mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	Setting a chip for an interrupt marks it as allocated. Since UM doesn't support dynamic interrupt numbers (yet), it means we cannot simply increase NR_IRQS and then use the free irqs between LAST_IRQ and NR_IRQS with gpio-mockup or iio testing drivers as irq_alloc_descs() will fail after not being able to neither find an unallocated range of interrupts nor expand the range. Only call irq_set_chip_and_handler() for irqs until LAST_IRQ. Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com> Reviewed-by: Anton Ivanov <anton.ivanov@cambridgegreys.com> Acked-by: Anton Ivanov <anton.ivanov@cambridgegreys.com> Signed-off-by: Richard Weinberger <richard@nod.at>
		
			
				
	
	
		
			598 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			598 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2017 - Cambridge Greys Ltd
 | 
						|
 * Copyright (C) 2011 - 2014 Cisco Systems Inc
 | 
						|
 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
 | 
						|
 * Licensed under the GPL
 | 
						|
 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
 | 
						|
 *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/hardirq.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <as-layout.h>
 | 
						|
#include <kern_util.h>
 | 
						|
#include <os.h>
 | 
						|
#include <irq_user.h>
 | 
						|
 | 
						|
 | 
						|
/* When epoll triggers we do not know why it did so
 | 
						|
 * we can also have different IRQs for read and write.
 | 
						|
 * This is why we keep a small irq_fd array for each fd -
 | 
						|
 * one entry per IRQ type
 | 
						|
 */
 | 
						|
 | 
						|
struct irq_entry {
 | 
						|
	struct irq_entry *next;
 | 
						|
	int fd;
 | 
						|
	struct irq_fd *irq_array[MAX_IRQ_TYPE + 1];
 | 
						|
};
 | 
						|
 | 
						|
static struct irq_entry *active_fds;
 | 
						|
 | 
						|
static DEFINE_SPINLOCK(irq_lock);
 | 
						|
 | 
						|
static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs)
 | 
						|
{
 | 
						|
/*
 | 
						|
 * irq->active guards against reentry
 | 
						|
 * irq->pending accumulates pending requests
 | 
						|
 * if pending is raised the irq_handler is re-run
 | 
						|
 * until pending is cleared
 | 
						|
 */
 | 
						|
	if (irq->active) {
 | 
						|
		irq->active = false;
 | 
						|
		do {
 | 
						|
			irq->pending = false;
 | 
						|
			do_IRQ(irq->irq, regs);
 | 
						|
		} while (irq->pending && (!irq->purge));
 | 
						|
		if (!irq->purge)
 | 
						|
			irq->active = true;
 | 
						|
	} else {
 | 
						|
		irq->pending = true;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
 | 
						|
{
 | 
						|
	struct irq_entry *irq_entry;
 | 
						|
	struct irq_fd *irq;
 | 
						|
 | 
						|
	int n, i, j;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		/* This is now lockless - epoll keeps back-referencesto the irqs
 | 
						|
		 * which have trigger it so there is no need to walk the irq
 | 
						|
		 * list and lock it every time. We avoid locking by turning off
 | 
						|
		 * IO for a specific fd by executing os_del_epoll_fd(fd) before
 | 
						|
		 * we do any changes to the actual data structures
 | 
						|
		 */
 | 
						|
		n = os_waiting_for_events_epoll();
 | 
						|
 | 
						|
		if (n <= 0) {
 | 
						|
			if (n == -EINTR)
 | 
						|
				continue;
 | 
						|
			else
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0; i < n ; i++) {
 | 
						|
			/* Epoll back reference is the entry with 3 irq_fd
 | 
						|
			 * leaves - one for each irq type.
