mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	Remove bi_reverse() and use generic bitrev32() instead - it should have better performance on some platforms. Signed-off-by: yalin wang <yalin.wang2010@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			327 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			327 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
 | 
						|
 | 
						|
#define Assert(err, str) 
 | 
						|
#define Trace(dummy) 
 | 
						|
#define Tracev(dummy) 
 | 
						|
#define Tracecv(err, dummy) 
 | 
						|
#define Tracevv(dummy) 
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#define LENGTH_CODES 29
 | 
						|
/* number of length codes, not counting the special END_BLOCK code */
 | 
						|
 | 
						|
#define LITERALS  256
 | 
						|
/* number of literal bytes 0..255 */
 | 
						|
 | 
						|
#define L_CODES (LITERALS+1+LENGTH_CODES)
 | 
						|
/* number of Literal or Length codes, including the END_BLOCK code */
 | 
						|
 | 
						|
#define D_CODES   30
 | 
						|
/* number of distance codes */
 | 
						|
 | 
						|
#define BL_CODES  19
 | 
						|
/* number of codes used to transfer the bit lengths */
 | 
						|
 | 
						|
#define HEAP_SIZE (2*L_CODES+1)
 | 
						|
/* maximum heap size */
 | 
						|
 | 
						|
#define MAX_BITS 15
 | 
						|
/* All codes must not exceed MAX_BITS bits */
 | 
						|
 | 
						|
#define INIT_STATE    42
 | 
						|
#define BUSY_STATE   113
 | 
						|
#define FINISH_STATE 666
 | 
						|
/* Stream status */
 | 
						|
 | 
						|
 | 
						|
/* Data structure describing a single value and its code string. */
 | 
						|
typedef struct ct_data_s {
 | 
						|
    union {
 | 
						|
        ush  freq;       /* frequency count */
 | 
						|
        ush  code;       /* bit string */
 | 
						|
    } fc;
 | 
						|
    union {
 | 
						|
        ush  dad;        /* father node in Huffman tree */
 | 
						|
        ush  len;        /* length of bit string */
 | 
						|
    } dl;
 | 
						|
} ct_data;
 | 
						|
 | 
						|
#define Freq fc.freq
 | 
						|
#define Code fc.code
 | 
						|
#define Dad  dl.dad
 | 
						|
#define Len  dl.len
 | 
						|
 | 
						|
typedef struct static_tree_desc_s  static_tree_desc;
 | 
						|
 | 
						|
typedef struct tree_desc_s {
 | 
						|
    ct_data *dyn_tree;           /* the dynamic tree */
 | 
						|
    int     max_code;            /* largest code with non zero frequency */
 | 
						|
    static_tree_desc *stat_desc; /* the corresponding static tree */
 | 
						|
} tree_desc;
 | 
						|
 | 
						|
typedef ush Pos;
 | 
						|
typedef unsigned IPos;
 | 
						|
 | 
						|
/* A Pos is an index in the character window. We use short instead of int to
 | 
						|
 * save space in the various tables. IPos is used only for parameter passing.
 | 
						|
 */
 | 
						|
 | 
						|
typedef struct deflate_state {
 | 
						|
    z_streamp strm;      /* pointer back to this zlib stream */
 | 
						|
    int   status;        /* as the name implies */
 | 
						|
    Byte *pending_buf;   /* output still pending */
 | 
						|
    ulg   pending_buf_size; /* size of pending_buf */
 | 
						|
    Byte *pending_out;   /* next pending byte to output to the stream */
 | 
						|
    int   pending;       /* nb of bytes in the pending buffer */
 | 
						|
    int   noheader;      /* suppress zlib header and adler32 */
 | 
						|
    Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
 | 
						|
    Byte  method;        /* STORED (for zip only) or DEFLATED */
 | 
						|
    int   last_flush;    /* value of flush param for previous deflate call */
 | 
						|
 | 
						|
                /* used by deflate.c: */
 | 
						|
 | 
						|
    uInt  w_size;        /* LZ77 window size (32K by default) */
 | 
						|
    uInt  w_bits;        /* log2(w_size)  (8..16) */
 | 
						|
    uInt  w_mask;        /* w_size - 1 */
 | 
						|
 | 
						|
    Byte *window;
 | 
						|
    /* Sliding window. Input bytes are read into the second half of the window,
 | 
						|
     * and move to the first half later to keep a dictionary of at least wSize
 | 
						|
     * bytes. With this organization, matches are limited to a distance of
 | 
						|
     * wSize-MAX_MATCH bytes, but this ensures that IO is always
 | 
						|
     * performed with a length multiple of the block size. Also, it limits
 | 
						|
     * the window size to 64K, which is quite useful on MSDOS.
