mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 42ae610c1a
			
		
	
	
		42ae610c1a
		
	
	
	
	
		
			
			Fix new kernel-doc warnings in auditsc.c: Warning(kernel/auditsc.c:1875): No description found for parameter 'success' Warning(kernel/auditsc.c:1875): No description found for parameter 'return_code' Warning(kernel/auditsc.c:1875): Excess function parameter 'pt_regs' description in '__audit_syscall_exit' Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric Paris <eparis@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2729 lines
		
	
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2729 lines
		
	
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* auditsc.c -- System-call auditing support
 | |
|  * Handles all system-call specific auditing features.
 | |
|  *
 | |
|  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
 | |
|  * Copyright 2005 Hewlett-Packard Development Company, L.P.
 | |
|  * Copyright (C) 2005, 2006 IBM Corporation
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  *
 | |
|  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
 | |
|  *
 | |
|  * Many of the ideas implemented here are from Stephen C. Tweedie,
 | |
|  * especially the idea of avoiding a copy by using getname.
 | |
|  *
 | |
|  * The method for actual interception of syscall entry and exit (not in
 | |
|  * this file -- see entry.S) is based on a GPL'd patch written by
 | |
|  * okir@suse.de and Copyright 2003 SuSE Linux AG.
 | |
|  *
 | |
|  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
 | |
|  * 2006.
 | |
|  *
 | |
|  * The support of additional filter rules compares (>, <, >=, <=) was
 | |
|  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
 | |
|  *
 | |
|  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
 | |
|  * filesystem information.
 | |
|  *
 | |
|  * Subject and object context labeling support added by <danjones@us.ibm.com>
 | |
|  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <asm/types.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/socket.h>
 | |
| #include <linux/mqueue.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/netlink.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <asm/unistd.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/fs_struct.h>
 | |
| 
 | |
| #include "audit.h"
 | |
| 
 | |
| /* flags stating the success for a syscall */
 | |
| #define AUDITSC_INVALID 0
 | |
| #define AUDITSC_SUCCESS 1
 | |
| #define AUDITSC_FAILURE 2
 | |
| 
 | |
| /* AUDIT_NAMES is the number of slots we reserve in the audit_context
 | |
|  * for saving names from getname().  If we get more names we will allocate
 | |
|  * a name dynamically and also add those to the list anchored by names_list. */
 | |
| #define AUDIT_NAMES	5
 | |
| 
 | |
| /* Indicates that audit should log the full pathname. */
 | |
| #define AUDIT_NAME_FULL -1
 | |
| 
 | |
| /* no execve audit message should be longer than this (userspace limits) */
 | |
| #define MAX_EXECVE_AUDIT_LEN 7500
 | |
| 
 | |
| /* number of audit rules */
 | |
| int audit_n_rules;
 | |
| 
 | |
| /* determines whether we collect data for signals sent */
 | |
| int audit_signals;
 | |
| 
 | |
| struct audit_cap_data {
 | |
| 	kernel_cap_t		permitted;
 | |
| 	kernel_cap_t		inheritable;
 | |
| 	union {
 | |
| 		unsigned int	fE;		/* effective bit of a file capability */
 | |
| 		kernel_cap_t	effective;	/* effective set of a process */
 | |
| 	};
 | |
| };
 | |
| 
 | |
| /* When fs/namei.c:getname() is called, we store the pointer in name and
 | |
|  * we don't let putname() free it (instead we free all of the saved
 | |
|  * pointers at syscall exit time).
 | |
|  *
 | |
|  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 | |
| struct audit_names {
 | |
| 	struct list_head list;		/* audit_context->names_list */
 | |
| 	const char	*name;
 | |
| 	unsigned long	ino;
 | |
| 	dev_t		dev;
 | |
| 	umode_t		mode;
 | |
| 	uid_t		uid;
 | |
| 	gid_t		gid;
 | |
| 	dev_t		rdev;
 | |
| 	u32		osid;
 | |
| 	struct audit_cap_data fcap;
 | |
| 	unsigned int	fcap_ver;
 | |
| 	int		name_len;	/* number of name's characters to log */
 | |
| 	bool		name_put;	/* call __putname() for this name */
 | |
| 	/*
 | |
| 	 * This was an allocated audit_names and not from the array of
 | |
| 	 * names allocated in the task audit context.  Thus this name
 | |
| 	 * should be freed on syscall exit
 | |
| 	 */
 | |
| 	bool		should_free;
 | |
| };
 | |
| 
 | |
| struct audit_aux_data {
 | |
| 	struct audit_aux_data	*next;
 | |
| 	int			type;
 | |
| };
 | |
| 
 | |
| #define AUDIT_AUX_IPCPERM	0
 | |
| 
 | |
| /* Number of target pids per aux struct. */
 | |
| #define AUDIT_AUX_PIDS	16
 | |
| 
 | |
| struct audit_aux_data_execve {
 | |
| 	struct audit_aux_data	d;
 | |
| 	int argc;
 | |
| 	int envc;
 | |
| 	struct mm_struct *mm;
 | |
| };
 | |
| 
 | |
| struct audit_aux_data_pids {
 | |
| 	struct audit_aux_data	d;
 | |
| 	pid_t			target_pid[AUDIT_AUX_PIDS];
 | |
| 	uid_t			target_auid[AUDIT_AUX_PIDS];
 | |
| 	uid_t			target_uid[AUDIT_AUX_PIDS];
 | |
| 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 | |
| 	u32			target_sid[AUDIT_AUX_PIDS];
 | |
| 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 | |
| 	int			pid_count;
 | |
| };
 | |
| 
 | |
| struct audit_aux_data_bprm_fcaps {
 | |
| 	struct audit_aux_data	d;
 | |
| 	struct audit_cap_data	fcap;
 | |
| 	unsigned int		fcap_ver;
 | |
| 	struct audit_cap_data	old_pcap;
 | |
| 	struct audit_cap_data	new_pcap;
 | |
| };
 | |
| 
 | |
| struct audit_aux_data_capset {
 | |
| 	struct audit_aux_data	d;
 | |
| 	pid_t			pid;
 | |
| 	struct audit_cap_data	cap;
 | |
| };
 | |
| 
 | |
| struct audit_tree_refs {
 | |
| 	struct audit_tree_refs *next;
 | |
| 	struct audit_chunk *c[31];
 | |
| };
 | |
| 
 | |
| /* The per-task audit context. */
 | |
| struct audit_context {
 | |
| 	int		    dummy;	/* must be the first element */
 | |
| 	int		    in_syscall;	/* 1 if task is in a syscall */
 | |
| 	enum audit_state    state, current_state;
 | |
| 	unsigned int	    serial;     /* serial number for record */
 | |
| 	int		    major;      /* syscall number */
 | |
| 	struct timespec	    ctime;      /* time of syscall entry */
 | |
| 	unsigned long	    argv[4];    /* syscall arguments */
 | |
| 	long		    return_code;/* syscall return code */
 | |
| 	u64		    prio;
 | |
| 	int		    return_valid; /* return code is valid */
 | |
| 	/*
 | |
| 	 * The names_list is the list of all audit_names collected during this
 | |
| 	 * syscall.  The first AUDIT_NAMES entries in the names_list will
 | |
| 	 * actually be from the preallocated_names array for performance
 | |
| 	 * reasons.  Except during allocation they should never be referenced
 | |
| 	 * through the preallocated_names array and should only be found/used
 | |
| 	 * by running the names_list.
 | |
| 	 */
 | |
| 	struct audit_names  preallocated_names[AUDIT_NAMES];
 | |
| 	int		    name_count; /* total records in names_list */
 | |
| 	struct list_head    names_list;	/* anchor for struct audit_names->list */
 | |
| 	char *		    filterkey;	/* key for rule that triggered record */
 | |
| 	struct path	    pwd;
 | |
| 	struct audit_context *previous; /* For nested syscalls */
 | |
| 	struct audit_aux_data *aux;
 | |
| 	struct audit_aux_data *aux_pids;
 | |
| 	struct sockaddr_storage *sockaddr;
 | |
| 	size_t sockaddr_len;
 | |
| 				/* Save things to print about task_struct */
 | |
| 	pid_t		    pid, ppid;
 | |
| 	uid_t		    uid, euid, suid, fsuid;
 | |
| 	gid_t		    gid, egid, sgid, fsgid;
 | |
| 	unsigned long	    personality;
 | |
| 	int		    arch;
 | |
| 
 | |
| 	pid_t		    target_pid;
 | |
| 	uid_t		    target_auid;
 | |
| 	uid_t		    target_uid;
 | |
| 	unsigned int	    target_sessionid;
 | |
| 	u32		    target_sid;
 | |
| 	char		    target_comm[TASK_COMM_LEN];
 | |
| 
 | |
| 	struct audit_tree_refs *trees, *first_trees;
 | |
| 	struct list_head killed_trees;
 | |
| 	int tree_count;
 | |
| 
 | |
| 	int type;
 | |
| 	union {
 | |
| 		struct {
 | |
| 			int nargs;
 | |
| 			long args[6];
 | |
| 		} socketcall;
 | |
| 		struct {
 | |
| 			uid_t			uid;
 | |
| 			gid_t			gid;
 | |
| 			umode_t			mode;
 | |
| 			u32			osid;
 | |
| 			int			has_perm;
 | |
| 			uid_t			perm_uid;
 | |
| 			gid_t			perm_gid;
 | |
| 			umode_t			perm_mode;
 | |
| 			unsigned long		qbytes;
 | |
| 		} ipc;
 | |
| 		struct {
 | |
| 			mqd_t			mqdes;
 | |
| 			struct mq_attr 		mqstat;
 | |
| 		} mq_getsetattr;
 | |
| 		struct {
 | |
| 			mqd_t			mqdes;
 | |
| 			int			sigev_signo;
 | |
| 		} mq_notify;
 | |
| 		struct {
 | |
| 			mqd_t			mqdes;
 | |
| 			size_t			msg_len;
 | |
| 			unsigned int		msg_prio;
 | |
| 			struct timespec		abs_timeout;
 | |
| 		} mq_sendrecv;
 | |
| 		struct {
 | |
| 			int			oflag;
 | |
| 			umode_t			mode;
 | |
| 			struct mq_attr		attr;
 | |
| 		} mq_open;
 | |
| 		struct {
 | |
| 			pid_t			pid;
 | |
| 			struct audit_cap_data	cap;
 | |
| 		} capset;
 | |
| 		struct {
 | |
| 			int			fd;
 | |
| 			int			flags;
 | |
| 		} mmap;
 | |
| 	};
 | |
| 	int fds[2];
 | |
| 
 | |
| #if AUDIT_DEBUG
 | |
| 	int		    put_count;
 | |
| 	int		    ino_count;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static inline int open_arg(int flags, int mask)
 | |
| {
 | |
| 	int n = ACC_MODE(flags);
 | |
| 	if (flags & (O_TRUNC | O_CREAT))
 | |
| 		n |= AUDIT_PERM_WRITE;
 | |
| 	return n & mask;
 | |
| }
 | |
| 
 | |
| static int audit_match_perm(struct audit_context *ctx, int mask)
 | |
| {
 | |
| 	unsigned n;
 | |
| 	if (unlikely(!ctx))
 | |
| 		return 0;
 | |
| 	n = ctx->major;
 | |
| 
 | |
| 	switch (audit_classify_syscall(ctx->arch, n)) {
 | |
| 	case 0:	/* native */
 | |
| 		if ((mask & AUDIT_PERM_WRITE) &&
 | |
| 		     audit_match_class(AUDIT_CLASS_WRITE, n))
 | |
| 			return 1;
 | |
| 		if ((mask & AUDIT_PERM_READ) &&
 | |
| 		     audit_match_class(AUDIT_CLASS_READ, n))
 | |
| 			return 1;
 | |
| 		if ((mask & AUDIT_PERM_ATTR) &&
 | |
| 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 | |
| 			return 1;
 | |
| 		return 0;
 | |
| 	case 1: /* 32bit on biarch */
 | |
| 		if ((mask & AUDIT_PERM_WRITE) &&
 | |
| 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 | |
| 			return 1;
 | |
| 		if ((mask & AUDIT_PERM_READ) &&
 | |
| 		     audit_match_class(AUDIT_CLASS_READ_32, n))
 | |
| 			return 1;
 | |
| 		if ((mask & AUDIT_PERM_ATTR) &&
 | |
| 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 | |
| 			return 1;
 | |
| 		return 0;
 | |
| 	case 2: /* open */
 | |
| 		return mask & ACC_MODE(ctx->argv[1]);
 | |
| 	case 3: /* openat */
 | |
| 		return mask & ACC_MODE(ctx->argv[2]);
 | |
| 	case 4: /* socketcall */
 | |
| 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 | |
| 	case 5: /* execve */
 | |
| 		return mask & AUDIT_PERM_EXEC;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int audit_match_filetype(struct audit_context *ctx, int val)
 | |
| {
 | |
| 	struct audit_names *n;
 | |
| 	umode_t mode = (umode_t)val;
 | |
| 
 | |
| 	if (unlikely(!ctx))
 | |
| 		return 0;
 | |
| 
 | |
| 	list_for_each_entry(n, &ctx->names_list, list) {
 | |
| 		if ((n->ino != -1) &&
 | |
| 		    ((n->mode & S_IFMT) == mode))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 | |
|  * ->first_trees points to its beginning, ->trees - to the current end of data.