 | 
						|
			 */
 | 
						|
			irq_entry = (struct irq_entry *)
 | 
						|
				os_epoll_get_data_pointer(i);
 | 
						|
			for (j = 0; j < MAX_IRQ_TYPE ; j++) {
 | 
						|
				irq = irq_entry->irq_array[j];
 | 
						|
				if (irq == NULL)
 | 
						|
					continue;
 | 
						|
				if (os_epoll_triggered(i, irq->events) > 0)
 | 
						|
					irq_io_loop(irq, regs);
 | 
						|
				if (irq->purge) {
 | 
						|
					irq_entry->irq_array[j] = NULL;
 | 
						|
					kfree(irq);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int assign_epoll_events_to_irq(struct irq_entry *irq_entry)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int events = 0;
 | 
						|
	struct irq_fd *irq;
 | 
						|
 | 
						|
	for (i = 0; i < MAX_IRQ_TYPE ; i++) {
 | 
						|
		irq = irq_entry->irq_array[i];
 | 
						|
		if (irq != NULL)
 | 
						|
			events = irq->events | events;
 | 
						|
	}
 | 
						|
	if (events > 0) {
 | 
						|
	/* os_add_epoll will call os_mod_epoll if this already exists */
 | 
						|
		return os_add_epoll_fd(events, irq_entry->fd, irq_entry);
 | 
						|
	}
 | 
						|
	/* No events - delete */
 | 
						|
	return os_del_epoll_fd(irq_entry->fd);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static int activate_fd(int irq, int fd, int type, void *dev_id)
 | 
						|
{
 | 
						|
	struct irq_fd *new_fd;
 | 
						|
	struct irq_entry *irq_entry;
 | 
						|
	int i, err, events;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	err = os_set_fd_async(fd);
 | 
						|
	if (err < 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	spin_lock_irqsave(&irq_lock, flags);
 | 
						|
 | 
						|
	/* Check if we have an entry for this fd */
 | 
						|
 | 
						|
	err = -EBUSY;
 | 
						|
	for (irq_entry = active_fds;
 | 
						|
		irq_entry != NULL; irq_entry = irq_entry->next) {
 | 
						|
		if (irq_entry->fd == fd)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (irq_entry == NULL) {
 | 
						|
		/* This needs to be atomic as it may be called from an
 | 
						|
		 * IRQ context.
 | 
						|
		 */
 | 
						|
		irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC);
 | 
						|
		if (irq_entry == NULL) {
 | 
						|
			printk(KERN_ERR
 | 
						|
				"Failed to allocate new IRQ entry\n");
 | 
						|
			goto out_unlock;
 | 
						|
		}
 | 
						|
		irq_entry->fd = fd;
 | 
						|
		for (i = 0; i < MAX_IRQ_TYPE; i++)
 | 
						|
			irq_entry->irq_array[i] = NULL;
 | 
						|
		irq_entry->next = active_fds;
 | 
						|
		active_fds = irq_entry;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check if we are trying to re-register an interrupt for a
 | 
						|
	 * particular fd
 | 
						|
	 */
 | 
						|
 | 
						|
	if (irq_entry->irq_array[type] != NULL) {
 | 
						|
		printk(KERN_ERR
 | 
						|
			"Trying to reregister IRQ %d FD %d TYPE %d ID %p\n",
 | 
						|
			irq, fd, type, dev_id
 | 
						|
		);
 | 
						|
		goto out_unlock;
 | 
						|
	} else {
 | 
						|
		/* New entry for this fd */
 | 
						|
 | 
						|
		err = -ENOMEM;
 | 
						|
		new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC);
 | 
						|
		if (new_fd == NULL)
 | 
						|
			goto out_unlock;
 | 
						|
 | 
						|
		events = os_event_mask(type);
 | 
						|
 | 
						|
		*new_fd = ((struct irq_fd) {
 | 
						|
			.id		= dev_id,
 | 
						|
			.irq		= irq,
 | 
						|
			.type		= type,
 | 
						|
			.events		= events,
 | 
						|
			.active		= true,
 | 
						|
			.pending	= false,
 | 
						|
			.purge		= false
 | 
						|
		});
 | 
						|
		/* Turn off any IO on this fd - allows us to
 | 
						|
		 * avoid locking the IRQ loop
 | 
						|
		 */
 | 
						|
		os_del_epoll_fd(irq_entry->fd);
 | 
						|
		irq_entry->irq_array[type] = new_fd;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Turn back IO on with the correct (new) IO event mask */
 | 
						|
	assign_epoll_events_to_irq(irq_entry);
 | 
						|
	spin_unlock_irqrestore(&irq_lock, flags);
 | 
						|
	maybe_sigio_broken(fd, (type != IRQ_NONE));
 | 
						|
 | 
						|
	return 0;
 | 
						|
out_unlock:
 | 
						|
	spin_unlock_irqrestore(&irq_lock, flags);
 | 
						|
out:
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Walk the IRQ list and dispose of any unused entries.
