mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 632b2ef0c7
			
		
	
	
		632b2ef0c7
		
	
	
	
	
		
			
			Now frozen slab can only be on the per cpu partial list. Link: http://lkml.kernel.org/r/1554022325-11305-1-git-send-email-liu.xiang6@zte.com.cn Signed-off-by: Liu Xiang <liu.xiang6@zte.com.cn> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			5918 lines
		
	
	
	
		
			143 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5918 lines
		
	
	
	
		
			143 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * SLUB: A slab allocator that limits cache line use instead of queuing
 | |
|  * objects in per cpu and per node lists.
 | |
|  *
 | |
|  * The allocator synchronizes using per slab locks or atomic operatios
 | |
|  * and only uses a centralized lock to manage a pool of partial slabs.
 | |
|  *
 | |
|  * (C) 2007 SGI, Christoph Lameter
 | |
|  * (C) 2011 Linux Foundation, Christoph Lameter
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h> /* struct reclaim_state */
 | |
| #include <linux/module.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/slab.h>
 | |
| #include "slab.h"
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/debugobjects.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/fault-inject.h>
 | |
| #include <linux/stacktrace.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/random.h>
 | |
| 
 | |
| #include <trace/events/kmem.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * Lock order:
 | |
|  *   1. slab_mutex (Global Mutex)
 | |
|  *   2. node->list_lock
 | |
|  *   3. slab_lock(page) (Only on some arches and for debugging)
 | |
|  *
 | |
|  *   slab_mutex
 | |
|  *
 | |
|  *   The role of the slab_mutex is to protect the list of all the slabs
 | |
|  *   and to synchronize major metadata changes to slab cache structures.
 | |
|  *
 | |
|  *   The slab_lock is only used for debugging and on arches that do not
 | |
|  *   have the ability to do a cmpxchg_double. It only protects:
 | |
|  *	A. page->freelist	-> List of object free in a page
 | |
|  *	B. page->inuse		-> Number of objects in use
 | |
|  *	C. page->objects	-> Number of objects in page
 | |
|  *	D. page->frozen		-> frozen state
 | |
|  *
 | |
|  *   If a slab is frozen then it is exempt from list management. It is not
 | |
|  *   on any list except per cpu partial list. The processor that froze the
 | |
|  *   slab is the one who can perform list operations on the page. Other
 | |
|  *   processors may put objects onto the freelist but the processor that
 | |
|  *   froze the slab is the only one that can retrieve the objects from the
 | |
|  *   page's freelist.
 | |
|  *
 | |
|  *   The list_lock protects the partial and full list on each node and
 | |
|  *   the partial slab counter. If taken then no new slabs may be added or
 | |
|  *   removed from the lists nor make the number of partial slabs be modified.
 | |
|  *   (Note that the total number of slabs is an atomic value that may be
 | |
|  *   modified without taking the list lock).
 | |
|  *
 | |
|  *   The list_lock is a centralized lock and thus we avoid taking it as
 | |
|  *   much as possible. As long as SLUB does not have to handle partial
 | |
|  *   slabs, operations can continue without any centralized lock. F.e.
 | |
|  *   allocating a long series of objects that fill up slabs does not require
 | |
|  *   the list lock.
 | |
|  *   Interrupts are disabled during allocation and deallocation in order to
 | |
|  *   make the slab allocator safe to use in the context of an irq. In addition
 | |
|  *   interrupts are disabled to ensure that the processor does not change
 | |
|  *   while handling per_cpu slabs, due to kernel preemption.
 | |
|  *
 | |
|  * SLUB assigns one slab for allocation to each processor.
 | |
|  * Allocations only occur from these slabs called cpu slabs.
 | |
|  *
 | |
|  * Slabs with free elements are kept on a partial list and during regular
 | |
|  * operations no list for full slabs is used. If an object in a full slab is
 | |
|  * freed then the slab will show up again on the partial lists.
 | |
|  * We track full slabs for debugging purposes though because otherwise we
 | |
|  * cannot scan all objects.
 | |
|  *
 | |
|  * Slabs are freed when they become empty. Teardown and setup is
 | |
|  * minimal so we rely on the page allocators per cpu caches for
 | |
|  * fast frees and allocs.
 | |
|  *
 | |
|  * Overloading of page flags that are otherwise used for LRU management.
 | |
|  *
 | |
|  * PageActive 		The slab is frozen and exempt from list processing.
 | |
|  * 			This means that the slab is dedicated to a purpose
 | |
|  * 			such as satisfying allocations for a specific
 | |
|  * 			processor. Objects may be freed in the slab while
 | |
|  * 			it is frozen but slab_free will then skip the usual
 | |
|  * 			list operations. It is up to the processor holding
 | |
|  * 			the slab to integrate the slab into the slab lists
 | |
|  * 			when the slab is no longer needed.
 | |
|  *
 | |
|  * 			One use of this flag is to mark slabs that are
 | |
|  * 			used for allocations. Then such a slab becomes a cpu
 | |
|  * 			slab. The cpu slab may be equipped with an additional
 | |
|  * 			freelist that allows lockless access to
 | |
|  * 			free objects in addition to the regular freelist
 | |
|  * 			that requires the slab lock.
 | |
|  *
 | |
|  * PageError		Slab requires special handling due to debug
 | |
|  * 			options set. This moves	slab handling out of
 | |
|  * 			the fast path and disables lockless freelists.
 | |
|  */
 | |
| 
 | |
| static inline int kmem_cache_debug(struct kmem_cache *s)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void *fixup_red_left(struct kmem_cache *s, void *p)
 | |
| {
 | |
| 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
 | |
| 		p += s->red_left_pad;
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	return !kmem_cache_debug(s);
 | |
| #else
 | |
| 	return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Issues still to be resolved:
 | |
|  *
 | |
|  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 | |
|  *
 | |
|  * - Variable sizing of the per node arrays
 | |
|  */
 | |
| 
 | |
| /* Enable to test recovery from slab corruption on boot */
 | |
| #undef SLUB_RESILIENCY_TEST
 | |
| 
 | |
| /* Enable to log cmpxchg failures */
 | |
| #undef SLUB_DEBUG_CMPXCHG
 | |
| 
 | |
| /*
 | |
|  * Mininum number of partial slabs. These will be left on the partial
 | |
|  * lists even if they are empty. kmem_cache_shrink may reclaim them.
 | |
|  */
 | |
| #define MIN_PARTIAL 5
 | |
| 
 | |
| /*
 | |
|  * Maximum number of desirable partial slabs.
 | |
|  * The existence of more partial slabs makes kmem_cache_shrink
 | |
|  * sort the partial list by the number of objects in use.
 | |
|  */
 | |
| #define MAX_PARTIAL 10
 | |
| 
 | |
| #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 | |
| 				SLAB_POISON | SLAB_STORE_USER)
 | |
| 
 | |
| /*
 | |
|  * These debug flags cannot use CMPXCHG because there might be consistency
 | |
|  * issues when checking or reading debug information
 | |
|  */
 | |
| #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 | |
| 				SLAB_TRACE)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Debugging flags that require metadata to be stored in the slab.  These get
 | |
|  * disabled when slub_debug=O is used and a cache's min order increases with
 | |
|  * metadata.
 | |
|  */
 | |
| #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 | |
| 
 | |
| #define OO_SHIFT	16
 | |
| #define OO_MASK		((1 << OO_SHIFT) - 1)
 | |
| #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
 | |
| 
 | |
| /* Internal SLUB flags */
 | |
| /* Poison object */
 | |
| #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
 | |
| /* Use cmpxchg_double */
 | |
| #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
 | |
| 
 | |
| /*
 | |
|  * Tracking user of a slab.
 | |
|  */
 | |
| #define TRACK_ADDRS_COUNT 16
 | |
| struct track {
 | |
| 	unsigned long addr;	/* Called from address */
 | |
| #ifdef CONFIG_STACKTRACE
 | |
| 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
 | |
| #endif
 | |
| 	int cpu;		/* Was running on cpu */
 | |
| 	int pid;		/* Pid context */
 | |
| 	unsigned long when;	/* When did the operation occur */
 | |
| };
 | |
| 
 | |
| enum track_item { TRACK_ALLOC, TRACK_FREE };
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| static int sysfs_slab_add(struct kmem_cache *);
 | |
| static int sysfs_slab_alias(struct kmem_cache *, const char *);
 | |
| static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 | |
| static void sysfs_slab_remove(struct kmem_cache *s);
 | |
| #else
 | |
| static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 | |
| static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 | |
| 							{ return 0; }
 | |
| static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 | |
| static inline void sysfs_slab_remove(struct kmem_cache *s) { }
 | |
| #endif
 | |
| 
 | |
| static inline void stat(const struct kmem_cache *s, enum stat_item si)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| 	/*
 | |
| 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
 | |
| 	 * avoid this_cpu_add()'s irq-disable overhead.
 | |
| 	 */
 | |
| 	raw_cpu_inc(s->cpu_slab->stat[si]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
|  * 			Core slab cache functions
 | |
|  *******************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Returns freelist pointer (ptr). With hardening, this is obfuscated
 | |
|  * with an XOR of the address where the pointer is held and a per-cache
 | |
|  * random number.
 | |
|  */
 | |
| static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
 | |
| 				 unsigned long ptr_addr)
 | |
| {
 | |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED
 | |
| 	/*
 | |
| 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
 | |
| 	 * Normally, this doesn't cause any issues, as both set_freepointer()
 | |
| 	 * and get_freepointer() are called with a pointer with the same tag.
 | |
| 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
 | |
| 	 * example, when __free_slub() iterates over objects in a cache, it
 | |
| 	 * passes untagged pointers to check_object(). check_object() in turns
 | |
| 	 * calls get_freepointer() with an untagged pointer, which causes the
 | |
| 	 * freepointer to be restored incorrectly.
 | |
| 	 */
 | |
| 	return (void *)((unsigned long)ptr ^ s->random ^
 | |
| 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
 | |
| #else
 | |
| 	return ptr;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Returns the freelist pointer recorded at location ptr_addr. */
 | |
| static inline void *freelist_dereference(const struct kmem_cache *s,
 | |
| 					 void *ptr_addr)
 | |
| {
 | |
| 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
 | |
| 			    (unsigned long)ptr_addr);
 | |
| }
 | |
| 
 | |
| static inline void *get_freepointer(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	return freelist_dereference(s, object + s->offset);
 | |
| }
 | |
| 
 | |
| static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	prefetch(object + s->offset);
 | |
| }
 | |
| 
 | |
| static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	unsigned long freepointer_addr;
 | |
| 	void *p;
 | |
| 
 | |
| 	if (!debug_pagealloc_enabled())
 | |
| 		return get_freepointer(s, object);
 | |
| 
 | |
| 	freepointer_addr = (unsigned long)object + s->offset;
 | |
| 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
 | |
| 	return freelist_ptr(s, p, freepointer_addr);
 | |
| }
 | |
| 
 | |
| static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 | |
| {
 | |
| 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED
 | |
| 	BUG_ON(object == fp); /* naive detection of double free or corruption */
 | |
| #endif
 | |
| 
 | |
| 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
 | |
| }
 | |
| 
 | |
| /* Loop over all objects in a slab */
 | |
| #define for_each_object(__p, __s, __addr, __objects) \
 | |
| 	for (__p = fixup_red_left(__s, __addr); \
 | |
| 		__p < (__addr) + (__objects) * (__s)->size; \
 | |
| 		__p += (__s)->size)
 | |
| 
 | |
| /* Determine object index from a given position */
 | |
| static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
 | |
| {
 | |
| 	return (kasan_reset_tag(p) - addr) / s->size;
 | |
| }
 | |
| 
 | |
| static inline unsigned int order_objects(unsigned int order, unsigned int size)
 | |
| {
 | |
| 	return ((unsigned int)PAGE_SIZE << order) / size;
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache_order_objects oo_make(unsigned int order,
 | |
| 		unsigned int size)
 | |
| {
 | |
| 	struct kmem_cache_order_objects x = {
 | |
| 		(order << OO_SHIFT) + order_objects(order, size)
 | |
| 	};
 | |
| 
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| static inline unsigned int oo_order(struct kmem_cache_order_objects x)
 | |
| {
 | |
| 	return x.x >> OO_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
 | |
| {
 | |
| 	return x.x & OO_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Per slab locking using the pagelock
 | |
|  */
 | |
| static __always_inline void slab_lock(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 	bit_spin_lock(PG_locked, &page->flags);
 | |
| }
 | |
| 
 | |
| static __always_inline void slab_unlock(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 	__bit_spin_unlock(PG_locked, &page->flags);
 | |
| }
 | |
| 
 | |
| /* Interrupts must be disabled (for the fallback code to work right) */
 | |
| static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 | |
| 		void *freelist_old, unsigned long counters_old,
 | |
| 		void *freelist_new, unsigned long counters_new,
 | |
| 		const char *n)
 | |
| {
 | |
| 	VM_BUG_ON(!irqs_disabled());
 | |
| #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 | |
|     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 | |
| 	if (s->flags & __CMPXCHG_DOUBLE) {
 | |
| 		if (cmpxchg_double(&page->freelist, &page->counters,
 | |
| 				   freelist_old, counters_old,
 | |
| 				   freelist_new, counters_new))
 | |
| 			return true;
 | |
| 	} else
 | |
| #endif
 | |
| 	{
 | |
| 		slab_lock(page);
 | |
| 		if (page->freelist == freelist_old &&
 | |
| 					page->counters == counters_old) {
 | |
| 			page->freelist = freelist_new;
 | |
| 			page->counters = counters_new;
 | |
| 			slab_unlock(page);
 | |
| 			return true;
 | |
| 		}
 | |
| 		slab_unlock(page);
 | |
| 	}
 | |
| 
 | |
| 	cpu_relax();
 | |
| 	stat(s, CMPXCHG_DOUBLE_FAIL);
 | |
| 
 | |
| #ifdef SLUB_DEBUG_CMPXCHG
 | |
| 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 | |
| #endif
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 | |
| 		void *freelist_old, unsigned long counters_old,
 | |
| 		void *freelist_new, unsigned long counters_new,
 | |
| 		const char *n)
 | |
| {
 | |
| #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 | |
|     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 | |
| 	if (s->flags & __CMPXCHG_DOUBLE) {
 | |
| 		if (cmpxchg_double(&page->freelist, &page->counters,
 | |
| 				   freelist_old, counters_old,
 | |
| 				   freelist_new, counters_new))
 | |
| 			return true;
 | |
| 	} else
 | |
| #endif
 | |
| 	{
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		slab_lock(page);
 | |
| 		if (page->freelist == freelist_old &&
 | |
| 					page->counters == counters_old) {
 | |
| 			page->freelist = freelist_new;
 | |
| 			page->counters = counters_new;
 | |
| 			slab_unlock(page);
 | |
| 			local_irq_restore(flags);
 | |
| 			return true;
 | |
| 		}
 | |
| 		slab_unlock(page);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 
 | |
| 	cpu_relax();
 | |
| 	stat(s, CMPXCHG_DOUBLE_FAIL);
 | |
| 
 | |
| #ifdef SLUB_DEBUG_CMPXCHG
 | |
| 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
 | |
| #endif
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| /*
 | |
|  * Determine a map of object in use on a page.
 | |
|  *
 | |
|  * Node listlock must be held to guarantee that the page does
 | |
|  * not vanish from under us.
 | |
|  */
 | |
| static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 | |
| {
 | |
| 	void *p;
 | |
| 	void *addr = page_address(page);
 | |
| 
 | |
| 	for (p = page->freelist; p; p = get_freepointer(s, p))
 | |
| 		set_bit(slab_index(p, s, addr), map);
 | |
| }
 | |
| 
 | |
| static inline unsigned int size_from_object(struct kmem_cache *s)
 | |
| {
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		return s->size - s->red_left_pad;
 | |
| 
 | |
| 	return s->size;
 | |
| }
 | |
| 
 | |
| static inline void *restore_red_left(struct kmem_cache *s, void *p)
 | |
| {
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		p -= s->red_left_pad;
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Debug settings:
 | |
|  */
 | |
| #if defined(CONFIG_SLUB_DEBUG_ON)
 | |
| static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
 | |
| #else
 | |
| static slab_flags_t slub_debug;
 | |
| #endif
 | |
| 
 | |
| static char *slub_debug_slabs;
 | |
| static int disable_higher_order_debug;
 | |
| 
 | |
| /*
 | |
|  * slub is about to manipulate internal object metadata.  This memory lies
 | |
|  * outside the range of the allocated object, so accessing it would normally
 | |
|  * be reported by kasan as a bounds error.  metadata_access_enable() is used
 | |
|  * to tell kasan that these accesses are OK.
 | |
|  */
 | |
| static inline void metadata_access_enable(void)
 | |
| {
 | |
| 	kasan_disable_current();
 | |
| }
 | |
| 
 | |
| static inline void metadata_access_disable(void)
 | |
| {
 | |
| 	kasan_enable_current();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Object debugging
 | |
|  */
 | |
| 
 | |
| /* Verify that a pointer has an address that is valid within a slab page */
 | |
| static inline int check_valid_pointer(struct kmem_cache *s,
 | |
| 				struct page *page, void *object)
 | |
| {
 | |
| 	void *base;
 | |
| 
 | |
| 	if (!object)
 | |
| 		return 1;
 | |
| 
 | |
| 	base = page_address(page);
 | |
| 	object = kasan_reset_tag(object);
 | |
| 	object = restore_red_left(s, object);
 | |
| 	if (object < base || object >= base + page->objects * s->size ||
 | |
| 		(object - base) % s->size) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void print_section(char *level, char *text, u8 *addr,
 | |
| 			  unsigned int length)
 | |
| {
 | |
| 	metadata_access_enable();
 | |
| 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 | |
| 			length, 1);
 | |
| 	metadata_access_disable();
 | |
| }
 | |
| 
 | |
| static struct track *get_track(struct kmem_cache *s, void *object,
 | |
| 	enum track_item alloc)
 | |
| {
 | |
| 	struct track *p;
 | |
| 
 | |
| 	if (s->offset)
 | |
| 		p = object + s->offset + sizeof(void *);
 | |
| 	else
 | |
| 		p = object + s->inuse;
 | |
| 
 | |
| 	return p + alloc;
 | |
| }
 | |
| 
 | |
| static void set_track(struct kmem_cache *s, void *object,
 | |
| 			enum track_item alloc, unsigned long addr)
 | |
| {
 | |
| 	struct track *p = get_track(s, object, alloc);
 | |
| 
 | |
| 	if (addr) {
 | |
| #ifdef CONFIG_STACKTRACE
 | |
| 		unsigned int nr_entries;
 | |
| 
 | |
| 		metadata_access_enable();
 | |
| 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
 | |
| 		metadata_access_disable();
 | |
| 
 | |
| 		if (nr_entries < TRACK_ADDRS_COUNT)
 | |
| 			p->addrs[nr_entries] = 0;
 | |
| #endif
 | |
| 		p->addr = addr;
 | |
| 		p->cpu = smp_processor_id();
 | |
| 		p->pid = current->pid;
 | |
| 		p->when = jiffies;
 | |
| 	} else {
 | |
| 		memset(p, 0, sizeof(struct track));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void init_tracking(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	set_track(s, object, TRACK_FREE, 0UL);
 | |
| 	set_track(s, object, TRACK_ALLOC, 0UL);
 | |
| }
 | |
| 
 | |
| static void print_track(const char *s, struct track *t, unsigned long pr_time)
 | |
| {
 | |
| 	if (!t->addr)
 | |
| 		return;
 | |
| 
 | |
| 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 | |
| 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
 | |
| #ifdef CONFIG_STACKTRACE
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 | |
| 			if (t->addrs[i])
 | |
| 				pr_err("\t%pS\n", (void *)t->addrs[i]);
 | |
| 			else
 | |
| 				break;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void print_tracking(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	unsigned long pr_time = jiffies;
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
 | |
| 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
 | |
| }
 | |
| 
 | |
| static void print_page_info(struct page *page)
 | |
| {
 | |
| 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 | |
| 	       page, page->objects, page->inuse, page->freelist, page->flags);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 | |
| {
 | |
| 	struct va_format vaf;
 | |
| 	va_list args;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	vaf.fmt = fmt;
 | |
| 	vaf.va = &args;
 | |
| 	pr_err("=============================================================================\n");
 | |
| 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 | |
| 	pr_err("-----------------------------------------------------------------------------\n\n");
 | |
| 
 | |
| 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | |
| 	va_end(args);
 | |
| }
 | |
| 
 | |
| static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 | |
| {
 | |
| 	struct va_format vaf;
 | |
| 	va_list args;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	vaf.fmt = fmt;
 | |
| 	vaf.va = &args;
 | |
| 	pr_err("FIX %s: %pV\n", s->name, &vaf);
 | |
| 	va_end(args);
 | |
| }
 | |
| 
 | |
| static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 | |
| {
 | |
| 	unsigned int off;	/* Offset of last byte */
 | |
| 	u8 *addr = page_address(page);
 | |
| 
 | |
| 	print_tracking(s, p);
 | |
| 
 | |
| 	print_page_info(page);
 | |
| 
 | |
| 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 | |
| 	       p, p - addr, get_freepointer(s, p));
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
 | |
| 			      s->red_left_pad);
 | |
| 	else if (p > addr + 16)
 | |
| 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 | |
| 
 | |
| 	print_section(KERN_ERR, "Object ", p,
 | |
| 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
 | |
| 			s->inuse - s->object_size);
 | |
| 
 | |
| 	if (s->offset)
 | |
| 		off = s->offset + sizeof(void *);
 | |
| 	else
 | |
| 		off = s->inuse;
 | |
| 
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		off += 2 * sizeof(struct track);
 | |
| 
 | |
| 	off += kasan_metadata_size(s);
 | |
| 
 | |
| 	if (off != size_from_object(s))
 | |
| 		/* Beginning of the filler is the free pointer */
 | |
| 		print_section(KERN_ERR, "Padding ", p + off,
 | |
| 			      size_from_object(s) - off);
 | |
| 
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| void object_err(struct kmem_cache *s, struct page *page,
 | |
| 			u8 *object, char *reason)
 | |
| {
 | |
| 	slab_bug(s, "%s", reason);
 | |
| 	print_trailer(s, page, object);
 | |
| }
 | |
| 
 | |
| static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
 | |
| 			const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	char buf[100];
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	vsnprintf(buf, sizeof(buf), fmt, args);
 | |
| 	va_end(args);
 | |
| 	slab_bug(s, "%s", buf);
 | |
| 	print_page_info(page);
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static void init_object(struct kmem_cache *s, void *object, u8 val)
 | |
| {
 | |
| 	u8 *p = object;
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		memset(p - s->red_left_pad, val, s->red_left_pad);
 | |
| 
 | |
| 	if (s->flags & __OBJECT_POISON) {
 | |
| 		memset(p, POISON_FREE, s->object_size - 1);
 | |
| 		p[s->object_size - 1] = POISON_END;
 | |
| 	}
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		memset(p + s->object_size, val, s->inuse - s->object_size);
 | |
| }
 | |
| 
 | |
| static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 | |
| 						void *from, void *to)
 | |
| {
 | |
| 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 | |
| 	memset(from, data, to - from);
 | |
| }
 | |
| 
 | |
| static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 | |
| 			u8 *object, char *what,
 | |
| 			u8 *start, unsigned int value, unsigned int bytes)
 | |
| {
 | |
| 	u8 *fault;
 | |
| 	u8 *end;
 | |
| 
 | |
| 	metadata_access_enable();
 | |
| 	fault = memchr_inv(start, value, bytes);
 | |
| 	metadata_access_disable();
 | |
| 	if (!fault)
 | |
| 		return 1;
 | |
| 
 | |
| 	end = start + bytes;
 | |
| 	while (end > fault && end[-1] == value)
 | |
| 		end--;
 | |
| 
 | |
| 	slab_bug(s, "%s overwritten", what);
 | |
| 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 | |
| 					fault, end - 1, fault[0], value);
 | |
| 	print_trailer(s, page, object);
 | |
| 
 | |
| 	restore_bytes(s, what, value, fault, end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Object layout:
 | |
|  *
 | |
|  * object address
 | |
|  * 	Bytes of the object to be managed.