 | |
|  * ->tree_count is the number of free entries in array pointed to by ->trees.
 | |
|  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 | |
|  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 | |
|  * it's going to remain 1-element for almost any setup) until we free context itself.
 | |
|  * References in it _are_ dropped - at the same time we free/drop aux stuff.
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_AUDIT_TREE
 | |
| static void audit_set_auditable(struct audit_context *ctx)
 | |
| {
 | |
| 	if (!ctx->prio) {
 | |
| 		ctx->prio = 1;
 | |
| 		ctx->current_state = AUDIT_RECORD_CONTEXT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 | |
| {
 | |
| 	struct audit_tree_refs *p = ctx->trees;
 | |
| 	int left = ctx->tree_count;
 | |
| 	if (likely(left)) {
 | |
| 		p->c[--left] = chunk;
 | |
| 		ctx->tree_count = left;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 	p = p->next;
 | |
| 	if (p) {
 | |
| 		p->c[30] = chunk;
 | |
| 		ctx->trees = p;
 | |
| 		ctx->tree_count = 30;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int grow_tree_refs(struct audit_context *ctx)
 | |
| {
 | |
| 	struct audit_tree_refs *p = ctx->trees;
 | |
| 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 | |
| 	if (!ctx->trees) {
 | |
| 		ctx->trees = p;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (p)
 | |
| 		p->next = ctx->trees;
 | |
| 	else
 | |
| 		ctx->first_trees = ctx->trees;
 | |
| 	ctx->tree_count = 31;
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void unroll_tree_refs(struct audit_context *ctx,
 | |
| 		      struct audit_tree_refs *p, int count)
 | |
| {
 | |
| #ifdef CONFIG_AUDIT_TREE
 | |
| 	struct audit_tree_refs *q;
 | |
| 	int n;
 | |
| 	if (!p) {
 | |
| 		/* we started with empty chain */
 | |
| 		p = ctx->first_trees;
 | |
| 		count = 31;
 | |
| 		/* if the very first allocation has failed, nothing to do */
 | |
| 		if (!p)
 | |
| 			return;
 | |
| 	}
 | |
| 	n = count;
 | |
| 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 | |
| 		while (n--) {
 | |
| 			audit_put_chunk(q->c[n]);
 | |
| 			q->c[n] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	while (n-- > ctx->tree_count) {
 | |
| 		audit_put_chunk(q->c[n]);
 | |
| 		q->c[n] = NULL;
 | |
| 	}
 | |
| 	ctx->trees = p;
 | |
| 	ctx->tree_count = count;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void free_tree_refs(struct audit_context *ctx)
 | |
| {
 | |
| 	struct audit_tree_refs *p, *q;
 | |
| 	for (p = ctx->first_trees; p; p = q) {
 | |
| 		q = p->next;
 | |
| 		kfree(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 | |
| {
 | |
| #ifdef CONFIG_AUDIT_TREE
 | |
| 	struct audit_tree_refs *p;
 | |
| 	int n;
 | |
| 	if (!tree)
 | |
| 		return 0;
 | |
| 	/* full ones */
 | |
| 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 | |
| 		for (n = 0; n < 31; n++)
 | |
| 			if (audit_tree_match(p->c[n], tree))
 | |
| 				return 1;
 | |
| 	}
 | |
| 	/* partial */
 | |
| 	if (p) {
 | |
| 		for (n = ctx->tree_count; n < 31; n++)
 | |
| 			if (audit_tree_match(p->c[n], tree))
 | |
| 				return 1;
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int audit_compare_id(uid_t uid1,
 | |
| 			    struct audit_names *name,
 | |
| 			    unsigned long name_offset,
 | |
| 			    struct audit_field *f,
 | |
| 			    struct audit_context *ctx)
 | |
| {
 | |
| 	struct audit_names *n;
 | |
| 	unsigned long addr;
 | |
| 	uid_t uid2;
 | |
| 	int rc;
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
 | |
| 
 | |
| 	if (name) {
 | |
| 		addr = (unsigned long)name;
 | |
| 		addr += name_offset;
 | |
| 
 | |
| 		uid2 = *(uid_t *)addr;
 | |
| 		rc = audit_comparator(uid1, f->op, uid2);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx) {
 | |
| 		list_for_each_entry(n, &ctx->names_list, list) {
 | |
| 			addr = (unsigned long)n;
 | |
| 			addr += name_offset;
 | |
| 
 | |
| 			uid2 = *(uid_t *)addr;
 | |
| 
 | |
| 			rc = audit_comparator(uid1, f->op, uid2);
 | |
| 			if (rc)
 | |
| 				return rc;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int audit_field_compare(struct task_struct *tsk,
 | |
| 			       const struct cred *cred,
 | |
| 			       struct audit_field *f,
 | |
| 			       struct audit_context *ctx,
 | |
| 			       struct audit_names *name)
 | |
| {
 | |
| 	switch (f->val) {
 | |
| 	/* process to file object comparisons */
 | |
| 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 | |
| 		return audit_compare_id(cred->uid,
 | |
| 					name, offsetof(struct audit_names, uid),
 | |
| 					f, ctx);
 | |
| 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 | |
| 		return audit_compare_id(cred->gid,
 | |
| 					name, offsetof(struct audit_names, gid),
 | |
| 					f, ctx);
 | |
| 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 | |
| 		return audit_compare_id(cred->euid,
 | |
| 					name, offsetof(struct audit_names, uid),
 | |
| 					f, ctx);
 | |
| 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 | |
| 		return audit_compare_id(cred->egid,
 | |
| 					name, offsetof(struct audit_names, gid),
 | |
| 					f, ctx);
 | |
| 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 | |
| 		return audit_compare_id(tsk->loginuid,
 | |
| 					name, offsetof(struct audit_names, uid),
 | |
| 					f, ctx);
 | |
| 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 | |
| 		return audit_compare_id(cred->suid,
 | |
| 					name, offsetof(struct audit_names, uid),
 | |
| 					f, ctx);
 | |
| 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 | |
| 		return audit_compare_id(cred->sgid,
 | |
| 					name, offsetof(struct audit_names, gid),
 | |
| 					f, ctx);
 | |
| 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 | |
| 		return audit_compare_id(cred->fsuid,
 | |
| 					name, offsetof(struct audit_names, uid),
 | |
| 					f, ctx);
 | |
| 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 | |
| 		return audit_compare_id(cred->fsgid,
 | |
| 					name, offsetof(struct audit_names, gid),
 | |
| 					f, ctx);
 | |
| 	/* uid comparisons */
 | |
| 	case AUDIT_COMPARE_UID_TO_AUID:
 | |
| 		return audit_comparator(cred->uid, f->op, tsk->loginuid);
 | |
| 	case AUDIT_COMPARE_UID_TO_EUID:
 | |
| 		return audit_comparator(cred->uid, f->op, cred->euid);
 | |
| 	case AUDIT_COMPARE_UID_TO_SUID:
 | |
| 		return audit_comparator(cred->uid, f->op, cred->suid);
 | |
| 	case AUDIT_COMPARE_UID_TO_FSUID:
 | |
| 		return audit_comparator(cred->uid, f->op, cred->fsuid);
 | |
| 	/* auid comparisons */
 | |
| 	case AUDIT_COMPARE_AUID_TO_EUID:
 | |
| 		return audit_comparator(tsk->loginuid, f->op, cred->euid);
 | |
| 	case AUDIT_COMPARE_AUID_TO_SUID:
 | |
| 		return audit_comparator(tsk->loginuid, f->op, cred->suid);
 | |
| 	case AUDIT_COMPARE_AUID_TO_FSUID:
 | |
| 		return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
 | |
| 	/* euid comparisons */
 | |
| 	case AUDIT_COMPARE_EUID_TO_SUID:
 | |
| 		return audit_comparator(cred->euid, f->op, cred->suid);
 | |
| 	case AUDIT_COMPARE_EUID_TO_FSUID:
 | |
| 		return audit_comparator(cred->euid, f->op, cred->fsuid);
 | |
| 	/* suid comparisons */
 | |
| 	case AUDIT_COMPARE_SUID_TO_FSUID:
 | |
| 		return audit_comparator(cred->suid, f->op, cred->fsuid);
 | |
| 	/* gid comparisons */
 | |
| 	case AUDIT_COMPARE_GID_TO_EGID:
 | |
| 		return audit_comparator(cred->gid, f->op, cred->egid);
 | |
| 	case AUDIT_COMPARE_GID_TO_SGID:
 | |
| 		return audit_comparator(cred->gid, f->op, cred->sgid);
 | |
| 	case AUDIT_COMPARE_GID_TO_FSGID:
 | |
| 		return audit_comparator(cred->gid, f->op, cred->fsgid);
 | |
| 	/* egid comparisons */
 | |
| 	case AUDIT_COMPARE_EGID_TO_SGID:
 | |
| 		return audit_comparator(cred->egid, f->op, cred->sgid);
 | |
| 	case AUDIT_COMPARE_EGID_TO_FSGID:
 | |
| 		return audit_comparator(cred->egid, f->op, cred->fsgid);
 | |
| 	/* sgid comparison */
 | |
| 	case AUDIT_COMPARE_SGID_TO_FSGID:
 | |
| 		return audit_comparator(cred->sgid, f->op, cred->fsgid);
 | |
| 	default:
 | |
| 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Determine if any context name data matches a rule's watch data */
 | |
| /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 | |
|  * otherwise.
