mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	efi_<reserve/free>_boot_services() are x86 specific quirks and as such should be in asm/efi.h, so move them from linux/efi.h. Also, call efi_free_boot_services() from __efi_enter_virtual_mode() as it is x86 specific call and ideally shouldn't be part of init/main.c Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arend van Spriel <arend.vanspriel@broadcom.com> Cc: Bhupesh Sharma <bhsharma@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Eric Snowberg <eric.snowberg@oracle.com> Cc: Hans de Goede <hdegoede@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jon Hunter <jonathanh@nvidia.com> Cc: Julien Thierry <julien.thierry@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Nathan Chancellor <natechancellor@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: YiFei Zhu <zhuyifei1999@gmail.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20181129171230.18699-7-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			1049 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1049 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Common EFI (Extensible Firmware Interface) support functions
 | 
						|
 * Based on Extensible Firmware Interface Specification version 1.0
 | 
						|
 *
 | 
						|
 * Copyright (C) 1999 VA Linux Systems
 | 
						|
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 | 
						|
 * Copyright (C) 1999-2002 Hewlett-Packard Co.
 | 
						|
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 | 
						|
 *	Stephane Eranian <eranian@hpl.hp.com>
 | 
						|
 * Copyright (C) 2005-2008 Intel Co.
 | 
						|
 *	Fenghua Yu <fenghua.yu@intel.com>
 | 
						|
 *	Bibo Mao <bibo.mao@intel.com>
 | 
						|
 *	Chandramouli Narayanan <mouli@linux.intel.com>
 | 
						|
 *	Huang Ying <ying.huang@intel.com>
 | 
						|
 * Copyright (C) 2013 SuSE Labs
 | 
						|
 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
 | 
						|
 *
 | 
						|
 * Copied from efi_32.c to eliminate the duplicated code between EFI
 | 
						|
 * 32/64 support code. --ying 2007-10-26
 | 
						|
 *
 | 
						|
 * All EFI Runtime Services are not implemented yet as EFI only
 | 
						|
 * supports physical mode addressing on SoftSDV. This is to be fixed
 | 
						|
 * in a future version.  --drummond 1999-07-20
 | 
						|
 *
 | 
						|
 * Implemented EFI runtime services and virtual mode calls.  --davidm
 | 
						|
 *
 | 
						|
 * Goutham Rao: <goutham.rao@intel.com>
 | 
						|
 *	Skip non-WB memory and ignore empty memory ranges.
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/efi.h>
 | 
						|
#include <linux/efi-bgrt.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/memblock.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/io.h>
 | 
						|
#include <linux/reboot.h>
 | 
						|
#include <linux/bcd.h>
 | 
						|
 | 
						|
#include <asm/setup.h>
 | 
						|
#include <asm/efi.h>
 | 
						|
#include <asm/e820/api.h>
 | 
						|
#include <asm/time.h>
 | 
						|
#include <asm/set_memory.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/x86_init.h>
 | 
						|
#include <asm/uv/uv.h>
 | 
						|
 | 
						|
static struct efi efi_phys __initdata;
 | 
						|
static efi_system_table_t efi_systab __initdata;
 | 
						|
 | 
						|
static efi_config_table_type_t arch_tables[] __initdata = {
 | 
						|
#ifdef CONFIG_X86_UV
 | 
						|
	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
 | 
						|
#endif
 | 
						|
	{NULL_GUID, NULL, NULL},
 | 
						|
};
 | 
						|
 | 
						|
u64 efi_setup;		/* efi setup_data physical address */
 | 
						|
 | 
						|
static int add_efi_memmap __initdata;
 | 
						|
static int __init setup_add_efi_memmap(char *arg)
 | 
						|
{
 | 
						|
	add_efi_memmap = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("add_efi_memmap", setup_add_efi_memmap);
 | 
						|
 | 
						|
static efi_status_t __init phys_efi_set_virtual_address_map(
 | 
						|
	unsigned long memory_map_size,
 | 
						|
	unsigned long descriptor_size,
 | 
						|
	u32 descriptor_version,
 | 
						|
	efi_memory_desc_t *virtual_map)
 | 
						|
{
 | 
						|
	efi_status_t status;
 | 
						|
	unsigned long flags;
 | 
						|
	pgd_t *save_pgd;
 | 
						|
 | 
						|
	save_pgd = efi_call_phys_prolog();
 | 
						|
 | 
						|
	/* Disable interrupts around EFI calls: */
 | 
						|
	local_irq_save(flags);
 | 
						|
	status = efi_call_phys(efi_phys.set_virtual_address_map,
 | 
						|
			       memory_map_size, descriptor_size,
 | 
						|
			       descriptor_version, virtual_map);
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	efi_call_phys_epilog(save_pgd);
 | 
						|
 | 
						|
	return status;
 | 
						|
}
 | 
						|
 | 
						|
void __init efi_find_mirror(void)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
	u64 mirror_size = 0, total_size = 0;
 | 
						|
 | 
						|
	for_each_efi_memory_desc(md) {
 | 
						|
		unsigned long long start = md->phys_addr;
 | 
						|
		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 | 
						|
 | 
						|
		total_size += size;
 | 
						|
		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 | 
						|
			memblock_mark_mirror(start, size);
 | 
						|
			mirror_size += size;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (mirror_size)
 | 
						|
		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 | 
						|
			mirror_size>>20, total_size>>20);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Tell the kernel about the EFI memory map.  This might include
 | 
						|
 * more than the max 128 entries that can fit in the e820 legacy
 | 
						|
 * (zeropage) memory map.