 | |
|  * 	If the freepointer may overlay the object then the free
 | |
|  * 	pointer is the first word of the object.
 | |
|  *
 | |
|  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 | |
|  * 	0xa5 (POISON_END)
 | |
|  *
 | |
|  * object + s->object_size
 | |
|  * 	Padding to reach word boundary. This is also used for Redzoning.
 | |
|  * 	Padding is extended by another word if Redzoning is enabled and
 | |
|  * 	object_size == inuse.
 | |
|  *
 | |
|  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 | |
|  * 	0xcc (RED_ACTIVE) for objects in use.
 | |
|  *
 | |
|  * object + s->inuse
 | |
|  * 	Meta data starts here.
 | |
|  *
 | |
|  * 	A. Free pointer (if we cannot overwrite object on free)
 | |
|  * 	B. Tracking data for SLAB_STORE_USER
 | |
|  * 	C. Padding to reach required alignment boundary or at mininum
 | |
|  * 		one word if debugging is on to be able to detect writes
 | |
|  * 		before the word boundary.
 | |
|  *
 | |
|  *	Padding is done using 0x5a (POISON_INUSE)
 | |
|  *
 | |
|  * object + s->size
 | |
|  * 	Nothing is used beyond s->size.
 | |
|  *
 | |
|  * If slabcaches are merged then the object_size and inuse boundaries are mostly
 | |
|  * ignored. And therefore no slab options that rely on these boundaries
 | |
|  * may be used with merged slabcaches.
 | |
|  */
 | |
| 
 | |
| static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 | |
| {
 | |
| 	unsigned long off = s->inuse;	/* The end of info */
 | |
| 
 | |
| 	if (s->offset)
 | |
| 		/* Freepointer is placed after the object. */
 | |
| 		off += sizeof(void *);
 | |
| 
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		/* We also have user information there */
 | |
| 		off += 2 * sizeof(struct track);
 | |
| 
 | |
| 	off += kasan_metadata_size(s);
 | |
| 
 | |
| 	if (size_from_object(s) == off)
 | |
| 		return 1;
 | |
| 
 | |
| 	return check_bytes_and_report(s, page, p, "Object padding",
 | |
| 			p + off, POISON_INUSE, size_from_object(s) - off);
 | |
| }
 | |
| 
 | |
| /* Check the pad bytes at the end of a slab page */
 | |
| static int slab_pad_check(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	u8 *start;
 | |
| 	u8 *fault;
 | |
| 	u8 *end;
 | |
| 	u8 *pad;
 | |
| 	int length;
 | |
| 	int remainder;
 | |
| 
 | |
| 	if (!(s->flags & SLAB_POISON))
 | |
| 		return 1;
 | |
| 
 | |
| 	start = page_address(page);
 | |
| 	length = PAGE_SIZE << compound_order(page);
 | |
| 	end = start + length;
 | |
| 	remainder = length % s->size;
 | |
| 	if (!remainder)
 | |
| 		return 1;
 | |
| 
 | |
| 	pad = end - remainder;
 | |
| 	metadata_access_enable();
 | |
| 	fault = memchr_inv(pad, POISON_INUSE, remainder);
 | |
| 	metadata_access_disable();
 | |
| 	if (!fault)
 | |
| 		return 1;
 | |
| 	while (end > fault && end[-1] == POISON_INUSE)
 | |
| 		end--;
 | |
| 
 | |
| 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 | |
| 	print_section(KERN_ERR, "Padding ", pad, remainder);
 | |
| 
 | |
| 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_object(struct kmem_cache *s, struct page *page,
 | |
| 					void *object, u8 val)
 | |
| {
 | |
| 	u8 *p = object;
 | |
| 	u8 *endobject = object + s->object_size;
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE) {
 | |
| 		if (!check_bytes_and_report(s, page, object, "Redzone",
 | |
| 			object - s->red_left_pad, val, s->red_left_pad))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (!check_bytes_and_report(s, page, object, "Redzone",
 | |
| 			endobject, val, s->inuse - s->object_size))
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 | |
| 			check_bytes_and_report(s, page, p, "Alignment padding",
 | |
| 				endobject, POISON_INUSE,
 | |
| 				s->inuse - s->object_size);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (s->flags & SLAB_POISON) {
 | |
| 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 | |
| 			(!check_bytes_and_report(s, page, p, "Poison", p,
 | |
| 					POISON_FREE, s->object_size - 1) ||
 | |
| 			 !check_bytes_and_report(s, page, p, "Poison",
 | |
| 				p + s->object_size - 1, POISON_END, 1)))
 | |
| 			return 0;
 | |
| 		/*
 | |
| 		 * check_pad_bytes cleans up on its own.
 | |
| 		 */
 | |
| 		check_pad_bytes(s, page, p);
 | |
| 	}
 | |
| 
 | |
| 	if (!s->offset && val == SLUB_RED_ACTIVE)
 | |
| 		/*
 | |
| 		 * Object and freepointer overlap. Cannot check
 | |
| 		 * freepointer while object is allocated.
 | |
| 		 */
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Check free pointer validity */
 | |
| 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 | |
| 		object_err(s, page, p, "Freepointer corrupt");
 | |
| 		/*
 | |
| 		 * No choice but to zap it and thus lose the remainder
 | |
| 		 * of the free objects in this slab. May cause
 | |
| 		 * another error because the object count is now wrong.
 | |
| 		 */
 | |
| 		set_freepointer(s, p, NULL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int check_slab(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	int maxobj;
 | |
| 
 | |
| 	VM_BUG_ON(!irqs_disabled());
 | |
| 
 | |
| 	if (!PageSlab(page)) {
 | |
| 		slab_err(s, page, "Not a valid slab page");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	maxobj = order_objects(compound_order(page), s->size);
 | |
| 	if (page->objects > maxobj) {
 | |
| 		slab_err(s, page, "objects %u > max %u",
 | |
| 			page->objects, maxobj);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (page->inuse > page->objects) {
 | |
| 		slab_err(s, page, "inuse %u > max %u",
 | |
| 			page->inuse, page->objects);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Slab_pad_check fixes things up after itself */
 | |
| 	slab_pad_check(s, page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if a certain object on a page is on the freelist. Must hold the
 | |
|  * slab lock to guarantee that the chains are in a consistent state.
 | |
|  */
 | |
| static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 | |
| {
 | |
| 	int nr = 0;
 | |
| 	void *fp;
 | |
| 	void *object = NULL;
 | |
| 	int max_objects;
 | |
| 
 | |
| 	fp = page->freelist;
 | |
| 	while (fp && nr <= page->objects) {
 | |
| 		if (fp == search)
 | |
| 			return 1;
 | |
| 		if (!check_valid_pointer(s, page, fp)) {
 | |
| 			if (object) {
 | |
| 				object_err(s, page, object,
 | |
| 					"Freechain corrupt");
 | |
| 				set_freepointer(s, object, NULL);
 | |
| 			} else {
 | |
| 				slab_err(s, page, "Freepointer corrupt");
 | |
| 				page->freelist = NULL;
 | |
| 				page->inuse = page->objects;
 | |
| 				slab_fix(s, "Freelist cleared");
 | |
| 				return 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		object = fp;
 | |
| 		fp = get_freepointer(s, object);
 | |
| 		nr++;
 | |
| 	}
 | |
| 
 | |
| 	max_objects = order_objects(compound_order(page), s->size);
 | |
| 	if (max_objects > MAX_OBJS_PER_PAGE)
 | |
| 		max_objects = MAX_OBJS_PER_PAGE;
 | |
| 
 | |
| 	if (page->objects != max_objects) {
 | |
| 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
 | |
| 			 page->objects, max_objects);
 | |
| 		page->objects = max_objects;
 | |
| 		slab_fix(s, "Number of objects adjusted.");
 | |
| 	}
 | |
| 	if (page->inuse != page->objects - nr) {
 | |
| 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
 | |
| 			 page->inuse, page->objects - nr);
 | |
| 		page->inuse = page->objects - nr;
 | |
| 		slab_fix(s, "Object count adjusted.");
 | |
| 	}
 | |
| 	return search == NULL;
 | |
| }
 | |
| 
 | |
| static void trace(struct kmem_cache *s, struct page *page, void *object,
 | |
| 								int alloc)
 | |
| {
 | |
| 	if (s->flags & SLAB_TRACE) {
 | |
| 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 | |
| 			s->name,
 | |
| 			alloc ? "alloc" : "free",
 | |
| 			object, page->inuse,
 | |
| 			page->freelist);
 | |
| 
 | |
| 		if (!alloc)
 | |
| 			print_section(KERN_INFO, "Object ", (void *)object,
 | |
| 					s->object_size);
 | |
| 
 | |
| 		dump_stack();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tracking of fully allocated slabs for debugging purposes.
 | |
|  */
 | |
| static void add_full(struct kmem_cache *s,
 | |
| 	struct kmem_cache_node *n, struct page *page)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	lockdep_assert_held(&n->list_lock);
 | |
| 	list_add(&page->slab_list, &n->full);
 | |
| }
 | |
| 
 | |
| static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	lockdep_assert_held(&n->list_lock);
 | |
| 	list_del(&page->slab_list);
 | |
| }
 | |
| 
 | |
| /* Tracking of the number of slabs for debugging purposes */
 | |
| static inline unsigned long slabs_node(struct kmem_cache *s, int node)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 	return atomic_long_read(&n->nr_slabs);
 | |
| }
 | |
| 
 | |
| static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
 | |
| {
 | |
| 	return atomic_long_read(&n->nr_slabs);
 | |
| }
 | |
| 
 | |
| static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 	/*
 | |
| 	 * May be called early in order to allocate a slab for the
 | |
| 	 * kmem_cache_node structure. Solve the chicken-egg
 | |
| 	 * dilemma by deferring the increment of the count during
 | |
| 	 * bootstrap (see early_kmem_cache_node_alloc).
 | |
| 	 */
 | |
| 	if (likely(n)) {
 | |
| 		atomic_long_inc(&n->nr_slabs);
 | |
| 		atomic_long_add(objects, &n->total_objects);
 | |
| 	}
 | |
| }
 | |
| static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 	atomic_long_dec(&n->nr_slabs);
 | |
| 	atomic_long_sub(objects, &n->total_objects);
 | |
| }
 | |
| 
 | |
| /* Object debug checks for alloc/free paths */
 | |
| static void setup_object_debug(struct kmem_cache *s, struct page *page,
 | |
| 								void *object)
 | |
| {
 | |
| 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
 | |
| 		return;
 | |
| 
 | |
| 	init_object(s, object, SLUB_RED_INACTIVE);
 | |
| 	init_tracking(s, object);
 | |
| }
 | |
| 
 | |
| static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_POISON))
 | |
| 		return;
 | |
| 
 | |
| 	metadata_access_enable();
 | |
| 	memset(addr, POISON_INUSE, PAGE_SIZE << order);
 | |
| 	metadata_access_disable();
 | |
| }
 | |
| 
 | |
| static inline int alloc_consistency_checks(struct kmem_cache *s,
 | |
| 					struct page *page, void *object)
 | |
| {
 | |
| 	if (!check_slab(s, page))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!check_valid_pointer(s, page, object)) {
 | |
| 		object_err(s, page, object, "Freelist Pointer check fails");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static noinline int alloc_debug_processing(struct kmem_cache *s,
 | |
| 					struct page *page,
 | |
| 					void *object, unsigned long addr)
 | |
| {
 | |
| 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
 | |
| 		if (!alloc_consistency_checks(s, page, object))
 | |
| 			goto bad;
 | |
| 	}
 | |
| 
 | |
| 	/* Success perform special debug activities for allocs */
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		set_track(s, object, TRACK_ALLOC, addr);
 | |
| 	trace(s, page, object, 1);
 | |
| 	init_object(s, object, SLUB_RED_ACTIVE);
 | |
| 	return 1;
 | |
| 
 | |
| bad:
 | |
| 	if (PageSlab(page)) {
 | |
| 		/*
 | |
| 		 * If this is a slab page then lets do the best we can
 | |
| 		 * to avoid issues in the future. Marking all objects
 | |
| 		 * as used avoids touching the remaining objects.
 | |
| 		 */
 | |
| 		slab_fix(s, "Marking all objects used");
 | |
| 		page->inuse = page->objects;
 | |
| 		page->freelist = NULL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int free_consistency_checks(struct kmem_cache *s,
 | |
| 		struct page *page, void *object, unsigned long addr)
 | |
| {
 | |
| 	if (!check_valid_pointer(s, page, object)) {
 | |
| 		slab_err(s, page, "Invalid object pointer 0x%p", object);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (on_freelist(s, page, object)) {
 | |
| 		object_err(s, page, object, "Object already free");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(s != page->slab_cache)) {
 | |
| 		if (!PageSlab(page)) {
 | |
| 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
 | |
| 				 object);
 | |
| 		} else if (!page->slab_cache) {
 | |
| 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
 | |
| 			       object);
 | |
| 			dump_stack();
 | |
| 		} else
 | |
| 			object_err(s, page, object,
 | |
| 					"page slab pointer corrupt.");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Supports checking bulk free of a constructed freelist */
 | |
| static noinline int free_debug_processing(
 | |
| 	struct kmem_cache *s, struct page *page,
 | |
| 	void *head, void *tail, int bulk_cnt,
 | |
| 	unsigned long addr)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
 | |
| 	void *object = head;
 | |
| 	int cnt = 0;
 | |
| 	unsigned long uninitialized_var(flags);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 	slab_lock(page);
 | |
| 
 | |
| 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
 | |
| 		if (!check_slab(s, page))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| next_object:
 | |
| 	cnt++;
 | |
| 
 | |
| 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
 | |
| 		if (!free_consistency_checks(s, page, object, addr))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		set_track(s, object, TRACK_FREE, addr);
 | |
| 	trace(s, page, object, 0);
 | |
| 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
 | |
| 	init_object(s, object, SLUB_RED_INACTIVE);
 | |
| 
 | |
| 	/* Reached end of constructed freelist yet? */
 | |
| 	if (object != tail) {
 | |
| 		object = get_freepointer(s, object);
 | |
| 		goto next_object;
 | |
| 	}
 | |
| 	ret = 1;
 | |
| 
 | |
| out:
 | |
| 	if (cnt != bulk_cnt)
 | |
| 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
 | |
| 			 bulk_cnt, cnt);
 | |
| 
 | |
| 	slab_unlock(page);
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	if (!ret)
 | |
| 		slab_fix(s, "Object at 0x%p not freed", object);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __init setup_slub_debug(char *str)
 | |
| {
 | |
| 	slub_debug = DEBUG_DEFAULT_FLAGS;
 | |
| 	if (*str++ != '=' || !*str)
 | |
| 		/*
 | |
| 		 * No options specified. Switch on full debugging.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 
 | |
| 	if (*str == ',')
 | |
| 		/*
 | |
| 		 * No options but restriction on slabs. This means full
 | |
| 		 * debugging for slabs matching a pattern.
 | |
| 		 */
 | |
| 		goto check_slabs;
 | |
| 
 | |
| 	slub_debug = 0;
 | |
| 	if (*str == '-')
 | |
| 		/*
 | |
| 		 * Switch off all debugging measures.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine which debug features should be switched on
 | |
| 	 */
 | |
| 	for (; *str && *str != ','; str++) {
 | |
| 		switch (tolower(*str)) {
 | |
| 		case 'f':
 | |
| 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
 | |
| 			break;
 | |
| 		case 'z':
 | |
| 			slub_debug |= SLAB_RED_ZONE;
 | |
| 			break;
 | |
| 		case 'p':
 | |
| 			slub_debug |= SLAB_POISON;
 | |
| 			break;
 | |
| 		case 'u':
 | |
| 			slub_debug |= SLAB_STORE_USER;
 | |
| 			break;
 | |
| 		case 't':
 | |
| 			slub_debug |= SLAB_TRACE;
 | |
| 			break;
 | |
| 		case 'a':
 | |
| 			slub_debug |= SLAB_FAILSLAB;
 | |
| 			break;
 | |
| 		case 'o':
 | |
| 			/*
 | |
| 			 * Avoid enabling debugging on caches if its minimum
 | |
| 			 * order would increase as a result.
 | |
| 			 */
 | |
| 			disable_higher_order_debug = 1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			pr_err("slub_debug option '%c' unknown. skipped\n",
 | |
| 			       *str);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| check_slabs:
 | |
| 	if (*str == ',')
 | |
| 		slub_debug_slabs = str + 1;
 | |
| out:
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slub_debug", setup_slub_debug);
 | |
| 
 | |
| /*
 | |
|  * kmem_cache_flags - apply debugging options to the cache
 | |
|  * @object_size:	the size of an object without meta data
 | |
|  * @flags:		flags to set
 | |
|  * @name:		name of the cache
 | |
|  * @ctor:		constructor function
 | |
|  *
 | |
|  * Debug option(s) are applied to @flags. In addition to the debug
 | |
|  * option(s), if a slab name (or multiple) is specified i.e.
 | |
|  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
 | |
|  * then only the select slabs will receive the debug option(s).
 | |
|  */
 | |
| slab_flags_t kmem_cache_flags(unsigned int object_size,
 | |
| 	slab_flags_t flags, const char *name,
 | |
| 	void (*ctor)(void *))
 | |
| {
 | |
| 	char *iter;
 | |
| 	size_t len;
 | |
| 
 | |
| 	/* If slub_debug = 0, it folds into the if conditional. */
 | |
| 	if (!slub_debug_slabs)
 | |
| 		return flags | slub_debug;
 | |
| 
 | |
| 	len = strlen(name);
 | |
| 	iter = slub_debug_slabs;
 | |
| 	while (*iter) {
 | |
| 		char *end, *glob;
 | |
| 		size_t cmplen;
 | |
| 
 | |
| 		end = strchr(iter, ',');
 | |
| 		if (!end)
 | |
| 			end = iter + strlen(iter);
 | |
| 
 | |
| 		glob = strnchr(iter, end - iter, '*');
 | |
| 		if (glob)
 | |
| 			cmplen = glob - iter;
 | |
| 		else
 | |
| 			cmplen = max_t(size_t, len, (end - iter));
 | |
| 
 | |
| 		if (!strncmp(name, iter, cmplen)) {
 | |
| 			flags |= slub_debug;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!*end)
 | |
| 			break;
 | |
| 		iter = end + 1;
 | |
| 	}
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| #else /* !CONFIG_SLUB_DEBUG */
 | |
| static inline void setup_object_debug(struct kmem_cache *s,
 | |
| 			struct page *page, void *object) {}
 | |
| static inline void setup_page_debug(struct kmem_cache *s,
 | |
| 			void *addr, int order) {}
 | |
| 
 | |
| static inline int alloc_debug_processing(struct kmem_cache *s,
 | |
| 	struct page *page, void *object, unsigned long addr) { return 0; }
 | |
| 
 | |
| static inline int free_debug_processing(
 | |
| 	struct kmem_cache *s, struct page *page,
 | |
| 	void *head, void *tail, int bulk_cnt,
 | |
| 	unsigned long addr) { return 0; }
 | |
| 
 | |
| static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
 | |
| 			{ return 1; }
 | |
| static inline int check_object(struct kmem_cache *s, struct page *page,
 | |
| 			void *object, u8 val) { return 1; }
 | |
| static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
 | |
| 					struct page *page) {}
 | |
| static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
 | |
| 					struct page *page) {}
 | |
| slab_flags_t kmem_cache_flags(unsigned int object_size,
 | |
| 	slab_flags_t flags, const char *name,
 | |
| 	void (*ctor)(void *))
 | |
| {
 | |
| 	return flags;
 | |
| }
 | |
| #define slub_debug 0
 | |
| 
 | |
| #define disable_higher_order_debug 0
 | |
| 
 | |
| static inline unsigned long slabs_node(struct kmem_cache *s, int node)
 | |
| 							{ return 0; }
 | |
| static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
 | |
| 							{ return 0; }
 | |
| static inline void inc_slabs_node(struct kmem_cache *s, int node,
 | |
| 							int objects) {}
 | |
| static inline void dec_slabs_node(struct kmem_cache *s, int node,
 | |
| 							int objects) {}
 | |
| 
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| /*
 | |
|  * Hooks for other subsystems that check memory allocations. In a typical
 | |
|  * production configuration these hooks all should produce no code at all.
 | |
|  */
 | |
| static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
 | |
| {
 | |
| 	ptr = kasan_kmalloc_large(ptr, size, flags);
 | |
| 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
 | |
| 	kmemleak_alloc(ptr, size, 1, flags);
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static __always_inline void kfree_hook(void *x)
 | |
| {
 | |
| 	kmemleak_free(x);
 | |
| 	kasan_kfree_large(x, _RET_IP_);
 | |
| }
 | |
| 
 | |
| static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
 | |
| {
 | |
| 	kmemleak_free_recursive(x, s->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Trouble is that we may no longer disable interrupts in the fast path
 | |
| 	 * So in order to make the debug calls that expect irqs to be
 | |
| 	 * disabled we need to disable interrupts temporarily.
 | |
| 	 */
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| 	{
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		debug_check_no_locks_freed(x, s->object_size);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| #endif
 | |
| 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
 | |
| 		debug_check_no_obj_freed(x, s->object_size);
 | |
| 
 | |
| 	/* KASAN might put x into memory quarantine, delaying its reuse */
 | |
| 	return kasan_slab_free(s, x, _RET_IP_);
 | |
| }
 | |
| 
 | |
| static inline bool slab_free_freelist_hook(struct kmem_cache *s,
 | |
| 					   void **head, void **tail)
 | |
| {
 | |
| /*
 | |
|  * Compiler cannot detect this function can be removed if slab_free_hook()
 | |
|  * evaluates to nothing.  Thus, catch all relevant config debug options here.
