states, don't set it as disabled.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 | 
						|
		voltage = ®ulator->voltage[state];
 | 
						|
		if (voltage->min_uV || voltage->max_uV)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return regulator_suspend_toggle(rdev, state, false);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_suspend_disable);
 | 
						|
 | 
						|
static int _regulator_set_suspend_voltage(struct regulator *regulator,
 | 
						|
					  int min_uV, int max_uV,
 | 
						|
					  suspend_state_t state)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	struct regulator_state *rstate;
 | 
						|
 | 
						|
	rstate = regulator_get_suspend_state(rdev, state);
 | 
						|
	if (rstate == NULL)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (rstate->min_uV == rstate->max_uV) {
 | 
						|
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
 | 
						|
}
 | 
						|
 | 
						|
int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
 | 
						|
				  int max_uV, suspend_state_t state)
 | 
						|
{
 | 
						|
	struct ww_acquire_ctx ww_ctx;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
 | 
						|
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
 | 
						|
 | 
						|
	ret = _regulator_set_suspend_voltage(regulator, min_uV,
 | 
						|
					     max_uV, state);
 | 
						|
 | 
						|
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_set_voltage_time - get raise/fall time
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @old_uV: starting voltage in microvolts
 | 
						|
 * @new_uV: target voltage in microvolts
 | 
						|
 *
 | 
						|
 * Provided with the starting and ending voltage, this function attempts to
 | 
						|
 * calculate the time in microseconds required to rise or fall to this new
 | 
						|
 * voltage.
 | 
						|
 */
 | 
						|
int regulator_set_voltage_time(struct regulator *regulator,
 | 
						|
			       int old_uV, int new_uV)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	const struct regulator_ops *ops = rdev->desc->ops;
 | 
						|
	int old_sel = -1;
 | 
						|
	int new_sel = -1;
 | 
						|
	int voltage;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (ops->set_voltage_time)
 | 
						|
		return ops->set_voltage_time(rdev, old_uV, new_uV);
 | 
						|
	else if (!ops->set_voltage_time_sel)
 | 
						|
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
 | 
						|
 | 
						|
	/* Currently requires operations to do this */
 | 
						|
	if (!ops->list_voltage || !rdev->desc->n_voltages)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	for (i = 0; i < rdev->desc->n_voltages; i++) {
 | 
						|
		/* We only look for exact voltage matches here */
 | 
						|
		voltage = regulator_list_voltage(regulator, i);
 | 
						|
		if (voltage < 0)
 | 
						|
			return -EINVAL;
 | 
						|
		if (voltage == 0)
 | 
						|
			continue;
 | 
						|
		if (voltage == old_uV)
 | 
						|
			old_sel = i;
 | 
						|
		if (voltage == new_uV)
 | 
						|
			new_sel = i;
 | 
						|
	}
 | 
						|
 | 
						|
	if (old_sel < 0 || new_sel < 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_set_voltage_time_sel - get raise/fall time
 | 
						|
 * @rdev: regulator source device
 | 
						|
 * @old_selector: selector for starting voltage
 | 
						|
 * @new_selector: selector for target voltage
 | 
						|
 *
 | 
						|
 * Provided with the starting and target voltage selectors, this function
 | 
						|
 * returns time in microseconds required to rise or fall to this new voltage
 | 
						|
 *
 | 
						|
 * Drivers providing ramp_delay in regulation_constraints can use this as their
 | 
						|
 * set_voltage_time_sel() operation.
 | 
						|
 */
 | 
						|
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
 | 
						|
				   unsigned int old_selector,
 | 
						|
				   unsigned int new_selector)
 | 
						|
{
 | 
						|
	int old_volt, new_volt;
 | 
						|
 | 
						|
	/* sanity check */
 | 
						|
	if (!rdev->desc->ops->list_voltage)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
 | 
						|
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
 | 
						|
 | 
						|
	if (rdev->desc->ops->set_voltage_time)
 | 
						|
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
 | 
						|
							 new_volt);
 | 
						|
	else
 | 
						|
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_sync_voltage - re-apply last regulator output voltage
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Re-apply the last configured voltage.  This is intended to be used
 | 
						|
 * where some external control source the consumer is cooperating with
 | 
						|
 * has caused the configured voltage to change.
 | 
						|
 */
 | 
						|
int regulator_sync_voltage(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
 | 
						|
	int ret, min_uV, max_uV;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
 | 
						|
	if (!rdev->desc->ops->set_voltage &&
 | 
						|
	    !rdev->desc->ops->set_voltage_sel) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* This is only going to work if we've had a voltage configured. */
 | 
						|
	if (!voltage->min_uV && !voltage->max_uV) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	min_uV = voltage->min_uV;
 | 
						|
	max_uV = voltage->max_uV;
 | 
						|
 | 
						|
	/* This should be a paranoia check... */
 | 
						|
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 | 
						|
 | 
						|
out:
 | 
						|
	regulator_unlock(rdev);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_sync_voltage);
 | 
						|
 | 
						|
static int _regulator_get_voltage(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	int sel, ret;
 | 
						|
	bool bypassed;
 | 
						|
 | 
						|
	if (rdev->desc->ops->get_bypass) {
 | 
						|
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
 | 
						|
		if (ret < 0)
 | 
						|
			return ret;
 | 
						|
		if (bypassed) {
 | 
						|
			/* if bypassed the regulator must have a supply */
 | 
						|
			if (!rdev->supply) {
 | 
						|
				rdev_err(rdev,
 | 
						|
					 "bypassed regulator has no supply!\n");
 | 
						|
				return -EPROBE_DEFER;
 | 
						|
			}
 | 
						|
 | 
						|
			return _regulator_get_voltage(rdev->supply->rdev);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->desc->ops->get_voltage_sel) {
 | 
						|
		sel = rdev->desc->ops->get_voltage_sel(rdev);
 | 
						|
		if (sel < 0)
 | 
						|
			return sel;
 | 
						|
		ret = rdev->desc->ops->list_voltage(rdev, sel);
 | 
						|
	} else if (rdev->desc->ops->get_voltage) {
 | 
						|
		ret = rdev->desc->ops->get_voltage(rdev);
 | 
						|
	} else if (rdev->desc->ops->list_voltage) {
 | 
						|
		ret = rdev->desc->ops->list_voltage(rdev, 0);
 | 
						|
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
 | 
						|
		ret = rdev->desc->fixed_uV;
 | 
						|
	} else if (rdev->supply) {
 | 
						|
		ret = _regulator_get_voltage(rdev->supply->rdev);
 | 
						|
	} else {
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
	return ret - rdev->constraints->uV_offset;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_voltage - get regulator output voltage
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * This returns the current regulator voltage in uV.
 | 
						|
 *
 | 
						|
 * NOTE: If the regulator is disabled it will return the voltage value. This
 | 
						|
 * function should not be used to determine regulator state.
 | 
						|
 */
 | 
						|
int regulator_get_voltage(struct regulator *regulator)
 | 
						|
{
 | 
						|
	struct ww_acquire_ctx ww_ctx;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
 | 
						|
	ret = _regulator_get_voltage(regulator->rdev);
 | 
						|
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get_voltage);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_set_current_limit - set regulator output current limit
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @min_uA: Minimum supported current in uA
 | 
						|
 * @max_uA: Maximum supported current in uA
 | 
						|
 *
 | 
						|
 * Sets current sink to the desired output current. This can be set during
 | 
						|
 * any regulator state. IOW, regulator can be disabled or enabled.
 | 
						|
 *
 | 
						|
 * If the regulator is enabled then the current will change to the new value
 | 
						|
 * immediately otherwise if the regulator is disabled the regulator will
 | 
						|
 * output at the new current when enabled.
 | 
						|
 *
 | 
						|
 * NOTE: Regulator system constraints must be set for this regulator before
 | 
						|
 * calling this function otherwise this call will fail.