 | 
						|
 * Should be done under irq_lock.
 | 
						|
 */
 | 
						|
 | 
						|
static void garbage_collect_irq_entries(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	bool reap;
 | 
						|
	struct irq_entry *walk;
 | 
						|
	struct irq_entry *previous = NULL;
 | 
						|
	struct irq_entry *to_free;
 | 
						|
 | 
						|
	if (active_fds == NULL)
 | 
						|
		return;
 | 
						|
	walk = active_fds;
 | 
						|
	while (walk != NULL) {
 | 
						|
		reap = true;
 | 
						|
		for (i = 0; i < MAX_IRQ_TYPE ; i++) {
 | 
						|
			if (walk->irq_array[i] != NULL) {
 | 
						|
				reap = false;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (reap) {
 | 
						|
			if (previous == NULL)
 | 
						|
				active_fds = walk->next;
 | 
						|
			else
 | 
						|
				previous->next = walk->next;
 | 
						|
			to_free = walk;
 | 
						|
		} else {
 | 
						|
			to_free = NULL;
 | 
						|
		}
 | 
						|
		walk = walk->next;
 | 
						|
		kfree(to_free);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Walk the IRQ list and get the descriptor for our FD
 | 
						|
 */
 | 
						|
 | 
						|
static struct irq_entry *get_irq_entry_by_fd(int fd)
 | 
						|
{
 | 
						|
	struct irq_entry *walk = active_fds;
 | 
						|
 | 
						|
	while (walk != NULL) {
 | 
						|
		if (walk->fd == fd)
 | 
						|
			return walk;
 | 
						|
		walk = walk->next;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Walk the IRQ list and dispose of an entry for a specific
 | 
						|
 * device, fd and number. Note - if sharing an IRQ for read
 | 
						|
 * and writefor the same FD it will be disposed in either case.
 | 
						|
 * If this behaviour is undesirable use different IRQ ids.