 | |
|  *
 | |
|  * If task_creation is true, this is an explicit indication that we are
 | |
|  * filtering a task rule at task creation time.  This and tsk == current are
 | |
|  * the only situations where tsk->cred may be accessed without an rcu read lock.
 | |
|  */
 | |
| static int audit_filter_rules(struct task_struct *tsk,
 | |
| 			      struct audit_krule *rule,
 | |
| 			      struct audit_context *ctx,
 | |
| 			      struct audit_names *name,
 | |
| 			      enum audit_state *state,
 | |
| 			      bool task_creation)
 | |
| {
 | |
| 	const struct cred *cred;
 | |
| 	int i, need_sid = 1;
 | |
| 	u32 sid;
 | |
| 
 | |
| 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 | |
| 
 | |
| 	for (i = 0; i < rule->field_count; i++) {
 | |
| 		struct audit_field *f = &rule->fields[i];
 | |
| 		struct audit_names *n;
 | |
| 		int result = 0;
 | |
| 
 | |
| 		switch (f->type) {
 | |
| 		case AUDIT_PID:
 | |
| 			result = audit_comparator(tsk->pid, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_PPID:
 | |
| 			if (ctx) {
 | |
| 				if (!ctx->ppid)
 | |
| 					ctx->ppid = sys_getppid();
 | |
| 				result = audit_comparator(ctx->ppid, f->op, f->val);
 | |
| 			}
 | |
| 			break;
 | |
| 		case AUDIT_UID:
 | |
| 			result = audit_comparator(cred->uid, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_EUID:
 | |
| 			result = audit_comparator(cred->euid, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_SUID:
 | |
| 			result = audit_comparator(cred->suid, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_FSUID:
 | |
| 			result = audit_comparator(cred->fsuid, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_GID:
 | |
| 			result = audit_comparator(cred->gid, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_EGID:
 | |
| 			result = audit_comparator(cred->egid, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_SGID:
 | |
| 			result = audit_comparator(cred->sgid, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_FSGID:
 | |
| 			result = audit_comparator(cred->fsgid, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_PERS:
 | |
| 			result = audit_comparator(tsk->personality, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_ARCH:
 | |
| 			if (ctx)
 | |
| 				result = audit_comparator(ctx->arch, f->op, f->val);
 | |
| 			break;
 | |
| 
 | |
| 		case AUDIT_EXIT:
 | |
| 			if (ctx && ctx->return_valid)
 | |
| 				result = audit_comparator(ctx->return_code, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_SUCCESS:
 | |
| 			if (ctx && ctx->return_valid) {
 | |
| 				if (f->val)
 | |
| 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 | |
| 				else
 | |
| 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 | |
| 			}
 | |
| 			break;
 | |
| 		case AUDIT_DEVMAJOR:
 | |
| 			if (name) {
 | |
| 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 | |
| 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 | |
| 					++result;
 | |
| 			} else if (ctx) {
 | |
| 				list_for_each_entry(n, &ctx->names_list, list) {
 | |
| 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 | |
| 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 | |
| 						++result;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 		case AUDIT_DEVMINOR:
 | |
| 			if (name) {
 | |
| 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 | |
| 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 | |
| 					++result;
 | |
| 			} else if (ctx) {
 | |
| 				list_for_each_entry(n, &ctx->names_list, list) {
 | |
| 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 | |
| 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 | |
| 						++result;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 		case AUDIT_INODE:
 | |
| 			if (name)
 | |
| 				result = (name->ino == f->val);
 | |
| 			else if (ctx) {
 | |
| 				list_for_each_entry(n, &ctx->names_list, list) {
 | |
| 					if (audit_comparator(n->ino, f->op, f->val)) {
 | |
| 						++result;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 		case AUDIT_OBJ_UID:
 | |
| 			if (name) {
 | |
| 				result = audit_comparator(name->uid, f->op, f->val);
 | |
| 			} else if (ctx) {
 | |
| 				list_for_each_entry(n, &ctx->names_list, list) {
 | |
| 					if (audit_comparator(n->uid, f->op, f->val)) {
 | |
| 						++result;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 		case AUDIT_OBJ_GID:
 | |
| 			if (name) {
 | |
| 				result = audit_comparator(name->gid, f->op, f->val);
 | |
| 			} else if (ctx) {
 | |
| 				list_for_each_entry(n, &ctx->names_list, list) {
 | |
| 					if (audit_comparator(n->gid, f->op, f->val)) {
 | |
| 						++result;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 		case AUDIT_WATCH:
 | |
| 			if (name)
 | |
| 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 | |
| 			break;
 | |
| 		case AUDIT_DIR:
 | |
| 			if (ctx)
 | |
| 				result = match_tree_refs(ctx, rule->tree);
 | |
| 			break;
 | |
| 		case AUDIT_LOGINUID:
 | |
| 			result = 0;
 | |
| 			if (ctx)
 | |
| 				result = audit_comparator(tsk->loginuid, f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_SUBJ_USER:
 | |
| 		case AUDIT_SUBJ_ROLE:
 | |
| 		case AUDIT_SUBJ_TYPE:
 | |
| 		case AUDIT_SUBJ_SEN:
 | |
| 		case AUDIT_SUBJ_CLR:
 | |
| 			/* NOTE: this may return negative values indicating
 | |
| 			   a temporary error.  We simply treat this as a
 | |
| 			   match for now to avoid losing information that
 | |
| 			   may be wanted.   An error message will also be
 | |
| 			   logged upon error */
 | |
| 			if (f->lsm_rule) {
 | |
| 				if (need_sid) {
 | |
| 					security_task_getsecid(tsk, &sid);
 | |
| 					need_sid = 0;
 | |
| 				}
 | |
| 				result = security_audit_rule_match(sid, f->type,
 | |
| 				                                  f->op,
 | |
| 				                                  f->lsm_rule,
 | |
| 				                                  ctx);
 | |
| 			}
 | |
| 			break;
 | |
| 		case AUDIT_OBJ_USER:
 | |
| 		case AUDIT_OBJ_ROLE:
 | |
| 		case AUDIT_OBJ_TYPE:
 | |
| 		case AUDIT_OBJ_LEV_LOW:
 | |
| 		case AUDIT_OBJ_LEV_HIGH:
 | |
| 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 | |
| 			   also applies here */
 | |
| 			if (f->lsm_rule) {
 | |
| 				/* Find files that match */
 | |
| 				if (name) {
 | |
| 					result = security_audit_rule_match(
 | |
| 					           name->osid, f->type, f->op,
 | |
| 					           f->lsm_rule, ctx);
 | |
| 				} else if (ctx) {
 | |
| 					list_for_each_entry(n, &ctx->names_list, list) {
 | |
| 						if (security_audit_rule_match(n->osid, f->type,
 | |
| 									      f->op, f->lsm_rule,
 | |
| 									      ctx)) {
 | |
| 							++result;
 | |
| 							break;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				/* Find ipc objects that match */
 | |
| 				if (!ctx || ctx->type != AUDIT_IPC)
 | |
| 					break;
 | |
| 				if (security_audit_rule_match(ctx->ipc.osid,
 | |
| 							      f->type, f->op,
 | |
| 							      f->lsm_rule, ctx))
 | |
| 					++result;
 | |
| 			}
 | |
| 			break;
 | |
| 		case AUDIT_ARG0:
 | |
| 		case AUDIT_ARG1:
 | |
| 		case AUDIT_ARG2:
 | |
| 		case AUDIT_ARG3:
 | |
| 			if (ctx)
 | |
| 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_FILTERKEY:
 | |
| 			/* ignore this field for filtering */
 | |
| 			result = 1;
 | |
| 			break;
 | |
| 		case AUDIT_PERM:
 | |
| 			result = audit_match_perm(ctx, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_FILETYPE:
 | |
| 			result = audit_match_filetype(ctx, f->val);
 | |
| 			break;
 | |
| 		case AUDIT_FIELD_COMPARE:
 | |
| 			result = audit_field_compare(tsk, cred, f, ctx, name);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!result)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx) {
 | |
| 		if (rule->prio <= ctx->prio)
 | |
| 			return 0;
 | |
| 		if (rule->filterkey) {
 | |
| 			kfree(ctx->filterkey);
 | |
| 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 | |
| 		}
 | |
| 		ctx->prio = rule->prio;
 | |
| 	}
 | |
| 	switch (rule->action) {
 | |
| 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 | |
| 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* At process creation time, we can determine if system-call auditing is
 | |
|  * completely disabled for this task.  Since we only have the task
 | |
|  * structure at this point, we can only check uid and gid.
 | |
|  */
 | |
| static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 | |
| {
 | |
| 	struct audit_entry *e;
 | |
| 	enum audit_state   state;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 | |
| 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 | |
| 				       &state, true)) {
 | |
| 			if (state == AUDIT_RECORD_CONTEXT)
 | |
| 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 | |
| 			rcu_read_unlock();
 | |
| 			return state;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return AUDIT_BUILD_CONTEXT;
 | |
| }
 | |
| 
 | |
| /* At syscall entry and exit time, this filter is called if the
 | |
|  * audit_state is not low enough that auditing cannot take place, but is
 | |
|  * also not high enough that we already know we have to write an audit
 | |
|  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 | |
|  */
 | |
| static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 | |
| 					     struct audit_context *ctx,
 | |
| 					     struct list_head *list)
 | |
| {
 | |
| 	struct audit_entry *e;
 | |
| 	enum audit_state state;
 | |
| 
 | |
| 	if (audit_pid && tsk->tgid == audit_pid)
 | |
| 		return AUDIT_DISABLED;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!list_empty(list)) {
 | |
| 		int word = AUDIT_WORD(ctx->major);
 | |
| 		int bit  = AUDIT_BIT(ctx->major);
 | |
| 
 | |
| 		list_for_each_entry_rcu(e, list, list) {
 | |
| 			if ((e->rule.mask[word] & bit) == bit &&
 | |
| 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 | |
| 					       &state, false)) {
 | |
| 				rcu_read_unlock();
 | |
| 				ctx->current_state = state;
 | |
| 				return state;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return AUDIT_BUILD_CONTEXT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given an audit_name check the inode hash table to see if they match.
