mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 2baae35453
			
		
	
	
		2baae35453
		
	
	
	
	
		
			
			synchronize_rcu() is fine when the rcu callbacks only need
to free memory (kfree_rcu() or direct kfree() call rcu call backs)
__dev_map_entry_free() is a bit more complex, so we need to make
sure that call queued __dev_map_entry_free() callbacks have completed.
sysbot report:
BUG: KASAN: use-after-free in dev_map_flush_old kernel/bpf/devmap.c:365
[inline]
BUG: KASAN: use-after-free in __dev_map_entry_free+0x2a8/0x300
kernel/bpf/devmap.c:379
Read of size 8 at addr ffff8801b8da38c8 by task ksoftirqd/1/18
CPU: 1 PID: 18 Comm: ksoftirqd/1 Not tainted 4.17.0+ #39
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
  __dump_stack lib/dump_stack.c:77 [inline]
  dump_stack+0x1b9/0x294 lib/dump_stack.c:113
  print_address_description+0x6c/0x20b mm/kasan/report.c:256
  kasan_report_error mm/kasan/report.c:354 [inline]
  kasan_report.cold.7+0x242/0x2fe mm/kasan/report.c:412
  __asan_report_load8_noabort+0x14/0x20 mm/kasan/report.c:433
  dev_map_flush_old kernel/bpf/devmap.c:365 [inline]
  __dev_map_entry_free+0x2a8/0x300 kernel/bpf/devmap.c:379
  __rcu_reclaim kernel/rcu/rcu.h:178 [inline]
  rcu_do_batch kernel/rcu/tree.c:2558 [inline]
  invoke_rcu_callbacks kernel/rcu/tree.c:2818 [inline]
  __rcu_process_callbacks kernel/rcu/tree.c:2785 [inline]
  rcu_process_callbacks+0xe9d/0x1760 kernel/rcu/tree.c:2802
  __do_softirq+0x2e0/0xaf5 kernel/softirq.c:284
  run_ksoftirqd+0x86/0x100 kernel/softirq.c:645
  smpboot_thread_fn+0x417/0x870 kernel/smpboot.c:164
  kthread+0x345/0x410 kernel/kthread.c:240
  ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412
Allocated by task 6675:
  save_stack+0x43/0xd0 mm/kasan/kasan.c:448
  set_track mm/kasan/kasan.c:460 [inline]
  kasan_kmalloc+0xc4/0xe0 mm/kasan/kasan.c:553
  kmem_cache_alloc_trace+0x152/0x780 mm/slab.c:3620
  kmalloc include/linux/slab.h:513 [inline]
  kzalloc include/linux/slab.h:706 [inline]
  dev_map_alloc+0x208/0x7f0 kernel/bpf/devmap.c:102
  find_and_alloc_map kernel/bpf/syscall.c:129 [inline]
  map_create+0x393/0x1010 kernel/bpf/syscall.c:453
  __do_sys_bpf kernel/bpf/syscall.c:2351 [inline]
  __se_sys_bpf kernel/bpf/syscall.c:2328 [inline]
  __x64_sys_bpf+0x303/0x510 kernel/bpf/syscall.c:2328
  do_syscall_64+0x1b1/0x800 arch/x86/entry/common.c:290
  entry_SYSCALL_64_after_hwframe+0x49/0xbe
Freed by task 26:
  save_stack+0x43/0xd0 mm/kasan/kasan.c:448
  set_track mm/kasan/kasan.c:460 [inline]
  __kasan_slab_free+0x11a/0x170 mm/kasan/kasan.c:521
  kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528
  __cache_free mm/slab.c:3498 [inline]
  kfree+0xd9/0x260 mm/slab.c:3813
  dev_map_free+0x4fa/0x670 kernel/bpf/devmap.c:191
  bpf_map_free_deferred+0xba/0xf0 kernel/bpf/syscall.c:262
  process_one_work+0xc64/0x1b70 kernel/workqueue.c:2153
  worker_thread+0x181/0x13a0 kernel/workqueue.c:2296
  kthread+0x345/0x410 kernel/kthread.c:240
  ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412
The buggy address belongs to the object at ffff8801b8da37c0
  which belongs to the cache kmalloc-512 of size 512
The buggy address is located 264 bytes inside of
  512-byte region [ffff8801b8da37c0, ffff8801b8da39c0)
The buggy address belongs to the page:
page:ffffea0006e368c0 count:1 mapcount:0 mapping:ffff8801da800940
index:0xffff8801b8da3540
flags: 0x2fffc0000000100(slab)
raw: 02fffc0000000100 ffffea0007217b88 ffffea0006e30cc8 ffff8801da800940
raw: ffff8801b8da3540 ffff8801b8da3040 0000000100000004 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
  ffff8801b8da3780: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
  ffff8801b8da3800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
> ffff8801b8da3880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                                               ^
  ffff8801b8da3900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
  ffff8801b8da3980: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
Fixes: 546ac1ffb7 ("bpf: add devmap, a map for storing net device references")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot+457d3e2ffbcf31aee5c0@syzkaller.appspotmail.com
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
		