 | 
						|
 */
 | 
						|
 | 
						|
#define IGNORE_IRQ 1
 | 
						|
#define IGNORE_DEV (1<<1)
 | 
						|
 | 
						|
static void do_free_by_irq_and_dev(
 | 
						|
	struct irq_entry *irq_entry,
 | 
						|
	unsigned int irq,
 | 
						|
	void *dev,
 | 
						|
	int flags
 | 
						|
)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct irq_fd *to_free;
 | 
						|
 | 
						|
	for (i = 0; i < MAX_IRQ_TYPE ; i++) {
 | 
						|
		if (irq_entry->irq_array[i] != NULL) {
 | 
						|
			if (
 | 
						|
			((flags & IGNORE_IRQ) ||
 | 
						|
				(irq_entry->irq_array[i]->irq == irq)) &&
 | 
						|
			((flags & IGNORE_DEV) ||
 | 
						|
				(irq_entry->irq_array[i]->id == dev))
 | 
						|
			) {
 | 
						|
				/* Turn off any IO on this fd - allows us to
 | 
						|
				 * avoid locking the IRQ loop
 | 
						|
				 */
 | 
						|
				os_del_epoll_fd(irq_entry->fd);
 | 
						|
				to_free = irq_entry->irq_array[i];
 | 
						|
				irq_entry->irq_array[i] = NULL;
 | 
						|
				assign_epoll_events_to_irq(irq_entry);
 | 
						|
				if (to_free->active)
 | 
						|
					to_free->purge = true;
 | 
						|
				else
 | 
						|
					kfree(to_free);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void free_irq_by_fd(int fd)
 | 
						|
{
 | 
						|
	struct irq_entry *to_free;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&irq_lock, flags);
 | 
						|
	to_free = get_irq_entry_by_fd(fd);
 | 
						|
	if (to_free != NULL) {
 | 
						|
		do_free_by_irq_and_dev(
 | 
						|
			to_free,
 | 
						|
			-1,
 | 
						|
			NULL,
 | 
						|
			IGNORE_IRQ | IGNORE_DEV
 | 
						|
		);
 | 
						|
	}
 | 
						|
	garbage_collect_irq_entries();
 | 
						|
	spin_unlock_irqrestore(&irq_lock, flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(free_irq_by_fd);
 | 
						|
 | 
						|
static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
 | 
						|
{
 | 
						|
	struct irq_entry *to_free;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&irq_lock, flags);
 | 
						|
	to_free = active_fds;
 | 
						|
	while (to_free != NULL) {
 | 
						|
		do_free_by_irq_and_dev(
 | 
						|
			to_free,
 | 
						|
			irq,
 | 
						|
			dev,
 | 
						|
			0
 | 
						|
		);
 | 
						|
		to_free = to_free->next;
 | 
						|
	}
 | 
						|
	garbage_collect_irq_entries();
 | 
						|
	spin_unlock_irqrestore(&irq_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void deactivate_fd(int fd, int irqnum)
 | 
						|
{
 | 
						|
	struct irq_entry *to_free;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	os_del_epoll_fd(fd);
 | 
						|
	spin_lock_irqsave(&irq_lock, flags);
 | 
						|
	to_free = get_irq_entry_by_fd(fd);
 | 
						|
	if (to_free != NULL) {
 | 
						|
		do_free_by_irq_and_dev(
 | 
						|
			to_free,
 | 
						|
			irqnum,
 | 
						|
			NULL,
 | 
						|
			IGNORE_DEV
 | 
						|
		);
 | 
						|
	}
 | 
						|
	garbage_collect_irq_entries();
 | 
						|
	spin_unlock_irqrestore(&irq_lock, flags);
 | 
						|
	ignore_sigio_fd(fd);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(deactivate_fd);
 | 
						|
 | 
						|
/*
 | 
						|
 * Called just before shutdown in order to provide a clean exec
 | 
						|
 * environment in case the system is rebooting.  No locking because
 | 
						|
 * that would cause a pointless shutdown hang if something hadn't
 | 
						|
 * released the lock.
 | 
						|
 */
 | 
						|
int deactivate_all_fds(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct irq_entry *to_free;
 | 
						|
 | 
						|
	spin_lock_irqsave(&irq_lock, flags);
 | 
						|
	/* Stop IO. The IRQ loop has no lock so this is our
 | 
						|
	 * only way of making sure we are safe to dispose
 | 
						|
	 * of all IRQ handlers
 | 
						|
	 */
 | 
						|
	os_set_ioignore();
 | 
						|
	to_free = active_fds;
 | 
						|
	while (to_free != NULL) {
 | 
						|
		do_free_by_irq_and_dev(
 | 
						|
			to_free,
 | 
						|
			-1,
 | 
						|
			NULL,
 | 
						|
			IGNORE_IRQ | IGNORE_DEV
 | 
						|
		);
 | 
						|
		to_free = to_free->next;
 | 
						|
	}
 | 
						|
	garbage_collect_irq_entries();
 | 
						|
	spin_unlock_irqrestore(&irq_lock, flags);
 | 
						|
	os_close_epoll_fd();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * do_IRQ handles all normal device IRQs (the special
 | 
						|
 * SMP cross-CPU interrupts have their own specific
 | 
						|
 * handlers).