 | |
|  * Called holding the rcu read lock to protect the use of audit_inode_hash
 | |
|  */
 | |
| static int audit_filter_inode_name(struct task_struct *tsk,
 | |
| 				   struct audit_names *n,
 | |
| 				   struct audit_context *ctx) {
 | |
| 	int word, bit;
 | |
| 	int h = audit_hash_ino((u32)n->ino);
 | |
| 	struct list_head *list = &audit_inode_hash[h];
 | |
| 	struct audit_entry *e;
 | |
| 	enum audit_state state;
 | |
| 
 | |
| 	word = AUDIT_WORD(ctx->major);
 | |
| 	bit  = AUDIT_BIT(ctx->major);
 | |
| 
 | |
| 	if (list_empty(list))
 | |
| 		return 0;
 | |
| 
 | |
| 	list_for_each_entry_rcu(e, list, list) {
 | |
| 		if ((e->rule.mask[word] & bit) == bit &&
 | |
| 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 | |
| 			ctx->current_state = state;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* At syscall exit time, this filter is called if any audit_names have been
 | |
|  * collected during syscall processing.  We only check rules in sublists at hash
 | |
|  * buckets applicable to the inode numbers in audit_names.
 | |
|  * Regarding audit_state, same rules apply as for audit_filter_syscall().
 | |
|  */
 | |
| void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 | |
| {
 | |
| 	struct audit_names *n;
 | |
| 
 | |
| 	if (audit_pid && tsk->tgid == audit_pid)
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	list_for_each_entry(n, &ctx->names_list, list) {
 | |
| 		if (audit_filter_inode_name(tsk, n, ctx))
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 | |
| 						      int return_valid,
 | |
| 						      long return_code)
 | |
| {
 | |
| 	struct audit_context *context = tsk->audit_context;
 | |
| 
 | |
| 	if (!context)
 | |
| 		return NULL;
 | |
| 	context->return_valid = return_valid;
 | |
| 
 | |
| 	/*
 | |
| 	 * we need to fix up the return code in the audit logs if the actual
 | |
| 	 * return codes are later going to be fixed up by the arch specific
 | |
| 	 * signal handlers
 | |
| 	 *
 | |
| 	 * This is actually a test for:
 | |
| 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 | |
| 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 | |
| 	 *
 | |
| 	 * but is faster than a bunch of ||
 | |
| 	 */
 | |
| 	if (unlikely(return_code <= -ERESTARTSYS) &&
 | |
| 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 | |
| 	    (return_code != -ENOIOCTLCMD))
 | |
| 		context->return_code = -EINTR;
 | |
| 	else
 | |
| 		context->return_code  = return_code;
 | |
| 
 | |
| 	if (context->in_syscall && !context->dummy) {
 | |
| 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 | |
| 		audit_filter_inodes(tsk, context);
 | |
| 	}
 | |
| 
 | |
| 	tsk->audit_context = NULL;
 | |
| 	return context;
 | |
| }
 | |
| 
 | |
| static inline void audit_free_names(struct audit_context *context)
 | |
| {
 | |
| 	struct audit_names *n, *next;
 | |
| 
 | |
| #if AUDIT_DEBUG == 2
 | |
| 	if (context->put_count + context->ino_count != context->name_count) {
 | |
| 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 | |
| 		       " name_count=%d put_count=%d"
 | |
| 		       " ino_count=%d [NOT freeing]\n",
 | |
| 		       __FILE__, __LINE__,
 | |
| 		       context->serial, context->major, context->in_syscall,
 | |
| 		       context->name_count, context->put_count,
 | |
| 		       context->ino_count);
 | |
| 		list_for_each_entry(n, &context->names_list, list) {
 | |
| 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
 | |
| 			       n->name, n->name ?: "(null)");
 | |
| 		}
 | |
| 		dump_stack();
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| #if AUDIT_DEBUG
 | |
| 	context->put_count  = 0;
 | |
| 	context->ino_count  = 0;
 | |
| #endif
 | |
| 
 | |
| 	list_for_each_entry_safe(n, next, &context->names_list, list) {
 | |
| 		list_del(&n->list);
 | |
| 		if (n->name && n->name_put)
 | |
| 			__putname(n->name);
 | |
| 		if (n->should_free)
 | |
| 			kfree(n);
 | |
| 	}
 | |
| 	context->name_count = 0;
 | |
| 	path_put(&context->pwd);
 | |
| 	context->pwd.dentry = NULL;
 | |
| 	context->pwd.mnt = NULL;
 | |
| }
 | |
| 
 | |
| static inline void audit_free_aux(struct audit_context *context)
 | |
| {
 | |
| 	struct audit_aux_data *aux;
 | |
| 
 | |
| 	while ((aux = context->aux)) {
 | |
| 		context->aux = aux->next;
 | |
| 		kfree(aux);
 | |
| 	}
 | |
| 	while ((aux = context->aux_pids)) {
 | |
| 		context->aux_pids = aux->next;
 | |
| 		kfree(aux);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void audit_zero_context(struct audit_context *context,
 | |
| 				      enum audit_state state)
 | |
| {
 | |
| 	memset(context, 0, sizeof(*context));
 | |
| 	context->state      = state;
 | |
| 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 | |
| }
 | |
| 
 | |
| static inline struct audit_context *audit_alloc_context(enum audit_state state)
 | |
| {
 | |
| 	struct audit_context *context;
 | |
| 
 | |
| 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 | |
| 		return NULL;
 | |
| 	audit_zero_context(context, state);
 | |
| 	INIT_LIST_HEAD(&context->killed_trees);
 | |
| 	INIT_LIST_HEAD(&context->names_list);
 | |
| 	return context;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_alloc - allocate an audit context block for a task
 | |
|  * @tsk: task
 | |
|  *
 | |
|  * Filter on the task information and allocate a per-task audit context
 | |
|  * if necessary.  Doing so turns on system call auditing for the
 | |
|  * specified task.  This is called from copy_process, so no lock is
 | |
|  * needed.
 | |
|  */
 | |
| int audit_alloc(struct task_struct *tsk)
 | |
| {
 | |
| 	struct audit_context *context;
 | |
| 	enum audit_state     state;
 | |
| 	char *key = NULL;
 | |
| 
 | |
| 	if (likely(!audit_ever_enabled))
 | |
| 		return 0; /* Return if not auditing. */
 | |
| 
 | |
| 	state = audit_filter_task(tsk, &key);
 | |
| 	if (state == AUDIT_DISABLED)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!(context = audit_alloc_context(state))) {
 | |
| 		kfree(key);
 | |
| 		audit_log_lost("out of memory in audit_alloc");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	context->filterkey = key;
 | |
| 
 | |
| 	tsk->audit_context  = context;
 | |
| 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void audit_free_context(struct audit_context *context)
 | |
| {
 | |
| 	struct audit_context *previous;
 | |
| 	int		     count = 0;
 | |
| 
 | |
| 	do {
 | |
| 		previous = context->previous;
 | |
| 		if (previous || (count &&  count < 10)) {
 | |
| 			++count;
 | |
| 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
 | |
| 			       " freeing multiple contexts (%d)\n",
 | |
| 			       context->serial, context->major,
 | |
| 			       context->name_count, count);
 | |
| 		}
 | |
| 		audit_free_names(context);
 | |
| 		unroll_tree_refs(context, NULL, 0);
 | |
| 		free_tree_refs(context);
 | |
| 		audit_free_aux(context);
 | |
| 		kfree(context->filterkey);
 | |
| 		kfree(context->sockaddr);
 | |
| 		kfree(context);
 | |
| 		context  = previous;
 | |
| 	} while (context);
 | |
| 	if (count >= 10)
 | |
| 		printk(KERN_ERR "audit: freed %d contexts\n", count);
 | |
| }
 | |
| 
 | |
| void audit_log_task_context(struct audit_buffer *ab)
 | |
| {
 | |
| 	char *ctx = NULL;
 | |
| 	unsigned len;
 | |
| 	int error;
 | |
| 	u32 sid;
 | |
| 
 | |
| 	security_task_getsecid(current, &sid);
 | |
| 	if (!sid)
 | |
| 		return;
 | |
| 
 | |
| 	error = security_secid_to_secctx(sid, &ctx, &len);
 | |
| 	if (error) {
 | |
| 		if (error != -EINVAL)
 | |
| 			goto error_path;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	audit_log_format(ab, " subj=%s", ctx);
 | |
| 	security_release_secctx(ctx, len);
 | |
| 	return;
 | |
| 
 | |
| error_path:
 | |
| 	audit_panic("error in audit_log_task_context");
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(audit_log_task_context);
 | |
| 
 | |
| static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 | |
| {
 | |
| 	char name[sizeof(tsk->comm)];
 | |
| 	struct mm_struct *mm = tsk->mm;
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	/* tsk == current */
 | |
| 
 | |
| 	get_task_comm(name, tsk);
 | |
| 	audit_log_format(ab, " comm=");
 | |
| 	audit_log_untrustedstring(ab, name);
 | |
| 
 | |
| 	if (mm) {
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 		vma = mm->mmap;
 | |
| 		while (vma) {
 | |
| 			if ((vma->vm_flags & VM_EXECUTABLE) &&
 | |
| 			    vma->vm_file) {
 | |
| 				audit_log_d_path(ab, " exe=",
 | |
| 						 &vma->vm_file->f_path);
 | |
| 				break;
 | |
| 			}
 | |
| 			vma = vma->vm_next;
 | |
| 		}
 | |
| 		up_read(&mm->mmap_sem);
 | |
| 	}
 | |
| 	audit_log_task_context(ab);
 | |
| }
 | |
| 
 | |
| static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 | |
| 				 uid_t auid, uid_t uid, unsigned int sessionid,
 | |
| 				 u32 sid, char *comm)
 | |
| {
 | |
| 	struct audit_buffer *ab;
 | |
| 	char *ctx = NULL;
 | |
| 	u32 len;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 | |
| 	if (!ab)
 | |
| 		return rc;
 | |
| 
 | |
| 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
 | |
| 			 uid, sessionid);
 | |
| 	if (security_secid_to_secctx(sid, &ctx, &len)) {
 | |
| 		audit_log_format(ab, " obj=(none)");
 | |
| 		rc = 1;
 | |
| 	} else {
 | |
| 		audit_log_format(ab, " obj=%s", ctx);
 | |
| 		security_release_secctx(ctx, len);
 | |
| 	}
 | |
| 	audit_log_format(ab, " ocomm=");
 | |
| 	audit_log_untrustedstring(ab, comm);
 | |
| 	audit_log_end(ab);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * to_send and len_sent accounting are very loose estimates.  We aren't
 | |
|  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
 | |
|  * within about 500 bytes (next page boundary)
 | |
|  *
 | |
|  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
 | |
|  * logging that a[%d]= was going to be 16 characters long we would be wasting
 | |
|  * space in every audit message.  In one 7500 byte message we can log up to
 | |
|  * about 1000 min size arguments.  That comes down to about 50% waste of space
 | |
|  * if we didn't do the snprintf to find out how long arg_num_len was.