 | 
						|
 */
 | 
						|
 | 
						|
static void __init do_add_efi_memmap(void)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
 | 
						|
	for_each_efi_memory_desc(md) {
 | 
						|
		unsigned long long start = md->phys_addr;
 | 
						|
		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 | 
						|
		int e820_type;
 | 
						|
 | 
						|
		switch (md->type) {
 | 
						|
		case EFI_LOADER_CODE:
 | 
						|
		case EFI_LOADER_DATA:
 | 
						|
		case EFI_BOOT_SERVICES_CODE:
 | 
						|
		case EFI_BOOT_SERVICES_DATA:
 | 
						|
		case EFI_CONVENTIONAL_MEMORY:
 | 
						|
			if (md->attribute & EFI_MEMORY_WB)
 | 
						|
				e820_type = E820_TYPE_RAM;
 | 
						|
			else
 | 
						|
				e820_type = E820_TYPE_RESERVED;
 | 
						|
			break;
 | 
						|
		case EFI_ACPI_RECLAIM_MEMORY:
 | 
						|
			e820_type = E820_TYPE_ACPI;
 | 
						|
			break;
 | 
						|
		case EFI_ACPI_MEMORY_NVS:
 | 
						|
			e820_type = E820_TYPE_NVS;
 | 
						|
			break;
 | 
						|
		case EFI_UNUSABLE_MEMORY:
 | 
						|
			e820_type = E820_TYPE_UNUSABLE;
 | 
						|
			break;
 | 
						|
		case EFI_PERSISTENT_MEMORY:
 | 
						|
			e820_type = E820_TYPE_PMEM;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			/*
 | 
						|
			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
 | 
						|
			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
 | 
						|
			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
 | 
						|
			 */
 | 
						|
			e820_type = E820_TYPE_RESERVED;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		e820__range_add(start, size, e820_type);
 | 
						|
	}
 | 
						|
	e820__update_table(e820_table);
 | 
						|
}
 | 
						|
 | 
						|
int __init efi_memblock_x86_reserve_range(void)
 | 
						|
{
 | 
						|
	struct efi_info *e = &boot_params.efi_info;
 | 
						|
	struct efi_memory_map_data data;
 | 
						|
	phys_addr_t pmap;
 | 
						|
	int rv;
 | 
						|
 | 
						|
	if (efi_enabled(EFI_PARAVIRT))
 | 
						|
		return 0;
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	/* Can't handle data above 4GB at this time */
 | 
						|
	if (e->efi_memmap_hi) {
 | 
						|
		pr_err("Memory map is above 4GB, disabling EFI.\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	pmap =  e->efi_memmap;
 | 
						|
#else
 | 
						|
	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
 | 
						|
#endif
 | 
						|
	data.phys_map		= pmap;
 | 
						|
	data.size 		= e->efi_memmap_size;
 | 
						|
	data.desc_size		= e->efi_memdesc_size;
 | 
						|
	data.desc_version	= e->efi_memdesc_version;
 | 
						|
 | 
						|
	rv = efi_memmap_init_early(&data);
 | 
						|
	if (rv)
 | 
						|
		return rv;
 | 
						|
 | 
						|
	if (add_efi_memmap)
 | 
						|
		do_add_efi_memmap();
 | 
						|
 | 
						|
	WARN(efi.memmap.desc_version != 1,
 | 
						|
	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
 | 
						|
	     efi.memmap.desc_version);
 | 
						|
 | 
						|
	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
 | 
						|
#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
 | 
						|
#define U64_HIGH_BIT		(~(U64_MAX >> 1))
 | 
						|
 | 
						|
static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
 | 
						|
{
 | 
						|
	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
 | 
						|
	u64 end_hi = 0;
 | 
						|
	char buf[64];
 | 
						|
 | 
						|
	if (md->num_pages == 0) {
 | 
						|
		end = 0;
 | 
						|
	} else if (md->num_pages > EFI_PAGES_MAX ||
 | 
						|
		   EFI_PAGES_MAX - md->num_pages <
 | 
						|
		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
 | 
						|
		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
 | 
						|
			>> OVERFLOW_ADDR_SHIFT;
 | 
						|
 | 
						|
