mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	MCPM does a soft reset of the CPUs and uses common cpu_resume() routine to
perform low-level platform initialization. This results in a try to install
HYP stubs for the second time for each CPU and results in false HYP/SVC
mode mismatch detection. The HYP stubs are already installed at the
beginning of the kernel initialization on the boot CPU (head.S) or in the
secondary_startup() for other CPUs. To fix this issue MCPM code should use
a cpu_resume() routine without HYP stubs installation.
This change fixes HYP/SVC mode mismatch on Samsung Exynos5422-based Odroid
XU3/XU4/HC1 boards.
Fixes: 3721924c81 ("ARM: 8081/1: MCPM: provide infrastructure to allow for MCPM loopback")
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Tested-by: Anand Moon <linux.amoon@gmail.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
		
	
			
		
			
				
	
	
		
			459 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			459 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
 | 
						|
 *
 | 
						|
 * Created by:  Nicolas Pitre, March 2012
 | 
						|
 * Copyright:   (C) 2012-2013  Linaro Limited
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License version 2 as
 | 
						|
 * published by the Free Software Foundation.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/irqflags.h>
 | 
						|
#include <linux/cpu_pm.h>
 | 
						|
 | 
						|
#include <asm/mcpm.h>
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <asm/idmap.h>
 | 
						|
#include <asm/cputype.h>
 | 
						|
#include <asm/suspend.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * The public API for this code is documented in arch/arm/include/asm/mcpm.h.
 | 
						|
 * For a comprehensive description of the main algorithm used here, please
 | 
						|
 * see Documentation/arm/cluster-pm-race-avoidance.txt.
 | 
						|
 */
 | 
						|
 | 
						|
struct sync_struct mcpm_sync;
 | 
						|
 | 
						|
/*
 | 
						|
 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
 | 
						|
 *    This must be called at the point of committing to teardown of a CPU.
 | 
						|
 *    The CPU cache (SCTRL.C bit) is expected to still be active.
 | 
						|
 */
 | 
						|
static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
 | 
						|
{
 | 
						|
	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
 | 
						|
	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
 | 
						|
 *    cluster can be torn down without disrupting this CPU.
 | 
						|
 *    To avoid deadlocks, this must be called before a CPU is powered down.
 | 
						|
 *    The CPU cache (SCTRL.C bit) is expected to be off.
 | 
						|
 *    However L2 cache might or might not be active.
 | 
						|
 */
 | 
						|
static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
 | 
						|
{
 | 
						|
	dmb();
 | 
						|
	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
 | 
						|
	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
 | 
						|
	sev();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
 | 
						|
 * @state: the final state of the cluster:
 | 
						|
 *     CLUSTER_UP: no destructive teardown was done and the cluster has been
 | 
						|
 *         restored to the previous state (CPU cache still active); or
 | 
						|
 *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
 | 
						|
 *         (CPU cache disabled, L2 cache either enabled or disabled).
 | 
						|
 */
 | 
						|
static void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
 | 
						|
{
 | 
						|
	dmb();
 | 
						|
	mcpm_sync.clusters[cluster].cluster = state;
 | 
						|
	sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
 | 
						|
	sev();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
 | 
						|
 * This function should be called by the last man, after local CPU teardown
 | 
						|
 * is complete.  CPU cache expected to be active.
 | 
						|
 *
 | 
						|
 * Returns:
 | 
						|
 *     false: the critical section was not entered because an inbound CPU was
 | 
						|
 *         observed, or the cluster is already being set up;
 | 
						|
 *     true: the critical section was entered: it is now safe to tear down the
 | 
						|
 *         cluster.
 | 
						|
 */
 | 
						|
static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
	struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
 | 
						|
 | 
						|
	/* Warn inbound CPUs that the cluster is being torn down: */
 | 
						|
	c->cluster = CLUSTER_GOING_DOWN;
 | 
						|
	sync_cache_w(&c->cluster);
 | 
						|
 | 
						|
	/* Back out if the inbound cluster is already in the critical region: */
 | 
						|
	sync_cache_r(&c->inbound);
 | 
						|
	if (c->inbound == INBOUND_COMING_UP)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
 | 
						|
	 * teardown is complete on each CPU before tearing down the cluster.
 | 
						|
	 *
 | 
						|
	 * If any CPU has been woken up again from the DOWN state, then we
 | 
						|
	 * shouldn't be taking the cluster down at all: abort in that case.