 | 
						|
 */
 | 
						|
int regulator_set_current_limit(struct regulator *regulator,
 | 
						|
			       int min_uA, int max_uA)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
 | 
						|
	/* sanity check */
 | 
						|
	if (!rdev->desc->ops->set_current_limit) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* constraints check */
 | 
						|
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
 | 
						|
out:
 | 
						|
	regulator_unlock(rdev);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_set_current_limit);
 | 
						|
 | 
						|
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	/* sanity check */
 | 
						|
	if (!rdev->desc->ops->get_current_limit)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return rdev->desc->ops->get_current_limit(rdev);
 | 
						|
}
 | 
						|
 | 
						|
static int _regulator_get_current_limit(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
	ret = _regulator_get_current_limit_unlocked(rdev);
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_current_limit - get regulator output current
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * This returns the current supplied by the specified current sink in uA.
 | 
						|
 *
 | 
						|
 * NOTE: If the regulator is disabled it will return the current value. This
 | 
						|
 * function should not be used to determine regulator state.
 | 
						|
 */
 | 
						|
int regulator_get_current_limit(struct regulator *regulator)
 | 
						|
{
 | 
						|
	return _regulator_get_current_limit(regulator->rdev);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get_current_limit);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_set_mode - set regulator operating mode
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @mode: operating mode - one of the REGULATOR_MODE constants
 | 
						|
 *
 | 
						|
 * Set regulator operating mode to increase regulator efficiency or improve
 | 
						|
 * regulation performance.
 | 
						|
 *
 | 
						|
 * NOTE: Regulator system constraints must be set for this regulator before
 | 
						|
 * calling this function otherwise this call will fail.
 | 
						|
 */
 | 
						|
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	int ret;
 | 
						|
	int regulator_curr_mode;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
 | 
						|
	/* sanity check */
 | 
						|
	if (!rdev->desc->ops->set_mode) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* return if the same mode is requested */
 | 
						|
	if (rdev->desc->ops->get_mode) {
 | 
						|
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
 | 
						|
		if (regulator_curr_mode == mode) {
 | 
						|
			ret = 0;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* constraints check */
 | 
						|
	ret = regulator_mode_constrain(rdev, &mode);
 | 
						|
	if (ret < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	ret = rdev->desc->ops->set_mode(rdev, mode);
 | 
						|
out:
 | 
						|
	regulator_unlock(rdev);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_set_mode);
 | 
						|
 | 
						|
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	/* sanity check */
 | 
						|
	if (!rdev->desc->ops->get_mode)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return rdev->desc->ops->get_mode(rdev);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
	ret = _regulator_get_mode_unlocked(rdev);
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_mode - get regulator operating mode
 | 
						|
 * @regulator: regulator source
 | 
						|
 *
 | 
						|
 * Get the current regulator operating mode.
 | 
						|
 */
 | 
						|
unsigned int regulator_get_mode(struct regulator *regulator)
 | 
						|
{
 | 
						|
	return _regulator_get_mode(regulator->rdev);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get_mode);
 | 
						|
 | 
						|
static int _regulator_get_error_flags(struct regulator_dev *rdev,
 | 
						|
					unsigned int *flags)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
 | 
						|
	/* sanity check */
 | 
						|
	if (!rdev->desc->ops->get_error_flags) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = rdev->desc->ops->get_error_flags(rdev, flags);
 | 
						|
out:
 | 
						|
	regulator_unlock(rdev);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_error_flags - get regulator error information
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @flags: pointer to store error flags
 | 
						|
 *
 | 
						|
 * Get the current regulator error information.
 | 
						|
 */
 | 
						|
int regulator_get_error_flags(struct regulator *regulator,
 | 
						|
				unsigned int *flags)
 | 
						|
{
 | 
						|
	return _regulator_get_error_flags(regulator->rdev, flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get_error_flags);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_set_load - set regulator load
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @uA_load: load current
 | 
						|
 *
 | 
						|
 * Notifies the regulator core of a new device load. This is then used by
 | 
						|
 * DRMS (if enabled by constraints) to set the most efficient regulator
 | 
						|
 * operating mode for the new regulator loading.
 | 
						|
 *
 | 
						|
 * Consumer devices notify their supply regulator of the maximum power
 | 
						|
 * they will require (can be taken from device datasheet in the power
 | 
						|
 * consumption tables) when they change operational status and hence power
 | 
						|
 * state. Examples of operational state changes that can affect power
 | 
						|
 * consumption are :-
 | 
						|
 *
 | 
						|
 *    o Device is opened / closed.
 | 
						|
 *    o Device I/O is about to begin or has just finished.
 | 
						|
 *    o Device is idling in between work.
 | 
						|
 *
 | 
						|
 * This information is also exported via sysfs to userspace.
 | 
						|
 *
 | 
						|
 * DRMS will sum the total requested load on the regulator and change
 | 
						|
 * to the most efficient operating mode if platform constraints allow.
 | 
						|
 *
 | 
						|
 * NOTE: when a regulator consumer requests to have a regulator
 | 
						|
 * disabled then any load that consumer requested no longer counts
 | 
						|
 * toward the total requested load.  If the regulator is re-enabled
 | 
						|
 * then the previously requested load will start counting again.
 | 
						|
 *
 | 
						|
 * If a regulator is an always-on regulator then an individual consumer's
 | 
						|
 * load will still be removed if that consumer is fully disabled.
 | 
						|
 *
 | 
						|
 * On error a negative errno is returned.
 | 
						|
 */
 | 
						|
int regulator_set_load(struct regulator *regulator, int uA_load)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	int old_uA_load;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
	old_uA_load = regulator->uA_load;
 | 
						|
	regulator->uA_load = uA_load;
 | 
						|
	if (regulator->enable_count && old_uA_load != uA_load) {
 | 
						|
		ret = drms_uA_update(rdev);
 | 
						|
		if (ret < 0)
 | 
						|
			regulator->uA_load = old_uA_load;
 | 
						|
	}
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_set_load);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 | 
						|
 *
 | 
						|
 * @regulator: Regulator to configure
 | 
						|
 * @enable: enable or disable bypass mode
 | 
						|
 *
 | 
						|
 * Allow the regulator to go into bypass mode if all other consumers
 | 
						|
 * for the regulator also enable bypass mode and the machine
 | 
						|
 * constraints allow this.  Bypass mode means that the regulator is
 | 
						|
 * simply passing the input directly to the output with no regulation.
 | 
						|
 */
 | 
						|
int regulator_allow_bypass(struct regulator *regulator, bool enable)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = regulator->rdev;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (!rdev->desc->ops->set_bypass)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
 | 
						|
	if (enable && !regulator->bypass) {
 | 
						|
		rdev->bypass_count++;
 | 
						|
 | 
						|
		if (rdev->bypass_count == rdev->open_count) {
 | 
						|
			ret = rdev->desc->ops->set_bypass(rdev, enable);
 | 
						|
			if (ret != 0)
 | 
						|
				rdev->bypass_count--;
 | 
						|
		}
 | 
						|
 | 
						|
	} else if (!enable && regulator->bypass) {
 | 
						|
		rdev->bypass_count--;
 | 
						|
 | 
						|
		if (rdev->bypass_count != rdev->open_count) {
 | 
						|
			ret = rdev->desc->ops->set_bypass(rdev, enable);
 | 
						|
			if (ret != 0)
 | 
						|
				rdev->bypass_count++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (ret == 0)
 | 
						|
		regulator->bypass = enable;
 | 
						|
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_allow_bypass);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_register_notifier - register regulator event notifier
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @nb: notifier block
 | 
						|
 *
 | 
						|
 * Register notifier block to receive regulator events.