 | |
|  */
 | |
| static int audit_log_single_execve_arg(struct audit_context *context,
 | |
| 					struct audit_buffer **ab,
 | |
| 					int arg_num,
 | |
| 					size_t *len_sent,
 | |
| 					const char __user *p,
 | |
| 					char *buf)
 | |
| {
 | |
| 	char arg_num_len_buf[12];
 | |
| 	const char __user *tmp_p = p;
 | |
| 	/* how many digits are in arg_num? 5 is the length of ' a=""' */
 | |
| 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
 | |
| 	size_t len, len_left, to_send;
 | |
| 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
 | |
| 	unsigned int i, has_cntl = 0, too_long = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* strnlen_user includes the null we don't want to send */
 | |
| 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We just created this mm, if we can't find the strings
 | |
| 	 * we just copied into it something is _very_ wrong. Similar
 | |
| 	 * for strings that are too long, we should not have created
 | |
| 	 * any.
 | |
| 	 */
 | |
| 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
 | |
| 		WARN_ON(1);
 | |
| 		send_sig(SIGKILL, current, 0);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* walk the whole argument looking for non-ascii chars */
 | |
| 	do {
 | |
| 		if (len_left > MAX_EXECVE_AUDIT_LEN)
 | |
| 			to_send = MAX_EXECVE_AUDIT_LEN;
 | |
| 		else
 | |
| 			to_send = len_left;
 | |
| 		ret = copy_from_user(buf, tmp_p, to_send);
 | |
| 		/*
 | |
| 		 * There is no reason for this copy to be short. We just
 | |
| 		 * copied them here, and the mm hasn't been exposed to user-
 | |
| 		 * space yet.
 | |
| 		 */
 | |
| 		if (ret) {
 | |
| 			WARN_ON(1);
 | |
| 			send_sig(SIGKILL, current, 0);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		buf[to_send] = '\0';
 | |
| 		has_cntl = audit_string_contains_control(buf, to_send);
 | |
| 		if (has_cntl) {
 | |
| 			/*
 | |
| 			 * hex messages get logged as 2 bytes, so we can only
 | |
| 			 * send half as much in each message
 | |
| 			 */
 | |
| 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
 | |
| 			break;
 | |
| 		}
 | |
| 		len_left -= to_send;
 | |
| 		tmp_p += to_send;
 | |
| 	} while (len_left > 0);
 | |
| 
 | |
| 	len_left = len;
 | |
| 
 | |
| 	if (len > max_execve_audit_len)
 | |
| 		too_long = 1;
 | |
| 
 | |
| 	/* rewalk the argument actually logging the message */
 | |
| 	for (i = 0; len_left > 0; i++) {
 | |
| 		int room_left;
 | |
| 
 | |
| 		if (len_left > max_execve_audit_len)
 | |
| 			to_send = max_execve_audit_len;
 | |
| 		else
 | |
| 			to_send = len_left;
 | |
| 
 | |
| 		/* do we have space left to send this argument in this ab? */
 | |
| 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
 | |
| 		if (has_cntl)
 | |
| 			room_left -= (to_send * 2);
 | |
| 		else
 | |
| 			room_left -= to_send;
 | |
| 		if (room_left < 0) {
 | |
| 			*len_sent = 0;
 | |
| 			audit_log_end(*ab);
 | |
| 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
 | |
| 			if (!*ab)
 | |
| 				return 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * first record needs to say how long the original string was
 | |
| 		 * so we can be sure nothing was lost.
 | |
| 		 */
 | |
| 		if ((i == 0) && (too_long))
 | |
| 			audit_log_format(*ab, " a%d_len=%zu", arg_num,
 | |
| 					 has_cntl ? 2*len : len);
 | |
| 
 | |
| 		/*
 | |
| 		 * normally arguments are small enough to fit and we already
 | |
| 		 * filled buf above when we checked for control characters
 | |
| 		 * so don't bother with another copy_from_user
 | |
| 		 */
 | |
| 		if (len >= max_execve_audit_len)
 | |
| 			ret = copy_from_user(buf, p, to_send);
 | |
| 		else
 | |
| 			ret = 0;
 | |
| 		if (ret) {
 | |
| 			WARN_ON(1);
 | |
| 			send_sig(SIGKILL, current, 0);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		buf[to_send] = '\0';
 | |
| 
 | |
| 		/* actually log it */
 | |
| 		audit_log_format(*ab, " a%d", arg_num);
 | |
| 		if (too_long)
 | |
| 			audit_log_format(*ab, "[%d]", i);
 | |
| 		audit_log_format(*ab, "=");
 | |
| 		if (has_cntl)
 | |
| 			audit_log_n_hex(*ab, buf, to_send);
 | |
| 		else
 | |
| 			audit_log_string(*ab, buf);
 | |
| 
 | |
| 		p += to_send;
 | |
| 		len_left -= to_send;
 | |
| 		*len_sent += arg_num_len;
 | |
| 		if (has_cntl)
 | |
| 			*len_sent += to_send * 2;
 | |
| 		else
 | |
| 			*len_sent += to_send;
 | |
| 	}
 | |
| 	/* include the null we didn't log */
 | |
| 	return len + 1;
 | |
| }
 | |
| 
 | |
| static void audit_log_execve_info(struct audit_context *context,
 | |
| 				  struct audit_buffer **ab,
 | |
| 				  struct audit_aux_data_execve *axi)
 | |
| {
 | |
| 	int i, len;
 | |
| 	size_t len_sent = 0;
 | |
| 	const char __user *p;
 | |
| 	char *buf;
 | |
| 
 | |
| 	if (axi->mm != current->mm)
 | |
| 		return; /* execve failed, no additional info */
 | |
| 
 | |
| 	p = (const char __user *)axi->mm->arg_start;
 | |
| 
 | |
| 	audit_log_format(*ab, "argc=%d", axi->argc);
 | |
| 
 | |
| 	/*
 | |
| 	 * we need some kernel buffer to hold the userspace args.  Just
 | |
| 	 * allocate one big one rather than allocating one of the right size
 | |
| 	 * for every single argument inside audit_log_single_execve_arg()
 | |
| 	 * should be <8k allocation so should be pretty safe.
 | |
| 	 */
 | |
| 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
 | |
| 	if (!buf) {
 | |
| 		audit_panic("out of memory for argv string\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < axi->argc; i++) {
 | |
| 		len = audit_log_single_execve_arg(context, ab, i,
 | |
| 						  &len_sent, p, buf);
 | |
| 		if (len <= 0)
 | |
| 			break;
 | |
| 		p += len;
 | |
| 	}
 | |
| 	kfree(buf);
 | |
| }
 | |
| 
 | |
| static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	audit_log_format(ab, " %s=", prefix);
 | |
| 	CAP_FOR_EACH_U32(i) {
 | |
| 		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
 | |
| {
 | |
| 	kernel_cap_t *perm = &name->fcap.permitted;
 | |
| 	kernel_cap_t *inh = &name->fcap.inheritable;
 | |
| 	int log = 0;
 | |
| 
 | |
| 	if (!cap_isclear(*perm)) {
 | |
| 		audit_log_cap(ab, "cap_fp", perm);
 | |
| 		log = 1;
 | |
| 	}
 | |
| 	if (!cap_isclear(*inh)) {
 | |
| 		audit_log_cap(ab, "cap_fi", inh);
 | |
| 		log = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (log)
 | |
| 		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
 | |
| }
 | |
| 
 | |
| static void show_special(struct audit_context *context, int *call_panic)
 | |
| {
 | |
| 	struct audit_buffer *ab;
 | |
| 	int i;
 | |
| 
 | |
| 	ab = audit_log_start(context, GFP_KERNEL, context->type);
 | |
| 	if (!ab)
 | |
| 		return;
 | |
| 
 | |
| 	switch (context->type) {
 | |
| 	case AUDIT_SOCKETCALL: {
 | |
| 		int nargs = context->socketcall.nargs;
 | |
| 		audit_log_format(ab, "nargs=%d", nargs);
 | |
| 		for (i = 0; i < nargs; i++)
 | |
| 			audit_log_format(ab, " a%d=%lx", i,
 | |
| 				context->socketcall.args[i]);
 | |
| 		break; }
 | |
| 	case AUDIT_IPC: {
 | |
| 		u32 osid = context->ipc.osid;
 | |
| 
 | |
| 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
 | |
| 			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
 | |
| 		if (osid) {
 | |
| 			char *ctx = NULL;
 | |
| 			u32 len;
 | |
| 			if (security_secid_to_secctx(osid, &ctx, &len)) {
 | |
| 				audit_log_format(ab, " osid=%u", osid);
 | |
| 				*call_panic = 1;
 | |
| 			} else {
 | |
| 				audit_log_format(ab, " obj=%s", ctx);
 | |
| 				security_release_secctx(ctx, len);
 | |
| 			}
 | |
| 		}
 | |
| 		if (context->ipc.has_perm) {
 | |
| 			audit_log_end(ab);
 | |
| 			ab = audit_log_start(context, GFP_KERNEL,
 | |
| 					     AUDIT_IPC_SET_PERM);
 | |
| 			audit_log_format(ab,
 | |
| 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
 | |
| 				context->ipc.qbytes,
 | |
| 				context->ipc.perm_uid,
 | |
| 				context->ipc.perm_gid,
 | |
| 				context->ipc.perm_mode);
 | |
| 			if (!ab)
 | |
| 				return;
 | |
| 		}
 | |
| 		break; }
 | |
| 	case AUDIT_MQ_OPEN: {
 | |
| 		audit_log_format(ab,
 | |
| 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
 | |
| 			"mq_msgsize=%ld mq_curmsgs=%ld",
 | |
| 			context->mq_open.oflag, context->mq_open.mode,
 | |
| 			context->mq_open.attr.mq_flags,
 | |
| 			context->mq_open.attr.mq_maxmsg,
 | |
| 			context->mq_open.attr.mq_msgsize,
 | |
| 			context->mq_open.attr.mq_curmsgs);
 | |
| 		break; }
 | |
| 	case AUDIT_MQ_SENDRECV: {
 | |
| 		audit_log_format(ab,
 | |
| 			"mqdes=%d msg_len=%zd msg_prio=%u "
 | |
| 			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
 | |
| 			context->mq_sendrecv.mqdes,
 | |
| 			context->mq_sendrecv.msg_len,
 | |
| 			context->mq_sendrecv.msg_prio,
 | |
| 			context->mq_sendrecv.abs_timeout.tv_sec,
 | |
| 			context->mq_sendrecv.abs_timeout.tv_nsec);
 | |
| 		break; }
 | |
| 	case AUDIT_MQ_NOTIFY: {
 | |
| 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
 | |
| 				context->mq_notify.mqdes,
 | |
| 				context->mq_notify.sigev_signo);
 | |
| 		break; }
 | |
| 	case AUDIT_MQ_GETSETATTR: {
 | |