 | |
|  */
 | |
| #if defined(CONFIG_LOCKDEP)	||		\
 | |
| 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
 | |
| 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
 | |
| 	defined(CONFIG_KASAN)
 | |
| 
 | |
| 	void *object;
 | |
| 	void *next = *head;
 | |
| 	void *old_tail = *tail ? *tail : *head;
 | |
| 
 | |
| 	/* Head and tail of the reconstructed freelist */
 | |
| 	*head = NULL;
 | |
| 	*tail = NULL;
 | |
| 
 | |
| 	do {
 | |
| 		object = next;
 | |
| 		next = get_freepointer(s, object);
 | |
| 		/* If object's reuse doesn't have to be delayed */
 | |
| 		if (!slab_free_hook(s, object)) {
 | |
| 			/* Move object to the new freelist */
 | |
| 			set_freepointer(s, object, *head);
 | |
| 			*head = object;
 | |
| 			if (!*tail)
 | |
| 				*tail = object;
 | |
| 		}
 | |
| 	} while (object != old_tail);
 | |
| 
 | |
| 	if (*head == *tail)
 | |
| 		*tail = NULL;
 | |
| 
 | |
| 	return *head != NULL;
 | |
| #else
 | |
| 	return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void *setup_object(struct kmem_cache *s, struct page *page,
 | |
| 				void *object)
 | |
| {
 | |
| 	setup_object_debug(s, page, object);
 | |
| 	object = kasan_init_slab_obj(s, object);
 | |
| 	if (unlikely(s->ctor)) {
 | |
| 		kasan_unpoison_object_data(s, object);
 | |
| 		s->ctor(object);
 | |
| 		kasan_poison_object_data(s, object);
 | |
| 	}
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Slab allocation and freeing
 | |
|  */
 | |
| static inline struct page *alloc_slab_page(struct kmem_cache *s,
 | |
| 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned int order = oo_order(oo);
 | |
| 
 | |
| 	if (node == NUMA_NO_NODE)
 | |
| 		page = alloc_pages(flags, order);
 | |
| 	else
 | |
| 		page = __alloc_pages_node(node, flags, order);
 | |
| 
 | |
| 	if (page && memcg_charge_slab(page, flags, order, s)) {
 | |
| 		__free_pages(page, order);
 | |
| 		page = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM
 | |
| /* Pre-initialize the random sequence cache */
 | |
| static int init_cache_random_seq(struct kmem_cache *s)
 | |
| {
 | |
| 	unsigned int count = oo_objects(s->oo);
 | |
| 	int err;
 | |
| 
 | |
| 	/* Bailout if already initialised */
 | |
| 	if (s->random_seq)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = cache_random_seq_create(s, count, GFP_KERNEL);
 | |
| 	if (err) {
 | |
| 		pr_err("SLUB: Unable to initialize free list for %s\n",
 | |
| 			s->name);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Transform to an offset on the set of pages */
 | |
| 	if (s->random_seq) {
 | |
| 		unsigned int i;
 | |
| 
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			s->random_seq[i] *= s->size;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Initialize each random sequence freelist per cache */
 | |
| static void __init init_freelist_randomization(void)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list)
 | |
| 		init_cache_random_seq(s);
 | |
| 
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| /* Get the next entry on the pre-computed freelist randomized */
 | |
| static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
 | |
| 				unsigned long *pos, void *start,
 | |
| 				unsigned long page_limit,
 | |
| 				unsigned long freelist_count)
 | |
| {
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the target page allocation failed, the number of objects on the
 | |
| 	 * page might be smaller than the usual size defined by the cache.
 | |
| 	 */
 | |
| 	do {
 | |
| 		idx = s->random_seq[*pos];
 | |
| 		*pos += 1;
 | |
| 		if (*pos >= freelist_count)
 | |
| 			*pos = 0;
 | |
| 	} while (unlikely(idx >= page_limit));
 | |
| 
 | |
| 	return (char *)start + idx;
 | |
| }
 | |
| 
 | |
| /* Shuffle the single linked freelist based on a random pre-computed sequence */
 | |
| static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	void *start;
 | |
| 	void *cur;
 | |
| 	void *next;
 | |
| 	unsigned long idx, pos, page_limit, freelist_count;
 | |
| 
 | |
| 	if (page->objects < 2 || !s->random_seq)
 | |
| 		return false;
 | |
| 
 | |
| 	freelist_count = oo_objects(s->oo);
 | |
| 	pos = get_random_int() % freelist_count;
 | |
| 
 | |
| 	page_limit = page->objects * s->size;
 | |
| 	start = fixup_red_left(s, page_address(page));
 | |
| 
 | |
| 	/* First entry is used as the base of the freelist */
 | |
| 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
 | |
| 				freelist_count);
 | |
| 	cur = setup_object(s, page, cur);
 | |
| 	page->freelist = cur;
 | |
| 
 | |
| 	for (idx = 1; idx < page->objects; idx++) {
 | |
| 		next = next_freelist_entry(s, page, &pos, start, page_limit,
 | |
| 			freelist_count);
 | |
| 		next = setup_object(s, page, next);
 | |
| 		set_freepointer(s, cur, next);
 | |
| 		cur = next;
 | |
| 	}
 | |
| 	set_freepointer(s, cur, NULL);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #else
 | |
| static inline int init_cache_random_seq(struct kmem_cache *s)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void init_freelist_randomization(void) { }
 | |
| static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */
 | |
| 
 | |
| static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct kmem_cache_order_objects oo = s->oo;
 | |
| 	gfp_t alloc_gfp;
 | |
| 	void *start, *p, *next;
 | |
| 	int idx, order;
 | |
| 	bool shuffle;
 | |
| 
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	if (gfpflags_allow_blocking(flags))
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 	flags |= s->allocflags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Let the initial higher-order allocation fail under memory pressure
 | |
| 	 * so we fall-back to the minimum order allocation.
 | |
| 	 */
 | |
| 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
 | |
| 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
 | |
| 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 | |
| 
 | |
| 	page = alloc_slab_page(s, alloc_gfp, node, oo);
 | |
| 	if (unlikely(!page)) {
 | |
| 		oo = s->min;
 | |
| 		alloc_gfp = flags;
 | |
| 		/*
 | |
| 		 * Allocation may have failed due to fragmentation.
 | |
| 		 * Try a lower order alloc if possible
 | |
| 		 */
 | |
| 		page = alloc_slab_page(s, alloc_gfp, node, oo);
 | |
| 		if (unlikely(!page))
 | |
| 			goto out;
 | |
| 		stat(s, ORDER_FALLBACK);
 | |
| 	}
 | |
| 
 | |
| 	page->objects = oo_objects(oo);
 | |
| 
 | |
| 	order = compound_order(page);
 | |
| 	page->slab_cache = s;
 | |
| 	__SetPageSlab(page);
 | |
| 	if (page_is_pfmemalloc(page))
 | |
| 		SetPageSlabPfmemalloc(page);
 | |
| 
 | |
| 	kasan_poison_slab(page);
 | |
| 
 | |
| 	start = page_address(page);
 | |
| 
 | |
| 	setup_page_debug(s, start, order);
 | |
| 
 | |
| 	shuffle = shuffle_freelist(s, page);
 | |
| 
 | |
| 	if (!shuffle) {
 | |
| 		start = fixup_red_left(s, start);
 | |
| 		start = setup_object(s, page, start);
 | |
| 		page->freelist = start;
 | |
| 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
 | |
| 			next = p + s->size;
 | |
| 			next = setup_object(s, page, next);
 | |
| 			set_freepointer(s, p, next);
 | |
| 			p = next;
 | |
| 		}
 | |
| 		set_freepointer(s, p, NULL);
 | |
| 	}
 | |
| 
 | |
| 	page->inuse = page->objects;
 | |
| 	page->frozen = 1;
 | |
| 
 | |
| out:
 | |
| 	if (gfpflags_allow_blocking(flags))
 | |
| 		local_irq_disable();
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	mod_lruvec_page_state(page,
 | |
| 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
 | |
| 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
 | |
| 		1 << oo_order(oo));
 | |
| 
 | |
| 	inc_slabs_node(s, page_to_nid(page), page->objects);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
 | |
| {
 | |
| 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
 | |
| 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
 | |
| 		flags &= ~GFP_SLAB_BUG_MASK;
 | |
| 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
 | |
| 				invalid_mask, &invalid_mask, flags, &flags);
 | |
| 		dump_stack();
 | |
| 	}
 | |
| 
 | |
| 	return allocate_slab(s,
 | |
| 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
 | |
| }
 | |
| 
 | |
| static void __free_slab(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	int order = compound_order(page);
 | |
| 	int pages = 1 << order;
 | |
| 
 | |
| 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
 | |
| 		void *p;
 | |
| 
 | |
| 		slab_pad_check(s, page);
 | |
| 		for_each_object(p, s, page_address(page),
 | |
| 						page->objects)
 | |
| 			check_object(s, page, p, SLUB_RED_INACTIVE);
 | |
| 	}
 | |
| 
 | |
| 	mod_lruvec_page_state(page,
 | |
| 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
 | |
| 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
 | |
| 		-pages);
 | |
| 
 | |
| 	__ClearPageSlabPfmemalloc(page);
 | |
| 	__ClearPageSlab(page);
 | |
| 
 | |
| 	page->mapping = NULL;
 | |
| 	if (current->reclaim_state)
 | |
| 		current->reclaim_state->reclaimed_slab += pages;
 | |
| 	memcg_uncharge_slab(page, order, s);
 | |
| 	__free_pages(page, order);
 | |
| }
 | |
| 
 | |
| static void rcu_free_slab(struct rcu_head *h)
 | |
| {
 | |
| 	struct page *page = container_of(h, struct page, rcu_head);
 | |
| 
 | |
| 	__free_slab(page->slab_cache, page);
 | |
| }
 | |
| 
 | |
| static void free_slab(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
 | |
| 		call_rcu(&page->rcu_head, rcu_free_slab);
 | |
| 	} else
 | |
| 		__free_slab(s, page);
 | |
| }
 | |
| 
 | |
| static void discard_slab(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	dec_slabs_node(s, page_to_nid(page), page->objects);
 | |
| 	free_slab(s, page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Management of partially allocated slabs.
 | |
|  */
 | |
| static inline void
 | |
| __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
 | |
| {
 | |
| 	n->nr_partial++;
 | |
| 	if (tail == DEACTIVATE_TO_TAIL)
 | |
| 		list_add_tail(&page->slab_list, &n->partial);
 | |
| 	else
 | |
| 		list_add(&page->slab_list, &n->partial);
 | |
| }
 | |
| 
 | |
| static inline void add_partial(struct kmem_cache_node *n,
 | |
| 				struct page *page, int tail)
 | |
| {
 | |
| 	lockdep_assert_held(&n->list_lock);
 | |
| 	__add_partial(n, page, tail);
 | |
| }
 | |
| 
 | |
| static inline void remove_partial(struct kmem_cache_node *n,
 | |
| 					struct page *page)
 | |
| {
 | |
| 	lockdep_assert_held(&n->list_lock);
 | |
| 	list_del(&page->slab_list);
 | |
| 	n->nr_partial--;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove slab from the partial list, freeze it and
 | |
|  * return the pointer to the freelist.
 | |
|  *
 | |
|  * Returns a list of objects or NULL if it fails.
 | |
|  */
 | |
| static inline void *acquire_slab(struct kmem_cache *s,
 | |
| 		struct kmem_cache_node *n, struct page *page,
 | |
| 		int mode, int *objects)
 | |
| {
 | |
| 	void *freelist;
 | |
| 	unsigned long counters;
 | |
| 	struct page new;
 | |
| 
 | |
| 	lockdep_assert_held(&n->list_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Zap the freelist and set the frozen bit.
 | |
| 	 * The old freelist is the list of objects for the
 | |
| 	 * per cpu allocation list.
 | |
| 	 */
 | |
| 	freelist = page->freelist;
 | |
| 	counters = page->counters;
 | |
| 	new.counters = counters;
 | |
| 	*objects = new.objects - new.inuse;
 | |
| 	if (mode) {
 | |
| 		new.inuse = page->objects;
 | |
| 		new.freelist = NULL;
 | |
| 	} else {
 | |
| 		new.freelist = freelist;
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON(new.frozen);
 | |
| 	new.frozen = 1;
 | |
| 
 | |
| 	if (!__cmpxchg_double_slab(s, page,
 | |
| 			freelist, counters,
 | |
| 			new.freelist, new.counters,
 | |
| 			"acquire_slab"))
 | |
| 		return NULL;
 | |
| 
 | |
| 	remove_partial(n, page);
 | |
| 	WARN_ON(!freelist);
 | |
| 	return freelist;
 | |
| }
 | |
| 
 | |
| static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
 | |
| static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
 | |
| 
 | |
| /*
 | |
|  * Try to allocate a partial slab from a specific node.
 | |
|  */
 | |
| static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
 | |
| 				struct kmem_cache_cpu *c, gfp_t flags)
 | |
| {
 | |
| 	struct page *page, *page2;
 | |
| 	void *object = NULL;
 | |
| 	unsigned int available = 0;
 | |
| 	int objects;
 | |
| 
 | |
| 	/*
 | |
| 	 * Racy check. If we mistakenly see no partial slabs then we
 | |
| 	 * just allocate an empty slab. If we mistakenly try to get a
 | |
| 	 * partial slab and there is none available then get_partials()
 | |
| 	 * will return NULL.
 | |
| 	 */
 | |
| 	if (!n || !n->nr_partial)
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock(&n->list_lock);
 | |
| 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
 | |
| 		void *t;
 | |
| 
 | |
| 		if (!pfmemalloc_match(page, flags))
 | |
| 			continue;
 | |
| 
 | |
| 		t = acquire_slab(s, n, page, object == NULL, &objects);
 | |
| 		if (!t)
 | |
| 			break;
 | |
| 
 | |
| 		available += objects;
 | |
| 		if (!object) {
 | |
| 			c->page = page;
 | |
| 			stat(s, ALLOC_FROM_PARTIAL);
 | |
| 			object = t;
 | |
| 		} else {
 | |
| 			put_cpu_partial(s, page, 0);
 | |
| 			stat(s, CPU_PARTIAL_NODE);
 | |
| 		}
 | |
| 		if (!kmem_cache_has_cpu_partial(s)
 | |
| 			|| available > slub_cpu_partial(s) / 2)
 | |
| 			break;
 | |
| 
 | |
| 	}
 | |
| 	spin_unlock(&n->list_lock);
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a page from somewhere. Search in increasing NUMA distances.
 | |
|  */
 | |
| static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
 | |
| 		struct kmem_cache_cpu *c)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	struct zonelist *zonelist;
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 	enum zone_type high_zoneidx = gfp_zone(flags);
 | |
| 	void *object;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 
 | |
| 	/*
 | |
| 	 * The defrag ratio allows a configuration of the tradeoffs between
 | |
| 	 * inter node defragmentation and node local allocations. A lower
 | |
| 	 * defrag_ratio increases the tendency to do local allocations
 | |
| 	 * instead of attempting to obtain partial slabs from other nodes.
 | |
| 	 *
 | |
| 	 * If the defrag_ratio is set to 0 then kmalloc() always
 | |
| 	 * returns node local objects. If the ratio is higher then kmalloc()
 | |
| 	 * may return off node objects because partial slabs are obtained
 | |
| 	 * from other nodes and filled up.
 | |
| 	 *
 | |
| 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
 | |
| 	 * (which makes defrag_ratio = 1000) then every (well almost)
 | |
| 	 * allocation will first attempt to defrag slab caches on other nodes.
 | |
| 	 * This means scanning over all nodes to look for partial slabs which
 | |
| 	 * may be expensive if we do it every time we are trying to find a slab
 | |
| 	 * with available objects.
 | |
| 	 */
 | |
| 	if (!s->remote_node_defrag_ratio ||
 | |
| 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	do {
 | |
| 		cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
 | |
| 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
 | |
| 			struct kmem_cache_node *n;
 | |
| 
 | |
| 			n = get_node(s, zone_to_nid(zone));
 | |
| 
 | |
| 			if (n && cpuset_zone_allowed(zone, flags) &&
 | |
| 					n->nr_partial > s->min_partial) {
 | |
| 				object = get_partial_node(s, n, c, flags);
 | |
| 				if (object) {
 | |
| 					/*
 | |
| 					 * Don't check read_mems_allowed_retry()
 | |
| 					 * here - if mems_allowed was updated in
 | |
| 					 * parallel, that was a harmless race
 | |
| 					 * between allocation and the cpuset
 | |
| 					 * update
 | |
| 					 */
 | |
| 					return object;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a partial page, lock it and return it.
 | |
|  */
 | |
| static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
 | |
| 		struct kmem_cache_cpu *c)
 | |
| {
 | |
| 	void *object;
 | |
| 	int searchnode = node;
 | |
| 
 | |
| 	if (node == NUMA_NO_NODE)
 | |
| 		searchnode = numa_mem_id();
 | |
| 	else if (!node_present_pages(node))
 | |
| 		searchnode = node_to_mem_node(node);
 | |
| 
 | |
| 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
 | |
| 	if (object || node != NUMA_NO_NODE)
 | |
| 		return object;
 | |
| 
 | |
| 	return get_any_partial(s, flags, c);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT
 | |
| /*
 | |
|  * Calculate the next globally unique transaction for disambiguiation
 | |
|  * during cmpxchg. The transactions start with the cpu number and are then
 | |
|  * incremented by CONFIG_NR_CPUS.
 | |
|  */
 | |
| #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
 | |
| #else
 | |
| /*
 | |
|  * No preemption supported therefore also no need to check for
 | |
|  * different cpus.
 | |
|  */
 | |
| #define TID_STEP 1
 | |
| #endif
 | |
| 
 | |
| static inline unsigned long next_tid(unsigned long tid)
 | |
| {
 | |
| 	return tid + TID_STEP;
 | |
| }
 | |
| 
 | |
| static inline unsigned int tid_to_cpu(unsigned long tid)
 | |
| {
 | |
| 	return tid % TID_STEP;
 | |
| }
 | |
| 
 | |
| static inline unsigned long tid_to_event(unsigned long tid)
 | |
| {
 | |
| 	return tid / TID_STEP;
 | |
| }
 | |
| 
 | |
| static inline unsigned int init_tid(int cpu)
 | |
| {
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| static inline void note_cmpxchg_failure(const char *n,
 | |
| 		const struct kmem_cache *s, unsigned long tid)
 | |
| {
 | |
| #ifdef SLUB_DEBUG_CMPXCHG
 | |
| 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
 | |
| 
 | |
| 	pr_info("%s %s: cmpxchg redo ", n, s->name);
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
 | |
| 		pr_warn("due to cpu change %d -> %d\n",
 | |
| 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
 | |
| 	else
 | |
| #endif
 | |
| 	if (tid_to_event(tid) != tid_to_event(actual_tid))
 | |
| 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
 | |
| 			tid_to_event(tid), tid_to_event(actual_tid));
 | |
| 	else
 | |
| 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
 | |
| 			actual_tid, tid, next_tid(tid));
 | |
| #endif
 | |
| 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
 | |
| }
 | |
| 
 | |
| static void init_kmem_cache_cpus(struct kmem_cache *s)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove the cpu slab
 | |
|  */
 | |
| static void deactivate_slab(struct kmem_cache *s, struct page *page,
 | |
| 				void *freelist, struct kmem_cache_cpu *c)
 | |
| {
 | |
| 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
 | |
| 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
 | |
| 	int lock = 0;
 | |
| 	enum slab_modes l = M_NONE, m = M_NONE;
 | |
| 	void *nextfree;
 | |
| 	int tail = DEACTIVATE_TO_HEAD;
 | |
| 	struct page new;
 | |
| 	struct page old;
 | |
| 
 | |
| 	if (page->freelist) {
 | |
| 		stat(s, DEACTIVATE_REMOTE_FREES);
 | |
| 		tail = DEACTIVATE_TO_TAIL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Stage one: Free all available per cpu objects back
 | |
| 	 * to the page freelist while it is still frozen. Leave the
 | |
| 	 * last one.
 | |
| 	 *
 | |
| 	 * There is no need to take the list->lock because the page
 | |
| 	 * is still frozen.
 | |
| 	 */
 | |
| 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
 | |
| 		void *prior;
 | |
| 		unsigned long counters;
 | |
| 
 | |
| 		do {
 | |
| 			prior = page->freelist;
 | |
| 			counters = page->counters;
 | |
| 			set_freepointer(s, freelist, prior);
 | |
| 			new.counters = counters;
 | |
| 			new.inuse--;
 | |
| 			VM_BUG_ON(!new.frozen);
 | |
| 
 | |
| 		} while (!__cmpxchg_double_slab(s, page,
 | |
| 			prior, counters,
 | |
| 			freelist, new.counters,
 | |
| 			"drain percpu freelist"));
 | |
| 
 | |
| 		freelist = nextfree;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Stage two: Ensure that the page is unfrozen while the
 | |
| 	 * list presence reflects the actual number of objects
 | |
| 	 * during unfreeze.
 | |
| 	 *
 | |
| 	 * We setup the list membership and then perform a cmpxchg
 | |
| 	 * with the count. If there is a mismatch then the page
 | |
| 	 * is not unfrozen but the page is on the wrong list.
 | |
| 	 *
 | |
| 	 * Then we restart the process which may have to remove
 | |
| 	 * the page from the list that we just put it on again
 | |
| 	 * because the number of objects in the slab may have
 | |
| 	 * changed.
 | |
| 	 */
 | |
| redo:
 | |
| 
 | |
| 	old.freelist = page->freelist;
 | |
| 	old.counters = page->counters;
 | |
| 	VM_BUG_ON(!old.frozen);
 | |
| 
 | |
| 	/* Determine target state of the slab */
 | |
| 	new.counters = old.counters;
 | |
| 	if (freelist) {
 | |
| 		new.inuse--;
 | |
| 		set_freepointer(s, freelist, old.freelist);
 | |
| 		new.freelist = freelist;
 | |
| 	} else
 | |
| 		new.freelist = old.freelist;
 | |
| 
 | |
| 	new.frozen = 0;
 | |
| 
 | |
| 	if (!new.inuse && n->nr_partial >= s->min_partial)
 | |
| 		m = M_FREE;
 | |
| 	else if (new.freelist) {
 | |
| 		m = M_PARTIAL;
 | |
| 		if (!lock) {
 | |
| 			lock = 1;
 | |
| 			/*
 | |
| 			 * Taking the spinlock removes the possibility
 | |
| 			 * that acquire_slab() will see a slab page that
 | |
| 			 * is frozen
 | |
| 			 */
 | |
| 			spin_lock(&n->list_lock);
 | |
| 		}
 | |
| 	} else {
 | |
| 		m = M_FULL;
 | |
| 		if (kmem_cache_debug(s) && !lock) {
 | |
| 			lock = 1;
 | |
| 			/*
 | |
| 			 * This also ensures that the scanning of full
 | |
| 			 * slabs from diagnostic functions will not see
 | |
| 			 * any frozen slabs.