 | 
						|
 */
 | 
						|
int regulator_register_notifier(struct regulator *regulator,
 | 
						|
			      struct notifier_block *nb)
 | 
						|
{
 | 
						|
	return blocking_notifier_chain_register(®ulator->rdev->notifier,
 | 
						|
						nb);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_register_notifier);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_unregister_notifier - unregister regulator event notifier
 | 
						|
 * @regulator: regulator source
 | 
						|
 * @nb: notifier block
 | 
						|
 *
 | 
						|
 * Unregister regulator event notifier block.
 | 
						|
 */
 | 
						|
int regulator_unregister_notifier(struct regulator *regulator,
 | 
						|
				struct notifier_block *nb)
 | 
						|
{
 | 
						|
	return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
 | 
						|
						  nb);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
 | 
						|
 | 
						|
/* notify regulator consumers and downstream regulator consumers.
 | 
						|
 * Note mutex must be held by caller.
 | 
						|
 */
 | 
						|
static int _notifier_call_chain(struct regulator_dev *rdev,
 | 
						|
				  unsigned long event, void *data)
 | 
						|
{
 | 
						|
	/* call rdev chain first */
 | 
						|
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_bulk_get - get multiple regulator consumers
 | 
						|
 *
 | 
						|
 * @dev:           Device to supply
 | 
						|
 * @num_consumers: Number of consumers to register
 | 
						|
 * @consumers:     Configuration of consumers; clients are stored here.
 | 
						|
 *
 | 
						|
 * @return 0 on success, an errno on failure.
 | 
						|
 *
 | 
						|
 * This helper function allows drivers to get several regulator
 | 
						|
 * consumers in one operation.  If any of the regulators cannot be
 | 
						|
 * acquired then any regulators that were allocated will be freed
 | 
						|
 * before returning to the caller.
 | 
						|
 */
 | 
						|
int regulator_bulk_get(struct device *dev, int num_consumers,
 | 
						|
		       struct regulator_bulk_data *consumers)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	for (i = 0; i < num_consumers; i++)
 | 
						|
		consumers[i].consumer = NULL;
 | 
						|
 | 
						|
	for (i = 0; i < num_consumers; i++) {
 | 
						|
		consumers[i].consumer = regulator_get(dev,
 | 
						|
						      consumers[i].supply);
 | 
						|
		if (IS_ERR(consumers[i].consumer)) {
 | 
						|
			ret = PTR_ERR(consumers[i].consumer);
 | 
						|
			dev_err(dev, "Failed to get supply '%s': %d\n",
 | 
						|
				consumers[i].supply, ret);
 | 
						|
			consumers[i].consumer = NULL;
 | 
						|
			goto err;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err:
 | 
						|
	while (--i >= 0)
 | 
						|
		regulator_put(consumers[i].consumer);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_bulk_get);
 | 
						|
 | 
						|
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
 | 
						|
{
 | 
						|
	struct regulator_bulk_data *bulk = data;
 | 
						|
 | 
						|
	bulk->ret = regulator_enable(bulk->consumer);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_bulk_enable - enable multiple regulator consumers
 | 
						|
 *
 | 
						|
 * @num_consumers: Number of consumers
 | 
						|
 * @consumers:     Consumer data; clients are stored here.
 | 
						|
 * @return         0 on success, an errno on failure
 | 
						|
 *
 | 
						|
 * This convenience API allows consumers to enable multiple regulator
 | 
						|
 * clients in a single API call.  If any consumers cannot be enabled
 | 
						|
 * then any others that were enabled will be disabled again prior to
 | 
						|
 * return.
 | 
						|
 */
 | 
						|
int regulator_bulk_enable(int num_consumers,
 | 
						|
			  struct regulator_bulk_data *consumers)
 | 
						|
{
 | 
						|
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
 | 
						|
	int i;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	for (i = 0; i < num_consumers; i++) {
 | 
						|
		async_schedule_domain(regulator_bulk_enable_async,
 | 
						|
				      &consumers[i], &async_domain);
 | 
						|
	}
 | 
						|
 | 
						|
	async_synchronize_full_domain(&async_domain);
 | 
						|
 | 
						|
	/* If any consumer failed we need to unwind any that succeeded */
 | 
						|
	for (i = 0; i < num_consumers; i++) {
 | 
						|
		if (consumers[i].ret != 0) {
 | 
						|
			ret = consumers[i].ret;
 | 
						|
			goto err;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err:
 | 
						|
	for (i = 0; i < num_consumers; i++) {
 | 
						|
		if (consumers[i].ret < 0)
 | 
						|
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
 | 
						|
			       consumers[i].ret);
 | 
						|
		else
 | 
						|
			regulator_disable(consumers[i].consumer);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_bulk_enable);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_bulk_disable - disable multiple regulator consumers
 | 
						|
 *
 | 
						|
 * @num_consumers: Number of consumers
 | 
						|
 * @consumers:     Consumer data; clients are stored here.
 | 
						|
 * @return         0 on success, an errno on failure
 | 
						|
 *
 | 
						|
 * This convenience API allows consumers to disable multiple regulator
 | 
						|
 * clients in a single API call.  If any consumers cannot be disabled
 | 
						|
 * then any others that were disabled will be enabled again prior to
 | 
						|
 * return.
 | 
						|
 */
 | 
						|
int regulator_bulk_disable(int num_consumers,
 | 
						|
			   struct regulator_bulk_data *consumers)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int ret, r;
 | 
						|
 | 
						|
	for (i = num_consumers - 1; i >= 0; --i) {
 | 
						|
		ret = regulator_disable(consumers[i].consumer);
 | 
						|
		if (ret != 0)
 | 
						|
			goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err:
 | 
						|
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
 | 
						|
	for (++i; i < num_consumers; ++i) {
 | 
						|
		r = regulator_enable(consumers[i].consumer);
 | 
						|
		if (r != 0)
 | 
						|
			pr_err("Failed to re-enable %s: %d\n",
 | 
						|
			       consumers[i].supply, r);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_bulk_disable);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 | 
						|
 *
 | 
						|
 * @num_consumers: Number of consumers
 | 
						|
 * @consumers:     Consumer data; clients are stored here.
 | 
						|
 * @return         0 on success, an errno on failure
 | 
						|
 *
 | 
						|
 * This convenience API allows consumers to forcibly disable multiple regulator
 | 
						|
 * clients in a single API call.
 | 
						|
 * NOTE: This should be used for situations when device damage will
 | 
						|
 * likely occur if the regulators are not disabled (e.g. over temp).
 | 
						|
 * Although regulator_force_disable function call for some consumers can
 | 
						|
 * return error numbers, the function is called for all consumers.
 | 
						|
 */
 | 
						|
int regulator_bulk_force_disable(int num_consumers,
 | 
						|
			   struct regulator_bulk_data *consumers)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	for (i = 0; i < num_consumers; i++) {
 | 
						|
		consumers[i].ret =
 | 
						|
			    regulator_force_disable(consumers[i].consumer);
 | 
						|
 | 
						|
		/* Store first error for reporting */
 | 
						|
		if (consumers[i].ret && !ret)
 | 
						|
			ret = consumers[i].ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_bulk_free - free multiple regulator consumers
 | 
						|
 *
 | 
						|
 * @num_consumers: Number of consumers
 | 
						|
 * @consumers:     Consumer data; clients are stored here.
 | 
						|
 *
 | 
						|
 * This convenience API allows consumers to free multiple regulator
 | 
						|
 * clients in a single API call.
 | 
						|
 */
 | 
						|
void regulator_bulk_free(int num_consumers,
 | 
						|
			 struct regulator_bulk_data *consumers)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < num_consumers; i++) {
 | 
						|
		regulator_put(consumers[i].consumer);
 | 
						|
		consumers[i].consumer = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_bulk_free);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_notifier_call_chain - call regulator event notifier
 | 
						|
 * @rdev: regulator source
 | 
						|
 * @event: notifier block
 | 
						|
 * @data: callback-specific data.