 | 
						|
     * To do: use the user input buffer as sliding window.
 | 
						|
     */
 | 
						|
 | 
						|
    ulg window_size;
 | 
						|
    /* Actual size of window: 2*wSize, except when the user input buffer
 | 
						|
     * is directly used as sliding window.
 | 
						|
     */
 | 
						|
 | 
						|
    Pos *prev;
 | 
						|
    /* Link to older string with same hash index. To limit the size of this
 | 
						|
     * array to 64K, this link is maintained only for the last 32K strings.
 | 
						|
     * An index in this array is thus a window index modulo 32K.
 | 
						|
     */
 | 
						|
 | 
						|
    Pos *head; /* Heads of the hash chains or NIL. */
 | 
						|
 | 
						|
    uInt  ins_h;          /* hash index of string to be inserted */
 | 
						|
    uInt  hash_size;      /* number of elements in hash table */
 | 
						|
    uInt  hash_bits;      /* log2(hash_size) */
 | 
						|
    uInt  hash_mask;      /* hash_size-1 */
 | 
						|
 | 
						|
    uInt  hash_shift;
 | 
						|
    /* Number of bits by which ins_h must be shifted at each input
 | 
						|
     * step. It must be such that after MIN_MATCH steps, the oldest
 | 
						|
     * byte no longer takes part in the hash key, that is:
 | 
						|
     *   hash_shift * MIN_MATCH >= hash_bits
 | 
						|
     */
 | 
						|
 | 
						|
    long block_start;
 | 
						|
    /* Window position at the beginning of the current output block. Gets
 | 
						|
     * negative when the window is moved backwards.
 | 
						|
     */
 | 
						|
 | 
						|
    uInt match_length;           /* length of best match */
 | 
						|
    IPos prev_match;             /* previous match */
 | 
						|
    int match_available;         /* set if previous match exists */
 | 
						|
    uInt strstart;               /* start of string to insert */
 | 
						|
    uInt match_start;            /* start of matching string */
 | 
						|
    uInt lookahead;              /* number of valid bytes ahead in window */
 | 
						|
 | 
						|
    uInt prev_length;
 | 
						|
    /* Length of the best match at previous step. Matches not greater than this
 | 
						|
     * are discarded. This is used in the lazy match evaluation.
 | 
						|
     */
 | 
						|
 | 
						|
    uInt max_chain_length;
 | 
						|
    /* To speed up deflation, hash chains are never searched beyond this
 | 
						|
     * length.  A higher limit improves compression ratio but degrades the
 | 
						|
     * speed.
 | 
						|
     */
 | 
						|
 | 
						|
    uInt max_lazy_match;
 | 
						|
    /* Attempt to find a better match only when the current match is strictly
 | 
						|
     * smaller than this value. This mechanism is used only for compression
 | 
						|
     * levels >= 4.
 | 
						|
     */
 | 
						|
#   define max_insert_length  max_lazy_match
 | 
						|
    /* Insert new strings in the hash table only if the match length is not
 | 
						|
     * greater than this length. This saves time but degrades compression.
 | 
						|
     * max_insert_length is used only for compression levels <= 3.