		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
 | 
						|
			end_hi += 1;
 | 
						|
	} else {
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
 | 
						|
 | 
						|
	if (end_hi) {
 | 
						|
		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
 | 
						|
			i, efi_md_typeattr_format(buf, sizeof(buf), md),
 | 
						|
			md->phys_addr, end_hi, end);
 | 
						|
	} else {
 | 
						|
		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
 | 
						|
			i, efi_md_typeattr_format(buf, sizeof(buf), md),
 | 
						|
			md->phys_addr, end);
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static void __init efi_clean_memmap(void)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *out = efi.memmap.map;
 | 
						|
	const efi_memory_desc_t *in = out;
 | 
						|
	const efi_memory_desc_t *end = efi.memmap.map_end;
 | 
						|
	int i, n_removal;
 | 
						|
 | 
						|
	for (i = n_removal = 0; in < end; i++) {
 | 
						|
		if (efi_memmap_entry_valid(in, i)) {
 | 
						|
			if (out != in)
 | 
						|
				memcpy(out, in, efi.memmap.desc_size);
 | 
						|
			out = (void *)out + efi.memmap.desc_size;
 | 
						|
		} else {
 | 
						|
			n_removal++;
 | 
						|
		}
 | 
						|
		in = (void *)in + efi.memmap.desc_size;
 | 
						|
	}
 | 
						|
 | 
						|
	if (n_removal > 0) {
 | 
						|
		u64 size = efi.memmap.nr_map - n_removal;
 | 
						|
 | 
						|
		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
 | 
						|
		efi_memmap_install(efi.memmap.phys_map, size);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init efi_print_memmap(void)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
	int i = 0;
 | 
						|
 | 
						|
	for_each_efi_memory_desc(md) {
 | 
						|
		char buf[64];
 | 
						|
 | 
						|
		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
 | 
						|
			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
 | 
						|
			md->phys_addr,
 | 
						|
			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
 | 
						|
			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int __init efi_systab_init(void *phys)
 | 
						|
{
 | 
						|
	if (efi_enabled(EFI_64BIT)) {
 | 
						|
		efi_system_table_64_t *systab64;
 | 
						|
		struct efi_setup_data *data = NULL;
 | 
						|
		u64 tmp = 0;
 | 
						|
 | 
						|
		if (efi_setup) {
 | 
						|
			data = early_memremap(efi_setup, sizeof(*data));
 | 
						|
			if (!data)
 | 
						|
				return -ENOMEM;
 | 
						|
		}
 | 
						|
		systab64 = early_memremap((unsigned long)phys,
 | 
						|
					 sizeof(*systab64));
 | 
						|
		if (systab64 == NULL) {
 | 
						|
			pr_err("Couldn't map the system table!\n");
 | 
						|
			if (data)
 | 
						|
				early_memunmap(data, sizeof(*data));
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
 | 
						|
		efi_systab.hdr = systab64->hdr;
 | 
						|
		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
 | 
						|
					      systab64->fw_vendor;
 | 
						|
		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
 | 
						|
		efi_systab.fw_revision = systab64->fw_revision;
 | 
						|
		efi_systab.con_in_handle = systab64->con_in_handle;
 | 
						|
		tmp |= systab64->con_in_handle;
 | 
						|
		efi_systab.con_in = systab64->con_in;
 | 
						|
		tmp |= systab64->con_in;
 | 
						|
		efi_systab.con_out_handle = systab64->con_out_handle;
 | 
						|
		tmp |= systab64->con_out_handle;
 | 
						|
		efi_systab.con_out = systab64->con_out;
 | 
						|
		tmp |= systab64->con_out;
 | 
						|
		efi_systab.stderr_handle = systab64->stderr_handle;
 | 
						|
		tmp |= systab64->stderr_handle;
 | 
						|
		efi_systab.stderr = systab64->stderr;
 | 
						|
		tmp |= systab64->stderr;
 | 
						|
		efi_systab.runtime = data ?