 | 
						|
 *
 | 
						|
 * Called by regulator drivers to notify clients a regulator event has
 | 
						|
 * occurred. We also notify regulator clients downstream.
 | 
						|
 * Note lock must be held by caller.
 | 
						|
 */
 | 
						|
int regulator_notifier_call_chain(struct regulator_dev *rdev,
 | 
						|
				  unsigned long event, void *data)
 | 
						|
{
 | 
						|
	lockdep_assert_held_once(&rdev->mutex.base);
 | 
						|
 | 
						|
	_notifier_call_chain(rdev, event, data);
 | 
						|
	return NOTIFY_DONE;
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_mode_to_status - convert a regulator mode into a status
 | 
						|
 *
 | 
						|
 * @mode: Mode to convert
 | 
						|
 *
 | 
						|
 * Convert a regulator mode into a status.
 | 
						|
 */
 | 
						|
int regulator_mode_to_status(unsigned int mode)
 | 
						|
{
 | 
						|
	switch (mode) {
 | 
						|
	case REGULATOR_MODE_FAST:
 | 
						|
		return REGULATOR_STATUS_FAST;
 | 
						|
	case REGULATOR_MODE_NORMAL:
 | 
						|
		return REGULATOR_STATUS_NORMAL;
 | 
						|
	case REGULATOR_MODE_IDLE:
 | 
						|
		return REGULATOR_STATUS_IDLE;
 | 
						|
	case REGULATOR_MODE_STANDBY:
 | 
						|
		return REGULATOR_STATUS_STANDBY;
 | 
						|
	default:
 | 
						|
		return REGULATOR_STATUS_UNDEFINED;
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_mode_to_status);
 | 
						|
 | 
						|
static struct attribute *regulator_dev_attrs[] = {
 | 
						|
	&dev_attr_name.attr,
 | 
						|
	&dev_attr_num_users.attr,
 | 
						|
	&dev_attr_type.attr,
 | 
						|
	&dev_attr_microvolts.attr,
 | 
						|
	&dev_attr_microamps.attr,
 | 
						|
	&dev_attr_opmode.attr,
 | 
						|
	&dev_attr_state.attr,
 | 
						|
	&dev_attr_status.attr,
 | 
						|
	&dev_attr_bypass.attr,
 | 
						|
	&dev_attr_requested_microamps.attr,
 | 
						|
	&dev_attr_min_microvolts.attr,
 | 
						|
	&dev_attr_max_microvolts.attr,
 | 
						|
	&dev_attr_min_microamps.attr,
 | 
						|
	&dev_attr_max_microamps.attr,
 | 
						|
	&dev_attr_suspend_standby_state.attr,
 | 
						|
	&dev_attr_suspend_mem_state.attr,
 | 
						|
	&dev_attr_suspend_disk_state.attr,
 | 
						|
	&dev_attr_suspend_standby_microvolts.attr,
 | 
						|
	&dev_attr_suspend_mem_microvolts.attr,
 | 
						|
	&dev_attr_suspend_disk_microvolts.attr,
 | 
						|
	&dev_attr_suspend_standby_mode.attr,
 | 
						|
	&dev_attr_suspend_mem_mode.attr,
 | 
						|
	&dev_attr_suspend_disk_mode.attr,
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * To avoid cluttering sysfs (and memory) with useless state, only
 | 
						|
 * create attributes that can be meaningfully displayed.
 | 
						|
 */
 | 
						|
static umode_t regulator_attr_is_visible(struct kobject *kobj,
 | 
						|
					 struct attribute *attr, int idx)
 | 
						|
{
 | 
						|
	struct device *dev = kobj_to_dev(kobj);
 | 
						|
	struct regulator_dev *rdev = dev_to_rdev(dev);
 | 
						|
	const struct regulator_ops *ops = rdev->desc->ops;
 | 
						|
	umode_t mode = attr->mode;
 | 
						|
 | 
						|
	/* these three are always present */
 | 
						|
	if (attr == &dev_attr_name.attr ||
 | 
						|
	    attr == &dev_attr_num_users.attr ||
 | 
						|
	    attr == &dev_attr_type.attr)
 | 
						|
		return mode;
 | 
						|
 | 
						|
	/* some attributes need specific methods to be displayed */
 | 
						|
	if (attr == &dev_attr_microvolts.attr) {
 | 
						|
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
 | 
						|
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
 | 
						|
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
 | 
						|
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
 | 
						|
			return mode;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (attr == &dev_attr_microamps.attr)
 | 
						|
		return ops->get_current_limit ? mode : 0;
 | 
						|
 | 
						|
	if (attr == &dev_attr_opmode.attr)
 | 
						|
		return ops->get_mode ? mode : 0;
 | 
						|
 | 
						|
	if (attr == &dev_attr_state.attr)
 | 
						|
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
 | 
						|
 | 
						|
	if (attr == &dev_attr_status.attr)
 | 
						|
		return ops->get_status ? mode : 0;
 | 
						|
 | 
						|
	if (attr == &dev_attr_bypass.attr)
 | 
						|
		return ops->get_bypass ? mode : 0;
 | 
						|
 | 
						|
	/* constraints need specific supporting methods */
 | 
						|
	if (attr == &dev_attr_min_microvolts.attr ||
 | 
						|
	    attr == &dev_attr_max_microvolts.attr)
 | 
						|
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
 | 
						|
 | 
						|
	if (attr == &dev_attr_min_microamps.attr ||
 | 
						|
	    attr == &dev_attr_max_microamps.attr)
 | 
						|
		return ops->set_current_limit ? mode : 0;
 | 
						|
 | 
						|
	if (attr == &dev_attr_suspend_standby_state.attr ||
 | 
						|
	    attr == &dev_attr_suspend_mem_state.attr ||
 | 
						|
	    attr == &dev_attr_suspend_disk_state.attr)
 | 
						|
		return mode;
 | 
						|
 | 
						|
	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
 | 
						|
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
 | 
						|
	    attr == &dev_attr_suspend_disk_microvolts.attr)
 | 
						|
		return ops->set_suspend_voltage ? mode : 0;
 | 
						|
 | 
						|
	if (attr == &dev_attr_suspend_standby_mode.attr ||
 | 
						|
	    attr == &dev_attr_suspend_mem_mode.attr ||
 | 
						|
	    attr == &dev_attr_suspend_disk_mode.attr)
 | 
						|
		return ops->set_suspend_mode ? mode : 0;
 | 
						|
 | 
						|
	return mode;
 | 
						|
}
 | 
						|
 | 
						|
static const struct attribute_group regulator_dev_group = {
 | 
						|
	.attrs = regulator_dev_attrs,
 | 
						|
	.is_visible = regulator_attr_is_visible,
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group *regulator_dev_groups[] = {
 | 
						|
	®ulator_dev_group,
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
static void regulator_dev_release(struct device *dev)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_get_drvdata(dev);
 | 
						|
 | 
						|
	kfree(rdev->constraints);
 | 
						|
	of_node_put(rdev->dev.of_node);
 | 
						|
	kfree(rdev);
 | 
						|
}
 | 
						|
 | 
						|
static void rdev_init_debugfs(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	struct device *parent = rdev->dev.parent;
 | 
						|
	const char *rname = rdev_get_name(rdev);
 | 
						|
	char name[NAME_MAX];
 | 
						|
 | 
						|
	/* Avoid duplicate debugfs directory names */
 | 
						|
	if (parent && rname == rdev->desc->name) {
 | 
						|
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
 | 
						|
			 rname);
 | 
						|
		rname = name;
 | 
						|
	}
 | 
						|
 | 
						|
	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
 | 
						|
	if (!rdev->debugfs) {
 | 
						|
		rdev_warn(rdev, "Failed to create debugfs directory\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	debugfs_create_u32("use_count", 0444, rdev->debugfs,
 | 
						|
			   &rdev->use_count);
 | 
						|
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
 | 
						|
			   &rdev->open_count);
 | 
						|
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
 | 
						|