 | |
| 			 */
 | |
| 			spin_lock(&n->list_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (l != m) {
 | |
| 		if (l == M_PARTIAL)
 | |
| 			remove_partial(n, page);
 | |
| 		else if (l == M_FULL)
 | |
| 			remove_full(s, n, page);
 | |
| 
 | |
| 		if (m == M_PARTIAL)
 | |
| 			add_partial(n, page, tail);
 | |
| 		else if (m == M_FULL)
 | |
| 			add_full(s, n, page);
 | |
| 	}
 | |
| 
 | |
| 	l = m;
 | |
| 	if (!__cmpxchg_double_slab(s, page,
 | |
| 				old.freelist, old.counters,
 | |
| 				new.freelist, new.counters,
 | |
| 				"unfreezing slab"))
 | |
| 		goto redo;
 | |
| 
 | |
| 	if (lock)
 | |
| 		spin_unlock(&n->list_lock);
 | |
| 
 | |
| 	if (m == M_PARTIAL)
 | |
| 		stat(s, tail);
 | |
| 	else if (m == M_FULL)
 | |
| 		stat(s, DEACTIVATE_FULL);
 | |
| 	else if (m == M_FREE) {
 | |
| 		stat(s, DEACTIVATE_EMPTY);
 | |
| 		discard_slab(s, page);
 | |
| 		stat(s, FREE_SLAB);
 | |
| 	}
 | |
| 
 | |
| 	c->page = NULL;
 | |
| 	c->freelist = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unfreeze all the cpu partial slabs.
 | |
|  *
 | |
|  * This function must be called with interrupts disabled
 | |
|  * for the cpu using c (or some other guarantee must be there
 | |
|  * to guarantee no concurrent accesses).
 | |
|  */
 | |
| static void unfreeze_partials(struct kmem_cache *s,
 | |
| 		struct kmem_cache_cpu *c)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	struct kmem_cache_node *n = NULL, *n2 = NULL;
 | |
| 	struct page *page, *discard_page = NULL;
 | |
| 
 | |
| 	while ((page = c->partial)) {
 | |
| 		struct page new;
 | |
| 		struct page old;
 | |
| 
 | |
| 		c->partial = page->next;
 | |
| 
 | |
| 		n2 = get_node(s, page_to_nid(page));
 | |
| 		if (n != n2) {
 | |
| 			if (n)
 | |
| 				spin_unlock(&n->list_lock);
 | |
| 
 | |
| 			n = n2;
 | |
| 			spin_lock(&n->list_lock);
 | |
| 		}
 | |
| 
 | |
| 		do {
 | |
| 
 | |
| 			old.freelist = page->freelist;
 | |
| 			old.counters = page->counters;
 | |
| 			VM_BUG_ON(!old.frozen);
 | |
| 
 | |
| 			new.counters = old.counters;
 | |
| 			new.freelist = old.freelist;
 | |
| 
 | |
| 			new.frozen = 0;
 | |
| 
 | |
| 		} while (!__cmpxchg_double_slab(s, page,
 | |
| 				old.freelist, old.counters,
 | |
| 				new.freelist, new.counters,
 | |
| 				"unfreezing slab"));
 | |
| 
 | |
| 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
 | |
| 			page->next = discard_page;
 | |
| 			discard_page = page;
 | |
| 		} else {
 | |
| 			add_partial(n, page, DEACTIVATE_TO_TAIL);
 | |
| 			stat(s, FREE_ADD_PARTIAL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (n)
 | |
| 		spin_unlock(&n->list_lock);
 | |
| 
 | |
| 	while (discard_page) {
 | |
| 		page = discard_page;
 | |
| 		discard_page = discard_page->next;
 | |
| 
 | |
| 		stat(s, DEACTIVATE_EMPTY);
 | |
| 		discard_slab(s, page);
 | |
| 		stat(s, FREE_SLAB);
 | |
| 	}
 | |
| #endif	/* CONFIG_SLUB_CPU_PARTIAL */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
 | |
|  * partial page slot if available.
 | |
|  *
 | |
|  * If we did not find a slot then simply move all the partials to the
 | |
|  * per node partial list.
 | |
|  */
 | |
| static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	struct page *oldpage;
 | |
| 	int pages;
 | |
| 	int pobjects;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	do {
 | |
| 		pages = 0;
 | |
| 		pobjects = 0;
 | |
| 		oldpage = this_cpu_read(s->cpu_slab->partial);
 | |
| 
 | |
| 		if (oldpage) {
 | |
| 			pobjects = oldpage->pobjects;
 | |
| 			pages = oldpage->pages;
 | |
| 			if (drain && pobjects > s->cpu_partial) {
 | |
| 				unsigned long flags;
 | |
| 				/*
 | |
| 				 * partial array is full. Move the existing
 | |
| 				 * set to the per node partial list.
 | |
| 				 */
 | |
| 				local_irq_save(flags);
 | |
| 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
 | |
| 				local_irq_restore(flags);
 | |
| 				oldpage = NULL;
 | |
| 				pobjects = 0;
 | |
| 				pages = 0;
 | |
| 				stat(s, CPU_PARTIAL_DRAIN);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		pages++;
 | |
| 		pobjects += page->objects - page->inuse;
 | |
| 
 | |
| 		page->pages = pages;
 | |
| 		page->pobjects = pobjects;
 | |
| 		page->next = oldpage;
 | |
| 
 | |
| 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
 | |
| 								!= oldpage);
 | |
| 	if (unlikely(!s->cpu_partial)) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| #endif	/* CONFIG_SLUB_CPU_PARTIAL */
 | |
| }
 | |
| 
 | |
| static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 | |
| {
 | |
| 	stat(s, CPUSLAB_FLUSH);
 | |
| 	deactivate_slab(s, c->page, c->freelist, c);
 | |
| 
 | |
| 	c->tid = next_tid(c->tid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush cpu slab.
 | |
|  *
 | |
|  * Called from IPI handler with interrupts disabled.
 | |
|  */
 | |
| static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
 | |
| {
 | |
| 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 | |
| 
 | |
| 	if (c->page)
 | |
| 		flush_slab(s, c);
 | |
| 
 | |
| 	unfreeze_partials(s, c);
 | |
| }
 | |
| 
 | |
| static void flush_cpu_slab(void *d)
 | |
| {
 | |
| 	struct kmem_cache *s = d;
 | |
| 
 | |
| 	__flush_cpu_slab(s, smp_processor_id());
 | |
| }
 | |
| 
 | |
| static bool has_cpu_slab(int cpu, void *info)
 | |
| {
 | |
| 	struct kmem_cache *s = info;
 | |
| 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 | |
| 
 | |
| 	return c->page || slub_percpu_partial(c);
 | |
| }
 | |
| 
 | |
| static void flush_all(struct kmem_cache *s)
 | |
| {
 | |
| 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the cpu notifier to insure that the cpu slabs are flushed when
 | |
|  * necessary.
 | |
|  */
 | |
| static int slub_cpu_dead(unsigned int cpu)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		local_irq_save(flags);
 | |
| 		__flush_cpu_slab(s, cpu);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if the objects in a per cpu structure fit numa
 | |
|  * locality expectations.
 | |
|  */
 | |
| static inline int node_match(struct page *page, int node)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
 | |
| 		return 0;
 | |
| #endif
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static int count_free(struct page *page)
 | |
| {
 | |
| 	return page->objects - page->inuse;
 | |
| }
 | |
| 
 | |
| static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
 | |
| {
 | |
| 	return atomic_long_read(&n->total_objects);
 | |
| }
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
 | |
| static unsigned long count_partial(struct kmem_cache_node *n,
 | |
| 					int (*get_count)(struct page *))
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long x = 0;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 	list_for_each_entry(page, &n->partial, slab_list)
 | |
| 		x += get_count(page);
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	return x;
 | |
| }
 | |
| #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
 | |
| 
 | |
| static noinline void
 | |
| slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 | |
| 				      DEFAULT_RATELIMIT_BURST);
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
 | |
| 		nid, gfpflags, &gfpflags);
 | |
| 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
 | |
| 		s->name, s->object_size, s->size, oo_order(s->oo),
 | |
| 		oo_order(s->min));
 | |
| 
 | |
| 	if (oo_order(s->min) > get_order(s->object_size))
 | |
| 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
 | |
| 			s->name);
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		unsigned long nr_slabs;
 | |
| 		unsigned long nr_objs;
 | |
| 		unsigned long nr_free;
 | |
| 
 | |
| 		nr_free  = count_partial(n, count_free);
 | |
| 		nr_slabs = node_nr_slabs(n);
 | |
| 		nr_objs  = node_nr_objs(n);
 | |
| 
 | |
| 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
 | |
| 			node, nr_slabs, nr_objs, nr_free);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
 | |
| 			int node, struct kmem_cache_cpu **pc)
 | |
| {
 | |
| 	void *freelist;
 | |
| 	struct kmem_cache_cpu *c = *pc;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
 | |
| 
 | |
| 	freelist = get_partial(s, flags, node, c);
 | |
| 
 | |
| 	if (freelist)
 | |
| 		return freelist;
 | |
| 
 | |
| 	page = new_slab(s, flags, node);
 | |
| 	if (page) {
 | |
| 		c = raw_cpu_ptr(s->cpu_slab);
 | |
| 		if (c->page)
 | |
| 			flush_slab(s, c);
 | |
| 
 | |
| 		/*
 | |
| 		 * No other reference to the page yet so we can
 | |
| 		 * muck around with it freely without cmpxchg
 | |
| 		 */
 | |
| 		freelist = page->freelist;
 | |
| 		page->freelist = NULL;
 | |
| 
 | |
| 		stat(s, ALLOC_SLAB);
 | |
| 		c->page = page;
 | |
| 		*pc = c;
 | |
| 	}
 | |
| 
 | |
| 	return freelist;
 | |
| }
 | |
| 
 | |
| static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
 | |
| {
 | |
| 	if (unlikely(PageSlabPfmemalloc(page)))
 | |
| 		return gfp_pfmemalloc_allowed(gfpflags);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the page->freelist of a page and either transfer the freelist to the
 | |
|  * per cpu freelist or deactivate the page.
 | |
|  *
 | |
|  * The page is still frozen if the return value is not NULL.
 | |
|  *
 | |
|  * If this function returns NULL then the page has been unfrozen.
 | |
|  *
 | |
|  * This function must be called with interrupt disabled.
 | |
|  */
 | |
| static inline void *get_freelist(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	struct page new;
 | |
| 	unsigned long counters;
 | |
| 	void *freelist;
 | |
| 
 | |
| 	do {
 | |
| 		freelist = page->freelist;
 | |
| 		counters = page->counters;
 | |
| 
 | |
| 		new.counters = counters;
 | |
| 		VM_BUG_ON(!new.frozen);
 | |
| 
 | |
| 		new.inuse = page->objects;
 | |
| 		new.frozen = freelist != NULL;
 | |
| 
 | |
| 	} while (!__cmpxchg_double_slab(s, page,
 | |
| 		freelist, counters,
 | |
| 		NULL, new.counters,
 | |
| 		"get_freelist"));
 | |
| 
 | |
| 	return freelist;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Slow path. The lockless freelist is empty or we need to perform
 | |
|  * debugging duties.
 | |
|  *
 | |
|  * Processing is still very fast if new objects have been freed to the
 | |
|  * regular freelist. In that case we simply take over the regular freelist
 | |
|  * as the lockless freelist and zap the regular freelist.
 | |
|  *
 | |
|  * If that is not working then we fall back to the partial lists. We take the
 | |
|  * first element of the freelist as the object to allocate now and move the
 | |
|  * rest of the freelist to the lockless freelist.
 | |
|  *
 | |
|  * And if we were unable to get a new slab from the partial slab lists then
 | |
|  * we need to allocate a new slab. This is the slowest path since it involves
 | |
|  * a call to the page allocator and the setup of a new slab.
 | |
|  *
 | |
|  * Version of __slab_alloc to use when we know that interrupts are
 | |
|  * already disabled (which is the case for bulk allocation).
 | |
|  */
 | |
| static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 | |
| 			  unsigned long addr, struct kmem_cache_cpu *c)
 | |
| {
 | |
| 	void *freelist;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = c->page;
 | |
| 	if (!page)
 | |
| 		goto new_slab;
 | |
| redo:
 | |
| 
 | |
| 	if (unlikely(!node_match(page, node))) {
 | |
| 		int searchnode = node;
 | |
| 
 | |
| 		if (node != NUMA_NO_NODE && !node_present_pages(node))
 | |
| 			searchnode = node_to_mem_node(node);
 | |
| 
 | |
| 		if (unlikely(!node_match(page, searchnode))) {
 | |
| 			stat(s, ALLOC_NODE_MISMATCH);
 | |
| 			deactivate_slab(s, page, c->freelist, c);
 | |
| 			goto new_slab;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * By rights, we should be searching for a slab page that was
 | |
| 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
 | |
| 	 * information when the page leaves the per-cpu allocator
 | |
| 	 */
 | |
| 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
 | |
| 		deactivate_slab(s, page, c->freelist, c);
 | |
| 		goto new_slab;
 | |
| 	}
 | |
| 
 | |
| 	/* must check again c->freelist in case of cpu migration or IRQ */
 | |
| 	freelist = c->freelist;
 | |
| 	if (freelist)
 | |
| 		goto load_freelist;
 | |
| 
 | |
| 	freelist = get_freelist(s, page);
 | |
| 
 | |
| 	if (!freelist) {
 | |
| 		c->page = NULL;
 | |
| 		stat(s, DEACTIVATE_BYPASS);
 | |
| 		goto new_slab;
 | |
| 	}
 | |
| 
 | |
| 	stat(s, ALLOC_REFILL);
 | |
| 
 | |
| load_freelist:
 | |
| 	/*
 | |
| 	 * freelist is pointing to the list of objects to be used.
 | |
| 	 * page is pointing to the page from which the objects are obtained.
 | |
| 	 * That page must be frozen for per cpu allocations to work.
 | |
| 	 */
 | |
| 	VM_BUG_ON(!c->page->frozen);
 | |
| 	c->freelist = get_freepointer(s, freelist);
 | |
| 	c->tid = next_tid(c->tid);
 | |
| 	return freelist;
 | |
| 
 | |
| new_slab:
 | |
| 
 | |
| 	if (slub_percpu_partial(c)) {
 | |
| 		page = c->page = slub_percpu_partial(c);
 | |
| 		slub_set_percpu_partial(c, page);
 | |
| 		stat(s, CPU_PARTIAL_ALLOC);
 | |
| 		goto redo;
 | |
| 	}
 | |
| 
 | |
| 	freelist = new_slab_objects(s, gfpflags, node, &c);
 | |
| 
 | |
| 	if (unlikely(!freelist)) {
 | |
| 		slab_out_of_memory(s, gfpflags, node);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	page = c->page;
 | |
| 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
 | |
| 		goto load_freelist;
 | |
| 
 | |
| 	/* Only entered in the debug case */
 | |
| 	if (kmem_cache_debug(s) &&
 | |
| 			!alloc_debug_processing(s, page, freelist, addr))
 | |
| 		goto new_slab;	/* Slab failed checks. Next slab needed */
 | |
| 
 | |
| 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
 | |
| 	return freelist;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Another one that disabled interrupt and compensates for possible
 | |
|  * cpu changes by refetching the per cpu area pointer.
 | |
|  */
 | |
| static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 | |
| 			  unsigned long addr, struct kmem_cache_cpu *c)
 | |
| {
 | |
| 	void *p;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 	/*
 | |
| 	 * We may have been preempted and rescheduled on a different
 | |
| 	 * cpu before disabling interrupts. Need to reload cpu area
 | |
| 	 * pointer.
 | |
| 	 */
 | |
| 	c = this_cpu_ptr(s->cpu_slab);
 | |
| #endif
 | |
| 
 | |
| 	p = ___slab_alloc(s, gfpflags, node, addr, c);
 | |
| 	local_irq_restore(flags);
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 | |
|  * have the fastpath folded into their functions. So no function call
 | |
|  * overhead for requests that can be satisfied on the fastpath.
 | |
|  *
 | |
|  * The fastpath works by first checking if the lockless freelist can be used.
 | |
|  * If not then __slab_alloc is called for slow processing.
 | |
|  *
 | |
|  * Otherwise we can simply pick the next object from the lockless free list.
 | |
|  */
 | |
| static __always_inline void *slab_alloc_node(struct kmem_cache *s,
 | |
| 		gfp_t gfpflags, int node, unsigned long addr)
 | |
| {
 | |
| 	void *object;
 | |
| 	struct kmem_cache_cpu *c;
 | |
| 	struct page *page;
 | |
| 	unsigned long tid;
 | |
| 
 | |
| 	s = slab_pre_alloc_hook(s, gfpflags);
 | |
| 	if (!s)
 | |
| 		return NULL;
 | |
| redo:
 | |
| 	/*
 | |
| 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
 | |
| 	 * enabled. We may switch back and forth between cpus while
 | |
| 	 * reading from one cpu area. That does not matter as long
 | |
| 	 * as we end up on the original cpu again when doing the cmpxchg.
 | |
| 	 *
 | |
| 	 * We should guarantee that tid and kmem_cache are retrieved on
 | |
| 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
 | |
| 	 * to check if it is matched or not.
 | |
| 	 */
 | |
| 	do {
 | |
| 		tid = this_cpu_read(s->cpu_slab->tid);
 | |
| 		c = raw_cpu_ptr(s->cpu_slab);
 | |
| 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
 | |
| 		 unlikely(tid != READ_ONCE(c->tid)));
 | |
| 
 | |
| 	/*
 | |
| 	 * Irqless object alloc/free algorithm used here depends on sequence
 | |
| 	 * of fetching cpu_slab's data. tid should be fetched before anything
 | |
| 	 * on c to guarantee that object and page associated with previous tid
 | |
| 	 * won't be used with current tid. If we fetch tid first, object and
 | |
| 	 * page could be one associated with next tid and our alloc/free
 | |
| 	 * request will be failed. In this case, we will retry. So, no problem.
 | |
| 	 */
 | |
| 	barrier();
 | |
| 
 | |
| 	/*
 | |
| 	 * The transaction ids are globally unique per cpu and per operation on
 | |
| 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
 | |
| 	 * occurs on the right processor and that there was no operation on the
 | |
| 	 * linked list in between.
 | |
| 	 */
 | |
| 
 | |
| 	object = c->freelist;
 | |
| 	page = c->page;
 | |
| 	if (unlikely(!object || !node_match(page, node))) {
 | |
| 		object = __slab_alloc(s, gfpflags, node, addr, c);
 | |
| 		stat(s, ALLOC_SLOWPATH);
 | |
| 	} else {
 | |
| 		void *next_object = get_freepointer_safe(s, object);
 | |
| 
 | |
| 		/*
 | |
| 		 * The cmpxchg will only match if there was no additional
 | |
| 		 * operation and if we are on the right processor.
 | |
| 		 *
 | |
| 		 * The cmpxchg does the following atomically (without lock
 | |
| 		 * semantics!)
 | |
| 		 * 1. Relocate first pointer to the current per cpu area.
 | |
| 		 * 2. Verify that tid and freelist have not been changed
 | |
| 		 * 3. If they were not changed replace tid and freelist
 | |
| 		 *
 | |
| 		 * Since this is without lock semantics the protection is only
 | |
| 		 * against code executing on this cpu *not* from access by
 | |
| 		 * other cpus.
 | |
| 		 */
 | |
| 		if (unlikely(!this_cpu_cmpxchg_double(
 | |
| 				s->cpu_slab->freelist, s->cpu_slab->tid,
 | |
| 				object, tid,
 | |
| 				next_object, next_tid(tid)))) {
 | |
| 
 | |
| 			note_cmpxchg_failure("slab_alloc", s, tid);
 | |
| 			goto redo;
 | |
| 		}
 | |
| 		prefetch_freepointer(s, next_object);
 | |
| 		stat(s, ALLOC_FASTPATH);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(gfpflags & __GFP_ZERO) && object)
 | |
| 		memset(object, 0, s->object_size);
 | |
| 
 | |
| 	slab_post_alloc_hook(s, gfpflags, 1, &object);
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| static __always_inline void *slab_alloc(struct kmem_cache *s,
 | |
| 		gfp_t gfpflags, unsigned long addr)
 | |
| {
 | |
| 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
 | |
| }
 | |
| 
 | |
| void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
 | |
| {
 | |
| 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
 | |
| 
 | |
| 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
 | |
| 				s->size, gfpflags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc);
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
 | |
| {
 | |
| 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
 | |
| 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
 | |
| 	ret = kasan_kmalloc(s, ret, size, gfpflags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_trace);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
 | |
| {
 | |
| 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
 | |
| 
 | |
| 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
 | |
| 				    s->object_size, s->size, gfpflags, node);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_node);
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
 | |
| 				    gfp_t gfpflags,
 | |
| 				    int node, size_t size)
 | |
| {
 | |
| 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
 | |
| 
 | |
| 	trace_kmalloc_node(_RET_IP_, ret,
 | |
| 			   size, s->size, gfpflags, node);
 | |
| 
 | |
| 	ret = kasan_kmalloc(s, ret, size, gfpflags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
 | |
| #endif
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 
 | |
| /*
 | |
|  * Slow path handling. This may still be called frequently since objects
 | |
|  * have a longer lifetime than the cpu slabs in most processing loads.
 | |
|  *
 | |
|  * So we still attempt to reduce cache line usage. Just take the slab
 | |
|  * lock and free the item. If there is no additional partial page
 | |
|  * handling required then we can return immediately.
 | |
|  */
 | |
| static void __slab_free(struct kmem_cache *s, struct page *page,
 | |
| 			void *head, void *tail, int cnt,
 | |
| 			unsigned long addr)
 | |
| 
 | |
| {
 | |
| 	void *prior;
 | |
| 	int was_frozen;
 | |
| 	struct page new;
 | |
| 	unsigned long counters;
 | |
| 	struct kmem_cache_node *n = NULL;
 | |
| 	unsigned long uninitialized_var(flags);
 | |
| 
 | |
| 	stat(s, FREE_SLOWPATH);
 | |
| 
 | |
| 	if (kmem_cache_debug(s) &&
 | |
| 	    !free_debug_processing(s, page, head, tail, cnt, addr))
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		if (unlikely(n)) {
 | |
| 			spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 			n = NULL;
 | |
| 		}
 | |
| 		prior = page->freelist;
 | |
| 		counters = page->counters;
 | |
| 		set_freepointer(s, tail, prior);
 | |
| 		new.counters = counters;
 | |
| 		was_frozen = new.frozen;
 | |
| 		new.inuse -= cnt;
 | |
| 		if ((!new.inuse || !prior) && !was_frozen) {
 | |
| 
 | |
| 			if (kmem_cache_has_cpu_partial(s) && !prior) {
 | |
| 
 | |
| 				/*
 | |
| 				 * Slab was on no list before and will be
 | |
| 				 * partially empty
 | |
| 				 * We can defer the list move and instead
 | |
| 				 * freeze it.
 | |
| 				 */
 | |
| 				new.frozen = 1;
 | |
| 
 | |
| 			} else { /* Needs to be taken off a list */
 | |
| 
 | |
| 				n = get_node(s, page_to_nid(page));
 | |
| 				/*
 | |
| 				 * Speculatively acquire the list_lock.
 | |
| 				 * If the cmpxchg does not succeed then we may
 | |
| 				 * drop the list_lock without any processing.