 | 
						|
				     (void *)(unsigned long)data->runtime :
 | 
						|
				     (void *)(unsigned long)systab64->runtime;
 | 
						|
		tmp |= data ? data->runtime : systab64->runtime;
 | 
						|
		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
 | 
						|
		tmp |= systab64->boottime;
 | 
						|
		efi_systab.nr_tables = systab64->nr_tables;
 | 
						|
		efi_systab.tables = data ? (unsigned long)data->tables :
 | 
						|
					   systab64->tables;
 | 
						|
		tmp |= data ? data->tables : systab64->tables;
 | 
						|
 | 
						|
		early_memunmap(systab64, sizeof(*systab64));
 | 
						|
		if (data)
 | 
						|
			early_memunmap(data, sizeof(*data));
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
		if (tmp >> 32) {
 | 
						|
			pr_err("EFI data located above 4GB, disabling EFI.\n");
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	} else {
 | 
						|
		efi_system_table_32_t *systab32;
 | 
						|
 | 
						|
		systab32 = early_memremap((unsigned long)phys,
 | 
						|
					 sizeof(*systab32));
 | 
						|
		if (systab32 == NULL) {
 | 
						|
			pr_err("Couldn't map the system table!\n");
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
 | 
						|
		efi_systab.hdr = systab32->hdr;
 | 
						|
		efi_systab.fw_vendor = systab32->fw_vendor;
 | 
						|
		efi_systab.fw_revision = systab32->fw_revision;
 | 
						|
		efi_systab.con_in_handle = systab32->con_in_handle;
 | 
						|
		efi_systab.con_in = systab32->con_in;
 | 
						|
		efi_systab.con_out_handle = systab32->con_out_handle;
 | 
						|
		efi_systab.con_out = systab32->con_out;
 | 
						|
		efi_systab.stderr_handle = systab32->stderr_handle;
 | 
						|
		efi_systab.stderr = systab32->stderr;
 | 
						|
		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
 | 
						|
		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
 | 
						|
		efi_systab.nr_tables = systab32->nr_tables;
 | 
						|
		efi_systab.tables = systab32->tables;
 | 
						|
 | 
						|
		early_memunmap(systab32, sizeof(*systab32));
 | 
						|
	}
 | 
						|
 | 
						|
	efi.systab = &efi_systab;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Verify the EFI Table
 | 
						|
	 */
 | 
						|
	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 | 
						|
		pr_err("System table signature incorrect!\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	if ((efi.systab->hdr.revision >> 16) == 0)
 | 
						|
		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
 | 
						|
		       efi.systab->hdr.revision >> 16,
 | 
						|
		       efi.systab->hdr.revision & 0xffff);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init efi_runtime_init32(void)
 | 
						|
{
 | 
						|
	efi_runtime_services_32_t *runtime;
 | 
						|
 | 
						|
	runtime = early_memremap((unsigned long)efi.systab->runtime,
 | 
						|
			sizeof(efi_runtime_services_32_t));
 | 
						|
	if (!runtime) {
 | 
						|
		pr_err("Could not map the runtime service table!\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We will only need *early* access to the SetVirtualAddressMap
 | 
						|
	 * EFI runtime service. All other runtime services will be called
 | 
						|
	 * via the virtual mapping.
 | 
						|
	 */
 | 
						|
	efi_phys.set_virtual_address_map =
 | 
						|
			(efi_set_virtual_address_map_t *)
 | 
						|
			(unsigned long)runtime->set_virtual_address_map;
 | 
						|
	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init efi_runtime_init64(void)
 | 
						|
{
 | 
						|
	efi_runtime_services_64_t *runtime;
 | 
						|
 | 
						|
	runtime = early_memremap((unsigned long)efi.systab->runtime,
 | 
						|
			sizeof(efi_runtime_services_64_t));
 | 
						|
	if (!runtime) {
 | 
						|
		pr_err("Could not map the runtime service table!\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We will only need *early* access to the SetVirtualAddressMap
 | 
						|
	 * EFI runtime service. All other runtime services will be called
 | 
						|
	 * via the virtual mapping.
 | 
						|
	 */
 | 
						|
	efi_phys.set_virtual_address_map =
 | 
						|
			(efi_set_virtual_address_map_t *)
 | 
						|
			(unsigned long)runtime->set_virtual_address_map;
 | 
						|
	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init efi_runtime_init(void)
 | 
						|
{
 | 
						|
	int rv;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check out the runtime services table. We need to map
 | 
						|
	 * the runtime services table so that we can grab the physical
 | 
						|
	 * address of several of the EFI runtime functions, needed to
 | 
						|
	 * set the firmware into virtual mode.
 | 
						|
	 *
 | 
						|
	 * When EFI_PARAVIRT is in force then we could not map runtime
 | 
						|
	 * service memory region because we do not have direct access to it.