			   &rdev->bypass_count);
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_register_resolve_supply(struct device *dev, void *data)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_to_rdev(dev);
 | 
						|
 | 
						|
	if (regulator_resolve_supply(rdev))
 | 
						|
		rdev_dbg(rdev, "unable to resolve supply\n");
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void regulator_resolve_coupling(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	struct coupling_desc *c_desc = &rdev->coupling_desc;
 | 
						|
	int n_coupled = c_desc->n_coupled;
 | 
						|
	struct regulator_dev *c_rdev;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 1; i < n_coupled; i++) {
 | 
						|
		/* already resolved */
 | 
						|
		if (c_desc->coupled_rdevs[i])
 | 
						|
			continue;
 | 
						|
 | 
						|
		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
 | 
						|
 | 
						|
		if (!c_rdev)
 | 
						|
			continue;
 | 
						|
 | 
						|
		regulator_lock(c_rdev);
 | 
						|
 | 
						|
		c_desc->coupled_rdevs[i] = c_rdev;
 | 
						|
		c_desc->n_resolved++;
 | 
						|
 | 
						|
		regulator_unlock(c_rdev);
 | 
						|
 | 
						|
		regulator_resolve_coupling(c_rdev);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void regulator_remove_coupling(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
 | 
						|
	struct regulator_dev *__c_rdev, *c_rdev;
 | 
						|
	unsigned int __n_coupled, n_coupled;
 | 
						|
	int i, k;
 | 
						|
 | 
						|
	n_coupled = c_desc->n_coupled;
 | 
						|
 | 
						|
	for (i = 1; i < n_coupled; i++) {
 | 
						|
		c_rdev = c_desc->coupled_rdevs[i];
 | 
						|
 | 
						|
		if (!c_rdev)
 | 
						|
			continue;
 | 
						|
 | 
						|
		regulator_lock(c_rdev);
 | 
						|
 | 
						|
		__c_desc = &c_rdev->coupling_desc;
 | 
						|
		__n_coupled = __c_desc->n_coupled;
 | 
						|
 | 
						|
		for (k = 1; k < __n_coupled; k++) {
 | 
						|
			__c_rdev = __c_desc->coupled_rdevs[k];
 | 
						|
 | 
						|
			if (__c_rdev == rdev) {
 | 
						|
				__c_desc->coupled_rdevs[k] = NULL;
 | 
						|
				__c_desc->n_resolved--;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		regulator_unlock(c_rdev);
 | 
						|
 | 
						|
		c_desc->coupled_rdevs[i] = NULL;
 | 
						|
		c_desc->n_resolved--;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_init_coupling(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	int n_phandles;
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_OF))
 | 
						|
		n_phandles = 0;
 | 
						|
	else
 | 
						|
		n_phandles = of_get_n_coupled(rdev);
 | 
						|
 | 
						|
	if (n_phandles + 1 > MAX_COUPLED) {
 | 
						|
		rdev_err(rdev, "too many regulators coupled\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Every regulator should always have coupling descriptor filled with
 | 
						|
	 * at least pointer to itself.
 | 
						|
	 */
 | 
						|
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
 | 
						|
	rdev->coupling_desc.n_coupled = n_phandles + 1;
 | 
						|
	rdev->coupling_desc.n_resolved++;
 | 
						|
 | 
						|
	/* regulator isn't coupled */
 | 
						|
	if (n_phandles == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* regulator, which can't change its voltage, can't be coupled */
 | 
						|
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 | 
						|
		rdev_err(rdev, "voltage operation not allowed\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	if (rdev->constraints->max_spread <= 0) {
 | 
						|
		rdev_err(rdev, "wrong max_spread value\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!of_check_coupling_data(rdev))
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_register - register regulator
 | 
						|
 * @regulator_desc: regulator to register
 | 
						|
 * @cfg: runtime configuration for regulator
 | 
						|
 *
 | 
						|
 * Called by regulator drivers to register a regulator.
 | 
						|
 * Returns a valid pointer to struct regulator_dev on success
 | 
						|
 * or an ERR_PTR() on error.
 | 
						|
 */
 | 
						|
struct regulator_dev *
 | 
						|
regulator_register(const struct regulator_desc *regulator_desc,
 | 
						|
		   const struct regulator_config *cfg)
 | 
						|
{
 | 
						|
	const struct regulation_constraints *constraints = NULL;
 | 
						|
	const struct regulator_init_data *init_data;
 | 
						|
	struct regulator_config *config = NULL;
 | 
						|
	static atomic_t regulator_no = ATOMIC_INIT(-1);
 | 
						|
	struct regulator_dev *rdev;
 | 
						|
	bool dangling_cfg_gpiod = false;
 | 
						|
	bool dangling_of_gpiod = false;
 | 
						|
	struct device *dev;
 | 
						|
	int ret, i;
 | 
						|
 | 
						|
	if (cfg == NULL)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
	if (cfg->ena_gpiod)
 | 
						|
		dangling_cfg_gpiod = true;
 | 
						|
	if (regulator_desc == NULL) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto rinse;
 | 
						|
	}
 | 
						|
 | 
						|
	dev = cfg->dev;
 | 
						|
	WARN_ON(!dev);
 | 
						|
 | 
						|
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto rinse;
 | 
						|
	}
 | 
						|
 | 
						|
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
 | 
						|
	    regulator_desc->type != REGULATOR_CURRENT) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto rinse;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Only one of each should be implemented */
 | 
						|
	WARN_ON(regulator_desc->ops->get_voltage &&
 | 
						|
		regulator_desc->ops->get_voltage_sel);
 | 
						|
	WARN_ON(regulator_desc->ops->set_voltage &&
 | 
						|
		regulator_desc->ops->set_voltage_sel);
 | 
						|
 | 
						|
	/* If we're using selectors we must implement list_voltage. */
 | 
						|
	if (regulator_desc->ops->get_voltage_sel &&
 | 
						|
	    !regulator_desc->ops->list_voltage) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto rinse;
 | 
						|
	}
 | 
						|
	if (regulator_desc->ops->set_voltage_sel &&
 | 
						|
	    !regulator_desc->ops->list_voltage) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto rinse;
 | 
						|
	}
 | 
						|
 | 
						|
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
 | 
						|
	if (rdev == NULL) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto rinse;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Duplicate the config so the driver could override it after
 | 
						|
	 * parsing init data.
 | 
						|
	 */
 | 
						|
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
 | 
						|
	if (config == NULL) {
 | 
						|
		kfree(rdev);
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto rinse;
 | 
						|
	}
 | 
						|
 | 
						|
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
 | 
						|
					       &rdev->dev.of_node);
 | 
						|
	/*
 | 
						|
	 * We need to keep track of any GPIO descriptor coming from the
 | 
						|
	 * device tree until we have handled it over to the core. If the
 | 
						|
	 * config that was passed in to this function DOES NOT contain
 | 
						|
	 * a descriptor, and the config after this call DOES contain
 | 
						|
	 * a descriptor, we definitely got one from parsing the device
 | 
						|
	 * tree.