 | |
| 				 *
 | |
| 				 * Otherwise the list_lock will synchronize with
 | |
| 				 * other processors updating the list of slabs.
 | |
| 				 */
 | |
| 				spin_lock_irqsave(&n->list_lock, flags);
 | |
| 
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	} while (!cmpxchg_double_slab(s, page,
 | |
| 		prior, counters,
 | |
| 		head, new.counters,
 | |
| 		"__slab_free"));
 | |
| 
 | |
| 	if (likely(!n)) {
 | |
| 
 | |
| 		/*
 | |
| 		 * If we just froze the page then put it onto the
 | |
| 		 * per cpu partial list.
 | |
| 		 */
 | |
| 		if (new.frozen && !was_frozen) {
 | |
| 			put_cpu_partial(s, page, 1);
 | |
| 			stat(s, CPU_PARTIAL_FREE);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * The list lock was not taken therefore no list
 | |
| 		 * activity can be necessary.
 | |
| 		 */
 | |
| 		if (was_frozen)
 | |
| 			stat(s, FREE_FROZEN);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
 | |
| 		goto slab_empty;
 | |
| 
 | |
| 	/*
 | |
| 	 * Objects left in the slab. If it was not on the partial list before
 | |
| 	 * then add it.
 | |
| 	 */
 | |
| 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
 | |
| 		remove_full(s, n, page);
 | |
| 		add_partial(n, page, DEACTIVATE_TO_TAIL);
 | |
| 		stat(s, FREE_ADD_PARTIAL);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	return;
 | |
| 
 | |
| slab_empty:
 | |
| 	if (prior) {
 | |
| 		/*
 | |
| 		 * Slab on the partial list.
 | |
| 		 */
 | |
| 		remove_partial(n, page);
 | |
| 		stat(s, FREE_REMOVE_PARTIAL);
 | |
| 	} else {
 | |
| 		/* Slab must be on the full list */
 | |
| 		remove_full(s, n, page);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	stat(s, FREE_SLAB);
 | |
| 	discard_slab(s, page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 | |
|  * can perform fastpath freeing without additional function calls.
 | |
|  *
 | |
|  * The fastpath is only possible if we are freeing to the current cpu slab
 | |
|  * of this processor. This typically the case if we have just allocated
 | |
|  * the item before.
 | |
|  *
 | |
|  * If fastpath is not possible then fall back to __slab_free where we deal
 | |
|  * with all sorts of special processing.
 | |
|  *
 | |
|  * Bulk free of a freelist with several objects (all pointing to the
 | |
|  * same page) possible by specifying head and tail ptr, plus objects
 | |
|  * count (cnt). Bulk free indicated by tail pointer being set.
 | |
|  */
 | |
| static __always_inline void do_slab_free(struct kmem_cache *s,
 | |
| 				struct page *page, void *head, void *tail,
 | |
| 				int cnt, unsigned long addr)
 | |
| {
 | |
| 	void *tail_obj = tail ? : head;
 | |
| 	struct kmem_cache_cpu *c;
 | |
| 	unsigned long tid;
 | |
| redo:
 | |
| 	/*
 | |
| 	 * Determine the currently cpus per cpu slab.
 | |
| 	 * The cpu may change afterward. However that does not matter since
 | |
| 	 * data is retrieved via this pointer. If we are on the same cpu
 | |
| 	 * during the cmpxchg then the free will succeed.
 | |
| 	 */
 | |
| 	do {
 | |
| 		tid = this_cpu_read(s->cpu_slab->tid);
 | |
| 		c = raw_cpu_ptr(s->cpu_slab);
 | |
| 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
 | |
| 		 unlikely(tid != READ_ONCE(c->tid)));
 | |
| 
 | |
| 	/* Same with comment on barrier() in slab_alloc_node() */
 | |
| 	barrier();
 | |
| 
 | |
| 	if (likely(page == c->page)) {
 | |
| 		set_freepointer(s, tail_obj, c->freelist);
 | |
| 
 | |
| 		if (unlikely(!this_cpu_cmpxchg_double(
 | |
| 				s->cpu_slab->freelist, s->cpu_slab->tid,
 | |
| 				c->freelist, tid,
 | |
| 				head, next_tid(tid)))) {
 | |
| 
 | |
| 			note_cmpxchg_failure("slab_free", s, tid);
 | |
| 			goto redo;
 | |
| 		}
 | |
| 		stat(s, FREE_FASTPATH);
 | |
| 	} else
 | |
| 		__slab_free(s, page, head, tail_obj, cnt, addr);
 | |
| 
 | |
| }
 | |
| 
 | |
| static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
 | |
| 				      void *head, void *tail, int cnt,
 | |
| 				      unsigned long addr)
 | |
| {
 | |
| 	/*
 | |
| 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
 | |
| 	 * to remove objects, whose reuse must be delayed.
 | |
| 	 */
 | |
| 	if (slab_free_freelist_hook(s, &head, &tail))
 | |
| 		do_slab_free(s, page, head, tail, cnt, addr);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KASAN_GENERIC
 | |
| void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
 | |
| {
 | |
| 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void kmem_cache_free(struct kmem_cache *s, void *x)
 | |
| {
 | |
| 	s = cache_from_obj(s, x);
 | |
| 	if (!s)
 | |
| 		return;
 | |
| 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
 | |
| 	trace_kmem_cache_free(_RET_IP_, x);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free);
 | |
| 
 | |
| struct detached_freelist {
 | |
| 	struct page *page;
 | |
| 	void *tail;
 | |
| 	void *freelist;
 | |
| 	int cnt;
 | |
| 	struct kmem_cache *s;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This function progressively scans the array with free objects (with
 | |
|  * a limited look ahead) and extract objects belonging to the same
 | |
|  * page.  It builds a detached freelist directly within the given
 | |
|  * page/objects.  This can happen without any need for
 | |
|  * synchronization, because the objects are owned by running process.
 | |
|  * The freelist is build up as a single linked list in the objects.
 | |
|  * The idea is, that this detached freelist can then be bulk
 | |
|  * transferred to the real freelist(s), but only requiring a single
 | |
|  * synchronization primitive.  Look ahead in the array is limited due
 | |
|  * to performance reasons.
 | |
|  */
 | |
| static inline
 | |
| int build_detached_freelist(struct kmem_cache *s, size_t size,
 | |
| 			    void **p, struct detached_freelist *df)
 | |
| {
 | |
| 	size_t first_skipped_index = 0;
 | |
| 	int lookahead = 3;
 | |
| 	void *object;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/* Always re-init detached_freelist */
 | |
| 	df->page = NULL;
 | |
| 
 | |
| 	do {
 | |
| 		object = p[--size];
 | |
| 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
 | |
| 	} while (!object && size);
 | |
| 
 | |
| 	if (!object)
 | |
| 		return 0;
 | |
| 
 | |
| 	page = virt_to_head_page(object);
 | |
| 	if (!s) {
 | |
| 		/* Handle kalloc'ed objects */
 | |
| 		if (unlikely(!PageSlab(page))) {
 | |
| 			BUG_ON(!PageCompound(page));
 | |
| 			kfree_hook(object);
 | |
| 			__free_pages(page, compound_order(page));
 | |
| 			p[size] = NULL; /* mark object processed */
 | |
| 			return size;
 | |
| 		}
 | |
| 		/* Derive kmem_cache from object */
 | |
| 		df->s = page->slab_cache;
 | |
| 	} else {
 | |
| 		df->s = cache_from_obj(s, object); /* Support for memcg */
 | |
| 	}
 | |
| 
 | |
| 	/* Start new detached freelist */
 | |
| 	df->page = page;
 | |
| 	set_freepointer(df->s, object, NULL);
 | |
| 	df->tail = object;
 | |
| 	df->freelist = object;
 | |
| 	p[size] = NULL; /* mark object processed */
 | |
| 	df->cnt = 1;
 | |
| 
 | |
| 	while (size) {
 | |
| 		object = p[--size];
 | |
| 		if (!object)
 | |
| 			continue; /* Skip processed objects */
 | |
| 
 | |
| 		/* df->page is always set at this point */
 | |
| 		if (df->page == virt_to_head_page(object)) {
 | |
| 			/* Opportunity build freelist */
 | |
| 			set_freepointer(df->s, object, df->freelist);
 | |
| 			df->freelist = object;
 | |
| 			df->cnt++;
 | |
| 			p[size] = NULL; /* mark object processed */
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Limit look ahead search */
 | |
| 		if (!--lookahead)
 | |
| 			break;
 | |
| 
 | |
| 		if (!first_skipped_index)
 | |
| 			first_skipped_index = size + 1;
 | |
| 	}
 | |
| 
 | |
| 	return first_skipped_index;
 | |
| }
 | |
| 
 | |
| /* Note that interrupts must be enabled when calling this function. */
 | |
| void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
 | |
| {
 | |
| 	if (WARN_ON(!size))
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		struct detached_freelist df;
 | |
| 
 | |
| 		size = build_detached_freelist(s, size, p, &df);
 | |
| 		if (!df.page)
 | |
| 			continue;
 | |
| 
 | |
| 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
 | |
| 	} while (likely(size));
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free_bulk);
 | |
| 
 | |
| /* Note that interrupts must be enabled when calling this function. */
 | |
| int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
 | |
| 			  void **p)
 | |
| {
 | |
| 	struct kmem_cache_cpu *c;
 | |
| 	int i;
 | |
| 
 | |
| 	/* memcg and kmem_cache debug support */
 | |
| 	s = slab_pre_alloc_hook(s, flags);
 | |
| 	if (unlikely(!s))
 | |
| 		return false;
 | |
| 	/*
 | |
| 	 * Drain objects in the per cpu slab, while disabling local
 | |
| 	 * IRQs, which protects against PREEMPT and interrupts
 | |
| 	 * handlers invoking normal fastpath.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 	c = this_cpu_ptr(s->cpu_slab);
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		void *object = c->freelist;
 | |
| 
 | |
| 		if (unlikely(!object)) {
 | |
| 			/*
 | |
| 			 * Invoking slow path likely have side-effect
 | |
| 			 * of re-populating per CPU c->freelist
 | |
| 			 */
 | |
| 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
 | |
| 					    _RET_IP_, c);
 | |
| 			if (unlikely(!p[i]))
 | |
| 				goto error;
 | |
| 
 | |
| 			c = this_cpu_ptr(s->cpu_slab);
 | |
| 			continue; /* goto for-loop */
 | |
| 		}
 | |
| 		c->freelist = get_freepointer(s, object);
 | |
| 		p[i] = object;
 | |
| 	}
 | |
| 	c->tid = next_tid(c->tid);
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	/* Clear memory outside IRQ disabled fastpath loop */
 | |
| 	if (unlikely(flags & __GFP_ZERO)) {
 | |
| 		int j;
 | |
| 
 | |
| 		for (j = 0; j < i; j++)
 | |
| 			memset(p[j], 0, s->object_size);
 | |
| 	}
 | |
| 
 | |
| 	/* memcg and kmem_cache debug support */
 | |
| 	slab_post_alloc_hook(s, flags, size, p);
 | |
| 	return i;
 | |
| error:
 | |
| 	local_irq_enable();
 | |
| 	slab_post_alloc_hook(s, flags, i, p);
 | |
| 	__kmem_cache_free_bulk(s, i, p);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_bulk);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Object placement in a slab is made very easy because we always start at
 | |
|  * offset 0. If we tune the size of the object to the alignment then we can
 | |
|  * get the required alignment by putting one properly sized object after
 | |
|  * another.
 | |
|  *
 | |
|  * Notice that the allocation order determines the sizes of the per cpu
 | |
|  * caches. Each processor has always one slab available for allocations.
 | |
|  * Increasing the allocation order reduces the number of times that slabs
 | |
|  * must be moved on and off the partial lists and is therefore a factor in
 | |
|  * locking overhead.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Mininum / Maximum order of slab pages. This influences locking overhead
 | |
|  * and slab fragmentation. A higher order reduces the number of partial slabs
 | |
|  * and increases the number of allocations possible without having to
 | |
|  * take the list_lock.
 | |
|  */
 | |
| static unsigned int slub_min_order;
 | |
| static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
 | |
| static unsigned int slub_min_objects;
 | |
| 
 | |
| /*
 | |
|  * Calculate the order of allocation given an slab object size.
 | |
|  *
 | |
|  * The order of allocation has significant impact on performance and other
 | |
|  * system components. Generally order 0 allocations should be preferred since
 | |
|  * order 0 does not cause fragmentation in the page allocator. Larger objects
 | |
|  * be problematic to put into order 0 slabs because there may be too much
 | |
|  * unused space left. We go to a higher order if more than 1/16th of the slab
 | |
|  * would be wasted.
 | |
|  *
 | |
|  * In order to reach satisfactory performance we must ensure that a minimum
 | |
|  * number of objects is in one slab. Otherwise we may generate too much
 | |
|  * activity on the partial lists which requires taking the list_lock. This is
 | |
|  * less a concern for large slabs though which are rarely used.
 | |
|  *
 | |
|  * slub_max_order specifies the order where we begin to stop considering the
 | |
|  * number of objects in a slab as critical. If we reach slub_max_order then
 | |
|  * we try to keep the page order as low as possible. So we accept more waste
 | |
|  * of space in favor of a small page order.
 | |
|  *
 | |
|  * Higher order allocations also allow the placement of more objects in a
 | |
|  * slab and thereby reduce object handling overhead. If the user has
 | |
|  * requested a higher mininum order then we start with that one instead of
 | |
|  * the smallest order which will fit the object.
 | |
|  */
 | |
| static inline unsigned int slab_order(unsigned int size,
 | |
| 		unsigned int min_objects, unsigned int max_order,
 | |
| 		unsigned int fract_leftover)
 | |
| {
 | |
| 	unsigned int min_order = slub_min_order;
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
 | |
| 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
 | |
| 
 | |
| 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
 | |
| 			order <= max_order; order++) {
 | |
| 
 | |
| 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
 | |
| 		unsigned int rem;
 | |
| 
 | |
| 		rem = slab_size % size;
 | |
| 
 | |
| 		if (rem <= slab_size / fract_leftover)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return order;
 | |
| }
 | |
| 
 | |
| static inline int calculate_order(unsigned int size)
 | |
| {
 | |
| 	unsigned int order;
 | |
| 	unsigned int min_objects;
 | |
| 	unsigned int max_objects;
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt to find best configuration for a slab. This
 | |
| 	 * works by first attempting to generate a layout with
 | |
| 	 * the best configuration and backing off gradually.
 | |
| 	 *
 | |
| 	 * First we increase the acceptable waste in a slab. Then
 | |
| 	 * we reduce the minimum objects required in a slab.
 | |
| 	 */
 | |
| 	min_objects = slub_min_objects;
 | |
| 	if (!min_objects)
 | |
| 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
 | |
| 	max_objects = order_objects(slub_max_order, size);
 | |
| 	min_objects = min(min_objects, max_objects);
 | |
| 
 | |
| 	while (min_objects > 1) {
 | |
| 		unsigned int fraction;
 | |
| 
 | |
| 		fraction = 16;
 | |
| 		while (fraction >= 4) {
 | |
| 			order = slab_order(size, min_objects,
 | |
| 					slub_max_order, fraction);
 | |
| 			if (order <= slub_max_order)
 | |
| 				return order;
 | |
| 			fraction /= 2;
 | |
| 		}
 | |
| 		min_objects--;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We were unable to place multiple objects in a slab. Now
 | |
| 	 * lets see if we can place a single object there.
 | |
| 	 */
 | |
| 	order = slab_order(size, 1, slub_max_order, 1);
 | |
| 	if (order <= slub_max_order)
 | |
| 		return order;
 | |
| 
 | |
| 	/*
 | |
| 	 * Doh this slab cannot be placed using slub_max_order.
 | |
| 	 */
 | |
| 	order = slab_order(size, 1, MAX_ORDER, 1);
 | |
| 	if (order < MAX_ORDER)
 | |
| 		return order;
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_kmem_cache_node(struct kmem_cache_node *n)
 | |
| {
 | |
| 	n->nr_partial = 0;
 | |
| 	spin_lock_init(&n->list_lock);
 | |
| 	INIT_LIST_HEAD(&n->partial);
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	atomic_long_set(&n->nr_slabs, 0);
 | |
| 	atomic_long_set(&n->total_objects, 0);
 | |
| 	INIT_LIST_HEAD(&n->full);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
 | |
| {
 | |
| 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
 | |
| 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
 | |
| 
 | |
| 	/*
 | |
| 	 * Must align to double word boundary for the double cmpxchg
 | |
| 	 * instructions to work; see __pcpu_double_call_return_bool().
 | |
| 	 */
 | |
| 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
 | |
| 				     2 * sizeof(void *));
 | |
| 
 | |
| 	if (!s->cpu_slab)
 | |
| 		return 0;
 | |
| 
 | |
| 	init_kmem_cache_cpus(s);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *kmem_cache_node;
 | |
| 
 | |
| /*
 | |
|  * No kmalloc_node yet so do it by hand. We know that this is the first
 | |
|  * slab on the node for this slabcache. There are no concurrent accesses
 | |
|  * possible.
 | |
|  *
 | |
|  * Note that this function only works on the kmem_cache_node
 | |
|  * when allocating for the kmem_cache_node. This is used for bootstrapping
 | |
|  * memory on a fresh node that has no slab structures yet.
 | |
|  */
 | |
| static void early_kmem_cache_node_alloc(int node)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
 | |
| 
 | |
| 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
 | |
| 
 | |
| 	BUG_ON(!page);
 | |
| 	if (page_to_nid(page) != node) {
 | |
| 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
 | |
| 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
 | |
| 	}
 | |
| 
 | |
| 	n = page->freelist;
 | |
| 	BUG_ON(!n);
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
 | |
| 	init_tracking(kmem_cache_node, n);
 | |
| #endif
 | |
| 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
 | |
| 		      GFP_KERNEL);
 | |
| 	page->freelist = get_freepointer(kmem_cache_node, n);
 | |
| 	page->inuse = 1;
 | |
| 	page->frozen = 0;
 | |
| 	kmem_cache_node->node[node] = n;
 | |
| 	init_kmem_cache_node(n);
 | |
| 	inc_slabs_node(kmem_cache_node, node, page->objects);
 | |
| 
 | |
| 	/*
 | |
| 	 * No locks need to be taken here as it has just been
 | |
| 	 * initialized and there is no concurrent access.
 | |
| 	 */
 | |
| 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
 | |
| }
 | |
| 
 | |
| static void free_kmem_cache_nodes(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		s->node[node] = NULL;
 | |
| 		kmem_cache_free(kmem_cache_node, n);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __kmem_cache_release(struct kmem_cache *s)
 | |
| {
 | |
| 	cache_random_seq_destroy(s);
 | |
| 	free_percpu(s->cpu_slab);
 | |
| 	free_kmem_cache_nodes(s);
 | |
| }
 | |
| 
 | |
| static int init_kmem_cache_nodes(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_node_state(node, N_NORMAL_MEMORY) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		if (slab_state == DOWN) {
 | |
| 			early_kmem_cache_node_alloc(node);
 | |
| 			continue;
 | |
| 		}
 | |
| 		n = kmem_cache_alloc_node(kmem_cache_node,
 | |
| 						GFP_KERNEL, node);
 | |
| 
 | |
| 		if (!n) {
 | |
| 			free_kmem_cache_nodes(s);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		init_kmem_cache_node(n);
 | |
| 		s->node[node] = n;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void set_min_partial(struct kmem_cache *s, unsigned long min)
 | |
| {
 | |
| 	if (min < MIN_PARTIAL)
 | |
| 		min = MIN_PARTIAL;
 | |
| 	else if (min > MAX_PARTIAL)
 | |
| 		min = MAX_PARTIAL;
 | |
| 	s->min_partial = min;
 | |
| }
 | |
| 
 | |
| static void set_cpu_partial(struct kmem_cache *s)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 	/*
 | |
| 	 * cpu_partial determined the maximum number of objects kept in the
 | |
| 	 * per cpu partial lists of a processor.
 | |
| 	 *
 | |
| 	 * Per cpu partial lists mainly contain slabs that just have one
 | |
| 	 * object freed. If they are used for allocation then they can be
 | |
| 	 * filled up again with minimal effort. The slab will never hit the
 | |
| 	 * per node partial lists and therefore no locking will be required.
 | |
| 	 *
 | |
| 	 * This setting also determines
 | |
| 	 *
 | |
| 	 * A) The number of objects from per cpu partial slabs dumped to the
 | |
| 	 *    per node list when we reach the limit.
 | |
| 	 * B) The number of objects in cpu partial slabs to extract from the
 | |
| 	 *    per node list when we run out of per cpu objects. We only fetch
 | |
| 	 *    50% to keep some capacity around for frees.
 | |
| 	 */
 | |
| 	if (!kmem_cache_has_cpu_partial(s))
 | |
| 		s->cpu_partial = 0;
 | |
| 	else if (s->size >= PAGE_SIZE)
 | |
| 		s->cpu_partial = 2;
 | |
| 	else if (s->size >= 1024)
 | |
| 		s->cpu_partial = 6;
 | |
| 	else if (s->size >= 256)
 | |
| 		s->cpu_partial = 13;
 | |
| 	else
 | |
| 		s->cpu_partial = 30;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calculate_sizes() determines the order and the distribution of data within
 | |
|  * a slab object.
 | |
|  */
 | |
| static int calculate_sizes(struct kmem_cache *s, int forced_order)
 | |
| {
 | |
| 	slab_flags_t flags = s->flags;
 | |
| 	unsigned int size = s->object_size;
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	/*
 | |
| 	 * Round up object size to the next word boundary. We can only
 | |
| 	 * place the free pointer at word boundaries and this determines
 | |
| 	 * the possible location of the free pointer.
 | |
| 	 */
 | |
| 	size = ALIGN(size, sizeof(void *));
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	/*
 | |
| 	 * Determine if we can poison the object itself. If the user of
 | |
| 	 * the slab may touch the object after free or before allocation
 | |
| 	 * then we should never poison the object itself.
 | |
| 	 */
 | |
| 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
 | |
| 			!s->ctor)
 | |
| 		s->flags |= __OBJECT_POISON;
 | |
| 	else
 | |
| 		s->flags &= ~__OBJECT_POISON;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are Redzoning then check if there is some space between the
 | |
| 	 * end of the object and the free pointer. If not then add an
 | |
| 	 * additional word to have some bytes to store Redzone information.
 | |
| 	 */
 | |
| 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
 | |
| 		size += sizeof(void *);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * With that we have determined the number of bytes in actual use
 | |
| 	 * by the object. This is the potential offset to the free pointer.
 | |
| 	 */
 | |
| 	s->inuse = size;
 | |
| 
 | |
| 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
 | |
| 		s->ctor)) {
 | |
| 		/*
 | |
| 		 * Relocate free pointer after the object if it is not
 | |
| 		 * permitted to overwrite the first word of the object on
 | |
| 		 * kmem_cache_free.
 | |
| 		 *
 | |
| 		 * This is the case if we do RCU, have a constructor or
 | |
| 		 * destructor or are poisoning the objects.