	
			
		
			
				
	
	
		
			547 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			547 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of version 2 of the GNU General Public
 | |
|  * License as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 | |
|  * General Public License for more details.
 | |
|  */
 | |
| 
 | |
| /* Devmaps primary use is as a backend map for XDP BPF helper call
 | |
|  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
 | |
|  * spent some effort to ensure the datapath with redirect maps does not use
 | |
|  * any locking. This is a quick note on the details.
 | |
|  *
 | |
|  * We have three possible paths to get into the devmap control plane bpf
 | |
|  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
 | |
|  * will invoke an update, delete, or lookup operation. To ensure updates and
 | |
|  * deletes appear atomic from the datapath side xchg() is used to modify the
 | |
|  * netdev_map array. Then because the datapath does a lookup into the netdev_map
 | |
|  * array (read-only) from an RCU critical section we use call_rcu() to wait for
 | |
|  * an rcu grace period before free'ing the old data structures. This ensures the
 | |
|  * datapath always has a valid copy. However, the datapath does a "flush"
 | |
|  * operation that pushes any pending packets in the driver outside the RCU
 | |
|  * critical section. Each bpf_dtab_netdev tracks these pending operations using
 | |
|  * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
 | |
|  * until all bits are cleared indicating outstanding flush operations have
 | |
|  * completed.
 | |
|  *
 | |
|  * BPF syscalls may race with BPF program calls on any of the update, delete
 | |
|  * or lookup operations. As noted above the xchg() operation also keep the
 | |
|  * netdev_map consistent in this case. From the devmap side BPF programs
 | |
|  * calling into these operations are the same as multiple user space threads
 | |
|  * making system calls.
 | |
|  *
 | |
|  * Finally, any of the above may race with a netdev_unregister notifier. The
 | |
|  * unregister notifier must search for net devices in the map structure that
 | |
|  * contain a reference to the net device and remove them. This is a two step
 | |
|  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
 | |
|  * check to see if the ifindex is the same as the net_device being removed.
 | |
|  * When removing the dev a cmpxchg() is used to ensure the correct dev is
 | |
|  * removed, in the case of a concurrent update or delete operation it is
 | |
|  * possible that the initially referenced dev is no longer in the map. As the
 | |
|  * notifier hook walks the map we know that new dev references can not be
 | |
|  * added by the user because core infrastructure ensures dev_get_by_index()
 | |
|  * calls will fail at this point.
 | |
|  */
 | |
| #include <linux/bpf.h>
 | |
| #include <net/xdp.h>
 | |
| #include <linux/filter.h>
 | |
| #include <trace/events/xdp.h>
 | |
| 
 | |
| #define DEV_CREATE_FLAG_MASK \
 | |
| 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
 | |
| 
 | |
| #define DEV_MAP_BULK_SIZE 16
 | |
| struct xdp_bulk_queue {
 | |
| 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
 | |
| 	struct net_device *dev_rx;
 | |
| 	unsigned int count;
 | |
| };
 | |
| 
 | |
| struct bpf_dtab_netdev {
 | |
| 	struct net_device *dev; /* must be first member, due to tracepoint */
 | |
| 	struct bpf_dtab *dtab;
 | |
| 	unsigned int bit;
 | |
| 	struct xdp_bulk_queue __percpu *bulkq;
 | |
| 	struct rcu_head rcu;
 | |
| };
 | |
| 
 | |
| struct bpf_dtab {