 | 
						|
	 */
 | 
						|
	if (!cfg->ena_gpiod && config->ena_gpiod)
 | 
						|
		dangling_of_gpiod = true;
 | 
						|
	if (!init_data) {
 | 
						|
		init_data = config->init_data;
 | 
						|
		rdev->dev.of_node = of_node_get(config->of_node);
 | 
						|
	}
 | 
						|
 | 
						|
	ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
 | 
						|
	rdev->reg_data = config->driver_data;
 | 
						|
	rdev->owner = regulator_desc->owner;
 | 
						|
	rdev->desc = regulator_desc;
 | 
						|
	if (config->regmap)
 | 
						|
		rdev->regmap = config->regmap;
 | 
						|
	else if (dev_get_regmap(dev, NULL))
 | 
						|
		rdev->regmap = dev_get_regmap(dev, NULL);
 | 
						|
	else if (dev->parent)
 | 
						|
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
 | 
						|
	INIT_LIST_HEAD(&rdev->consumer_list);
 | 
						|
	INIT_LIST_HEAD(&rdev->list);
 | 
						|
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
 | 
						|
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
 | 
						|
 | 
						|
	/* preform any regulator specific init */
 | 
						|
	if (init_data && init_data->regulator_init) {
 | 
						|
		ret = init_data->regulator_init(rdev->reg_data);
 | 
						|
		if (ret < 0)
 | 
						|
			goto clean;
 | 
						|
	}
 | 
						|
 | 
						|
	if (config->ena_gpiod) {
 | 
						|
		mutex_lock(®ulator_list_mutex);
 | 
						|
		ret = regulator_ena_gpio_request(rdev, config);
 | 
						|
		mutex_unlock(®ulator_list_mutex);
 | 
						|
		if (ret != 0) {
 | 
						|
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
 | 
						|
				 ret);
 | 
						|
			goto clean;
 | 
						|
		}
 | 
						|
		/* The regulator core took over the GPIO descriptor */
 | 
						|
		dangling_cfg_gpiod = false;
 | 
						|
		dangling_of_gpiod = false;
 | 
						|
	}
 | 
						|
 | 
						|
	/* register with sysfs */
 | 
						|
	rdev->dev.class = ®ulator_class;
 | 
						|
	rdev->dev.parent = dev;
 | 
						|
	dev_set_name(&rdev->dev, "regulator.%lu",
 | 
						|
		    (unsigned long) atomic_inc_return(®ulator_no));
 | 
						|
 | 
						|
	/* set regulator constraints */
 | 
						|
	if (init_data)
 | 
						|
		constraints = &init_data->constraints;
 | 
						|
 | 
						|
	if (init_data && init_data->supply_regulator)
 | 
						|
		rdev->supply_name = init_data->supply_regulator;
 | 
						|
	else if (regulator_desc->supply_name)
 | 
						|
		rdev->supply_name = regulator_desc->supply_name;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Attempt to resolve the regulator supply, if specified,
 | 
						|
	 * but don't return an error if we fail because we will try
 | 
						|
	 * to resolve it again later as more regulators are added.
 | 
						|
	 */
 | 
						|
	if (regulator_resolve_supply(rdev))
 | 
						|
		rdev_dbg(rdev, "unable to resolve supply\n");
 | 
						|
 | 
						|
	ret = set_machine_constraints(rdev, constraints);
 | 
						|
	if (ret < 0)
 | 
						|
		goto wash;
 | 
						|
 | 
						|
	ret = regulator_init_coupling(rdev);
 | 
						|
	if (ret < 0)
 | 
						|
		goto wash;
 | 
						|
 | 
						|
	/* add consumers devices */
 | 
						|
	if (init_data) {
 | 
						|
		mutex_lock(®ulator_list_mutex);
 | 
						|
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
 | 
						|
			ret = set_consumer_device_supply(rdev,
 | 
						|
				init_data->consumer_supplies[i].dev_name,
 | 
						|
				init_data->consumer_supplies[i].supply);
 | 
						|
			if (ret < 0) {
 | 
						|
				mutex_unlock(®ulator_list_mutex);
 | 
						|
				dev_err(dev, "Failed to set supply %s\n",
 | 
						|
					init_data->consumer_supplies[i].supply);
 | 
						|
				goto unset_supplies;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		mutex_unlock(®ulator_list_mutex);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!rdev->desc->ops->get_voltage &&
 | 
						|
	    !rdev->desc->ops->list_voltage &&
 | 
						|
	    !rdev->desc->fixed_uV)
 | 
						|
		rdev->is_switch = true;
 | 
						|
 | 
						|
	dev_set_drvdata(&rdev->dev, rdev);
 | 
						|
	ret = device_register(&rdev->dev);
 | 
						|
	if (ret != 0) {
 | 
						|
		put_device(&rdev->dev);
 | 
						|
		goto unset_supplies;
 | 
						|
	}
 | 
						|
 | 
						|
	rdev_init_debugfs(rdev);
 | 
						|
 | 
						|
	/* try to resolve regulators coupling since a new one was registered */
 | 
						|
	mutex_lock(®ulator_list_mutex);
 | 
						|
	regulator_resolve_coupling(rdev);
 | 
						|
	mutex_unlock(®ulator_list_mutex);
 | 
						|
 | 
						|
	/* try to resolve regulators supply since a new one was registered */
 | 
						|
	class_for_each_device(®ulator_class, NULL, NULL,
 | 
						|
			      regulator_register_resolve_supply);
 | 
						|
	kfree(config);
 | 
						|
	return rdev;
 | 
						|
 | 
						|
unset_supplies:
 | 
						|
	mutex_lock(®ulator_list_mutex);
 | 
						|
	unset_regulator_supplies(rdev);
 | 
						|
	mutex_unlock(®ulator_list_mutex);
 | 
						|
wash:
 | 
						|
	kfree(rdev->constraints);
 | 
						|
	mutex_lock(®ulator_list_mutex);
 | 
						|
	regulator_ena_gpio_free(rdev);
 | 
						|
	mutex_unlock(®ulator_list_mutex);
 | 
						|
clean:
 | 
						|
	if (dangling_of_gpiod)
 | 
						|
		gpiod_put(config->ena_gpiod);
 | 
						|
	kfree(rdev);
 | 
						|
	kfree(config);
 | 
						|
rinse:
 | 
						|
	if (dangling_cfg_gpiod)
 | 
						|
		gpiod_put(cfg->ena_gpiod);
 | 
						|
	return ERR_PTR(ret);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_register);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_unregister - unregister regulator
 | 
						|
 * @rdev: regulator to unregister
 | 
						|
 *
 | 
						|
 * Called by regulator drivers to unregister a regulator.
 | 
						|
 */
 | 
						|
void regulator_unregister(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	if (rdev == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (rdev->supply) {
 | 
						|
		while (rdev->use_count--)
 | 
						|
			regulator_disable(rdev->supply);
 | 
						|
		regulator_put(rdev->supply);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_lock(®ulator_list_mutex);
 | 
						|
 | 
						|
	debugfs_remove_recursive(rdev->debugfs);
 | 
						|
	flush_work(&rdev->disable_work.work);
 | 
						|
	WARN_ON(rdev->open_count);
 | 
						|
	regulator_remove_coupling(rdev);
 | 
						|
	unset_regulator_supplies(rdev);
 | 
						|
	list_del(&rdev->list);
 | 
						|
	regulator_ena_gpio_free(rdev);
 | 
						|
	device_unregister(&rdev->dev);
 | 
						|
 | 
						|
	mutex_unlock(®ulator_list_mutex);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_unregister);
 | 
						|
 | 
						|
#ifdef CONFIG_SUSPEND
 | 
						|
/**
 | 
						|
 * regulator_suspend - prepare regulators for system wide suspend
 | 
						|
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
 | 
						|
 *
 | 
						|
 * Configure each regulator with it's suspend operating parameters for state.