 | |
| 		 */
 | |
| 		s->offset = size;
 | |
| 		size += sizeof(void *);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	if (flags & SLAB_STORE_USER)
 | |
| 		/*
 | |
| 		 * Need to store information about allocs and frees after
 | |
| 		 * the object.
 | |
| 		 */
 | |
| 		size += 2 * sizeof(struct track);
 | |
| #endif
 | |
| 
 | |
| 	kasan_cache_create(s, &size, &s->flags);
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	if (flags & SLAB_RED_ZONE) {
 | |
| 		/*
 | |
| 		 * Add some empty padding so that we can catch
 | |
| 		 * overwrites from earlier objects rather than let
 | |
| 		 * tracking information or the free pointer be
 | |
| 		 * corrupted if a user writes before the start
 | |
| 		 * of the object.
 | |
| 		 */
 | |
| 		size += sizeof(void *);
 | |
| 
 | |
| 		s->red_left_pad = sizeof(void *);
 | |
| 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
 | |
| 		size += s->red_left_pad;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * SLUB stores one object immediately after another beginning from
 | |
| 	 * offset 0. In order to align the objects we have to simply size
 | |
| 	 * each object to conform to the alignment.
 | |
| 	 */
 | |
| 	size = ALIGN(size, s->align);
 | |
| 	s->size = size;
 | |
| 	if (forced_order >= 0)
 | |
| 		order = forced_order;
 | |
| 	else
 | |
| 		order = calculate_order(size);
 | |
| 
 | |
| 	if ((int)order < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	s->allocflags = 0;
 | |
| 	if (order)
 | |
| 		s->allocflags |= __GFP_COMP;
 | |
| 
 | |
| 	if (s->flags & SLAB_CACHE_DMA)
 | |
| 		s->allocflags |= GFP_DMA;
 | |
| 
 | |
| 	if (s->flags & SLAB_CACHE_DMA32)
 | |
| 		s->allocflags |= GFP_DMA32;
 | |
| 
 | |
| 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 		s->allocflags |= __GFP_RECLAIMABLE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the number of objects per slab
 | |
| 	 */
 | |
| 	s->oo = oo_make(order, size);
 | |
| 	s->min = oo_make(get_order(size), size);
 | |
| 	if (oo_objects(s->oo) > oo_objects(s->max))
 | |
| 		s->max = s->oo;
 | |
| 
 | |
| 	return !!oo_objects(s->oo);
 | |
| }
 | |
| 
 | |
| static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
 | |
| {
 | |
| 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
 | |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED
 | |
| 	s->random = get_random_long();
 | |
| #endif
 | |
| 
 | |
| 	if (!calculate_sizes(s, -1))
 | |
| 		goto error;
 | |
| 	if (disable_higher_order_debug) {
 | |
| 		/*
 | |
| 		 * Disable debugging flags that store metadata if the min slab
 | |
| 		 * order increased.
 | |
| 		 */
 | |
| 		if (get_order(s->size) > get_order(s->object_size)) {
 | |
| 			s->flags &= ~DEBUG_METADATA_FLAGS;
 | |
| 			s->offset = 0;
 | |
| 			if (!calculate_sizes(s, -1))
 | |
| 				goto error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 | |
|     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 | |
| 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
 | |
| 		/* Enable fast mode */
 | |
| 		s->flags |= __CMPXCHG_DOUBLE;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * The larger the object size is, the more pages we want on the partial
 | |
| 	 * list to avoid pounding the page allocator excessively.
 | |
| 	 */
 | |
| 	set_min_partial(s, ilog2(s->size) / 2);
 | |
| 
 | |
| 	set_cpu_partial(s);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	s->remote_node_defrag_ratio = 1000;
 | |
| #endif
 | |
| 
 | |
| 	/* Initialize the pre-computed randomized freelist if slab is up */
 | |
| 	if (slab_state >= UP) {
 | |
| 		if (init_cache_random_seq(s))
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (!init_kmem_cache_nodes(s))
 | |
| 		goto error;
 | |
| 
 | |
| 	if (alloc_kmem_cache_cpus(s))
 | |
| 		return 0;
 | |
| 
 | |
| 	free_kmem_cache_nodes(s);
 | |
| error:
 | |
| 	if (flags & SLAB_PANIC)
 | |
| 		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
 | |
| 		      s->name, s->size, s->size,
 | |
| 		      oo_order(s->oo), s->offset, (unsigned long)flags);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void list_slab_objects(struct kmem_cache *s, struct page *page,
 | |
| 							const char *text)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	void *addr = page_address(page);
 | |
| 	void *p;
 | |
| 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
 | |
| 	if (!map)
 | |
| 		return;
 | |
| 	slab_err(s, page, text, s->name);
 | |
| 	slab_lock(page);
 | |
| 
 | |
| 	get_map(s, page, map);
 | |
| 	for_each_object(p, s, addr, page->objects) {
 | |
| 
 | |
| 		if (!test_bit(slab_index(p, s, addr), map)) {
 | |
| 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
 | |
| 			print_tracking(s, p);
 | |
| 		}
 | |
| 	}
 | |
| 	slab_unlock(page);
 | |
| 	bitmap_free(map);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to free all partial slabs on a node.
 | |
|  * This is called from __kmem_cache_shutdown(). We must take list_lock
 | |
|  * because sysfs file might still access partial list after the shutdowning.
 | |
|  */
 | |
| static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
 | |
| {
 | |
| 	LIST_HEAD(discard);
 | |
| 	struct page *page, *h;
 | |
| 
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 	spin_lock_irq(&n->list_lock);
 | |
| 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
 | |
| 		if (!page->inuse) {
 | |
| 			remove_partial(n, page);
 | |
| 			list_add(&page->slab_list, &discard);
 | |
| 		} else {
 | |
| 			list_slab_objects(s, page,
 | |
| 			"Objects remaining in %s on __kmem_cache_shutdown()");
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(&n->list_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(page, h, &discard, slab_list)
 | |
| 		discard_slab(s, page);
 | |
| }
 | |
| 
 | |
| bool __kmem_cache_empty(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n)
 | |
| 		if (n->nr_partial || slabs_node(s, node))
 | |
| 			return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release all resources used by a slab cache.
 | |
|  */
 | |
| int __kmem_cache_shutdown(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	flush_all(s);
 | |
| 	/* Attempt to free all objects */
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		free_partial(s, n);
 | |
| 		if (n->nr_partial || slabs_node(s, node))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	sysfs_slab_remove(s);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
|  *		Kmalloc subsystem
 | |
|  *******************************************************************/
 | |
| 
 | |
| static int __init setup_slub_min_order(char *str)
 | |
| {
 | |
| 	get_option(&str, (int *)&slub_min_order);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slub_min_order=", setup_slub_min_order);
 | |
| 
 | |
| static int __init setup_slub_max_order(char *str)
 | |
| {
 | |
| 	get_option(&str, (int *)&slub_max_order);
 | |
| 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slub_max_order=", setup_slub_max_order);
 | |
| 
 | |
| static int __init setup_slub_min_objects(char *str)
 | |
| {
 | |
| 	get_option(&str, (int *)&slub_min_objects);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slub_min_objects=", setup_slub_min_objects);
 | |
| 
 | |
| void *__kmalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
 | |
| 		return kmalloc_large(size, flags);
 | |
| 
 | |
| 	s = kmalloc_slab(size, flags);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 | |
| 		return s;
 | |
| 
 | |
| 	ret = slab_alloc(s, flags, _RET_IP_);
 | |
| 
 | |
| 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
 | |
| 
 | |
| 	ret = kasan_kmalloc(s, ret, size, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	void *ptr = NULL;
 | |
| 
 | |
| 	flags |= __GFP_COMP;
 | |
| 	page = alloc_pages_node(node, flags, get_order(size));
 | |
| 	if (page)
 | |
| 		ptr = page_address(page);
 | |
| 
 | |
| 	return kmalloc_large_node_hook(ptr, size, flags);
 | |
| }
 | |
| 
 | |
| void *__kmalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
 | |
| 		ret = kmalloc_large_node(size, flags, node);
 | |
| 
 | |
| 		trace_kmalloc_node(_RET_IP_, ret,
 | |
| 				   size, PAGE_SIZE << get_order(size),
 | |
| 				   flags, node);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	s = kmalloc_slab(size, flags);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 | |
| 		return s;
 | |
| 
 | |
| 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
 | |
| 
 | |
| 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
 | |
| 
 | |
| 	ret = kasan_kmalloc(s, ret, size, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc_node);
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| /*
 | |
|  * Rejects incorrectly sized objects and objects that are to be copied
 | |
|  * to/from userspace but do not fall entirely within the containing slab
 | |
|  * cache's usercopy region.
 | |
|  *
 | |
|  * Returns NULL if check passes, otherwise const char * to name of cache
 | |
|  * to indicate an error.
 | |
|  */
 | |
| void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
 | |
| 			 bool to_user)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	unsigned int offset;
 | |
| 	size_t object_size;
 | |
| 
 | |
| 	ptr = kasan_reset_tag(ptr);
 | |
| 
 | |
| 	/* Find object and usable object size. */
 | |
| 	s = page->slab_cache;
 | |
| 
 | |
| 	/* Reject impossible pointers. */
 | |
| 	if (ptr < page_address(page))
 | |
| 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
 | |
| 			       to_user, 0, n);
 | |
| 
 | |
| 	/* Find offset within object. */
 | |
| 	offset = (ptr - page_address(page)) % s->size;
 | |
| 
 | |
| 	/* Adjust for redzone and reject if within the redzone. */
 | |
| 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
 | |
| 		if (offset < s->red_left_pad)
 | |
| 			usercopy_abort("SLUB object in left red zone",
 | |
| 				       s->name, to_user, offset, n);
 | |
| 		offset -= s->red_left_pad;
 | |
| 	}
 | |
| 
 | |
| 	/* Allow address range falling entirely within usercopy region. */
 | |
| 	if (offset >= s->useroffset &&
 | |
| 	    offset - s->useroffset <= s->usersize &&
 | |
| 	    n <= s->useroffset - offset + s->usersize)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the copy is still within the allocated object, produce
 | |
| 	 * a warning instead of rejecting the copy. This is intended
 | |
| 	 * to be a temporary method to find any missing usercopy
 | |
| 	 * whitelists.
 | |
| 	 */
 | |
| 	object_size = slab_ksize(s);
 | |
| 	if (usercopy_fallback &&
 | |
| 	    offset <= object_size && n <= object_size - offset) {
 | |
| 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
 | |
| }
 | |
| #endif /* CONFIG_HARDENED_USERCOPY */
 | |
| 
 | |
| static size_t __ksize(const void *object)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (unlikely(object == ZERO_SIZE_PTR))
 | |
| 		return 0;
 | |
| 
 | |
| 	page = virt_to_head_page(object);
 | |
| 
 | |
| 	if (unlikely(!PageSlab(page))) {
 | |
| 		WARN_ON(!PageCompound(page));
 | |
| 		return PAGE_SIZE << compound_order(page);
 | |
| 	}
 | |
| 
 | |
| 	return slab_ksize(page->slab_cache);
 | |
| }
 | |
| 
 | |
| size_t ksize(const void *object)
 | |
| {
 | |
| 	size_t size = __ksize(object);
 | |
| 	/* We assume that ksize callers could use whole allocated area,
 | |
| 	 * so we need to unpoison this area.
 | |
| 	 */
 | |
| 	kasan_unpoison_shadow(object, size);
 | |
| 	return size;
 | |
| }
 | |
| EXPORT_SYMBOL(ksize);
 | |
| 
 | |
| void kfree(const void *x)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	void *object = (void *)x;
 | |
| 
 | |
| 	trace_kfree(_RET_IP_, x);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(x)))
 | |
| 		return;
 | |
| 
 | |
| 	page = virt_to_head_page(x);
 | |
| 	if (unlikely(!PageSlab(page))) {
 | |
| 		BUG_ON(!PageCompound(page));
 | |
| 		kfree_hook(object);
 | |
| 		__free_pages(page, compound_order(page));
 | |
| 		return;
 | |
| 	}
 | |
| 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(kfree);
 | |
| 
 | |
| #define SHRINK_PROMOTE_MAX 32
 | |
| 
 | |
| /*
 | |
|  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 | |
|  * up most to the head of the partial lists. New allocations will then
 | |
|  * fill those up and thus they can be removed from the partial lists.
 | |
|  *
 | |
|  * The slabs with the least items are placed last. This results in them
 | |
|  * being allocated from last increasing the chance that the last objects
 | |
|  * are freed in them.
 | |
|  */
 | |
| int __kmem_cache_shrink(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	int i;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct page *page;
 | |
| 	struct page *t;
 | |
| 	struct list_head discard;
 | |
| 	struct list_head promote[SHRINK_PROMOTE_MAX];
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	flush_all(s);
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		INIT_LIST_HEAD(&discard);
 | |
| 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
 | |
| 			INIT_LIST_HEAD(promote + i);
 | |
| 
 | |
| 		spin_lock_irqsave(&n->list_lock, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Build lists of slabs to discard or promote.
 | |
| 		 *
 | |
| 		 * Note that concurrent frees may occur while we hold the
 | |
| 		 * list_lock. page->inuse here is the upper limit.
 | |
| 		 */
 | |
| 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
 | |
| 			int free = page->objects - page->inuse;
 | |
| 
 | |
| 			/* Do not reread page->inuse */
 | |
| 			barrier();
 | |
| 
 | |
| 			/* We do not keep full slabs on the list */
 | |
| 			BUG_ON(free <= 0);
 | |
| 
 | |
| 			if (free == page->objects) {
 | |
| 				list_move(&page->slab_list, &discard);
 | |
| 				n->nr_partial--;
 | |
| 			} else if (free <= SHRINK_PROMOTE_MAX)
 | |
| 				list_move(&page->slab_list, promote + free - 1);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Promote the slabs filled up most to the head of the
 | |
| 		 * partial list.
 | |
| 		 */
 | |
| 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
 | |
| 			list_splice(promote + i, &n->partial);
 | |
| 
 | |
| 		spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 
 | |
| 		/* Release empty slabs */
 | |
| 		list_for_each_entry_safe(page, t, &discard, slab_list)
 | |
| 			discard_slab(s, page);
 | |
| 
 | |
| 		if (slabs_node(s, node))
 | |
| 			ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
 | |
| {
 | |
| 	/*
 | |
| 	 * Called with all the locks held after a sched RCU grace period.
 | |
| 	 * Even if @s becomes empty after shrinking, we can't know that @s
 | |
| 	 * doesn't have allocations already in-flight and thus can't
 | |
| 	 * destroy @s until the associated memcg is released.
 | |
| 	 *
 | |
| 	 * However, let's remove the sysfs files for empty caches here.
 | |
| 	 * Each cache has a lot of interface files which aren't
 | |
| 	 * particularly useful for empty draining caches; otherwise, we can
 | |
| 	 * easily end up with millions of unnecessary sysfs files on
 | |
| 	 * systems which have a lot of memory and transient cgroups.
 | |
| 	 */
 | |
| 	if (!__kmem_cache_shrink(s))
 | |
| 		sysfs_slab_remove(s);
 | |
| }
 | |
| 
 | |
| void __kmemcg_cache_deactivate(struct kmem_cache *s)
 | |
| {
 | |
| 	/*
 | |
| 	 * Disable empty slabs caching. Used to avoid pinning offline
 | |
| 	 * memory cgroups by kmem pages that can be freed.
 | |
| 	 */
 | |
| 	slub_set_cpu_partial(s, 0);
 | |
| 	s->min_partial = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
 | |
| 	 * we have to make sure the change is visible before shrinking.
 | |
| 	 */
 | |
| 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
 | |
| }
 | |
| #endif	/* CONFIG_MEMCG */
 | |
| 
 | |
| static int slab_mem_going_offline_callback(void *arg)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(s, &slab_caches, list)
 | |
| 		__kmem_cache_shrink(s);
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void slab_mem_offline_callback(void *arg)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct kmem_cache *s;
 | |
| 	struct memory_notify *marg = arg;
 | |
| 	int offline_node;
 | |
| 
 | |
| 	offline_node = marg->status_change_nid_normal;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the node still has available memory. we need kmem_cache_node
 | |
| 	 * for it yet.
 | |
| 	 */
 | |
| 	if (offline_node < 0)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		n = get_node(s, offline_node);
 | |
| 		if (n) {
 | |
| 			/*
 | |
| 			 * if n->nr_slabs > 0, slabs still exist on the node
 | |
| 			 * that is going down. We were unable to free them,
 | |
| 			 * and offline_pages() function shouldn't call this
 | |
| 			 * callback. So, we must fail.
 | |
| 			 */
 | |
| 			BUG_ON(slabs_node(s, offline_node));
 | |
| 
 | |
| 			s->node[offline_node] = NULL;
 | |
| 			kmem_cache_free(kmem_cache_node, n);
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| }
 | |
| 
 | |
| static int slab_mem_going_online_callback(void *arg)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct kmem_cache *s;
 | |
| 	struct memory_notify *marg = arg;
 | |
| 	int nid = marg->status_change_nid_normal;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the node's memory is already available, then kmem_cache_node is
 | |
| 	 * already created. Nothing to do.
 | |
| 	 */
 | |
| 	if (nid < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are bringing a node online. No memory is available yet. We must
 | |
| 	 * allocate a kmem_cache_node structure in order to bring the node
 | |
| 	 * online.
 | |
| 	 */
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		/*
 | |
| 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
 | |
| 		 *      since memory is not yet available from the node that
 | |
| 		 *      is brought up.
 | |
| 		 */
 | |
| 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
 | |
| 		if (!n) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		init_kmem_cache_node(n);
 | |
| 		s->node[nid] = n;
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int slab_memory_callback(struct notifier_block *self,
 | |
| 				unsigned long action, void *arg)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_GOING_ONLINE:
 | |
| 		ret = slab_mem_going_online_callback(arg);
 | |
| 		break;
 | |
| 	case MEM_GOING_OFFLINE:
 | |
| 		ret = slab_mem_going_offline_callback(arg);
 | |
| 		break;
 | |
| 	case MEM_OFFLINE:
 | |
| 	case MEM_CANCEL_ONLINE:
 | |
| 		slab_mem_offline_callback(arg);
 | |
| 		break;
 | |
| 	case MEM_ONLINE:
 | |
| 	case MEM_CANCEL_OFFLINE:
 | |
| 		break;
 | |
| 	}
 | |
| 	if (ret)
 | |
| 		ret = notifier_from_errno(ret);
 | |
| 	else
 | |
| 		ret = NOTIFY_OK;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct notifier_block slab_memory_callback_nb = {
 | |
| 	.notifier_call = slab_memory_callback,
 | |
| 	.priority = SLAB_CALLBACK_PRI,
 | |
| };
 | |
| 
 | |
| /********************************************************************
 | |
|  *			Basic setup of slabs
 | |
|  *******************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Used for early kmem_cache structures that were allocated using
 | |
|  * the page allocator. Allocate them properly then fix up the pointers
 | |
|  * that may be pointing to the wrong kmem_cache structure.
 | |
|  */
 | |
| 
 | |
| static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	memcpy(s, static_cache, kmem_cache->object_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * This runs very early, and only the boot processor is supposed to be
 | |
| 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
 | |
| 	 * IPIs around.
 | |
| 	 */
 | |
| 	__flush_cpu_slab(s, smp_processor_id());
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		struct page *p;
 | |
| 
 | |
| 		list_for_each_entry(p, &n->partial, slab_list)
 | |
| 			p->slab_cache = s;
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 		list_for_each_entry(p, &n->full, slab_list)
 | |
| 			p->slab_cache = s;
 | |
| #endif
 | |
| 	}
 | |
| 	slab_init_memcg_params(s);
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	memcg_link_cache(s);
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| void __init kmem_cache_init(void)
 | |
| {
 | |
| 	static __initdata struct kmem_cache boot_kmem_cache,
 | |
| 		boot_kmem_cache_node;
 | |
| 
 | |
| 	if (debug_guardpage_minorder())
 | |
| 		slub_max_order = 0;
 | |
| 
 | |
| 	kmem_cache_node = &boot_kmem_cache_node;
 | |
| 	kmem_cache = &boot_kmem_cache;
 | |
| 
 | |
| 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
 | |
| 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
 | |
| 
 | |
| 	register_hotmemory_notifier(&slab_memory_callback_nb);
 | |
| 
 | |
| 	/* Able to allocate the per node structures */
 | |
| 	slab_state = PARTIAL;
 | |
| 
 | |
| 	create_boot_cache(kmem_cache, "kmem_cache",
 | |
| 			offsetof(struct kmem_cache, node) +
 | |
| 				nr_node_ids * sizeof(struct kmem_cache_node *),
 | |
| 		       SLAB_HWCACHE_ALIGN, 0, 0);
 | |
| 
 | |
| 	kmem_cache = bootstrap(&boot_kmem_cache);
 | |
| 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
 | |
| 
 | |
| 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
 | |
| 	setup_kmalloc_cache_index_table();
 | |
| 	create_kmalloc_caches(0);
 | |
| 
 | |
| 	/* Setup random freelists for each cache */
 | |
| 	init_freelist_randomization();
 | |
| 
 | |
| 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
 | |
| 				  slub_cpu_dead);
 | |
| 
 | |
| 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
 | |
| 		cache_line_size(),
 | |
| 		slub_min_order, slub_max_order, slub_min_objects,
 | |
| 		nr_cpu_ids, nr_node_ids);
 | |
| }
 | |
| 
 | |
| void __init kmem_cache_init_late(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| struct kmem_cache *
 | |
| __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
 | |
| 		   slab_flags_t flags, void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *s, *c;
 | |
| 
 | |
| 	s = find_mergeable(size, align, flags, name, ctor);
 | |
| 	if (s) {
 | |
| 		s->refcount++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust the object sizes so that we clear
 | |
| 		 * the complete object on kzalloc.