 | 
						|
	 */
 | 
						|
	sync_cache_r(&c->cpus);
 | 
						|
	for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
 | 
						|
		int cpustate;
 | 
						|
 | 
						|
		if (i == cpu)
 | 
						|
			continue;
 | 
						|
 | 
						|
		while (1) {
 | 
						|
			cpustate = c->cpus[i].cpu;
 | 
						|
			if (cpustate != CPU_GOING_DOWN)
 | 
						|
				break;
 | 
						|
 | 
						|
			wfe();
 | 
						|
			sync_cache_r(&c->cpus[i].cpu);
 | 
						|
		}
 | 
						|
 | 
						|
		switch (cpustate) {
 | 
						|
		case CPU_DOWN:
 | 
						|
			continue;
 | 
						|
 | 
						|
		default:
 | 
						|
			goto abort;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
 | 
						|
abort:
 | 
						|
	__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static int __mcpm_cluster_state(unsigned int cluster)
 | 
						|
{
 | 
						|
	sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
 | 
						|
	return mcpm_sync.clusters[cluster].cluster;
 | 
						|
}
 | 
						|
 | 
						|
extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
 | 
						|
 | 
						|
void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
 | 
						|
{
 | 
						|
	unsigned long val = ptr ? __pa_symbol(ptr) : 0;
 | 
						|
	mcpm_entry_vectors[cluster][cpu] = val;
 | 
						|
	sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
 | 
						|
}
 | 
						|
 | 
						|
extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
 | 
						|
 | 
						|
void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
 | 
						|
			 unsigned long poke_phys_addr, unsigned long poke_val)
 | 
						|
{
 | 
						|
	unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
 | 
						|
	poke[0] = poke_phys_addr;
 | 
						|
	poke[1] = poke_val;
 | 
						|
	__sync_cache_range_w(poke, 2 * sizeof(*poke));
 | 
						|
}
 | 
						|
 | 
						|
static const struct mcpm_platform_ops *platform_ops;
 | 
						|
 | 
						|
int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
 | 
						|
{
 | 
						|
	if (platform_ops)
 | 
						|
		return -EBUSY;
 | 
						|
	platform_ops = ops;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool mcpm_is_available(void)
 | 
						|
{
 | 
						|
	return (platform_ops) ? true : false;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(mcpm_is_available);
 | 
						|
 | 
						|
/*
 | 
						|
 * We can't use regular spinlocks. In the switcher case, it is possible
 | 
						|
 * for an outbound CPU to call power_down() after its inbound counterpart
 | 
						|
 * is already live using the same logical CPU number which trips lockdep
 | 
						|
 * debugging.
 | 
						|
 */
 | 
						|
static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 | 
						|
 | 
						|
static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
 | 
						|
 | 
						|
static inline bool mcpm_cluster_unused(unsigned int cluster)
 | 
						|
{
 | 
						|
	int i, cnt;
 | 
						|
	for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
 | 
						|
		cnt |= mcpm_cpu_use_count[cluster][i];
 | 
						|
	return !cnt;
 | 
						|
}
 | 
						|
 | 
						|
int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
 | 
						|
{
 | 
						|
	bool cpu_is_down, cluster_is_down;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
 | 
						|
	if (!platform_ops)
 | 
						|
		return -EUNATCH; /* try not to shadow power_up errors */
 | 
						|
	might_sleep();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
 | 
						|
	 * variant exists, we need to disable IRQs manually here.
 | 
						|
	 */
 | 
						|
	local_irq_disable();
 | 
						|
	arch_spin_lock(&mcpm_lock);
 | 
						|
 | 
						|
	cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
 | 
						|
	cluster_is_down = mcpm_cluster_unused(cluster);
 | 
						|
 | 
						|
	mcpm_cpu_use_count[cluster][cpu]++;
 | 
						|
	/*
 | 
						|
	 * The only possible values are:
 | 
						|
	 * 0 = CPU down
 | 
						|
	 * 1 = CPU (still) up
 | 
						|
	 * 2 = CPU requested to be up before it had a chance
 | 
						|
	 *     to actually make itself down.
 | 
						|
	 * Any other value is a bug.