 | 
						|
 */
 | 
						|
static int regulator_suspend(struct device *dev)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_to_rdev(dev);
 | 
						|
	suspend_state_t state = pm_suspend_target_state;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
	ret = suspend_set_state(rdev, state);
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_resume(struct device *dev)
 | 
						|
{
 | 
						|
	suspend_state_t state = pm_suspend_target_state;
 | 
						|
	struct regulator_dev *rdev = dev_to_rdev(dev);
 | 
						|
	struct regulator_state *rstate;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	rstate = regulator_get_suspend_state(rdev, state);
 | 
						|
	if (rstate == NULL)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
 | 
						|
	if (rdev->desc->ops->resume &&
 | 
						|
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
 | 
						|
	     rstate->enabled == DISABLE_IN_SUSPEND))
 | 
						|
		ret = rdev->desc->ops->resume(rdev);
 | 
						|
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#else /* !CONFIG_SUSPEND */
 | 
						|
 | 
						|
#define regulator_suspend	NULL
 | 
						|
#define regulator_resume	NULL
 | 
						|
 | 
						|
#endif /* !CONFIG_SUSPEND */
 | 
						|
 | 
						|
#ifdef CONFIG_PM
 | 
						|
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
 | 
						|
	.suspend	= regulator_suspend,
 | 
						|
	.resume		= regulator_resume,
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
struct class regulator_class = {
 | 
						|
	.name = "regulator",
 | 
						|
	.dev_release = regulator_dev_release,
 | 
						|
	.dev_groups = regulator_dev_groups,
 | 
						|
#ifdef CONFIG_PM
 | 
						|
	.pm = ®ulator_pm_ops,
 | 
						|
#endif
 | 
						|
};
 | 
						|
/**
 | 
						|
 * regulator_has_full_constraints - the system has fully specified constraints
 | 
						|
 *
 | 
						|
 * Calling this function will cause the regulator API to disable all
 | 
						|
 * regulators which have a zero use count and don't have an always_on
 | 
						|
 * constraint in a late_initcall.
 | 
						|
 *
 | 
						|
 * The intention is that this will become the default behaviour in a
 | 
						|
 * future kernel release so users are encouraged to use this facility
 | 
						|
 * now.
 | 
						|
 */
 | 
						|
void regulator_has_full_constraints(void)
 | 
						|
{
 | 
						|
	has_full_constraints = 1;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
 | 
						|
 | 
						|
/**
 | 
						|
 * rdev_get_drvdata - get rdev regulator driver data
 | 
						|
 * @rdev: regulator
 | 
						|
 *
 | 
						|
 * Get rdev regulator driver private data. This call can be used in the
 | 
						|
 * regulator driver context.
 | 
						|
 */
 | 
						|
void *rdev_get_drvdata(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	return rdev->reg_data;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rdev_get_drvdata);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_drvdata - get regulator driver data
 | 
						|
 * @regulator: regulator
 | 
						|
 *
 | 
						|
 * Get regulator driver private data. This call can be used in the consumer
 | 
						|
 * driver context when non API regulator specific functions need to be called.
 | 
						|
 */
 | 
						|
void *regulator_get_drvdata(struct regulator *regulator)
 | 
						|
{
 | 
						|
	return regulator->rdev->reg_data;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get_drvdata);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_set_drvdata - set regulator driver data
 | 
						|
 * @regulator: regulator
 | 
						|
 * @data: data
 | 
						|
 */
 | 
						|
void regulator_set_drvdata(struct regulator *regulator, void *data)
 | 
						|
{
 | 
						|
	regulator->rdev->reg_data = data;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_set_drvdata);
 | 
						|
 | 
						|
/**
 | 
						|
 * regulator_get_id - get regulator ID
 | 
						|
 * @rdev: regulator
 | 
						|
 */
 | 
						|
int rdev_get_id(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	return rdev->desc->id;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rdev_get_id);
 | 
						|
 | 
						|
struct device *rdev_get_dev(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	return &rdev->dev;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rdev_get_dev);
 | 
						|
 | 
						|
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
 | 
						|
{
 | 
						|
	return rdev->regmap;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(rdev_get_regmap);
 | 
						|
 | 
						|
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
 | 
						|
{
 | 
						|
	return reg_init_data->driver_data;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_FS
 | 
						|
static int supply_map_show(struct seq_file *sf, void *data)
 | 
						|
{
 | 
						|
	struct regulator_map *map;
 | 
						|
 | 
						|
	list_for_each_entry(map, ®ulator_map_list, list) {
 | 
						|
		seq_printf(sf, "%s -> %s.%s\n",
 | 
						|
				rdev_get_name(map->regulator), map->dev_name,
 | 
						|
				map->supply);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
DEFINE_SHOW_ATTRIBUTE(supply_map);
 | 
						|
 | 
						|
struct summary_data {
 | 
						|
	struct seq_file *s;
 | 
						|
	struct regulator_dev *parent;
 | 
						|
	int level;
 | 
						|
};
 | 
						|
 | 
						|
static void regulator_summary_show_subtree(struct seq_file *s,
 | 
						|
					   struct regulator_dev *rdev,
 | 
						|
					   int level);
 | 
						|
 | 
						|
static int regulator_summary_show_children(struct device *dev, void *data)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_to_rdev(dev);
 | 
						|
	struct summary_data *summary_data = data;
 | 
						|
 | 
						|
	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
 | 
						|
		regulator_summary_show_subtree(summary_data->s, rdev,
 | 
						|
					       summary_data->level + 1);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void regulator_summary_show_subtree(struct seq_file *s,
 | 
						|
					   struct regulator_dev *rdev,
 | 
						|
					   int level)
 | 
						|
{
 | 
						|
	struct regulation_constraints *c;
 | 
						|
	struct regulator *consumer;
 | 
						|
	struct summary_data summary_data;
 | 
						|
	unsigned int opmode;
 | 
						|
 | 
						|
	if (!rdev)
 | 
						|
		return;
 | 
						|
 | 
						|
	opmode = _regulator_get_mode_unlocked(rdev);
 | 
						|
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
 | 
						|
		   level * 3 + 1, "",
 | 
						|
		   30 - level * 3, rdev_get_name(rdev),
 | 
						|
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
 | 
						|
		   regulator_opmode_to_str(opmode));
 | 
						|
 | 
						|
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
 | 
						|
	seq_printf(s, "%5dmA ",
 | 
						|
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
 | 
						|
 | 
						|
	c = rdev->constraints;
 | 
						|
	if (c) {
 | 
						|
		switch (rdev->desc->type) {
 | 
						|
		case REGULATOR_VOLTAGE:
 | 
						|
			seq_printf(s, "%5dmV %5dmV ",
 | 
						|
				   c->min_uV / 1000, c->max_uV / 1000);
 | 
						|
			break;
 | 
						|
		case REGULATOR_CURRENT:
 | 
						|
			seq_printf(s, "%5dmA %5dmA ",
 | 
						|
				   c->min_uA / 1000, c->max_uA / 1000);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	seq_puts(s, "\n");
 | 
						|
 | 
						|
	list_for_each_entry(consumer, &rdev->consumer_list, list) {
 | 
						|
		if (consumer->dev && consumer->dev->class == ®ulator_class)
 | 
						|
			continue;
 | 
						|
 | 
						|
		seq_printf(s, "%*s%-*s ",
 | 
						|
			   (level + 1) * 3 + 1, "",
 | 
						|
			   30 - (level + 1) * 3,
 | 
						|
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
 | 
						|
 | 
						|
		switch (rdev->desc->type) {
 | 
						|
		case REGULATOR_VOLTAGE:
 | 
						|
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
 | 
						|
				   consumer->enable_count,
 | 
						|
				   consumer->uA_load / 1000,
 | 
						|
				   consumer->uA_load && !consumer->enable_count ?