 | |
| 	struct bpf_map map;
 | |
| 	struct bpf_dtab_netdev **netdev_map;
 | |
| 	unsigned long __percpu *flush_needed;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| static DEFINE_SPINLOCK(dev_map_lock);
 | |
| static LIST_HEAD(dev_map_list);
 | |
| 
 | |
| static u64 dev_map_bitmap_size(const union bpf_attr *attr)
 | |
| {
 | |
| 	return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
 | |
| }
 | |
| 
 | |
| static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
 | |
| {
 | |
| 	struct bpf_dtab *dtab;
 | |
| 	int err = -EINVAL;
 | |
| 	u64 cost;
 | |
| 
 | |
| 	if (!capable(CAP_NET_ADMIN))
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 
 | |
| 	/* check sanity of attributes */
 | |
| 	if (attr->max_entries == 0 || attr->key_size != 4 ||
 | |
| 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
 | |
| 	if (!dtab)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	bpf_map_init_from_attr(&dtab->map, attr);
 | |
| 
 | |
| 	/* make sure page count doesn't overflow */
 | |
| 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
 | |
| 	cost += dev_map_bitmap_size(attr) * num_possible_cpus();
 | |
| 	if (cost >= U32_MAX - PAGE_SIZE)
 | |
| 		goto free_dtab;
 | |
| 
 | |
| 	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* if map size is larger than memlock limit, reject it early */
 | |
| 	err = bpf_map_precharge_memlock(dtab->map.pages);
 | |
| 	if (err)
 | |
| 		goto free_dtab;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 
 | |
| 	/* A per cpu bitfield with a bit per possible net device */
 | |
| 	dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
 | |
| 						__alignof__(unsigned long),
 | |
| 						GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!dtab->flush_needed)
 | |
| 		goto free_dtab;
 | |
| 
 | |
| 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
 | |
| 					      sizeof(struct bpf_dtab_netdev *),
 | |
| 					      dtab->map.numa_node);
 | |
| 	if (!dtab->netdev_map)
 | |
| 		goto free_dtab;
 | |
| 
 | |
| 	spin_lock(&dev_map_lock);
 | |
| 	list_add_tail_rcu(&dtab->list, &dev_map_list);
 | |
| 	spin_unlock(&dev_map_lock);
 | |
| 
 | |
| 	return &dtab->map;
 | |
| free_dtab:
 | |
| 	free_percpu(dtab->flush_needed);
 | |
| 	kfree(dtab);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static void dev_map_free(struct bpf_map *map)
 | |
| {
 | |
| 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 | |
| 	int i, cpu;
 | |
| 
 | |
| 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
 | |
| 	 * so the programs (can be more than one that used this map) were
 | |
| 	 * disconnected from events. Wait for outstanding critical sections in
 | |
| 	 * these programs to complete. The rcu critical section only guarantees
 | |
| 	 * no further reads against netdev_map. It does __not__ ensure pending
 | |
| 	 * flush operations (if any) are complete.
 | |
| 	 */
 | |
| 
 | |
| 	spin_lock(&dev_map_lock);
 | |
| 	list_del_rcu(&dtab->list);
 | |
| 	spin_unlock(&dev_map_lock);
 | |
| 
 | |
| 	bpf_clear_redirect_map(map);
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	/* Make sure prior __dev_map_entry_free() have completed. */
 | |
| 	rcu_barrier();
 | |
| 
 | |
| 	/* To ensure all pending flush operations have completed wait for flush
 | |
| 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
 | |
| 	 * Because the above synchronize_rcu() ensures the map is disconnected
 | |
| 	 * from the program we can assume no new bits will be set.
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
 | |
| 
 | |
| 		while (!bitmap_empty(bitmap, dtab->map.max_entries))