 | 
						|
 */
 | 
						|
unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
 | 
						|
{
 | 
						|
	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
 | 
						|
	irq_enter();
 | 
						|
	generic_handle_irq(irq);
 | 
						|
	irq_exit();
 | 
						|
	set_irq_regs(old_regs);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
void um_free_irq(unsigned int irq, void *dev)
 | 
						|
{
 | 
						|
	free_irq_by_irq_and_dev(irq, dev);
 | 
						|
	free_irq(irq, dev);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(um_free_irq);
 | 
						|
 | 
						|
int um_request_irq(unsigned int irq, int fd, int type,
 | 
						|
		   irq_handler_t handler,
 | 
						|
		   unsigned long irqflags, const char * devname,
 | 
						|
		   void *dev_id)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (fd != -1) {
 | 
						|
		err = activate_fd(irq, fd, type, dev_id);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
	}
 | 
						|
 | 
						|
	return request_irq(irq, handler, irqflags, devname, dev_id);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(um_request_irq);
 | 
						|
 | 
						|
/*
 | 
						|
 * irq_chip must define at least enable/disable and ack when
 | 
						|
 * the edge handler is used.
 | 
						|
 */
 | 
						|
static void dummy(struct irq_data *d)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/* This is used for everything else than the timer. */
 | 
						|
static struct irq_chip normal_irq_type = {
 | 
						|
	.name = "SIGIO",
 | 
						|
	.irq_disable = dummy,
 | 
						|
	.irq_enable = dummy,
 | 
						|
	.irq_ack = dummy,
 | 
						|
	.irq_mask = dummy,
 | 
						|
	.irq_unmask = dummy,
 | 
						|
};
 | 
						|
 | 
						|
static struct irq_chip SIGVTALRM_irq_type = {
 | 
						|
	.name = "SIGVTALRM",
 | 
						|
	.irq_disable = dummy,
 | 
						|
	.irq_enable = dummy,
 | 
						|
	.irq_ack = dummy,
 | 
						|
	.irq_mask = dummy,
 | 
						|
	.irq_unmask = dummy,
 | 
						|
};
 | 
						|
 | 
						|
void __init init_IRQ(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
 | 
						|
 | 
						|
 | 
						|
	for (i = 1; i < LAST_IRQ; i++)
 | 
						|
		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
 | 
						|
	/* Initialize EPOLL Loop */
 | 
						|
	os_setup_epoll();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * IRQ stack entry and exit:
 | 
						|
 *
 | 
						|
 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
 | 
						|
 * and switch over to the IRQ stack after some preparation.  We use
 | 
						|
 * sigaltstack to receive signals on a separate stack from the start.
 | 
						|
 * These two functions make sure the rest of the kernel won't be too
 | 
						|
 * upset by being on a different stack.  The IRQ stack has a
 | 
						|
 * thread_info structure at the bottom so that current et al continue
 | 
						|
 * to work.
 | 
						|
 *
 | 
						|
 * to_irq_stack copies the current task's thread_info to the IRQ stack
 | 
						|
 * thread_info and sets the tasks's stack to point to the IRQ stack.
 | 
						|
 *
 | 
						|
 * from_irq_stack copies the thread_info struct back (flags may have
 | 
						|
 * been modified) and resets the task's stack pointer.
 | 
						|
 *
 | 
						|
 * Tricky bits -
 | 
						|
 *
 | 
						|
 * What happens when two signals race each other?  UML doesn't block
 | 
						|
 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
 | 
						|
 * could arrive while a previous one is still setting up the
 | 
						|
 * thread_info.