 | 
						|
				   '*' : ' ',
 | 
						|
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
 | 
						|
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
 | 
						|
			break;
 | 
						|
		case REGULATOR_CURRENT:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		seq_puts(s, "\n");
 | 
						|
	}
 | 
						|
 | 
						|
	summary_data.s = s;
 | 
						|
	summary_data.level = level;
 | 
						|
	summary_data.parent = rdev;
 | 
						|
 | 
						|
	class_for_each_device(®ulator_class, NULL, &summary_data,
 | 
						|
			      regulator_summary_show_children);
 | 
						|
}
 | 
						|
 | 
						|
struct summary_lock_data {
 | 
						|
	struct ww_acquire_ctx *ww_ctx;
 | 
						|
	struct regulator_dev **new_contended_rdev;
 | 
						|
	struct regulator_dev **old_contended_rdev;
 | 
						|
};
 | 
						|
 | 
						|
static int regulator_summary_lock_one(struct device *dev, void *data)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_to_rdev(dev);
 | 
						|
	struct summary_lock_data *lock_data = data;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (rdev != *lock_data->old_contended_rdev) {
 | 
						|
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
 | 
						|
 | 
						|
		if (ret == -EDEADLK)
 | 
						|
			*lock_data->new_contended_rdev = rdev;
 | 
						|
		else
 | 
						|
			WARN_ON_ONCE(ret);
 | 
						|
	} else {
 | 
						|
		*lock_data->old_contended_rdev = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_summary_unlock_one(struct device *dev, void *data)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_to_rdev(dev);
 | 
						|
	struct summary_lock_data *lock_data = data;
 | 
						|
 | 
						|
	if (lock_data) {
 | 
						|
		if (rdev == *lock_data->new_contended_rdev)
 | 
						|
			return -EDEADLK;
 | 
						|
	}
 | 
						|
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
 | 
						|
				      struct regulator_dev **new_contended_rdev,
 | 
						|
				      struct regulator_dev **old_contended_rdev)
 | 
						|
{
 | 
						|
	struct summary_lock_data lock_data;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	lock_data.ww_ctx = ww_ctx;
 | 
						|
	lock_data.new_contended_rdev = new_contended_rdev;
 | 
						|
	lock_data.old_contended_rdev = old_contended_rdev;
 | 
						|
 | 
						|
	ret = class_for_each_device(®ulator_class, NULL, &lock_data,
 | 
						|
				    regulator_summary_lock_one);
 | 
						|
	if (ret)
 | 
						|
		class_for_each_device(®ulator_class, NULL, &lock_data,
 | 
						|
				      regulator_summary_unlock_one);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
 | 
						|
{
 | 
						|
	struct regulator_dev *new_contended_rdev = NULL;
 | 
						|
	struct regulator_dev *old_contended_rdev = NULL;
 | 
						|
	int err;
 | 
						|
 | 
						|
	mutex_lock(®ulator_list_mutex);
 | 
						|
 | 
						|
	ww_acquire_init(ww_ctx, ®ulator_ww_class);
 | 
						|
 | 
						|
	do {
 | 
						|
		if (new_contended_rdev) {
 | 
						|
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 | 
						|
			old_contended_rdev = new_contended_rdev;
 | 
						|
			old_contended_rdev->ref_cnt++;
 | 
						|
		}
 | 
						|
 | 
						|
		err = regulator_summary_lock_all(ww_ctx,
 | 
						|
						 &new_contended_rdev,
 | 
						|
						 &old_contended_rdev);
 | 
						|
 | 
						|
		if (old_contended_rdev)
 | 
						|
			regulator_unlock(old_contended_rdev);
 | 
						|
 | 
						|
	} while (err == -EDEADLK);
 | 
						|
 | 
						|
	ww_acquire_done(ww_ctx);
 | 
						|
}
 | 
						|
 | 
						|
static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
 | 
						|
{
 | 
						|
	class_for_each_device(®ulator_class, NULL, NULL,
 | 
						|
			      regulator_summary_unlock_one);
 | 
						|
	ww_acquire_fini(ww_ctx);
 | 
						|
 | 
						|
	mutex_unlock(®ulator_list_mutex);
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_summary_show_roots(struct device *dev, void *data)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_to_rdev(dev);
 | 
						|
	struct seq_file *s = data;
 | 
						|
 | 
						|
	if (!rdev->supply)
 | 
						|
		regulator_summary_show_subtree(s, rdev, 0);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int regulator_summary_show(struct seq_file *s, void *data)
 | 
						|
{
 | 
						|
	struct ww_acquire_ctx ww_ctx;
 | 
						|
 | 
						|
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
 | 
						|
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
 | 
						|
 | 
						|
	regulator_summary_lock(&ww_ctx);
 | 
						|
 | 
						|
	class_for_each_device(®ulator_class, NULL, s,
 | 
						|
			      regulator_summary_show_roots);
 | 
						|
 | 
						|
	regulator_summary_unlock(&ww_ctx);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
 | 
						|
#endif /* CONFIG_DEBUG_FS */
 | 
						|
 | 
						|
static int __init regulator_init(void)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = class_register(®ulator_class);
 | 
						|
 | 
						|
	debugfs_root = debugfs_create_dir("regulator", NULL);
 | 
						|
	if (!debugfs_root)
 | 
						|
		pr_warn("regulator: Failed to create debugfs directory\n");
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_FS
 | 
						|
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
 | 
						|
			    &supply_map_fops);
 | 
						|
 | 
						|
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
 | 
						|
			    NULL, ®ulator_summary_fops);
 | 
						|
#endif
 | 
						|
	regulator_dummy_init();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* init early to allow our consumers to complete system booting */
 | 
						|
core_initcall(regulator_init);
 | 
						|
 | 
						|
static int __init regulator_late_cleanup(struct device *dev, void *data)
 | 
						|
{
 | 
						|
	struct regulator_dev *rdev = dev_to_rdev(dev);
 | 
						|
	const struct regulator_ops *ops = rdev->desc->ops;
 | 
						|
	struct regulation_constraints *c = rdev->constraints;
 | 
						|
	int enabled, ret;
 | 
						|
 | 
						|
	if (c && c->always_on)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	regulator_lock(rdev);
 | 
						|
 | 
						|
	if (rdev->use_count)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	/* If we can't read the status assume it's on. */
 | 
						|
	if (ops->is_enabled)
 | 
						|
		enabled = ops->is_enabled(rdev);
 | 
						|
	else
 | 
						|
		enabled = 1;
 | 
						|
 | 
						|
	if (!enabled)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	if (have_full_constraints()) {
 | 
						|
		/* We log since this may kill the system if it goes
 | 
						|
		 * wrong. */
 | 
						|
		rdev_info(rdev, "disabling\n");
 | 
						|
		ret = _regulator_do_disable(rdev);
 | 
						|
		if (ret != 0)
 | 
						|
			rdev_err(rdev, "couldn't disable: %d\n", ret);
 | 
						|
	} else {
 | 
						|
		/* The intention is that in future we will
 | 
						|
		 * assume that full constraints are provided
 | 
						|
		 * so warn even if we aren't going to do
 | 
						|
		 * anything here.
 | 
						|
		 */
 | 
						|
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
 | 
						|
	}
 | 
						|
 | 
						|
unlock:
 | 
						|
	regulator_unlock(rdev);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init regulator_init_complete(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Since DT doesn't provide an idiomatic mechanism for
 | 
						|
	 * enabling full constraints and since it's much more natural
 | 
						|
	 * with DT to provide them just assume that a DT enabled
 | 
						|
	 * system has full constraints.
 | 
						|
	 */
 | 
						|
	if (of_have_populated_dt())
 | 
						|
		has_full_constraints = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Regulators may had failed to resolve their input supplies
 | 
						|
	 * when were registered, either because the input supply was
 | 
						|
	 * not registered yet or because its parent device was not
 | 
						|
	 * bound yet. So attempt to resolve the input supplies for
 | 
						|
	 * pending regulators before trying to disable unused ones.
 | 
						|
	 */
 | 
						|
	class_for_each_device(®ulator_class, NULL, NULL,
 | 
						|
			      regulator_register_resolve_supply);
 | 
						|
 | 
						|
	/* If we have a full configuration then disable any regulators
 | 
						|
	 * we have permission to change the status for and which are
 | 
						|
	 * not in use or always_on.  This is effectively the default
 | 
						|
	 * for DT and ACPI as they have full constraints.
 | 
						|
	 */
 | 
						|
	class_for_each_device(®ulator_class, NULL, NULL,
 | 
						|
			      regulator_late_cleanup);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
late_initcall_sync(regulator_init_complete);
 |