 | 
						|
	 */
 | 
						|
	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
 | 
						|
	       mcpm_cpu_use_count[cluster][cpu] != 2);
 | 
						|
 | 
						|
	if (cluster_is_down)
 | 
						|
		ret = platform_ops->cluster_powerup(cluster);
 | 
						|
	if (cpu_is_down && !ret)
 | 
						|
		ret = platform_ops->cpu_powerup(cpu, cluster);
 | 
						|
 | 
						|
	arch_spin_unlock(&mcpm_lock);
 | 
						|
	local_irq_enable();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
typedef typeof(cpu_reset) phys_reset_t;
 | 
						|
 | 
						|
void mcpm_cpu_power_down(void)
 | 
						|
{
 | 
						|
	unsigned int mpidr, cpu, cluster;
 | 
						|
	bool cpu_going_down, last_man;
 | 
						|
	phys_reset_t phys_reset;
 | 
						|
 | 
						|
	mpidr = read_cpuid_mpidr();
 | 
						|
	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | 
						|
	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | 
						|
	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
 | 
						|
	if (WARN_ON_ONCE(!platform_ops))
 | 
						|
	       return;
 | 
						|
	BUG_ON(!irqs_disabled());
 | 
						|
 | 
						|
	setup_mm_for_reboot();
 | 
						|
 | 
						|
	__mcpm_cpu_going_down(cpu, cluster);
 | 
						|
	arch_spin_lock(&mcpm_lock);
 | 
						|
	BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
 | 
						|
 | 
						|
	mcpm_cpu_use_count[cluster][cpu]--;
 | 
						|
	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
 | 
						|
	       mcpm_cpu_use_count[cluster][cpu] != 1);
 | 
						|
	cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
 | 
						|
	last_man = mcpm_cluster_unused(cluster);
 | 
						|
 | 
						|
	if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
 | 
						|
		platform_ops->cpu_powerdown_prepare(cpu, cluster);
 | 
						|
		platform_ops->cluster_powerdown_prepare(cluster);
 | 
						|
		arch_spin_unlock(&mcpm_lock);
 | 
						|
		platform_ops->cluster_cache_disable();
 | 
						|
		__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
 | 
						|
	} else {
 | 
						|
		if (cpu_going_down)
 | 
						|
			platform_ops->cpu_powerdown_prepare(cpu, cluster);
 | 
						|
		arch_spin_unlock(&mcpm_lock);
 | 
						|
		/*
 | 
						|
		 * If cpu_going_down is false here, that means a power_up
 | 
						|
		 * request raced ahead of us.  Even if we do not want to
 | 
						|
		 * shut this CPU down, the caller still expects execution
 | 
						|
		 * to return through the system resume entry path, like
 | 
						|
		 * when the WFI is aborted due to a new IRQ or the like..
 | 
						|
		 * So let's continue with cache cleaning in all cases.
 | 
						|
		 */
 | 
						|
		platform_ops->cpu_cache_disable();
 | 
						|
	}
 | 
						|
 | 
						|
	__mcpm_cpu_down(cpu, cluster);
 | 
						|
 | 
						|
	/* Now we are prepared for power-down, do it: */
 | 
						|
	if (cpu_going_down)
 | 
						|
		wfi();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is possible for a power_up request to happen concurrently
 | 
						|
	 * with a power_down request for the same CPU. In this case the
 | 
						|
	 * CPU might not be able to actually enter a powered down state
 | 
						|
	 * with the WFI instruction if the power_up request has removed
 | 
						|
	 * the required reset condition.  We must perform a re-entry in
 | 
						|
	 * the kernel as if the power_up method just had deasserted reset
 | 
						|
	 * on the CPU.