| 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 | |
| 		audit_log_format(ab,
 | |
| 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
 | |
| 			"mq_curmsgs=%ld ",
 | |
| 			context->mq_getsetattr.mqdes,
 | |
| 			attr->mq_flags, attr->mq_maxmsg,
 | |
| 			attr->mq_msgsize, attr->mq_curmsgs);
 | |
| 		break; }
 | |
| 	case AUDIT_CAPSET: {
 | |
| 		audit_log_format(ab, "pid=%d", context->capset.pid);
 | |
| 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
 | |
| 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
 | |
| 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
 | |
| 		break; }
 | |
| 	case AUDIT_MMAP: {
 | |
| 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
 | |
| 				 context->mmap.flags);
 | |
| 		break; }
 | |
| 	}
 | |
| 	audit_log_end(ab);
 | |
| }
 | |
| 
 | |
| static void audit_log_name(struct audit_context *context, struct audit_names *n,
 | |
| 			   int record_num, int *call_panic)
 | |
| {
 | |
| 	struct audit_buffer *ab;
 | |
| 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
 | |
| 	if (!ab)
 | |
| 		return; /* audit_panic has been called */
 | |
| 
 | |
| 	audit_log_format(ab, "item=%d", record_num);
 | |
| 
 | |
| 	if (n->name) {
 | |
| 		switch (n->name_len) {
 | |
| 		case AUDIT_NAME_FULL:
 | |
| 			/* log the full path */
 | |
| 			audit_log_format(ab, " name=");
 | |
| 			audit_log_untrustedstring(ab, n->name);
 | |
| 			break;
 | |
| 		case 0:
 | |
| 			/* name was specified as a relative path and the
 | |
| 			 * directory component is the cwd */
 | |
| 			audit_log_d_path(ab, " name=", &context->pwd);
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* log the name's directory component */
 | |
| 			audit_log_format(ab, " name=");
 | |
| 			audit_log_n_untrustedstring(ab, n->name,
 | |
| 						    n->name_len);
 | |
| 		}
 | |
| 	} else
 | |
| 		audit_log_format(ab, " name=(null)");
 | |
| 
 | |
| 	if (n->ino != (unsigned long)-1) {
 | |
| 		audit_log_format(ab, " inode=%lu"
 | |
| 				 " dev=%02x:%02x mode=%#ho"
 | |
| 				 " ouid=%u ogid=%u rdev=%02x:%02x",
 | |
| 				 n->ino,
 | |
| 				 MAJOR(n->dev),
 | |
| 				 MINOR(n->dev),
 | |
| 				 n->mode,
 | |
| 				 n->uid,
 | |
| 				 n->gid,
 | |
| 				 MAJOR(n->rdev),
 | |
| 				 MINOR(n->rdev));
 | |
| 	}
 | |
| 	if (n->osid != 0) {
 | |
| 		char *ctx = NULL;
 | |
| 		u32 len;
 | |
| 		if (security_secid_to_secctx(
 | |
| 			n->osid, &ctx, &len)) {
 | |
| 			audit_log_format(ab, " osid=%u", n->osid);
 | |
| 			*call_panic = 2;
 | |
| 		} else {
 | |
| 			audit_log_format(ab, " obj=%s", ctx);
 | |
| 			security_release_secctx(ctx, len);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	audit_log_fcaps(ab, n);
 | |
| 
 | |
| 	audit_log_end(ab);
 | |
| }
 | |
| 
 | |
| static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
 | |
| {
 | |
| 	const struct cred *cred;
 | |
| 	int i, call_panic = 0;
 | |
| 	struct audit_buffer *ab;
 | |
| 	struct audit_aux_data *aux;
 | |
| 	const char *tty;
 | |
| 	struct audit_names *n;
 | |
| 
 | |
| 	/* tsk == current */
 | |
| 	context->pid = tsk->pid;
 | |
| 	if (!context->ppid)
 | |
| 		context->ppid = sys_getppid();
 | |
| 	cred = current_cred();
 | |
| 	context->uid   = cred->uid;
 | |
| 	context->gid   = cred->gid;
 | |
| 	context->euid  = cred->euid;
 | |
| 	context->suid  = cred->suid;
 | |
| 	context->fsuid = cred->fsuid;
 | |
| 	context->egid  = cred->egid;
 | |
| 	context->sgid  = cred->sgid;
 | |
| 	context->fsgid = cred->fsgid;
 | |
| 	context->personality = tsk->personality;
 | |
| 
 | |
| 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
 | |
| 	if (!ab)
 | |
| 		return;		/* audit_panic has been called */
 | |
| 	audit_log_format(ab, "arch=%x syscall=%d",
 | |
| 			 context->arch, context->major);
 | |
| 	if (context->personality != PER_LINUX)
 | |
| 		audit_log_format(ab, " per=%lx", context->personality);
 | |
| 	if (context->return_valid)
 | |
| 		audit_log_format(ab, " success=%s exit=%ld",
 | |
| 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
 | |
| 				 context->return_code);
 | |
| 
 | |
| 	spin_lock_irq(&tsk->sighand->siglock);
 | |
| 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
 | |
| 		tty = tsk->signal->tty->name;
 | |
| 	else
 | |
| 		tty = "(none)";
 | |
| 	spin_unlock_irq(&tsk->sighand->siglock);
 | |
| 
 | |
| 	audit_log_format(ab,
 | |
| 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
 | |
| 		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
 | |
| 		  " euid=%u suid=%u fsuid=%u"
 | |
| 		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
 | |
| 		  context->argv[0],
 | |
| 		  context->argv[1],
 | |
| 		  context->argv[2],
 | |
| 		  context->argv[3],
 | |
| 		  context->name_count,
 | |
| 		  context->ppid,
 | |
| 		  context->pid,
 | |
| 		  tsk->loginuid,
 | |
| 		  context->uid,
 | |
| 		  context->gid,
 | |
| 		  context->euid, context->suid, context->fsuid,
 | |
| 		  context->egid, context->sgid, context->fsgid, tty,
 | |
| 		  tsk->sessionid);
 | |
| 
 | |
| 
 | |
| 	audit_log_task_info(ab, tsk);
 | |
| 	audit_log_key(ab, context->filterkey);
 | |
| 	audit_log_end(ab);
 | |
| 
 | |
| 	for (aux = context->aux; aux; aux = aux->next) {
 | |
| 
 | |
| 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
 | |
| 		if (!ab)
 | |
| 			continue; /* audit_panic has been called */
 | |
| 
 | |
| 		switch (aux->type) {
 | |
| 
 | |
| 		case AUDIT_EXECVE: {
 | |
| 			struct audit_aux_data_execve *axi = (void *)aux;
 | |
| 			audit_log_execve_info(context, &ab, axi);
 | |
| 			break; }
 | |
| 
 | |
| 		case AUDIT_BPRM_FCAPS: {
 | |
| 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 | |
| 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
 | |
| 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
 | |
| 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
 | |
| 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
 | |
| 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
 | |
| 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
 | |
| 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
 | |
| 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
 | |
| 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
 | |
| 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
 | |
| 			break; }
 | |
| 
 | |
| 		}
 | |
| 		audit_log_end(ab);
 | |
| 	}
 | |
| 
 | |
| 	if (context->type)
 | |
| 		show_special(context, &call_panic);
 | |
| 
 | |
| 	if (context->fds[0] >= 0) {
 | |
| 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
 | |
| 		if (ab) {
 | |
| 			audit_log_format(ab, "fd0=%d fd1=%d",
 | |
| 					context->fds[0], context->fds[1]);
 | |
| 			audit_log_end(ab);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (context->sockaddr_len) {
 | |
| 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
 | |
| 		if (ab) {
 | |
| 			audit_log_format(ab, "saddr=");
 | |
| 			audit_log_n_hex(ab, (void *)context->sockaddr,
 | |
| 					context->sockaddr_len);
 | |
| 			audit_log_end(ab);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (aux = context->aux_pids; aux; aux = aux->next) {
 | |
| 		struct audit_aux_data_pids *axs = (void *)aux;
 | |
| 
 | |
| 		for (i = 0; i < axs->pid_count; i++)
 | |
| 			if (audit_log_pid_context(context, axs->target_pid[i],
 | |
| 						  axs->target_auid[i],
 | |
| 						  axs->target_uid[i],
 | |
| 						  axs->target_sessionid[i],
 | |
| 						  axs->target_sid[i],
 | |
| 						  axs->target_comm[i]))
 | |
| 				call_panic = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (context->target_pid &&
 | |
| 	    audit_log_pid_context(context, context->target_pid,
 | |
| 				  context->target_auid, context->target_uid,
 | |
| 				  context->target_sessionid,
 | |
| 				  context->target_sid, context->target_comm))
 | |
| 			call_panic = 1;
 | |
| 
 | |
| 	if (context->pwd.dentry && context->pwd.mnt) {
 | |
| 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
 | |
| 		if (ab) {
 | |
| 			audit_log_d_path(ab, " cwd=", &context->pwd);
 | |
| 			audit_log_end(ab);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	i = 0;
 | |
| 	list_for_each_entry(n, &context->names_list, list)
 | |
| 		audit_log_name(context, n, i++, &call_panic);
 | |
| 
 | |
| 	/* Send end of event record to help user space know we are finished */
 | |
| 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
 | |
| 	if (ab)
 | |
| 		audit_log_end(ab);
 | |
| 	if (call_panic)
 | |
| 		audit_panic("error converting sid to string");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_free - free a per-task audit context
 | |
|  * @tsk: task whose audit context block to free
 | |
|  *
 | |
|  * Called from copy_process and do_exit
 | |
|  */
 | |
| void __audit_free(struct task_struct *tsk)
 | |
| {
 | |
| 	struct audit_context *context;
 | |
| 
 | |
| 	context = audit_get_context(tsk, 0, 0);
 | |
| 	if (!context)
 | |
| 		return;
 | |
| 
 | |
| 	/* Check for system calls that do not go through the exit
 | |
| 	 * function (e.g., exit_group), then free context block.