 | |
| 		 */
 | |
| 		s->object_size = max(s->object_size, size);
 | |
| 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
 | |
| 
 | |
| 		for_each_memcg_cache(c, s) {
 | |
| 			c->object_size = s->object_size;
 | |
| 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
 | |
| 		}
 | |
| 
 | |
| 		if (sysfs_slab_alias(s, name)) {
 | |
| 			s->refcount--;
 | |
| 			s = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = kmem_cache_open(s, flags);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Mutex is not taken during early boot */
 | |
| 	if (slab_state <= UP)
 | |
| 		return 0;
 | |
| 
 | |
| 	memcg_propagate_slab_attrs(s);
 | |
| 	err = sysfs_slab_add(s);
 | |
| 	if (err)
 | |
| 		__kmem_cache_release(s);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
 | |
| 		return kmalloc_large(size, gfpflags);
 | |
| 
 | |
| 	s = kmalloc_slab(size, gfpflags);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 | |
| 		return s;
 | |
| 
 | |
| 	ret = slab_alloc(s, gfpflags, caller);
 | |
| 
 | |
| 	/* Honor the call site pointer we received. */
 | |
| 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
 | |
| 					int node, unsigned long caller)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
 | |
| 		ret = kmalloc_large_node(size, gfpflags, node);
 | |
| 
 | |
| 		trace_kmalloc_node(caller, ret,
 | |
| 				   size, PAGE_SIZE << get_order(size),
 | |
| 				   gfpflags, node);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	s = kmalloc_slab(size, gfpflags);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 | |
| 		return s;
 | |
| 
 | |
| 	ret = slab_alloc_node(s, gfpflags, node, caller);
 | |
| 
 | |
| 	/* Honor the call site pointer we received. */
 | |
| 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| static int count_inuse(struct page *page)
 | |
| {
 | |
| 	return page->inuse;
 | |
| }
 | |
| 
 | |
| static int count_total(struct page *page)
 | |
| {
 | |
| 	return page->objects;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static int validate_slab(struct kmem_cache *s, struct page *page,
 | |
| 						unsigned long *map)
 | |
| {
 | |
| 	void *p;
 | |
| 	void *addr = page_address(page);
 | |
| 
 | |
| 	if (!check_slab(s, page) ||
 | |
| 			!on_freelist(s, page, NULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Now we know that a valid freelist exists */
 | |
| 	bitmap_zero(map, page->objects);
 | |
| 
 | |
| 	get_map(s, page, map);
 | |
| 	for_each_object(p, s, addr, page->objects) {
 | |
| 		if (test_bit(slab_index(p, s, addr), map))
 | |
| 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
 | |
| 				return 0;
 | |
| 	}
 | |
| 
 | |
| 	for_each_object(p, s, addr, page->objects)
 | |
| 		if (!test_bit(slab_index(p, s, addr), map))
 | |
| 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
 | |
| 				return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void validate_slab_slab(struct kmem_cache *s, struct page *page,
 | |
| 						unsigned long *map)
 | |
| {
 | |
| 	slab_lock(page);
 | |
| 	validate_slab(s, page, map);
 | |
| 	slab_unlock(page);
 | |
| }
 | |
| 
 | |
| static int validate_slab_node(struct kmem_cache *s,
 | |
| 		struct kmem_cache_node *n, unsigned long *map)
 | |
| {
 | |
| 	unsigned long count = 0;
 | |
| 	struct page *page;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry(page, &n->partial, slab_list) {
 | |
| 		validate_slab_slab(s, page, map);
 | |
| 		count++;
 | |
| 	}
 | |
| 	if (count != n->nr_partial)
 | |
| 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
 | |
| 		       s->name, count, n->nr_partial);
 | |
| 
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		goto out;
 | |
| 
 | |
| 	list_for_each_entry(page, &n->full, slab_list) {
 | |
| 		validate_slab_slab(s, page, map);
 | |
| 		count++;
 | |
| 	}
 | |
| 	if (count != atomic_long_read(&n->nr_slabs))
 | |
| 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
 | |
| 		       s->name, count, atomic_long_read(&n->nr_slabs));
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static long validate_slab_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	unsigned long count = 0;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
 | |
| 
 | |
| 	if (!map)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	flush_all(s);
 | |
| 	for_each_kmem_cache_node(s, node, n)
 | |
| 		count += validate_slab_node(s, n, map);
 | |
| 	bitmap_free(map);
 | |
| 	return count;
 | |
| }
 | |
| /*
 | |
|  * Generate lists of code addresses where slabcache objects are allocated
 | |
|  * and freed.
 | |
|  */
 | |
| 
 | |
| struct location {
 | |
| 	unsigned long count;
 | |
| 	unsigned long addr;
 | |
| 	long long sum_time;
 | |
| 	long min_time;
 | |
| 	long max_time;
 | |
| 	long min_pid;
 | |
| 	long max_pid;
 | |
| 	DECLARE_BITMAP(cpus, NR_CPUS);
 | |
| 	nodemask_t nodes;
 | |
| };
 | |
| 
 | |
| struct loc_track {
 | |
| 	unsigned long max;
 | |
| 	unsigned long count;
 | |
| 	struct location *loc;
 | |
| };
 | |
| 
 | |
| static void free_loc_track(struct loc_track *t)
 | |
| {
 | |
| 	if (t->max)
 | |
| 		free_pages((unsigned long)t->loc,
 | |
| 			get_order(sizeof(struct location) * t->max));
 | |
| }
 | |
| 
 | |
| static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
 | |
| {
 | |
| 	struct location *l;
 | |
| 	int order;
 | |
| 
 | |
| 	order = get_order(sizeof(struct location) * max);
 | |
| 
 | |
| 	l = (void *)__get_free_pages(flags, order);
 | |
| 	if (!l)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (t->count) {
 | |
| 		memcpy(l, t->loc, sizeof(struct location) * t->count);
 | |
| 		free_loc_track(t);
 | |
| 	}
 | |
| 	t->max = max;
 | |
| 	t->loc = l;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int add_location(struct loc_track *t, struct kmem_cache *s,
 | |
| 				const struct track *track)
 | |
| {
 | |
| 	long start, end, pos;
 | |
| 	struct location *l;
 | |
| 	unsigned long caddr;
 | |
| 	unsigned long age = jiffies - track->when;
 | |
| 
 | |
| 	start = -1;
 | |
| 	end = t->count;
 | |
| 
 | |
| 	for ( ; ; ) {
 | |
| 		pos = start + (end - start + 1) / 2;
 | |
| 
 | |
| 		/*
 | |
| 		 * There is nothing at "end". If we end up there
 | |
| 		 * we need to add something to before end.
 | |
| 		 */
 | |
| 		if (pos == end)
 | |
| 			break;
 | |
| 
 | |
| 		caddr = t->loc[pos].addr;
 | |
| 		if (track->addr == caddr) {
 | |
| 
 | |
| 			l = &t->loc[pos];
 | |
| 			l->count++;
 | |
| 			if (track->when) {
 | |
| 				l->sum_time += age;
 | |
| 				if (age < l->min_time)
 | |
| 					l->min_time = age;
 | |
| 				if (age > l->max_time)
 | |
| 					l->max_time = age;
 | |
| 
 | |
| 				if (track->pid < l->min_pid)
 | |
| 					l->min_pid = track->pid;
 | |
| 				if (track->pid > l->max_pid)
 | |
| 					l->max_pid = track->pid;
 | |
| 
 | |
| 				cpumask_set_cpu(track->cpu,
 | |
| 						to_cpumask(l->cpus));
 | |
| 			}
 | |
| 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		if (track->addr < caddr)
 | |
| 			end = pos;
 | |
| 		else
 | |
| 			start = pos;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Not found. Insert new tracking element.
 | |
| 	 */
 | |
| 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
 | |
| 		return 0;
 | |
| 
 | |
| 	l = t->loc + pos;
 | |
| 	if (pos < t->count)
 | |
| 		memmove(l + 1, l,
 | |
| 			(t->count - pos) * sizeof(struct location));
 | |
| 	t->count++;
 | |
| 	l->count = 1;
 | |
| 	l->addr = track->addr;
 | |
| 	l->sum_time = age;
 | |
| 	l->min_time = age;
 | |
| 	l->max_time = age;
 | |
| 	l->min_pid = track->pid;
 | |
| 	l->max_pid = track->pid;
 | |
| 	cpumask_clear(to_cpumask(l->cpus));
 | |
| 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
 | |
| 	nodes_clear(l->nodes);
 | |
| 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void process_slab(struct loc_track *t, struct kmem_cache *s,
 | |
| 		struct page *page, enum track_item alloc,
 | |
| 		unsigned long *map)
 | |
| {
 | |
| 	void *addr = page_address(page);
 | |
| 	void *p;
 | |
| 
 | |
| 	bitmap_zero(map, page->objects);
 | |
| 	get_map(s, page, map);
 | |
| 
 | |
| 	for_each_object(p, s, addr, page->objects)
 | |
| 		if (!test_bit(slab_index(p, s, addr), map))
 | |
| 			add_location(t, s, get_track(s, p, alloc));
 | |
| }
 | |
| 
 | |
| static int list_locations(struct kmem_cache *s, char *buf,
 | |
| 					enum track_item alloc)
 | |
| {
 | |
| 	int len = 0;
 | |
| 	unsigned long i;
 | |
| 	struct loc_track t = { 0, 0, NULL };
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
 | |
| 
 | |
| 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
 | |
| 				     GFP_KERNEL)) {
 | |
| 		bitmap_free(map);
 | |
| 		return sprintf(buf, "Out of memory\n");
 | |
| 	}
 | |
| 	/* Push back cpu slabs */
 | |
| 	flush_all(s);
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		unsigned long flags;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (!atomic_long_read(&n->nr_slabs))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irqsave(&n->list_lock, flags);
 | |
| 		list_for_each_entry(page, &n->partial, slab_list)
 | |
| 			process_slab(&t, s, page, alloc, map);
 | |
| 		list_for_each_entry(page, &n->full, slab_list)
 | |
| 			process_slab(&t, s, page, alloc, map);
 | |
| 		spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < t.count; i++) {
 | |
| 		struct location *l = &t.loc[i];
 | |
| 
 | |
| 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
 | |
| 			break;
 | |
| 		len += sprintf(buf + len, "%7ld ", l->count);
 | |
| 
 | |
| 		if (l->addr)
 | |
| 			len += sprintf(buf + len, "%pS", (void *)l->addr);
 | |
| 		else
 | |
| 			len += sprintf(buf + len, "<not-available>");
 | |
| 
 | |
| 		if (l->sum_time != l->min_time) {
 | |
| 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
 | |
| 				l->min_time,
 | |
| 				(long)div_u64(l->sum_time, l->count),
 | |
| 				l->max_time);
 | |
| 		} else
 | |
| 			len += sprintf(buf + len, " age=%ld",
 | |
| 				l->min_time);
 | |
| 
 | |
| 		if (l->min_pid != l->max_pid)
 | |
| 			len += sprintf(buf + len, " pid=%ld-%ld",
 | |
| 				l->min_pid, l->max_pid);
 | |
| 		else
 | |
| 			len += sprintf(buf + len, " pid=%ld",
 | |
| 				l->min_pid);
 | |
| 
 | |
| 		if (num_online_cpus() > 1 &&
 | |
| 				!cpumask_empty(to_cpumask(l->cpus)) &&
 | |
| 				len < PAGE_SIZE - 60)
 | |
| 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
 | |
| 					 " cpus=%*pbl",
 | |
| 					 cpumask_pr_args(to_cpumask(l->cpus)));
 | |
| 
 | |
| 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
 | |
| 				len < PAGE_SIZE - 60)
 | |
| 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
 | |
| 					 " nodes=%*pbl",
 | |
| 					 nodemask_pr_args(&l->nodes));
 | |
| 
 | |
| 		len += sprintf(buf + len, "\n");
 | |
| 	}
 | |
| 
 | |
| 	free_loc_track(&t);
 | |
| 	bitmap_free(map);
 | |
| 	if (!t.count)
 | |
| 		len += sprintf(buf, "No data\n");
 | |
| 	return len;
 | |
| }
 | |
| #endif	/* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| #ifdef SLUB_RESILIENCY_TEST
 | |
| static void __init resiliency_test(void)
 | |
| {
 | |
| 	u8 *p;
 | |
| 	int type = KMALLOC_NORMAL;
 | |
| 
 | |
| 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
 | |
| 
 | |
| 	pr_err("SLUB resiliency testing\n");
 | |
| 	pr_err("-----------------------\n");
 | |
| 	pr_err("A. Corruption after allocation\n");
 | |
| 
 | |
| 	p = kzalloc(16, GFP_KERNEL);
 | |
| 	p[16] = 0x12;
 | |
| 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
 | |
| 	       p + 16);
 | |
| 
 | |
| 	validate_slab_cache(kmalloc_caches[type][4]);
 | |
| 
 | |
| 	/* Hmmm... The next two are dangerous */
 | |
| 	p = kzalloc(32, GFP_KERNEL);
 | |
| 	p[32 + sizeof(void *)] = 0x34;
 | |
| 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
 | |
| 	       p);
 | |
| 	pr_err("If allocated object is overwritten then not detectable\n\n");
 | |
| 
 | |
| 	validate_slab_cache(kmalloc_caches[type][5]);
 | |
| 	p = kzalloc(64, GFP_KERNEL);
 | |
| 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
 | |
| 	*p = 0x56;
 | |
| 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
 | |
| 	       p);
 | |
| 	pr_err("If allocated object is overwritten then not detectable\n\n");
 | |
| 	validate_slab_cache(kmalloc_caches[type][6]);
 | |
| 
 | |
| 	pr_err("\nB. Corruption after free\n");
 | |
| 	p = kzalloc(128, GFP_KERNEL);
 | |
| 	kfree(p);
 | |
| 	*p = 0x78;
 | |
| 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
 | |
| 	validate_slab_cache(kmalloc_caches[type][7]);
 | |
| 
 | |
| 	p = kzalloc(256, GFP_KERNEL);
 | |
| 	kfree(p);
 | |
| 	p[50] = 0x9a;
 | |
| 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
 | |
| 	validate_slab_cache(kmalloc_caches[type][8]);
 | |
| 
 | |
| 	p = kzalloc(512, GFP_KERNEL);
 | |
| 	kfree(p);
 | |
| 	p[512] = 0xab;
 | |
| 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
 | |
| 	validate_slab_cache(kmalloc_caches[type][9]);
 | |
| }
 | |
| #else
 | |
| #ifdef CONFIG_SYSFS
 | |
| static void resiliency_test(void) {};
 | |
| #endif
 | |
| #endif	/* SLUB_RESILIENCY_TEST */
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| enum slab_stat_type {
 | |
| 	SL_ALL,			/* All slabs */
 | |
| 	SL_PARTIAL,		/* Only partially allocated slabs */
 | |
| 	SL_CPU,			/* Only slabs used for cpu caches */
 | |
| 	SL_OBJECTS,		/* Determine allocated objects not slabs */
 | |
| 	SL_TOTAL		/* Determine object capacity not slabs */
 | |
| };
 | |
| 
 | |
| #define SO_ALL		(1 << SL_ALL)
 | |
| #define SO_PARTIAL	(1 << SL_PARTIAL)
 | |
| #define SO_CPU		(1 << SL_CPU)
 | |
| #define SO_OBJECTS	(1 << SL_OBJECTS)
 | |
| #define SO_TOTAL	(1 << SL_TOTAL)
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
 | |
| 
 | |
| static int __init setup_slub_memcg_sysfs(char *str)
 | |
| {
 | |
| 	int v;
 | |
| 
 | |
| 	if (get_option(&str, &v) > 0)
 | |
| 		memcg_sysfs_enabled = v;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
 | |
| #endif
 | |
| 
 | |
| static ssize_t show_slab_objects(struct kmem_cache *s,
 | |
| 			    char *buf, unsigned long flags)
 | |
| {
 | |
| 	unsigned long total = 0;
 | |
| 	int node;
 | |
| 	int x;
 | |
| 	unsigned long *nodes;
 | |
| 
 | |
| 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
 | |
| 	if (!nodes)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (flags & SO_CPU) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
 | |
| 							       cpu);
 | |
| 			int node;
 | |
| 			struct page *page;
 | |
| 
 | |
| 			page = READ_ONCE(c->page);
 | |
| 			if (!page)
 | |
| 				continue;
 | |
| 
 | |
| 			node = page_to_nid(page);
 | |
| 			if (flags & SO_TOTAL)
 | |
| 				x = page->objects;
 | |
| 			else if (flags & SO_OBJECTS)
 | |
| 				x = page->inuse;
 | |
| 			else
 | |
| 				x = 1;
 | |
| 
 | |
| 			total += x;
 | |
| 			nodes[node] += x;
 | |
| 
 | |
| 			page = slub_percpu_partial_read_once(c);
 | |
| 			if (page) {
 | |
| 				node = page_to_nid(page);
 | |
| 				if (flags & SO_TOTAL)
 | |
| 					WARN_ON_ONCE(1);
 | |
| 				else if (flags & SO_OBJECTS)
 | |
| 					WARN_ON_ONCE(1);
 | |
| 				else
 | |
| 					x = page->pages;
 | |
| 				total += x;
 | |
| 				nodes[node] += x;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	get_online_mems();
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	if (flags & SO_ALL) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		for_each_kmem_cache_node(s, node, n) {
 | |
| 
 | |
| 			if (flags & SO_TOTAL)
 | |
| 				x = atomic_long_read(&n->total_objects);
 | |
| 			else if (flags & SO_OBJECTS)
 | |
| 				x = atomic_long_read(&n->total_objects) -
 | |
| 					count_partial(n, count_free);
 | |
| 			else
 | |
| 				x = atomic_long_read(&n->nr_slabs);
 | |
| 			total += x;
 | |
| 			nodes[node] += x;
 | |
| 		}
 | |
| 
 | |
| 	} else
 | |
| #endif
 | |
| 	if (flags & SO_PARTIAL) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		for_each_kmem_cache_node(s, node, n) {
 | |
| 			if (flags & SO_TOTAL)
 | |
| 				x = count_partial(n, count_total);
 | |
| 			else if (flags & SO_OBJECTS)
 | |
| 				x = count_partial(n, count_inuse);
 | |
| 			else
 | |
| 				x = n->nr_partial;
 | |
| 			total += x;
 | |
| 			nodes[node] += x;
 | |
| 		}
 | |
| 	}
 | |
| 	x = sprintf(buf, "%lu", total);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	for (node = 0; node < nr_node_ids; node++)
 | |
| 		if (nodes[node])
 | |
| 			x += sprintf(buf + x, " N%d=%lu",
 | |
| 					node, nodes[node]);
 | |
| #endif
 | |
| 	put_online_mems();
 | |
| 	kfree(nodes);
 | |
| 	return x + sprintf(buf + x, "\n");
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static int any_slab_objects(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n)
 | |
| 		if (atomic_long_read(&n->total_objects))
 | |
| 			return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
 | |
| #define to_slab(n) container_of(n, struct kmem_cache, kobj)
 | |
| 
 | |
| struct slab_attribute {
 | |
| 	struct attribute attr;
 | |
| 	ssize_t (*show)(struct kmem_cache *s, char *buf);
 | |
| 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
 | |
| };
 | |
| 
 | |
| #define SLAB_ATTR_RO(_name) \
 | |
| 	static struct slab_attribute _name##_attr = \
 | |
| 	__ATTR(_name, 0400, _name##_show, NULL)
 | |
| 
 | |
| #define SLAB_ATTR(_name) \
 | |
| 	static struct slab_attribute _name##_attr =  \
 | |
| 	__ATTR(_name, 0600, _name##_show, _name##_store)
 | |
| 
 | |
| static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", s->size);
 | |
| }
 | |
| SLAB_ATTR_RO(slab_size);
 | |
| 
 | |
| static ssize_t align_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", s->align);
 | |
| }
 | |
| SLAB_ATTR_RO(align);
 | |
| 
 | |
| static ssize_t object_size_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", s->object_size);
 | |
| }
 | |
| SLAB_ATTR_RO(object_size);
 | |
| 
 | |
| static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", oo_objects(s->oo));
 | |
| }
 | |
| SLAB_ATTR_RO(objs_per_slab);
 | |
| 
 | |
| static ssize_t order_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	unsigned int order;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtouint(buf, 10, &order);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (order > slub_max_order || order < slub_min_order)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	calculate_sizes(s, order);
 | |
| 	return length;
 | |
| }
 | |
| 
 | |
| static ssize_t order_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", oo_order(s->oo));
 | |
| }
 | |
| SLAB_ATTR(order);
 | |
| 
 | |
| static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%lu\n", s->min_partial);
 | |
| }
 | |
| 
 | |
| static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
 | |
| 				 size_t length)
 | |
| {
 | |
| 	unsigned long min;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &min);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	set_min_partial(s, min);
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(min_partial);
 | |
| 
 | |
| static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
 | |
| }
 | |
| 
 | |
| static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
 | |
| 				 size_t length)
 | |
| {
 | |
| 	unsigned int objects;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtouint(buf, 10, &objects);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (objects && !kmem_cache_has_cpu_partial(s))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	slub_set_cpu_partial(s, objects);
 | |
| 	flush_all(s);
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(cpu_partial);
 | |
| 
 | |
| static ssize_t ctor_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	if (!s->ctor)
 | |
| 		return 0;
 | |
| 	return sprintf(buf, "%pS\n", s->ctor);
 | |
| }
 | |
| SLAB_ATTR_RO(ctor);
 | |
| 
 | |
| static ssize_t aliases_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
 | |
| }
 | |
| SLAB_ATTR_RO(aliases);
 | |
| 
 | |
| static ssize_t partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_PARTIAL);
 | |
| }
 | |
| SLAB_ATTR_RO(partial);
 | |
| 
 | |
| static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_CPU);
 | |
| }
 | |
| SLAB_ATTR_RO(cpu_slabs);
 | |
| 
 | |
| static ssize_t objects_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
 | |
| }
 | |
| SLAB_ATTR_RO(objects);
 | |
| 
 | |
| static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
 | |
| }
 | |
| SLAB_ATTR_RO(objects_partial);
 | |
| 
 | |
| static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	int objects = 0;
 | |
| 	int pages = 0;
 | |
| 	int cpu;
 | |
| 	int len;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
 | |
| 
 | |
| 		if (page) {
 | |
| 			pages += page->pages;
 | |
| 			objects += page->pobjects;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	len = sprintf(buf, "%d(%d)", objects, pages);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
 | |
| 
 | |
| 		if (page && len < PAGE_SIZE - 20)
 | |
| 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
 | |
| 				page->pobjects, page->pages);
 | |
| 	}
 | |
| #endif
 | |
| 	return len + sprintf(buf + len, "\n");
 | |
| }
 | |
| SLAB_ATTR_RO(slabs_cpu_partial);
 | |
| 
 | |
| static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
 | |
| }
 | |
| 
 | |
| static ssize_t reclaim_account_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
 | |
| 	if (buf[0] == '1')
 | |
| 		s->flags |= SLAB_RECLAIM_ACCOUNT;
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(reclaim_account);
 | |
| 
 | |
| static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
 | |
| }
 | |
| SLAB_ATTR_RO(hwcache_align);
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
 | |
| }
 | |
| SLAB_ATTR_RO(cache_dma);
 | |
| #endif
 | |
| 
 | |
| static ssize_t usersize_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", s->usersize);
 | |
| }
 | |
| SLAB_ATTR_RO(usersize);
 | |
| 
 | |
| static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
 | |
| }
 | |
| SLAB_ATTR_RO(destroy_by_rcu);
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static ssize_t slabs_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_ALL);
 | |
| }
 | |
| SLAB_ATTR_RO(slabs);
 | |
| 
 | |
| static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
 | |
| }
 | |
| SLAB_ATTR_RO(total_objects);
 | |
| 
 | |
| static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
 | |
| }
 | |
| 
 | |
| static ssize_t sanity_checks_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
 | |
| 	if (buf[0] == '1') {
 | |
| 		s->flags &= ~__CMPXCHG_DOUBLE;
 | |
| 		s->flags |= SLAB_CONSISTENCY_CHECKS;
 | |
| 	}
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(sanity_checks);
 | |
| 
 | |
| static ssize_t trace_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
 | |
| }
 | |
| 
 | |
| static ssize_t trace_store(struct kmem_cache *s, const char *buf,
 | |
| 							size_t length)
 | |
| {
 | |
| 	/*
 | |
| 	 * Tracing a merged cache is going to give confusing results
 | |
| 	 * as well as cause other issues like converting a mergeable
 | |
| 	 * cache into an umergeable one.