 | 
						|
	 */
 | 
						|
	phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
 | 
						|
	phys_reset(__pa_symbol(mcpm_entry_point), false);
 | 
						|
 | 
						|
	/* should never get here */
 | 
						|
	BUG();
 | 
						|
}
 | 
						|
 | 
						|
int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
 | 
						|
		return -EUNATCH;
 | 
						|
 | 
						|
	ret = platform_ops->wait_for_powerdown(cpu, cluster);
 | 
						|
	if (ret)
 | 
						|
		pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
 | 
						|
			__func__, cpu, cluster, ret);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void mcpm_cpu_suspend(void)
 | 
						|
{
 | 
						|
	if (WARN_ON_ONCE(!platform_ops))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Some platforms might have to enable special resume modes, etc. */
 | 
						|
	if (platform_ops->cpu_suspend_prepare) {
 | 
						|
		unsigned int mpidr = read_cpuid_mpidr();
 | 
						|
		unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | 
						|
		unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 
 | 
						|
		arch_spin_lock(&mcpm_lock);
 | 
						|
		platform_ops->cpu_suspend_prepare(cpu, cluster);
 | 
						|
		arch_spin_unlock(&mcpm_lock);
 | 
						|
	}
 | 
						|
	mcpm_cpu_power_down();
 | 
						|
}
 | 
						|
 | 
						|
int mcpm_cpu_powered_up(void)
 | 
						|
{
 | 
						|
	unsigned int mpidr, cpu, cluster;
 | 
						|
	bool cpu_was_down, first_man;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (!platform_ops)
 | 
						|
		return -EUNATCH;
 | 
						|
 | 
						|
	mpidr = read_cpuid_mpidr();
 | 
						|
	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | 
						|
	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | 
						|
	local_irq_save(flags);
 | 
						|
	arch_spin_lock(&mcpm_lock);
 | 
						|
 | 
						|
	cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
 | 
						|
	first_man = mcpm_cluster_unused(cluster);
 | 
						|
 | 
						|
	if (first_man && platform_ops->cluster_is_up)
 | 
						|
		platform_ops->cluster_is_up(cluster);
 | 
						|
	if (cpu_was_down)
 | 
						|
		mcpm_cpu_use_count[cluster][cpu] = 1;
 | 
						|
	if (platform_ops->cpu_is_up)
 | 
						|
		platform_ops->cpu_is_up(cpu, cluster);
 | 
						|
 | 
						|
	arch_spin_unlock(&mcpm_lock);
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_ARM_CPU_SUSPEND
 | 
						|
 | 
						|
static int __init nocache_trampoline(unsigned long _arg)
 | 
						|
{
 | 
						|
	void (*cache_disable)(void) = (void *)_arg;
 | 
						|
	unsigned int mpidr = read_cpuid_mpidr();
 | 
						|
	unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | 
						|
	unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | 
						|
	phys_reset_t phys_reset;
 | 
						|
 | 
						|
	mcpm_set_entry_vector(cpu, cluster, cpu_resume_no_hyp);
 | 
						|
	setup_mm_for_reboot();
 | 
						|
 | 
						|
	__mcpm_cpu_going_down(cpu, cluster);
 | 
						|
	BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
 | 
						|
	cache_disable();
 | 
						|
	__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
 | 
						|
	__mcpm_cpu_down(cpu, cluster);
 | 
						|
 | 
						|
	phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
 | 
						|
	phys_reset(__pa_symbol(mcpm_entry_point), false);
 | 
						|
	BUG();
 | 
						|
}
 | 
						|
 | 
						|
int __init mcpm_loopback(void (*cache_disable)(void))
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're going to soft-restart the current CPU through the
 | 
						|
	 * low-level MCPM code by leveraging the suspend/resume
 | 
						|
	 * infrastructure. Let's play it safe by using cpu_pm_enter()
 | 
						|
	 * in case the CPU init code path resets the VFP or similar.
 | 
						|
	 */
 | 
						|
	local_irq_disable();
 | 
						|
	local_fiq_disable();
 | 
						|
	ret = cpu_pm_enter();
 | 
						|
	if (!ret) {
 | 
						|
		ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
 | 
						|
		cpu_pm_exit();
 | 
						|
	}
 | 
						|
	local_fiq_enable();
 | 
						|
	local_irq_enable();
 | 
						|
	if (ret)
 | 
						|
		pr_err("%s returned %d\n", __func__, ret);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
extern unsigned long mcpm_power_up_setup_phys;
 | 
						|
 | 
						|
int __init mcpm_sync_init(
 | 
						|
	void (*power_up_setup)(unsigned int affinity_level))
 | 
						|
{
 | 
						|
	unsigned int i, j, mpidr, this_cluster;
 | 
						|
 | 
						|
	BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
 | 
						|
	BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set initial CPU and cluster states.
 | 
						|
	 * Only one cluster is assumed to be active at this point.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < MAX_NR_CLUSTERS; i++) {
 | 
						|
		mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
 | 
						|
		mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
 | 
						|
		for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
 | 
						|
			mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
 | 
						|
	}
 | 
						|
	mpidr = read_cpuid_mpidr();
 | 
						|
	this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | 
						|
	for_each_online_cpu(i) {
 | 
						|
		mcpm_cpu_use_count[this_cluster][i] = 1;
 | 
						|
		mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
 | 
						|
	}
 | 
						|
	mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
 | 
						|
	sync_cache_w(&mcpm_sync);
 | 
						|
 | 
						|
	if (power_up_setup) {
 | 
						|
		mcpm_power_up_setup_phys = __pa_symbol(power_up_setup);
 | 
						|
		sync_cache_w(&mcpm_power_up_setup_phys);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 |