 | 
						|
 *
 | 
						|
 * There are three cases -
 | 
						|
 *     The first interrupt on the stack - sets up the thread_info and
 | 
						|
 * handles the interrupt
 | 
						|
 *     A nested interrupt interrupting the copying of the thread_info -
 | 
						|
 * can't handle the interrupt, as the stack is in an unknown state
 | 
						|
 *     A nested interrupt not interrupting the copying of the
 | 
						|
 * thread_info - doesn't do any setup, just handles the interrupt
 | 
						|
 *
 | 
						|
 * The first job is to figure out whether we interrupted stack setup.
 | 
						|
 * This is done by xchging the signal mask with thread_info->pending.
 | 
						|
 * If the value that comes back is zero, then there is no setup in
 | 
						|
 * progress, and the interrupt can be handled.  If the value is
 | 
						|
 * non-zero, then there is stack setup in progress.  In order to have
 | 
						|
 * the interrupt handled, we leave our signal in the mask, and it will
 | 
						|
 * be handled by the upper handler after it has set up the stack.
 | 
						|
 *
 | 
						|
 * Next is to figure out whether we are the outer handler or a nested
 | 
						|
 * one.  As part of setting up the stack, thread_info->real_thread is
 | 
						|
 * set to non-NULL (and is reset to NULL on exit).  This is the
 | 
						|
 * nesting indicator.  If it is non-NULL, then the stack is already
 | 
						|
 * set up and the handler can run.
 | 
						|
 */
 | 
						|
 | 
						|
static unsigned long pending_mask;
 | 
						|
 | 
						|
unsigned long to_irq_stack(unsigned long *mask_out)
 | 
						|
{
 | 
						|
	struct thread_info *ti;
 | 
						|
	unsigned long mask, old;
 | 
						|
	int nested;
 | 
						|
 | 
						|
	mask = xchg(&pending_mask, *mask_out);
 | 
						|
	if (mask != 0) {
 | 
						|
		/*
 | 
						|
		 * If any interrupts come in at this point, we want to
 | 
						|
		 * make sure that their bits aren't lost by our
 | 
						|
		 * putting our bit in.  So, this loop accumulates bits
 | 
						|
		 * until xchg returns the same value that we put in.
 | 
						|
		 * When that happens, there were no new interrupts,
 | 
						|
		 * and pending_mask contains a bit for each interrupt
 | 
						|
		 * that came in.
 | 
						|
		 */
 | 
						|
		old = *mask_out;
 | 
						|
		do {
 | 
						|
			old |= mask;
 | 
						|
			mask = xchg(&pending_mask, old);
 | 
						|
		} while (mask != old);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	ti = current_thread_info();
 | 
						|
	nested = (ti->real_thread != NULL);
 | 
						|
	if (!nested) {
 | 
						|
		struct task_struct *task;
 | 
						|
		struct thread_info *tti;
 | 
						|
 | 
						|
		task = cpu_tasks[ti->cpu].task;
 | 
						|
		tti = task_thread_info(task);
 | 
						|
 | 
						|
		*ti = *tti;
 | 
						|
		ti->real_thread = tti;
 | 
						|
		task->stack = ti;
 | 
						|
	}
 | 
						|
 | 
						|
	mask = xchg(&pending_mask, 0);
 | 
						|
	*mask_out |= mask | nested;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long from_irq_stack(int nested)
 | 
						|
{
 | 
						|
	struct thread_info *ti, *to;
 | 
						|
	unsigned long mask;
 | 
						|
 | 
						|
	ti = current_thread_info();
 | 
						|
 | 
						|
	pending_mask = 1;
 | 
						|
 | 
						|
	to = ti->real_thread;
 | 
						|
	current->stack = to;
 | 
						|
	ti->real_thread = NULL;
 | 
						|
	*to = *ti;
 | 
						|
 | 
						|
	mask = xchg(&pending_mask, 0);
 | 
						|
	return mask & ~1;
 | 
						|
}
 | 
						|
 |