 | |
| 	 */
 | |
| 	if (s->refcount > 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	s->flags &= ~SLAB_TRACE;
 | |
| 	if (buf[0] == '1') {
 | |
| 		s->flags &= ~__CMPXCHG_DOUBLE;
 | |
| 		s->flags |= SLAB_TRACE;
 | |
| 	}
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(trace);
 | |
| 
 | |
| static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
 | |
| }
 | |
| 
 | |
| static ssize_t red_zone_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	if (any_slab_objects(s))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	s->flags &= ~SLAB_RED_ZONE;
 | |
| 	if (buf[0] == '1') {
 | |
| 		s->flags |= SLAB_RED_ZONE;
 | |
| 	}
 | |
| 	calculate_sizes(s, -1);
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(red_zone);
 | |
| 
 | |
| static ssize_t poison_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
 | |
| }
 | |
| 
 | |
| static ssize_t poison_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	if (any_slab_objects(s))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	s->flags &= ~SLAB_POISON;
 | |
| 	if (buf[0] == '1') {
 | |
| 		s->flags |= SLAB_POISON;
 | |
| 	}
 | |
| 	calculate_sizes(s, -1);
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(poison);
 | |
| 
 | |
| static ssize_t store_user_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
 | |
| }
 | |
| 
 | |
| static ssize_t store_user_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	if (any_slab_objects(s))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	s->flags &= ~SLAB_STORE_USER;
 | |
| 	if (buf[0] == '1') {
 | |
| 		s->flags &= ~__CMPXCHG_DOUBLE;
 | |
| 		s->flags |= SLAB_STORE_USER;
 | |
| 	}
 | |
| 	calculate_sizes(s, -1);
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(store_user);
 | |
| 
 | |
| static ssize_t validate_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t validate_store(struct kmem_cache *s,
 | |
| 			const char *buf, size_t length)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (buf[0] == '1') {
 | |
| 		ret = validate_slab_cache(s);
 | |
| 		if (ret >= 0)
 | |
| 			ret = length;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| SLAB_ATTR(validate);
 | |
| 
 | |
| static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return -ENOSYS;
 | |
| 	return list_locations(s, buf, TRACK_ALLOC);
 | |
| }
 | |
| SLAB_ATTR_RO(alloc_calls);
 | |
| 
 | |
| static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return -ENOSYS;
 | |
| 	return list_locations(s, buf, TRACK_FREE);
 | |
| }
 | |
| SLAB_ATTR_RO(free_calls);
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| #ifdef CONFIG_FAILSLAB
 | |
| static ssize_t failslab_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
 | |
| }
 | |
| 
 | |
| static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
 | |
| 							size_t length)
 | |
| {
 | |
| 	if (s->refcount > 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	s->flags &= ~SLAB_FAILSLAB;
 | |
| 	if (buf[0] == '1')
 | |
| 		s->flags |= SLAB_FAILSLAB;
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(failslab);
 | |
| #endif
 | |
| 
 | |
| static ssize_t shrink_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t shrink_store(struct kmem_cache *s,
 | |
| 			const char *buf, size_t length)
 | |
| {
 | |
| 	if (buf[0] == '1')
 | |
| 		kmem_cache_shrink(s);
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(shrink);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
 | |
| }
 | |
| 
 | |
| static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	unsigned int ratio;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtouint(buf, 10, &ratio);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (ratio > 100)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	s->remote_node_defrag_ratio = ratio * 10;
 | |
| 
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(remote_node_defrag_ratio);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
 | |
| {
 | |
| 	unsigned long sum  = 0;
 | |
| 	int cpu;
 | |
| 	int len;
 | |
| 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
 | |
| 
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
 | |
| 
 | |
| 		data[cpu] = x;
 | |
| 		sum += x;
 | |
| 	}
 | |
| 
 | |
| 	len = sprintf(buf, "%lu", sum);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (data[cpu] && len < PAGE_SIZE - 20)
 | |
| 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
 | |
| 	}
 | |
| #endif
 | |
| 	kfree(data);
 | |
| 	return len + sprintf(buf + len, "\n");
 | |
| }
 | |
| 
 | |
| static void clear_stat(struct kmem_cache *s, enum stat_item si)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
 | |
| }
 | |
| 
 | |
| #define STAT_ATTR(si, text) 					\
 | |
| static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
 | |
| {								\
 | |
| 	return show_stat(s, buf, si);				\
 | |
| }								\
 | |
| static ssize_t text##_store(struct kmem_cache *s,		\
 | |
| 				const char *buf, size_t length)	\
 | |
| {								\
 | |
| 	if (buf[0] != '0')					\
 | |
| 		return -EINVAL;					\
 | |
| 	clear_stat(s, si);					\
 | |
| 	return length;						\
 | |
| }								\
 | |
| SLAB_ATTR(text);						\
 | |
| 
 | |
| STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
 | |
| STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
 | |
| STAT_ATTR(FREE_FASTPATH, free_fastpath);
 | |
| STAT_ATTR(FREE_SLOWPATH, free_slowpath);
 | |
| STAT_ATTR(FREE_FROZEN, free_frozen);
 | |
| STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
 | |
| STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
 | |
| STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
 | |
| STAT_ATTR(ALLOC_SLAB, alloc_slab);
 | |
| STAT_ATTR(ALLOC_REFILL, alloc_refill);
 | |
| STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
 | |
| STAT_ATTR(FREE_SLAB, free_slab);
 | |
| STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
 | |
| STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
 | |
| STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
 | |
| STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
 | |
| STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
 | |
| STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
 | |
| STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
 | |
| STAT_ATTR(ORDER_FALLBACK, order_fallback);
 | |
| STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
 | |
| STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
 | |
| STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
 | |
| STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
 | |
| STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
 | |
| STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
 | |
| #endif	/* CONFIG_SLUB_STATS */
 | |
| 
 | |
| static struct attribute *slab_attrs[] = {
 | |
| 	&slab_size_attr.attr,
 | |
| 	&object_size_attr.attr,
 | |
| 	&objs_per_slab_attr.attr,
 | |
| 	&order_attr.attr,
 | |
| 	&min_partial_attr.attr,
 | |
| 	&cpu_partial_attr.attr,
 | |
| 	&objects_attr.attr,
 | |
| 	&objects_partial_attr.attr,
 | |
| 	&partial_attr.attr,
 | |
| 	&cpu_slabs_attr.attr,
 | |
| 	&ctor_attr.attr,
 | |
| 	&aliases_attr.attr,
 | |
| 	&align_attr.attr,
 | |
| 	&hwcache_align_attr.attr,
 | |
| 	&reclaim_account_attr.attr,
 | |
| 	&destroy_by_rcu_attr.attr,
 | |
| 	&shrink_attr.attr,
 | |
| 	&slabs_cpu_partial_attr.attr,
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	&total_objects_attr.attr,
 | |
| 	&slabs_attr.attr,
 | |
| 	&sanity_checks_attr.attr,
 | |
| 	&trace_attr.attr,
 | |
| 	&red_zone_attr.attr,
 | |
| 	&poison_attr.attr,
 | |
| 	&store_user_attr.attr,
 | |
| 	&validate_attr.attr,
 | |
| 	&alloc_calls_attr.attr,
 | |
| 	&free_calls_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	&cache_dma_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA
 | |
| 	&remote_node_defrag_ratio_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| 	&alloc_fastpath_attr.attr,
 | |
| 	&alloc_slowpath_attr.attr,
 | |
| 	&free_fastpath_attr.attr,
 | |
| 	&free_slowpath_attr.attr,
 | |
| 	&free_frozen_attr.attr,
 | |
| 	&free_add_partial_attr.attr,
 | |
| 	&free_remove_partial_attr.attr,
 | |
| 	&alloc_from_partial_attr.attr,
 | |
| 	&alloc_slab_attr.attr,
 | |
| 	&alloc_refill_attr.attr,
 | |
| 	&alloc_node_mismatch_attr.attr,
 | |
| 	&free_slab_attr.attr,
 | |
| 	&cpuslab_flush_attr.attr,
 | |
| 	&deactivate_full_attr.attr,
 | |
| 	&deactivate_empty_attr.attr,
 | |
| 	&deactivate_to_head_attr.attr,
 | |
| 	&deactivate_to_tail_attr.attr,
 | |
| 	&deactivate_remote_frees_attr.attr,
 | |
| 	&deactivate_bypass_attr.attr,
 | |
| 	&order_fallback_attr.attr,
 | |
| 	&cmpxchg_double_fail_attr.attr,
 | |
| 	&cmpxchg_double_cpu_fail_attr.attr,
 | |
| 	&cpu_partial_alloc_attr.attr,
 | |
| 	&cpu_partial_free_attr.attr,
 | |
| 	&cpu_partial_node_attr.attr,
 | |
| 	&cpu_partial_drain_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_FAILSLAB
 | |
| 	&failslab_attr.attr,
 | |
| #endif
 | |
| 	&usersize_attr.attr,
 | |
| 
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const struct attribute_group slab_attr_group = {
 | |
| 	.attrs = slab_attrs,
 | |
| };
 | |
| 
 | |
| static ssize_t slab_attr_show(struct kobject *kobj,
 | |
| 				struct attribute *attr,
 | |
| 				char *buf)
 | |
| {
 | |
| 	struct slab_attribute *attribute;
 | |
| 	struct kmem_cache *s;
 | |
| 	int err;
 | |
| 
 | |
| 	attribute = to_slab_attr(attr);
 | |
| 	s = to_slab(kobj);
 | |
| 
 | |
| 	if (!attribute->show)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	err = attribute->show(s, buf);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static ssize_t slab_attr_store(struct kobject *kobj,
 | |
| 				struct attribute *attr,
 | |
| 				const char *buf, size_t len)
 | |
| {
 | |
| 	struct slab_attribute *attribute;
 | |
| 	struct kmem_cache *s;
 | |
| 	int err;
 | |
| 
 | |
| 	attribute = to_slab_attr(attr);
 | |
| 	s = to_slab(kobj);
 | |
| 
 | |
| 	if (!attribute->store)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	err = attribute->store(s, buf, len);
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
 | |
| 		struct kmem_cache *c;
 | |
| 
 | |
| 		mutex_lock(&slab_mutex);
 | |
| 		if (s->max_attr_size < len)
 | |
| 			s->max_attr_size = len;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is a best effort propagation, so this function's return
 | |
| 		 * value will be determined by the parent cache only. This is
 | |
| 		 * basically because not all attributes will have a well
 | |
| 		 * defined semantics for rollbacks - most of the actions will
 | |
| 		 * have permanent effects.
 | |
| 		 *
 | |
| 		 * Returning the error value of any of the children that fail
 | |
| 		 * is not 100 % defined, in the sense that users seeing the
 | |
| 		 * error code won't be able to know anything about the state of
 | |
| 		 * the cache.
 | |
| 		 *
 | |
| 		 * Only returning the error code for the parent cache at least
 | |
| 		 * has well defined semantics. The cache being written to
 | |
| 		 * directly either failed or succeeded, in which case we loop
 | |
| 		 * through the descendants with best-effort propagation.
 | |
| 		 */
 | |
| 		for_each_memcg_cache(c, s)
 | |
| 			attribute->store(c, buf, len);
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 	}
 | |
| #endif
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void memcg_propagate_slab_attrs(struct kmem_cache *s)
 | |
| {
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	int i;
 | |
| 	char *buffer = NULL;
 | |
| 	struct kmem_cache *root_cache;
 | |
| 
 | |
| 	if (is_root_cache(s))
 | |
| 		return;
 | |
| 
 | |
| 	root_cache = s->memcg_params.root_cache;
 | |
| 
 | |
| 	/*
 | |
| 	 * This mean this cache had no attribute written. Therefore, no point
 | |
| 	 * in copying default values around
 | |
| 	 */
 | |
| 	if (!root_cache->max_attr_size)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
 | |
| 		char mbuf[64];
 | |
| 		char *buf;
 | |
| 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
 | |
| 		ssize_t len;
 | |
| 
 | |
| 		if (!attr || !attr->store || !attr->show)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * It is really bad that we have to allocate here, so we will
 | |
| 		 * do it only as a fallback. If we actually allocate, though,
 | |
| 		 * we can just use the allocated buffer until the end.
 | |
| 		 *
 | |
| 		 * Most of the slub attributes will tend to be very small in
 | |
| 		 * size, but sysfs allows buffers up to a page, so they can
 | |
| 		 * theoretically happen.
 | |
| 		 */
 | |
| 		if (buffer)
 | |
| 			buf = buffer;
 | |
| 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
 | |
| 			buf = mbuf;
 | |
| 		else {
 | |
| 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
 | |
| 			if (WARN_ON(!buffer))
 | |
| 				continue;
 | |
| 			buf = buffer;
 | |
| 		}
 | |
| 
 | |
| 		len = attr->show(root_cache, buf);
 | |
| 		if (len > 0)
 | |
| 			attr->store(s, buf, len);
 | |
| 	}
 | |
| 
 | |
| 	if (buffer)
 | |
| 		free_page((unsigned long)buffer);
 | |
| #endif	/* CONFIG_MEMCG */
 | |
| }
 | |
| 
 | |
| static void kmem_cache_release(struct kobject *k)
 | |
| {
 | |
| 	slab_kmem_cache_release(to_slab(k));
 | |
| }
 | |
| 
 | |
| static const struct sysfs_ops slab_sysfs_ops = {
 | |
| 	.show = slab_attr_show,
 | |
| 	.store = slab_attr_store,
 | |
| };
 | |
| 
 | |
| static struct kobj_type slab_ktype = {
 | |
| 	.sysfs_ops = &slab_sysfs_ops,
 | |
| 	.release = kmem_cache_release,
 | |
| };
 | |
| 
 | |
| static int uevent_filter(struct kset *kset, struct kobject *kobj)
 | |
| {
 | |
| 	struct kobj_type *ktype = get_ktype(kobj);
 | |
| 
 | |
| 	if (ktype == &slab_ktype)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct kset_uevent_ops slab_uevent_ops = {
 | |
| 	.filter = uevent_filter,
 | |
| };
 | |
| 
 | |
| static struct kset *slab_kset;
 | |
| 
 | |
| static inline struct kset *cache_kset(struct kmem_cache *s)
 | |
| {
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	if (!is_root_cache(s))
 | |
| 		return s->memcg_params.root_cache->memcg_kset;
 | |
| #endif
 | |
| 	return slab_kset;
 | |
| }
 | |
| 
 | |
| #define ID_STR_LENGTH 64
 | |
| 
 | |
| /* Create a unique string id for a slab cache:
 | |
|  *
 | |
|  * Format	:[flags-]size
 | |
|  */
 | |
| static char *create_unique_id(struct kmem_cache *s)
 | |
| {
 | |
| 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
 | |
| 	char *p = name;
 | |
| 
 | |
| 	BUG_ON(!name);
 | |
| 
 | |
| 	*p++ = ':';
 | |
| 	/*
 | |
| 	 * First flags affecting slabcache operations. We will only
 | |
| 	 * get here for aliasable slabs so we do not need to support
 | |
| 	 * too many flags. The flags here must cover all flags that
 | |
| 	 * are matched during merging to guarantee that the id is
 | |
| 	 * unique.
 | |
| 	 */
 | |
| 	if (s->flags & SLAB_CACHE_DMA)
 | |
| 		*p++ = 'd';
 | |
| 	if (s->flags & SLAB_CACHE_DMA32)
 | |
| 		*p++ = 'D';
 | |
| 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 		*p++ = 'a';
 | |
| 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
 | |
| 		*p++ = 'F';
 | |
| 	if (s->flags & SLAB_ACCOUNT)
 | |
| 		*p++ = 'A';
 | |
| 	if (p != name + 1)
 | |
| 		*p++ = '-';
 | |
| 	p += sprintf(p, "%07u", s->size);
 | |
| 
 | |
| 	BUG_ON(p > name + ID_STR_LENGTH - 1);
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| static void sysfs_slab_remove_workfn(struct work_struct *work)
 | |
| {
 | |
| 	struct kmem_cache *s =
 | |
| 		container_of(work, struct kmem_cache, kobj_remove_work);
 | |
| 
 | |
| 	if (!s->kobj.state_in_sysfs)
 | |
| 		/*
 | |
| 		 * For a memcg cache, this may be called during
 | |
| 		 * deactivation and again on shutdown.  Remove only once.
 | |
| 		 * A cache is never shut down before deactivation is
 | |
| 		 * complete, so no need to worry about synchronization.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	kset_unregister(s->memcg_kset);
 | |
| #endif
 | |
| 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
 | |
| out:
 | |
| 	kobject_put(&s->kobj);
 | |
| }
 | |
| 
 | |
| static int sysfs_slab_add(struct kmem_cache *s)
 | |
| {
 | |
| 	int err;
 | |
| 	const char *name;
 | |
| 	struct kset *kset = cache_kset(s);
 | |
| 	int unmergeable = slab_unmergeable(s);
 | |
| 
 | |
| 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
 | |
| 
 | |
| 	if (!kset) {
 | |
| 		kobject_init(&s->kobj, &slab_ktype);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!unmergeable && disable_higher_order_debug &&
 | |
| 			(slub_debug & DEBUG_METADATA_FLAGS))
 | |
| 		unmergeable = 1;
 | |
| 
 | |
| 	if (unmergeable) {
 | |
| 		/*
 | |
| 		 * Slabcache can never be merged so we can use the name proper.
 | |
| 		 * This is typically the case for debug situations. In that
 | |
| 		 * case we can catch duplicate names easily.
 | |
| 		 */
 | |
| 		sysfs_remove_link(&slab_kset->kobj, s->name);
 | |
| 		name = s->name;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Create a unique name for the slab as a target
 | |
| 		 * for the symlinks.
 | |
| 		 */
 | |
| 		name = create_unique_id(s);
 | |
| 	}
 | |
| 
 | |
| 	s->kobj.kset = kset;
 | |
| 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
 | |
| 	if (err)
 | |
| 		goto out_del_kobj;
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	if (is_root_cache(s) && memcg_sysfs_enabled) {
 | |
| 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
 | |
| 		if (!s->memcg_kset) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_del_kobj;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	kobject_uevent(&s->kobj, KOBJ_ADD);
 | |
| 	if (!unmergeable) {
 | |
| 		/* Setup first alias */
 | |
| 		sysfs_slab_alias(s, s->name);
 | |
| 	}
 | |
| out:
 | |
| 	if (!unmergeable)
 | |
| 		kfree(name);
 | |
| 	return err;
 | |
| out_del_kobj:
 | |
| 	kobject_del(&s->kobj);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static void sysfs_slab_remove(struct kmem_cache *s)
 | |
| {
 | |
| 	if (slab_state < FULL)
 | |
| 		/*
 | |
| 		 * Sysfs has not been setup yet so no need to remove the
 | |
| 		 * cache from sysfs.
 | |
| 		 */
 | |
| 		return;
 | |
| 
 | |
| 	kobject_get(&s->kobj);
 | |
| 	schedule_work(&s->kobj_remove_work);
 | |
| }
 | |
| 
 | |
| void sysfs_slab_unlink(struct kmem_cache *s)
 | |
| {
 | |
| 	if (slab_state >= FULL)
 | |
| 		kobject_del(&s->kobj);
 | |
| }
 | |
| 
 | |
| void sysfs_slab_release(struct kmem_cache *s)
 | |
| {
 | |
| 	if (slab_state >= FULL)
 | |
| 		kobject_put(&s->kobj);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Need to buffer aliases during bootup until sysfs becomes
 | |
|  * available lest we lose that information.
 | |
|  */
 | |
| struct saved_alias {
 | |
| 	struct kmem_cache *s;
 | |
| 	const char *name;
 | |
| 	struct saved_alias *next;
 | |
| };
 | |
| 
 | |
| static struct saved_alias *alias_list;
 | |
| 
 | |
| static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
 | |
| {
 | |
| 	struct saved_alias *al;
 | |
| 
 | |
| 	if (slab_state == FULL) {
 | |
| 		/*
 | |
| 		 * If we have a leftover link then remove it.
 | |
| 		 */
 | |
| 		sysfs_remove_link(&slab_kset->kobj, name);
 | |
| 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
 | |
| 	}
 | |
| 
 | |
| 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
 | |
| 	if (!al)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	al->s = s;
 | |
| 	al->name = name;
 | |
| 	al->next = alias_list;
 | |
| 	alias_list = al;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init slab_sysfs_init(void)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	int err;
 | |
| 
 | |
| 	mutex_lock(&slab_mutex);
 | |
| 
 | |
| 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
 | |
| 	if (!slab_kset) {
 | |
| 		mutex_unlock(&slab_mutex);
 | |
| 		pr_err("Cannot register slab subsystem.\n");
 | |
| 		return -ENOSYS;
 | |
| 	}
 | |
| 
 | |
| 	slab_state = FULL;
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		err = sysfs_slab_add(s);
 | |
| 		if (err)
 | |
| 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
 | |
| 			       s->name);
 | |
| 	}
 | |
| 
 | |
| 	while (alias_list) {
 | |
| 		struct saved_alias *al = alias_list;
 | |
| 
 | |
| 		alias_list = alias_list->next;
 | |
| 		err = sysfs_slab_alias(al->s, al->name);
 | |
| 		if (err)
 | |
| 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
 | |
| 			       al->name);
 | |
| 		kfree(al);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&slab_mutex);
 | |
| 	resiliency_test();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __initcall(slab_sysfs_init);
 | |
| #endif /* CONFIG_SYSFS */
 | |
| 
 | |
| /*
 | |
|  * The /proc/slabinfo ABI
 | |
|  */
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
 | |
| {
 | |
| 	unsigned long nr_slabs = 0;
 | |
| 	unsigned long nr_objs = 0;
 | |
| 	unsigned long nr_free = 0;
 | |
| 	int node;
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	for_each_kmem_cache_node(s, node, n) {
 | |
| 		nr_slabs += node_nr_slabs(n);
 | |
| 		nr_objs += node_nr_objs(n);
 | |
| 		nr_free += count_partial(n, count_free);
 | |
| 	}
 | |
| 
 | |
| 	sinfo->active_objs = nr_objs - nr_free;
 | |
| 	sinfo->num_objs = nr_objs;
 | |
| 	sinfo->active_slabs = nr_slabs;
 | |
| 	sinfo->num_slabs = nr_slabs;
 | |
| 	sinfo->objects_per_slab = oo_objects(s->oo);
 | |
| 	sinfo->cache_order = oo_order(s->oo);
 | |
| }
 | |
| 
 | |
| void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| ssize_t slabinfo_write(struct file *file, const char __user *buffer,
 | |
| 		       size_t count, loff_t *ppos)
 | |
| {
 | |
| 	return -EIO;
 | |
| }
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 |