 | 
						|
	 * However, runtime services are available through proxy functions
 | 
						|
	 * (e.g. in case of Xen dom0 EFI implementation they call special
 | 
						|
	 * hypercall which executes relevant EFI functions) and that is why
 | 
						|
	 * they are always enabled.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (!efi_enabled(EFI_PARAVIRT)) {
 | 
						|
		if (efi_enabled(EFI_64BIT))
 | 
						|
			rv = efi_runtime_init64();
 | 
						|
		else
 | 
						|
			rv = efi_runtime_init32();
 | 
						|
 | 
						|
		if (rv)
 | 
						|
			return rv;
 | 
						|
	}
 | 
						|
 | 
						|
	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void __init efi_init(void)
 | 
						|
{
 | 
						|
	efi_char16_t *c16;
 | 
						|
	char vendor[100] = "unknown";
 | 
						|
	int i = 0;
 | 
						|
	void *tmp;
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	if (boot_params.efi_info.efi_systab_hi ||
 | 
						|
	    boot_params.efi_info.efi_memmap_hi) {
 | 
						|
		pr_info("Table located above 4GB, disabling EFI.\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
 | 
						|
#else
 | 
						|
	efi_phys.systab = (efi_system_table_t *)
 | 
						|
			  (boot_params.efi_info.efi_systab |
 | 
						|
			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
 | 
						|
#endif
 | 
						|
 | 
						|
	if (efi_systab_init(efi_phys.systab))
 | 
						|
		return;
 | 
						|
 | 
						|
	efi.config_table = (unsigned long)efi.systab->tables;
 | 
						|
	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
 | 
						|
	efi.runtime	 = (unsigned long)efi.systab->runtime;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Show what we know for posterity
 | 
						|
	 */
 | 
						|
	c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
 | 
						|
	if (c16) {
 | 
						|
		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
 | 
						|
			vendor[i] = *c16++;
 | 
						|
		vendor[i] = '\0';
 | 
						|
	} else
 | 
						|
		pr_err("Could not map the firmware vendor!\n");
 | 
						|
	early_memunmap(tmp, 2);
 | 
						|
 | 
						|
	pr_info("EFI v%u.%.02u by %s\n",
 | 
						|
		efi.systab->hdr.revision >> 16,
 | 
						|
		efi.systab->hdr.revision & 0xffff, vendor);
 | 
						|
 | 
						|
	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (efi_config_init(arch_tables))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Note: We currently don't support runtime services on an EFI
 | 
						|
	 * that doesn't match the kernel 32/64-bit mode.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (!efi_runtime_supported())
 | 
						|
		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
 | 
						|
	else {
 | 
						|
		if (efi_runtime_disabled() || efi_runtime_init()) {
 | 
						|
			efi_memmap_unmap();
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	efi_clean_memmap();
 | 
						|
 | 
						|
	if (efi_enabled(EFI_DBG))
 | 
						|
		efi_print_memmap();
 | 
						|
}
 | 
						|
 | 
						|
void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
 | 
						|
{
 | 
						|
	u64 addr, npages;
 | 
						|
 | 
						|
	addr = md->virt_addr;
 | 
						|
	npages = md->num_pages;
 | 
						|
 | 
						|
	memrange_efi_to_native(&addr, &npages);
 | 
						|
 | 
						|
	if (executable)
 | 
						|
		set_memory_x(addr, npages);
 | 
						|
	else
 | 
						|
		set_memory_nx(addr, npages);
 | 
						|
}
 | 
						|
 | 
						|
void __init runtime_code_page_mkexec(void)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
 | 
						|
	/* Make EFI runtime service code area executable */
 | 
						|
	for_each_efi_memory_desc(md) {
 | 
						|
		if (md->type != EFI_RUNTIME_SERVICES_CODE)
 | 
						|
			continue;
 | 
						|
 | 
						|
		efi_set_executable(md, true);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init efi_memory_uc(u64 addr, unsigned long size)
 | 
						|
{
 | 
						|
	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
 | 
						|
	u64 npages;
 | 
						|
 | 
						|
	npages = round_up(size, page_shift) / page_shift;
 | 
						|
	memrange_efi_to_native(&addr, &npages);
 | 
						|
	set_memory_uc(addr, npages);
 | 
						|
}
 | 
						|
 | 
						|
void __init old_map_region(efi_memory_desc_t *md)
 | 
						|
{
 | 
						|
	u64 start_pfn, end_pfn, end;
 | 
						|
	unsigned long size;
 | 
						|
	void *va;
 | 
						|
 | 
						|
	start_pfn = PFN_DOWN(md->phys_addr);
 | 
						|
	size	  = md->num_pages << PAGE_SHIFT;
 | 
						|
	end	  = md->phys_addr + size;
 | 
						|
	end_pfn   = PFN_UP(end);
 | 
						|
 | 
						|
	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
 | 
						|
		va = __va(md->phys_addr);
 | 
						|
 | 
						|
		if (!(md->attribute & EFI_MEMORY_WB))
 | 
						|
			efi_memory_uc((u64)(unsigned long)va, size);
 | 
						|
	} else
 | 
						|
		va = efi_ioremap(md->phys_addr, size,
 | 
						|
				 md->type, md->attribute);
 | 
						|
 | 
						|
	md->virt_addr = (u64) (unsigned long) va;
 | 
						|
	if (!va)
 | 
						|
		pr_err("ioremap of 0x%llX failed!\n",
 | 
						|
		       (unsigned long long)md->phys_addr);
 | 
						|
}
 | 
						|
 | 
						|
/* Merge contiguous regions of the same type and attribute */
 | 
						|
static void __init efi_merge_regions(void)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *md, *prev_md = NULL;
 | 
						|
 | 
						|
	for_each_efi_memory_desc(md) {
 | 
						|
		u64 prev_size;
 | 
						|
 | 
						|
		if (!prev_md) {
 | 
						|
			prev_md = md;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (prev_md->type != md->type ||
 | 
						|
		    prev_md->attribute != md->attribute) {
 | 
						|
			prev_md = md;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
 | 
						|
 | 
						|
		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
 | 
						|
			prev_md->num_pages += md->num_pages;
 | 
						|
			md->type = EFI_RESERVED_TYPE;
 | 
						|
			md->attribute = 0;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		prev_md = md;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __init get_systab_virt_addr(efi_memory_desc_t *md)
 | 
						|
{
 | 
						|
	unsigned long size;
 | 
						|
	u64 end, systab;
 | 
						|
 | 
						|
	size = md->num_pages << EFI_PAGE_SHIFT;
 | 
						|
	end = md->phys_addr + size;
 | 
						|
	systab = (u64)(unsigned long)efi_phys.systab;
 | 
						|
	if (md->phys_addr <= systab && systab < end) {
 | 
						|
		systab += md->virt_addr - md->phys_addr;
 | 
						|
		efi.systab = (efi_system_table_t *)(unsigned long)systab;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void *realloc_pages(void *old_memmap, int old_shift)
 | 
						|
{
 | 
						|
	void *ret;
 | 
						|
 | 
						|
	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
 | 
						|
	if (!ret)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A first-time allocation doesn't have anything to copy.