 | 
						|
     */
 | 
						|
 | 
						|
    int level;    /* compression level (1..9) */
 | 
						|
    int strategy; /* favor or force Huffman coding*/
 | 
						|
 | 
						|
    uInt good_match;
 | 
						|
    /* Use a faster search when the previous match is longer than this */
 | 
						|
 | 
						|
    int nice_match; /* Stop searching when current match exceeds this */
 | 
						|
 | 
						|
                /* used by trees.c: */
 | 
						|
    /* Didn't use ct_data typedef below to suppress compiler warning */
 | 
						|
    struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
 | 
						|
    struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
 | 
						|
    struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
 | 
						|
 | 
						|
    struct tree_desc_s l_desc;               /* desc. for literal tree */
 | 
						|
    struct tree_desc_s d_desc;               /* desc. for distance tree */
 | 
						|
    struct tree_desc_s bl_desc;              /* desc. for bit length tree */
 | 
						|
 | 
						|
    ush bl_count[MAX_BITS+1];
 | 
						|
    /* number of codes at each bit length for an optimal tree */
 | 
						|
 | 
						|
    int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
 | 
						|
    int heap_len;               /* number of elements in the heap */
 | 
						|
    int heap_max;               /* element of largest frequency */
 | 
						|
    /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
 | 
						|
     * The same heap array is used to build all trees.
 | 
						|
     */
 | 
						|
 | 
						|
    uch depth[2*L_CODES+1];
 | 
						|
    /* Depth of each subtree used as tie breaker for trees of equal frequency
 | 
						|
     */
 | 
						|
 | 
						|
    uch *l_buf;          /* buffer for literals or lengths */
 | 
						|
 | 
						|
    uInt  lit_bufsize;
 | 
						|
    /* Size of match buffer for literals/lengths.  There are 4 reasons for
 | 
						|
     * limiting lit_bufsize to 64K:
 | 
						|
     *   - frequencies can be kept in 16 bit counters
 | 
						|
     *   - if compression is not successful for the first block, all input
 | 
						|
     *     data is still in the window so we can still emit a stored block even
 | 
						|
     *     when input comes from standard input.  (This can also be done for
 | 
						|
     *     all blocks if lit_bufsize is not greater than 32K.)
 | 
						|
     *   - if compression is not successful for a file smaller than 64K, we can
 | 
						|
     *     even emit a stored file instead of a stored block (saving 5 bytes).
 | 
						|
     *     This is applicable only for zip (not gzip or zlib).
 | 
						|
     *   - creating new Huffman trees less frequently may not provide fast
 | 
						|
     *     adaptation to changes in the input data statistics. (Take for
 | 
						|
     *     example a binary file with poorly compressible code followed by
 | 
						|
     *     a highly compressible string table.) Smaller buffer sizes give
 | 
						|
     *     fast adaptation but have of course the overhead of transmitting
 | 
						|
     *     trees more frequently.
 | 
						|
     *   - I can't count above 4
 | 
						|
     */
 | 
						|
 | 
						|
    uInt last_lit;      /* running index in l_buf */
 | 
						|
 | 
						|
    ush *d_buf;
 | 
						|
    /* Buffer for distances. To simplify the code, d_buf and l_buf have
 | 
						|
     * the same number of elements. To use different lengths, an extra flag
 | 
						|
     * array would be necessary.
 | 
						|
     */
 | 
						|
 | 
						|
    ulg opt_len;        /* bit length of current block with optimal trees */
 | 
						|
    ulg static_len;     /* bit length of current block with static trees */
 | 
						|
    ulg compressed_len; /* total bit length of compressed file */
 | 
						|
    uInt matches;       /* number of string matches in current block */
 | 
						|
    int last_eob_len;   /* bit length of EOB code for last block */
 | 
						|
 | 
						|
#ifdef DEBUG_ZLIB
 | 
						|
    ulg bits_sent;      /* bit length of the compressed data */
 | 
						|
#endif
 | 
						|
 | 
						|
    ush bi_buf;
 | 
						|
    /* Output buffer. bits are inserted starting at the bottom (least
 | 
						|
     * significant bits).
 | 
						|
     */
 | 
						|
    int bi_valid;
 | 
						|
    /* Number of valid bits in bi_buf.  All bits above the last valid bit
 | 
						|
     * are always zero.