 | |
| 			cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < dtab->map.max_entries; i++) {
 | |
| 		struct bpf_dtab_netdev *dev;
 | |
| 
 | |
| 		dev = dtab->netdev_map[i];
 | |
| 		if (!dev)
 | |
| 			continue;
 | |
| 
 | |
| 		dev_put(dev->dev);
 | |
| 		kfree(dev);
 | |
| 	}
 | |
| 
 | |
| 	free_percpu(dtab->flush_needed);
 | |
| 	bpf_map_area_free(dtab->netdev_map);
 | |
| 	kfree(dtab);
 | |
| }
 | |
| 
 | |
| static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 | |
| {
 | |
| 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 | |
| 	u32 index = key ? *(u32 *)key : U32_MAX;
 | |
| 	u32 *next = next_key;
 | |
| 
 | |
| 	if (index >= dtab->map.max_entries) {
 | |
| 		*next = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (index == dtab->map.max_entries - 1)
 | |
| 		return -ENOENT;
 | |
| 	*next = index + 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
 | |
| {
 | |
| 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 | |
| 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
 | |
| 
 | |
| 	__set_bit(bit, bitmap);
 | |
| }
 | |
| 
 | |
| static int bq_xmit_all(struct bpf_dtab_netdev *obj,
 | |
| 		       struct xdp_bulk_queue *bq, u32 flags,
 | |
| 		       bool in_napi_ctx)
 | |
| {
 | |
| 	struct net_device *dev = obj->dev;
 | |
| 	int sent = 0, drops = 0, err = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(!bq->count))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < bq->count; i++) {
 | |
| 		struct xdp_frame *xdpf = bq->q[i];
 | |
| 
 | |
| 		prefetch(xdpf);
 | |
| 	}
 | |
| 
 | |
| 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
 | |
| 	if (sent < 0) {
 | |
| 		err = sent;
 | |
| 		sent = 0;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	drops = bq->count - sent;
 | |
| out:
 | |
| 	bq->count = 0;
 | |
| 
 | |
| 	trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
 | |
| 			      sent, drops, bq->dev_rx, dev, err);
 | |
| 	bq->dev_rx = NULL;
 | |
| 	return 0;
 | |
| error:
 | |
| 	/* If ndo_xdp_xmit fails with an errno, no frames have been
 | |
| 	 * xmit'ed and it's our responsibility to them free all.
 | |
| 	 */
 | |
| 	for (i = 0; i < bq->count; i++) {
 | |
| 		struct xdp_frame *xdpf = bq->q[i];
 | |
| 
 | |
| 		/* RX path under NAPI protection, can return frames faster */
 | |
| 		if (likely(in_napi_ctx))
 | |
| 			xdp_return_frame_rx_napi(xdpf);
 | |
| 		else
 | |
| 			xdp_return_frame(xdpf);
 | |
| 		drops++;
 | |
| 	}
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
 | |
|  * from the driver before returning from its napi->poll() routine. The poll()
 | |
|  * routine is called either from busy_poll context or net_rx_action signaled
 | |
|  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
 | |
|  * net device can be torn down. On devmap tear down we ensure the ctx bitmap
 | |
|  * is zeroed before completing to ensure all flush operations have completed.
 | |
|  */
 | |
| void __dev_map_flush(struct bpf_map *map)
 | |
| {
 | |
| 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 | |
| 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
 | |
| 	u32 bit;
 | |
| 
 | |
| 	for_each_set_bit(bit, bitmap, map->max_entries) {
 | |
| 		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
 | |
| 		struct xdp_bulk_queue *bq;
 | |
| 
 | |
| 		/* This is possible if the dev entry is removed by user space
 | |
| 		 * between xdp redirect and flush op.
 | |
| 		 */
 | |
| 		if (unlikely(!dev))
 | |
| 			continue;
 | |
| 
 | |
| 		__clear_bit(bit, bitmap);
 | |
| 
 | |
| 		bq = this_cpu_ptr(dev->bulkq);
 | |
| 		bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