 | 
						|
	 */
 | 
						|
	if (!old_memmap)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
 | 
						|
 | 
						|
out:
 | 
						|
	free_pages((unsigned long)old_memmap, old_shift);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterate the EFI memory map in reverse order because the regions
 | 
						|
 * will be mapped top-down. The end result is the same as if we had
 | 
						|
 * mapped things forward, but doesn't require us to change the
 | 
						|
 * existing implementation of efi_map_region().
 | 
						|
 */
 | 
						|
static inline void *efi_map_next_entry_reverse(void *entry)
 | 
						|
{
 | 
						|
	/* Initial call */
 | 
						|
	if (!entry)
 | 
						|
		return efi.memmap.map_end - efi.memmap.desc_size;
 | 
						|
 | 
						|
	entry -= efi.memmap.desc_size;
 | 
						|
	if (entry < efi.memmap.map)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * efi_map_next_entry - Return the next EFI memory map descriptor
 | 
						|
 * @entry: Previous EFI memory map descriptor
 | 
						|
 *
 | 
						|
 * This is a helper function to iterate over the EFI memory map, which
 | 
						|
 * we do in different orders depending on the current configuration.
 | 
						|
 *
 | 
						|
 * To begin traversing the memory map @entry must be %NULL.
 | 
						|
 *
 | 
						|
 * Returns %NULL when we reach the end of the memory map.
 | 
						|
 */
 | 
						|
static void *efi_map_next_entry(void *entry)
 | 
						|
{
 | 
						|
	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
 | 
						|
		/*
 | 
						|
		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
 | 
						|
		 * config table feature requires us to map all entries
 | 
						|
		 * in the same order as they appear in the EFI memory
 | 
						|
		 * map. That is to say, entry N must have a lower
 | 
						|
		 * virtual address than entry N+1. This is because the
 | 
						|
		 * firmware toolchain leaves relative references in
 | 
						|
		 * the code/data sections, which are split and become
 | 
						|
		 * separate EFI memory regions. Mapping things
 | 
						|
		 * out-of-order leads to the firmware accessing
 | 
						|
		 * unmapped addresses.
 | 
						|
		 *
 | 
						|
		 * Since we need to map things this way whether or not
 | 
						|
		 * the kernel actually makes use of
 | 
						|
		 * EFI_PROPERTIES_TABLE, let's just switch to this
 | 
						|
		 * scheme by default for 64-bit.
 | 
						|
		 */
 | 
						|
		return efi_map_next_entry_reverse(entry);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Initial call */
 | 
						|
	if (!entry)
 | 
						|
		return efi.memmap.map;
 | 
						|
 | 
						|
	entry += efi.memmap.desc_size;
 | 
						|
	if (entry >= efi.memmap.map_end)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
static bool should_map_region(efi_memory_desc_t *md)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Runtime regions always require runtime mappings (obviously).
 | 
						|
	 */
 | 
						|
	if (md->attribute & EFI_MEMORY_RUNTIME)
 | 
						|
		return true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 32-bit EFI doesn't suffer from the bug that requires us to
 | 
						|
	 * reserve boot services regions, and mixed mode support
 | 
						|
	 * doesn't exist for 32-bit kernels.
 | 
						|
	 */
 | 
						|
	if (IS_ENABLED(CONFIG_X86_32))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Map all of RAM so that we can access arguments in the 1:1
 | 
						|
	 * mapping when making EFI runtime calls.
 | 
						|
	 */
 | 
						|
	if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
 | 
						|
		if (md->type == EFI_CONVENTIONAL_MEMORY ||
 | 
						|
		    md->type == EFI_LOADER_DATA ||
 | 
						|
		    md->type == EFI_LOADER_CODE)
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Map boot services regions as a workaround for buggy
 | 
						|
	 * firmware that accesses them even when they shouldn't.
 | 
						|
	 *
 | 
						|
	 * See efi_{reserve,free}_boot_services().
 | 
						|
	 */
 | 
						|
	if (md->type == EFI_BOOT_SERVICES_CODE ||
 | 
						|
	    md->type == EFI_BOOT_SERVICES_DATA)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Map the efi memory ranges of the runtime services and update new_mmap with
 | 
						|
 * virtual addresses.