 | 
						|
     */
 | 
						|
 | 
						|
} deflate_state;
 | 
						|
 | 
						|
typedef struct deflate_workspace {
 | 
						|
    /* State memory for the deflator */
 | 
						|
    deflate_state deflate_memory;
 | 
						|
    Byte *window_memory;
 | 
						|
    Pos *prev_memory;
 | 
						|
    Pos *head_memory;
 | 
						|
    char *overlay_memory;
 | 
						|
} deflate_workspace;
 | 
						|
 | 
						|
#define zlib_deflate_window_memsize(windowBits) \
 | 
						|
	(2 * (1 << (windowBits)) * sizeof(Byte))
 | 
						|
#define zlib_deflate_prev_memsize(windowBits) \
 | 
						|
	((1 << (windowBits)) * sizeof(Pos))
 | 
						|
#define zlib_deflate_head_memsize(memLevel) \
 | 
						|
	((1 << ((memLevel)+7)) * sizeof(Pos))
 | 
						|
#define zlib_deflate_overlay_memsize(memLevel) \
 | 
						|
	((1 << ((memLevel)+6)) * (sizeof(ush)+2))
 | 
						|
 | 
						|
/* Output a byte on the stream.
 | 
						|
 * IN assertion: there is enough room in pending_buf.
 | 
						|
 */
 | 
						|
#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
 | 
						|
 | 
						|
 | 
						|
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
 | 
						|
/* Minimum amount of lookahead, except at the end of the input file.
 | 
						|
 * See deflate.c for comments about the MIN_MATCH+1.
 | 
						|
 */
 | 
						|
 | 
						|
#define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
 | 
						|
/* In order to simplify the code, particularly on 16 bit machines, match
 | 
						|
 * distances are limited to MAX_DIST instead of WSIZE.
 | 
						|
 */
 | 
						|
 | 
						|
        /* in trees.c */
 | 
						|
void zlib_tr_init         (deflate_state *s);
 | 
						|
int  zlib_tr_tally        (deflate_state *s, unsigned dist, unsigned lc);
 | 
						|
ulg  zlib_tr_flush_block  (deflate_state *s, char *buf, ulg stored_len,
 | 
						|
			   int eof);
 | 
						|
void zlib_tr_align        (deflate_state *s);
 | 
						|
void zlib_tr_stored_block (deflate_state *s, char *buf, ulg stored_len,
 | 
						|
			   int eof);
 | 
						|
void zlib_tr_stored_type_only (deflate_state *);
 | 
						|
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Output a short LSB first on the stream.
 | 
						|
 * IN assertion: there is enough room in pendingBuf.
 | 
						|
 */
 | 
						|
#define put_short(s, w) { \
 | 
						|
    put_byte(s, (uch)((w) & 0xff)); \
 | 
						|
    put_byte(s, (uch)((ush)(w) >> 8)); \
 | 
						|
}
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Flush the bit buffer, keeping at most 7 bits in it.
 | 
						|
 */
 | 
						|
static inline void bi_flush(deflate_state *s)
 | 
						|
{
 | 
						|
    if (s->bi_valid == 16) {
 | 
						|
        put_short(s, s->bi_buf);
 | 
						|
        s->bi_buf = 0;
 | 
						|
        s->bi_valid = 0;
 | 
						|
    } else if (s->bi_valid >= 8) {
 | 
						|
        put_byte(s, (Byte)s->bi_buf);
 | 
						|
        s->bi_buf >>= 8;
 | 
						|
        s->bi_valid -= 8;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* ===========================================================================
 | 
						|
 * Flush the bit buffer and align the output on a byte boundary
 | 
						|
 */
 | 
						|
static inline void bi_windup(deflate_state *s)
 | 
						|
{
 | 
						|
    if (s->bi_valid > 8) {
 | 
						|
        put_short(s, s->bi_buf);
 | 
						|
    } else if (s->bi_valid > 0) {
 | 
						|
        put_byte(s, (Byte)s->bi_buf);
 | 
						|
    }
 | 
						|
    s->bi_buf = 0;
 | 
						|
    s->bi_valid = 0;
 | 
						|
#ifdef DEBUG_ZLIB
 | 
						|
    s->bits_sent = (s->bits_sent+7) & ~7;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 |