 | |
| 	 * We use GFP_ATOMIC here because we might be doing this
 | |
| 	 * in the context of the idle thread */
 | |
| 	/* that can happen only if we are called from do_exit() */
 | |
| 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
 | |
| 		audit_log_exit(context, tsk);
 | |
| 	if (!list_empty(&context->killed_trees))
 | |
| 		audit_kill_trees(&context->killed_trees);
 | |
| 
 | |
| 	audit_free_context(context);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_syscall_entry - fill in an audit record at syscall entry
 | |
|  * @arch: architecture type
 | |
|  * @major: major syscall type (function)
 | |
|  * @a1: additional syscall register 1
 | |
|  * @a2: additional syscall register 2
 | |
|  * @a3: additional syscall register 3
 | |
|  * @a4: additional syscall register 4
 | |
|  *
 | |
|  * Fill in audit context at syscall entry.  This only happens if the
 | |
|  * audit context was created when the task was created and the state or
 | |
|  * filters demand the audit context be built.  If the state from the
 | |
|  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
 | |
|  * then the record will be written at syscall exit time (otherwise, it
 | |
|  * will only be written if another part of the kernel requests that it
 | |
|  * be written).
 | |
|  */
 | |
| void __audit_syscall_entry(int arch, int major,
 | |
| 			 unsigned long a1, unsigned long a2,
 | |
| 			 unsigned long a3, unsigned long a4)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct audit_context *context = tsk->audit_context;
 | |
| 	enum audit_state     state;
 | |
| 
 | |
| 	if (!context)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This happens only on certain architectures that make system
 | |
| 	 * calls in kernel_thread via the entry.S interface, instead of
 | |
| 	 * with direct calls.  (If you are porting to a new
 | |
| 	 * architecture, hitting this condition can indicate that you
 | |
| 	 * got the _exit/_leave calls backward in entry.S.)
 | |
| 	 *
 | |
| 	 * i386     no
 | |
| 	 * x86_64   no
 | |
| 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
 | |
| 	 *
 | |
| 	 * This also happens with vm86 emulation in a non-nested manner
 | |
| 	 * (entries without exits), so this case must be caught.
 | |
| 	 */
 | |
| 	if (context->in_syscall) {
 | |
| 		struct audit_context *newctx;
 | |
| 
 | |
| #if AUDIT_DEBUG
 | |
| 		printk(KERN_ERR
 | |
| 		       "audit(:%d) pid=%d in syscall=%d;"
 | |
| 		       " entering syscall=%d\n",
 | |
| 		       context->serial, tsk->pid, context->major, major);
 | |
| #endif
 | |
| 		newctx = audit_alloc_context(context->state);
 | |
| 		if (newctx) {
 | |
| 			newctx->previous   = context;
 | |
| 			context		   = newctx;
 | |
| 			tsk->audit_context = newctx;
 | |
| 		} else	{
 | |
| 			/* If we can't alloc a new context, the best we
 | |
| 			 * can do is to leak memory (any pending putname
 | |
| 			 * will be lost).  The only other alternative is
 | |
| 			 * to abandon auditing. */
 | |
| 			audit_zero_context(context, context->state);
 | |
| 		}
 | |
| 	}
 | |
| 	BUG_ON(context->in_syscall || context->name_count);
 | |
| 
 | |
| 	if (!audit_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	context->arch	    = arch;
 | |
| 	context->major      = major;
 | |
| 	context->argv[0]    = a1;
 | |
| 	context->argv[1]    = a2;
 | |
| 	context->argv[2]    = a3;
 | |
| 	context->argv[3]    = a4;
 | |
| 
 | |
| 	state = context->state;
 | |
| 	context->dummy = !audit_n_rules;
 | |
| 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
 | |
| 		context->prio = 0;
 | |
| 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
 | |
| 	}
 | |
| 	if (state == AUDIT_DISABLED)
 | |
| 		return;
 | |
| 
 | |
| 	context->serial     = 0;
 | |
| 	context->ctime      = CURRENT_TIME;
 | |
| 	context->in_syscall = 1;
 | |
| 	context->current_state  = state;
 | |
| 	context->ppid       = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_syscall_exit - deallocate audit context after a system call
 | |
|  * @success: success value of the syscall
 | |
|  * @return_code: return value of the syscall
 | |
|  *
 | |
|  * Tear down after system call.  If the audit context has been marked as
 | |
|  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
 | |
|  * filtering, or because some other part of the kernel wrote an audit
 | |
|  * message), then write out the syscall information.  In call cases,
 | |
|  * free the names stored from getname().
 | |
|  */
 | |
| void __audit_syscall_exit(int success, long return_code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct audit_context *context;
 | |
| 
 | |
| 	if (success)
 | |
| 		success = AUDITSC_SUCCESS;
 | |
| 	else
 | |
| 		success = AUDITSC_FAILURE;
 | |
| 
 | |
| 	context = audit_get_context(tsk, success, return_code);
 | |
| 	if (!context)
 | |
| 		return;
 | |
| 
 | |
| 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
 | |
| 		audit_log_exit(context, tsk);
 | |
| 
 | |
| 	context->in_syscall = 0;
 | |
| 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 | |
| 
 | |
| 	if (!list_empty(&context->killed_trees))
 | |
| 		audit_kill_trees(&context->killed_trees);
 | |
| 
 | |
| 	if (context->previous) {
 | |
| 		struct audit_context *new_context = context->previous;
 | |
| 		context->previous  = NULL;
 | |
| 		audit_free_context(context);
 | |
| 		tsk->audit_context = new_context;
 | |
| 	} else {
 | |
| 		audit_free_names(context);
 | |
| 		unroll_tree_refs(context, NULL, 0);
 | |
| 		audit_free_aux(context);
 | |
| 		context->aux = NULL;
 | |
| 		context->aux_pids = NULL;
 | |
| 		context->target_pid = 0;
 | |
| 		context->target_sid = 0;
 | |
| 		context->sockaddr_len = 0;
 | |
| 		context->type = 0;
 | |
| 		context->fds[0] = -1;
 | |
| 		if (context->state != AUDIT_RECORD_CONTEXT) {
 | |
| 			kfree(context->filterkey);
 | |
| 			context->filterkey = NULL;
 | |
| 		}
 | |
| 		tsk->audit_context = context;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void handle_one(const struct inode *inode)
 | |
| {
 | |
| #ifdef CONFIG_AUDIT_TREE
 | |
| 	struct audit_context *context;
 | |
| 	struct audit_tree_refs *p;
 | |
| 	struct audit_chunk *chunk;
 | |
| 	int count;
 | |
| 	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
 | |
| 		return;
 | |
| 	context = current->audit_context;
 | |
| 	p = context->trees;
 | |
| 	count = context->tree_count;
 | |
| 	rcu_read_lock();
 | |
| 	chunk = audit_tree_lookup(inode);
 | |
| 	rcu_read_unlock();
 | |
| 	if (!chunk)
 | |
| 		return;
 | |
| 	if (likely(put_tree_ref(context, chunk)))
 | |
| 		return;
 | |
| 	if (unlikely(!grow_tree_refs(context))) {
 | |
| 		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
 | |
| 		audit_set_auditable(context);
 | |
| 		audit_put_chunk(chunk);
 | |
| 		unroll_tree_refs(context, p, count);
 | |
| 		return;
 | |
| 	}
 | |
| 	put_tree_ref(context, chunk);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void handle_path(const struct dentry *dentry)
 | |
| {
 | |
| #ifdef CONFIG_AUDIT_TREE
 | |
| 	struct audit_context *context;
 | |
| 	struct audit_tree_refs *p;
 | |
| 	const struct dentry *d, *parent;
 | |
| 	struct audit_chunk *drop;
 | |
| 	unsigned long seq;
 | |
| 	int count;
 | |
| 
 | |
| 	context = current->audit_context;
 | |
| 	p = context->trees;
 | |
| 	count = context->tree_count;
 | |
| retry:
 | |
| 	drop = NULL;
 | |
| 	d = dentry;
 | |
| 	rcu_read_lock();
 | |
| 	seq = read_seqbegin(&rename_lock);
 | |
| 	for(;;) {
 | |
| 		struct inode *inode = d->d_inode;
 | |
| 		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
 | |
| 			struct audit_chunk *chunk;
 | |
| 			chunk = audit_tree_lookup(inode);
 | |
| 			if (chunk) {
 | |
| 				if (unlikely(!put_tree_ref(context, chunk))) {
 | |
| 					drop = chunk;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		parent = d->d_parent;
 | |
| 		if (parent == d)
 | |
| 			break;
 | |
| 		d = parent;
 | |
| 	}
 | |
| 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
 | |
| 		rcu_read_unlock();
 | |
| 		if (!drop) {
 | |
| 			/* just a race with rename */
 | |
| 			unroll_tree_refs(context, p, count);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		audit_put_chunk(drop);
 | |
| 		if (grow_tree_refs(context)) {
 | |
| 			/* OK, got more space */
 | |
| 			unroll_tree_refs(context, p, count);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		/* too bad */
 | |
| 		printk(KERN_WARNING
 | |
| 			"out of memory, audit has lost a tree reference\n");
 | |
| 		unroll_tree_refs(context, p, count);
 | |
| 		audit_set_auditable(context);
 | |
| 		return;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static struct audit_names *audit_alloc_name(struct audit_context *context)
 | |
| {
 | |
| 	struct audit_names *aname;
 | |
| 
 | |
| 	if (context->name_count < AUDIT_NAMES) {
 | |
| 		aname = &context->preallocated_names[context->name_count];
 | |
| 		memset(aname, 0, sizeof(*aname));
 | |
| 	} else {
 | |
| 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
 | |
| 		if (!aname)
 | |
| 			return NULL;
 | |
| 		aname->should_free = true;
 | |
| 	}
 | |
| 
 | |
| 	aname->ino = (unsigned long)-1;
 | |
| 	list_add_tail(&aname->list, &context->names_list);
 | |
| 
 | |
| 	context->name_count++;
 | |
| #if AUDIT_DEBUG
 | |
| 	context->ino_count++;
 | |
| #endif
 | |
| 	return aname;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_getname - add a name to the list
 | |
|  * @name: name to add
 | |
|  *
 | |
|  * Add a name to the list of audit names for this context.
 | |
|  * Called from fs/namei.c:getname().
 | |
|  */
 | |
| void __audit_getname(const char *name)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 	struct audit_names *n;
 | |
| 
 | |
| 	if (!context->in_syscall) {
 | |
| #if AUDIT_DEBUG == 2
 | |
| 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
 | |
| 		       __FILE__, __LINE__, context->serial, name);
 | |
| 		dump_stack();
 | |
| #endif
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	n = audit_alloc_name(context);
 | |
| 	if (!n)
 | |
| 		return;
 | |
| 
 | |
| 	n->name = name;
 | |
| 	n->name_len = AUDIT_NAME_FULL;
 | |
| 	n->name_put = true;
 | |
| 
 | |
| 	if (!context->pwd.dentry)
 | |
| 		get_fs_pwd(current->fs, &context->pwd);
 | |
| }
 | |
| 
 | |
| /* audit_putname - intercept a putname request
 | |
|  * @name: name to intercept and delay for putname
 | |
|  *
 | |
|  * If we have stored the name from getname in the audit context,
 | |
|  * then we delay the putname until syscall exit.
 | |
|  * Called from include/linux/fs.h:putname().