 | 
						|
 */
 | 
						|
static void * __init efi_map_regions(int *count, int *pg_shift)
 | 
						|
{
 | 
						|
	void *p, *new_memmap = NULL;
 | 
						|
	unsigned long left = 0;
 | 
						|
	unsigned long desc_size;
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
 | 
						|
	desc_size = efi.memmap.desc_size;
 | 
						|
 | 
						|
	p = NULL;
 | 
						|
	while ((p = efi_map_next_entry(p))) {
 | 
						|
		md = p;
 | 
						|
 | 
						|
		if (!should_map_region(md))
 | 
						|
			continue;
 | 
						|
 | 
						|
		efi_map_region(md);
 | 
						|
		get_systab_virt_addr(md);
 | 
						|
 | 
						|
		if (left < desc_size) {
 | 
						|
			new_memmap = realloc_pages(new_memmap, *pg_shift);
 | 
						|
			if (!new_memmap)
 | 
						|
				return NULL;
 | 
						|
 | 
						|
			left += PAGE_SIZE << *pg_shift;
 | 
						|
			(*pg_shift)++;
 | 
						|
		}
 | 
						|
 | 
						|
		memcpy(new_memmap + (*count * desc_size), md, desc_size);
 | 
						|
 | 
						|
		left -= desc_size;
 | 
						|
		(*count)++;
 | 
						|
	}
 | 
						|
 | 
						|
	return new_memmap;
 | 
						|
}
 | 
						|
 | 
						|
static void __init kexec_enter_virtual_mode(void)
 | 
						|
{
 | 
						|
#ifdef CONFIG_KEXEC_CORE
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
	unsigned int num_pages;
 | 
						|
 | 
						|
	efi.systab = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't do virtual mode, since we don't do runtime services, on
 | 
						|
	 * non-native EFI. With efi=old_map, we don't do runtime services in
 | 
						|
	 * kexec kernel because in the initial boot something else might
 | 
						|
	 * have been mapped at these virtual addresses.
 | 
						|
	 */
 | 
						|
	if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
 | 
						|
		efi_memmap_unmap();
 | 
						|
		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (efi_alloc_page_tables()) {
 | 
						|
		pr_err("Failed to allocate EFI page tables\n");
 | 
						|
		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	* Map efi regions which were passed via setup_data. The virt_addr is a
 | 
						|
	* fixed addr which was used in first kernel of a kexec boot.
 | 
						|
	*/
 | 
						|
	for_each_efi_memory_desc(md) {
 | 
						|
		efi_map_region_fixed(md); /* FIXME: add error handling */
 | 
						|
		get_systab_virt_addr(md);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unregister the early EFI memmap from efi_init() and install
 | 
						|
	 * the new EFI memory map.
 | 
						|
	 */
 | 
						|
	efi_memmap_unmap();
 | 
						|
 | 
						|
	if (efi_memmap_init_late(efi.memmap.phys_map,
 | 
						|
				 efi.memmap.desc_size * efi.memmap.nr_map)) {
 | 
						|
		pr_err("Failed to remap late EFI memory map\n");
 | 
						|
		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	BUG_ON(!efi.systab);
 | 
						|
 | 
						|
	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
 | 
						|
	num_pages >>= PAGE_SHIFT;
 | 
						|
 | 
						|
	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
 | 
						|
		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	efi_sync_low_kernel_mappings();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now that EFI is in virtual mode, update the function
 | 
						|
	 * pointers in the runtime service table to the new virtual addresses.
 | 
						|
	 *
 | 
						|
	 * Call EFI services through wrapper functions.
 | 
						|
	 */
 | 
						|
	efi.runtime_version = efi_systab.hdr.revision;
 | 
						|
 | 
						|
	efi_native_runtime_setup();
 | 
						|
 | 
						|
	efi.set_virtual_address_map = NULL;
 | 
						|
 | 
						|
	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
 | 
						|
		runtime_code_page_mkexec();
 | 
						|
 | 
						|
	/* clean DUMMY object */
 | 
						|
	efi_delete_dummy_variable();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function will switch the EFI runtime services to virtual mode.
 | 
						|
 * Essentially, we look through the EFI memmap and map every region that
 | 
						|
 * has the runtime attribute bit set in its memory descriptor into the
 | 
						|
 * efi_pgd page table.
 | 
						|
 *
 | 
						|
 * The old method which used to update that memory descriptor with the
 | 
						|
 * virtual address obtained from ioremap() is still supported when the
 | 
						|
 * kernel is booted with efi=old_map on its command line. Same old
 | 
						|
 * method enabled the runtime services to be called without having to
 | 
						|
 * thunk back into physical mode for every invocation.
 | 
						|
 *
 | 
						|
 * The new method does a pagetable switch in a preemption-safe manner
 | 
						|
 * so that we're in a different address space when calling a runtime
 | 
						|
 * function. For function arguments passing we do copy the PUDs of the
 | 
						|
 * kernel page table into efi_pgd prior to each call.