 | |
|  * update happens in parallel here a dev_put wont happen until after reading the
 | |
|  * ifindex.
 | |
|  */
 | |
| struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
 | |
| {
 | |
| 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 | |
| 	struct bpf_dtab_netdev *obj;
 | |
| 
 | |
| 	if (key >= map->max_entries)
 | |
| 		return NULL;
 | |
| 
 | |
| 	obj = READ_ONCE(dtab->netdev_map[key]);
 | |
| 	return obj;
 | |
| }
 | |
| 
 | |
| /* Runs under RCU-read-side, plus in softirq under NAPI protection.
 | |
|  * Thus, safe percpu variable access.
 | |
|  */
 | |
| static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
 | |
| 		      struct net_device *dev_rx)
 | |
| 
 | |
| {
 | |
| 	struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
 | |
| 
 | |
| 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
 | |
| 		bq_xmit_all(obj, bq, 0, true);
 | |
| 
 | |
| 	/* Ingress dev_rx will be the same for all xdp_frame's in
 | |
| 	 * bulk_queue, because bq stored per-CPU and must be flushed
 | |
| 	 * from net_device drivers NAPI func end.
 | |
| 	 */
 | |
| 	if (!bq->dev_rx)
 | |
| 		bq->dev_rx = dev_rx;
 | |
| 
 | |
| 	bq->q[bq->count++] = xdpf;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
 | |
| 		    struct net_device *dev_rx)
 | |
| {
 | |
| 	struct net_device *dev = dst->dev;
 | |
| 	struct xdp_frame *xdpf;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!dev->netdev_ops->ndo_xdp_xmit)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	xdpf = convert_to_xdp_frame(xdp);
 | |
| 	if (unlikely(!xdpf))
 | |
| 		return -EOVERFLOW;
 | |
| 
 | |
| 	return bq_enqueue(dst, xdpf, dev_rx);
 | |
| }
 | |
| 
 | |
| int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
 | |
| 			     struct bpf_prog *xdp_prog)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 	skb->dev = dst->dev;
 | |
| 	generic_xdp_tx(skb, xdp_prog);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
 | |
| 	struct net_device *dev = obj ? obj->dev : NULL;
 | |
| 
 | |
| 	return dev ? &dev->ifindex : NULL;
 | |
| }
 | |
| 
 | |
| static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
 | |
| {
 | |
| 	if (dev->dev->netdev_ops->ndo_xdp_xmit) {
 | |
| 		struct xdp_bulk_queue *bq;
 | |
| 		unsigned long *bitmap;
 | |
| 
 | |
| 		int cpu;
 | |
| 
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
 | |
| 			__clear_bit(dev->bit, bitmap);
 | |
| 
 | |
| 			bq = per_cpu_ptr(dev->bulkq, cpu);
 | |
| 			bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __dev_map_entry_free(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct bpf_dtab_netdev *dev;
 | |
| 
 | |
| 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
 | |
| 	dev_map_flush_old(dev);
 | |
| 	free_percpu(dev->bulkq);
 | |
| 	dev_put(dev->dev);
 | |
| 	kfree(dev);
 | |
| }
 | |
| 
 | |
| static int dev_map_delete_elem(struct bpf_map *map, void *key)
 | |
| {
 | |
| 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 | |
| 	struct bpf_dtab_netdev *old_dev;
 | |
| 	int k = *(u32 *)key;
 | |
| 
 | |
| 	if (k >= map->max_entries)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Use call_rcu() here to ensure any rcu critical sections have
 | |
| 	 * completed, but this does not guarantee a flush has happened
 | |
| 	 * yet. Because driver side rcu_read_lock/unlock only protects the
 | |
| 	 * running XDP program. However, for pending flush operations the
 | |
| 	 * dev and ctx are stored in another per cpu map. And additionally,
 | |
| 	 * the driver tear down ensures all soft irqs are complete before
 | |
| 	 * removing the net device in the case of dev_put equals zero.
 | |
| 	 */
 | |
| 	old_dev = xchg(&dtab->netdev_map[k], NULL);
 | |
| 	if (old_dev)
 | |
| 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
 | |
| 				u64 map_flags)
 | |
| {
 | |
| 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 | |
| 	struct net *net = current->nsproxy->net_ns;
 | |
| 	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
 | |
| 	struct bpf_dtab_netdev *dev, *old_dev;
 | |
| 	u32 i = *(u32 *)key;
 | |
| 	u32 ifindex = *(u32 *)value;
 | |
| 
 | |
| 	if (unlikely(map_flags > BPF_EXIST))
 | |
| 		return -EINVAL;
 | |
| 	if (unlikely(i >= dtab->map.max_entries))
 | |
| 		return -E2BIG;
 | |
| 	if (unlikely(map_flags == BPF_NOEXIST))
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	if (!ifindex) {
 | |
| 		dev = NULL;
 | |
| 	} else {
 | |
| 		dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
 | |
| 		if (!dev)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
 | |
| 						sizeof(void *), gfp);
 | |
| 		if (!dev->bulkq) {
 | |
| 			kfree(dev);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		dev->dev = dev_get_by_index(net, ifindex);
 | |
| 		if (!dev->dev) {
 | |
| 			free_percpu(dev->bulkq);
 | |
| 			kfree(dev);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		dev->bit = i;
 | |
| 		dev->dtab = dtab;
 | |
| 	}
 | |
| 
 | |
| 	/* Use call_rcu() here to ensure rcu critical sections have completed
 | |
| 	 * Remembering the driver side flush operation will happen before the
 | |
| 	 * net device is removed.
 | |
| 	 */
 | |
| 	old_dev = xchg(&dtab->netdev_map[i], dev);
 | |
| 	if (old_dev)
 | |
| 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const struct bpf_map_ops dev_map_ops = {
 | |
| 	.map_alloc = dev_map_alloc,
 | |
| 	.map_free = dev_map_free,
 | |
| 	.map_get_next_key = dev_map_get_next_key,
 | |
| 	.map_lookup_elem = dev_map_lookup_elem,
 | |
| 	.map_update_elem = dev_map_update_elem,
 | |
| 	.map_delete_elem = dev_map_delete_elem,
 | |
| 	.map_check_btf = map_check_no_btf,
 | |
| };
 | |
| 
 | |
| static int dev_map_notification(struct notifier_block *notifier,
 | |
| 				ulong event, void *ptr)
 | |
| {
 | |
| 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
 | |
| 	struct bpf_dtab *dtab;
 | |
| 	int i;
 | |
| 
 | |
| 	switch (event) {
 | |
| 	case NETDEV_UNREGISTER:
 | |
| 		/* This rcu_read_lock/unlock pair is needed because
 | |
| 		 * dev_map_list is an RCU list AND to ensure a delete
 | |
| 		 * operation does not free a netdev_map entry while we
 | |
| 		 * are comparing it against the netdev being unregistered.
 | |
| 		 */
 | |
| 		rcu_read_lock();
 | |
| 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
 | |
| 			for (i = 0; i < dtab->map.max_entries; i++) {
 | |
| 				struct bpf_dtab_netdev *dev, *odev;
 | |
| 
 | |
| 				dev = READ_ONCE(dtab->netdev_map[i]);
 | |
| 				if (!dev || netdev != dev->dev)
 | |
| 					continue;
 | |
| 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
 | |
| 				if (dev == odev)
 | |
| 					call_rcu(&dev->rcu,
 | |
| 						 __dev_map_entry_free);
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block dev_map_notifier = {
 | |
| 	.notifier_call = dev_map_notification,
 | |
| };
 | |
| 
 | |
| static int __init dev_map_init(void)
 | |
| {
 | |
| 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
 | |
| 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
 | |
| 		     offsetof(struct _bpf_dtab_netdev, dev));
 | |
| 	register_netdevice_notifier(&dev_map_notifier);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| subsys_initcall(dev_map_init);
 |