 | 
						|
 *
 | 
						|
 * Specially for kexec boot, efi runtime maps in previous kernel should
 | 
						|
 * be passed in via setup_data. In that case runtime ranges will be mapped
 | 
						|
 * to the same virtual addresses as the first kernel, see
 | 
						|
 * kexec_enter_virtual_mode().
 | 
						|
 */
 | 
						|
static void __init __efi_enter_virtual_mode(void)
 | 
						|
{
 | 
						|
	int count = 0, pg_shift = 0;
 | 
						|
	void *new_memmap = NULL;
 | 
						|
	efi_status_t status;
 | 
						|
	unsigned long pa;
 | 
						|
 | 
						|
	efi.systab = NULL;
 | 
						|
 | 
						|
	if (efi_alloc_page_tables()) {
 | 
						|
		pr_err("Failed to allocate EFI page tables\n");
 | 
						|
		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	efi_merge_regions();
 | 
						|
	new_memmap = efi_map_regions(&count, &pg_shift);
 | 
						|
	if (!new_memmap) {
 | 
						|
		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
 | 
						|
		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	pa = __pa(new_memmap);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unregister the early EFI memmap from efi_init() and install
 | 
						|
	 * the new EFI memory map that we are about to pass to the
 | 
						|
	 * firmware via SetVirtualAddressMap().
 | 
						|
	 */
 | 
						|
	efi_memmap_unmap();
 | 
						|
 | 
						|
	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
 | 
						|
		pr_err("Failed to remap late EFI memory map\n");
 | 
						|
		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (efi_enabled(EFI_DBG)) {
 | 
						|
		pr_info("EFI runtime memory map:\n");
 | 
						|
		efi_print_memmap();
 | 
						|
	}
 | 
						|
 | 
						|
	BUG_ON(!efi.systab);
 | 
						|
 | 
						|
	if (efi_setup_page_tables(pa, 1 << pg_shift)) {
 | 
						|
		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	efi_sync_low_kernel_mappings();
 | 
						|
 | 
						|
	if (efi_is_native()) {
 | 
						|
		status = phys_efi_set_virtual_address_map(
 | 
						|
				efi.memmap.desc_size * count,
 | 
						|
				efi.memmap.desc_size,
 | 
						|
				efi.memmap.desc_version,
 | 
						|
				(efi_memory_desc_t *)pa);
 | 
						|
	} else {
 | 
						|
		status = efi_thunk_set_virtual_address_map(
 | 
						|
				efi_phys.set_virtual_address_map,
 | 
						|
				efi.memmap.desc_size * count,
 | 
						|
				efi.memmap.desc_size,
 | 
						|
				efi.memmap.desc_version,
 | 
						|
				(efi_memory_desc_t *)pa);
 | 
						|
	}
 | 
						|
 | 
						|
	if (status != EFI_SUCCESS) {
 | 
						|
		pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
 | 
						|
			 status);
 | 
						|
		panic("EFI call to SetVirtualAddressMap() failed!");
 | 
						|
	}
 | 
						|
 | 
						|
	efi_free_boot_services();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now that EFI is in virtual mode, update the function
 | 
						|
	 * pointers in the runtime service table to the new virtual addresses.
 | 
						|
	 *
 | 
						|
	 * Call EFI services through wrapper functions.
 | 
						|
	 */
 | 
						|
	efi.runtime_version = efi_systab.hdr.revision;
 | 
						|
 | 
						|
	if (efi_is_native())
 | 
						|
		efi_native_runtime_setup();
 | 
						|
	else
 | 
						|
		efi_thunk_runtime_setup();
 | 
						|
 | 
						|
	efi.set_virtual_address_map = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Apply more restrictive page table mapping attributes now that
 | 
						|
	 * SVAM() has been called and the firmware has performed all
 | 
						|
	 * necessary relocation fixups for the new virtual addresses.
 | 
						|
	 */
 | 
						|
	efi_runtime_update_mappings();
 | 
						|
 | 
						|
	/* clean DUMMY object */
 | 
						|
	efi_delete_dummy_variable();
 | 
						|
}
 | 
						|
 | 
						|
void __init efi_enter_virtual_mode(void)
 | 
						|
{
 | 
						|
	if (efi_enabled(EFI_PARAVIRT))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (efi_setup)
 | 
						|
		kexec_enter_virtual_mode();
 | 
						|
	else
 | 
						|
		__efi_enter_virtual_mode();
 | 
						|
 | 
						|
	efi_dump_pagetable();
 | 
						|
}
 | 
						|
 | 
						|
static int __init arch_parse_efi_cmdline(char *str)
 | 
						|
{
 | 
						|
	if (!str) {
 | 
						|
		pr_warn("need at least one option\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (parse_option_str(str, "old_map"))
 | 
						|
		set_bit(EFI_OLD_MEMMAP, &efi.flags);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("efi", arch_parse_efi_cmdline);
 |