 | |
|  */
 | |
| void audit_putname(const char *name)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 
 | |
| 	BUG_ON(!context);
 | |
| 	if (!context->in_syscall) {
 | |
| #if AUDIT_DEBUG == 2
 | |
| 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
 | |
| 		       __FILE__, __LINE__, context->serial, name);
 | |
| 		if (context->name_count) {
 | |
| 			struct audit_names *n;
 | |
| 			int i;
 | |
| 
 | |
| 			list_for_each_entry(n, &context->names_list, list)
 | |
| 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
 | |
| 				       n->name, n->name ?: "(null)");
 | |
| 			}
 | |
| #endif
 | |
| 		__putname(name);
 | |
| 	}
 | |
| #if AUDIT_DEBUG
 | |
| 	else {
 | |
| 		++context->put_count;
 | |
| 		if (context->put_count > context->name_count) {
 | |
| 			printk(KERN_ERR "%s:%d(:%d): major=%d"
 | |
| 			       " in_syscall=%d putname(%p) name_count=%d"
 | |
| 			       " put_count=%d\n",
 | |
| 			       __FILE__, __LINE__,
 | |
| 			       context->serial, context->major,
 | |
| 			       context->in_syscall, name, context->name_count,
 | |
| 			       context->put_count);
 | |
| 			dump_stack();
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
 | |
| {
 | |
| 	struct cpu_vfs_cap_data caps;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!dentry)
 | |
| 		return 0;
 | |
| 
 | |
| 	rc = get_vfs_caps_from_disk(dentry, &caps);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	name->fcap.permitted = caps.permitted;
 | |
| 	name->fcap.inheritable = caps.inheritable;
 | |
| 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 | |
| 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Copy inode data into an audit_names. */
 | |
| static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
 | |
| 			     const struct inode *inode)
 | |
| {
 | |
| 	name->ino   = inode->i_ino;
 | |
| 	name->dev   = inode->i_sb->s_dev;
 | |
| 	name->mode  = inode->i_mode;
 | |
| 	name->uid   = inode->i_uid;
 | |
| 	name->gid   = inode->i_gid;
 | |
| 	name->rdev  = inode->i_rdev;
 | |
| 	security_inode_getsecid(inode, &name->osid);
 | |
| 	audit_copy_fcaps(name, dentry);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_inode - store the inode and device from a lookup
 | |
|  * @name: name being audited
 | |
|  * @dentry: dentry being audited
 | |
|  *
 | |
|  * Called from fs/namei.c:path_lookup().
 | |
|  */
 | |
| void __audit_inode(const char *name, const struct dentry *dentry)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 	const struct inode *inode = dentry->d_inode;
 | |
| 	struct audit_names *n;
 | |
| 
 | |
| 	if (!context->in_syscall)
 | |
| 		return;
 | |
| 
 | |
| 	list_for_each_entry_reverse(n, &context->names_list, list) {
 | |
| 		if (n->name && (n->name == name))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* unable to find the name from a previous getname() */
 | |
| 	n = audit_alloc_name(context);
 | |
| 	if (!n)
 | |
| 		return;
 | |
| out:
 | |
| 	handle_path(dentry);
 | |
| 	audit_copy_inode(n, dentry, inode);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_inode_child - collect inode info for created/removed objects
 | |
|  * @dentry: dentry being audited
 | |
|  * @parent: inode of dentry parent
 | |
|  *
 | |
|  * For syscalls that create or remove filesystem objects, audit_inode
 | |
|  * can only collect information for the filesystem object's parent.
 | |
|  * This call updates the audit context with the child's information.
 | |
|  * Syscalls that create a new filesystem object must be hooked after
 | |
|  * the object is created.  Syscalls that remove a filesystem object
 | |
|  * must be hooked prior, in order to capture the target inode during
 | |
|  * unsuccessful attempts.
 | |
|  */
 | |
| void __audit_inode_child(const struct dentry *dentry,
 | |
| 			 const struct inode *parent)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 	const char *found_parent = NULL, *found_child = NULL;
 | |
| 	const struct inode *inode = dentry->d_inode;
 | |
| 	const char *dname = dentry->d_name.name;
 | |
| 	struct audit_names *n;
 | |
| 	int dirlen = 0;
 | |
| 
 | |
| 	if (!context->in_syscall)
 | |
| 		return;
 | |
| 
 | |
| 	if (inode)
 | |
| 		handle_one(inode);
 | |
| 
 | |
| 	/* parent is more likely, look for it first */
 | |
| 	list_for_each_entry(n, &context->names_list, list) {
 | |
| 		if (!n->name)
 | |
| 			continue;
 | |
| 
 | |
| 		if (n->ino == parent->i_ino &&
 | |
| 		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
 | |
| 			n->name_len = dirlen; /* update parent data in place */
 | |
| 			found_parent = n->name;
 | |
| 			goto add_names;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* no matching parent, look for matching child */
 | |
| 	list_for_each_entry(n, &context->names_list, list) {
 | |
| 		if (!n->name)
 | |
| 			continue;
 | |
| 
 | |
| 		/* strcmp() is the more likely scenario */
 | |
| 		if (!strcmp(dname, n->name) ||
 | |
| 		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
 | |
| 			if (inode)
 | |
| 				audit_copy_inode(n, NULL, inode);
 | |
| 			else
 | |
| 				n->ino = (unsigned long)-1;
 | |
| 			found_child = n->name;
 | |
| 			goto add_names;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| add_names:
 | |
| 	if (!found_parent) {
 | |
| 		n = audit_alloc_name(context);
 | |
| 		if (!n)
 | |
| 			return;
 | |
| 		audit_copy_inode(n, NULL, parent);
 | |
| 	}
 | |
| 
 | |
| 	if (!found_child) {
 | |
| 		n = audit_alloc_name(context);
 | |
| 		if (!n)
 | |
| 			return;
 | |
| 
 | |
| 		/* Re-use the name belonging to the slot for a matching parent
 | |
| 		 * directory. All names for this context are relinquished in
 | |
| 		 * audit_free_names() */
 | |
| 		if (found_parent) {
 | |
| 			n->name = found_parent;
 | |
| 			n->name_len = AUDIT_NAME_FULL;
 | |
| 			/* don't call __putname() */
 | |
| 			n->name_put = false;
 | |
| 		}
 | |
| 
 | |
| 		if (inode)
 | |
| 			audit_copy_inode(n, NULL, inode);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__audit_inode_child);
 | |
| 
 | |
| /**
 | |
|  * auditsc_get_stamp - get local copies of audit_context values
 | |
|  * @ctx: audit_context for the task
 | |
|  * @t: timespec to store time recorded in the audit_context
 | |
|  * @serial: serial value that is recorded in the audit_context
 | |
|  *
 | |
|  * Also sets the context as auditable.
 | |
|  */
 | |
| int auditsc_get_stamp(struct audit_context *ctx,
 | |
| 		       struct timespec *t, unsigned int *serial)
 | |
| {
 | |
| 	if (!ctx->in_syscall)
 | |
| 		return 0;
 | |
| 	if (!ctx->serial)
 | |
| 		ctx->serial = audit_serial();
 | |
| 	t->tv_sec  = ctx->ctime.tv_sec;
 | |
| 	t->tv_nsec = ctx->ctime.tv_nsec;
 | |
| 	*serial    = ctx->serial;
 | |
| 	if (!ctx->prio) {
 | |
| 		ctx->prio = 1;
 | |
| 		ctx->current_state = AUDIT_RECORD_CONTEXT;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* global counter which is incremented every time something logs in */
 | |
| static atomic_t session_id = ATOMIC_INIT(0);
 | |
| 
 | |
| /**
 | |
|  * audit_set_loginuid - set current task's audit_context loginuid
 | |
|  * @loginuid: loginuid value
 | |
|  *
 | |
|  * Returns 0.
 | |
|  *
 | |
|  * Called (set) from fs/proc/base.c::proc_loginuid_write().
 | |
|  */
 | |
| int audit_set_loginuid(uid_t loginuid)
 | |
| {
 | |
| 	struct task_struct *task = current;
 | |
| 	struct audit_context *context = task->audit_context;
 | |
| 	unsigned int sessionid;
 | |
| 
 | |
| #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
 | |
| 	if (task->loginuid != -1)
 | |
| 		return -EPERM;
 | |
| #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
 | |
| 	if (!capable(CAP_AUDIT_CONTROL))
 | |
| 		return -EPERM;
 | |
| #endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
 | |
| 
 | |
| 	sessionid = atomic_inc_return(&session_id);
 | |
| 	if (context && context->in_syscall) {
 | |
| 		struct audit_buffer *ab;
 | |
| 
 | |
| 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
 | |
| 		if (ab) {
 | |
| 			audit_log_format(ab, "login pid=%d uid=%u "
 | |
| 				"old auid=%u new auid=%u"
 | |
| 				" old ses=%u new ses=%u",
 | |
| 				task->pid, task_uid(task),
 | |
| 				task->loginuid, loginuid,
 | |
| 				task->sessionid, sessionid);
 | |
| 			audit_log_end(ab);
 | |
| 		}
 | |
| 	}
 | |
| 	task->sessionid = sessionid;
 | |
| 	task->loginuid = loginuid;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __audit_mq_open - record audit data for a POSIX MQ open
 | |
|  * @oflag: open flag
 | |
|  * @mode: mode bits
 | |
|  * @attr: queue attributes
 | |
|  *
 | |
|  */
 | |
| void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 
 | |
| 	if (attr)
 | |
| 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
 | |
| 	else
 | |
| 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
 | |
| 
 | |
| 	context->mq_open.oflag = oflag;
 | |
| 	context->mq_open.mode = mode;
 | |
| 
 | |
| 	context->type = AUDIT_MQ_OPEN;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
 | |
|  * @mqdes: MQ descriptor
 | |
|  * @msg_len: Message length
 | |
|  * @msg_prio: Message priority
 | |
|  * @abs_timeout: Message timeout in absolute time
 | |
|  *
 | |
|  */
 | |
| void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
 | |
| 			const struct timespec *abs_timeout)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 	struct timespec *p = &context->mq_sendrecv.abs_timeout;
 | |
| 
 | |
| 	if (abs_timeout)
 | |
| 		memcpy(p, abs_timeout, sizeof(struct timespec));
 | |
| 	else
 | |
| 		memset(p, 0, sizeof(struct timespec));
 | |
| 
 | |
| 	context->mq_sendrecv.mqdes = mqdes;
 | |
| 	context->mq_sendrecv.msg_len = msg_len;
 | |
| 	context->mq_sendrecv.msg_prio = msg_prio;
 | |
| 
 | |
| 	context->type = AUDIT_MQ_SENDRECV;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __audit_mq_notify - record audit data for a POSIX MQ notify
 | |
|  * @mqdes: MQ descriptor
 | |
|  * @notification: Notification event
 | |
|  *
 | |
|  */
 | |
| 
 | |
| void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 
 | |
| 	if (notification)
 | |
| 		context->mq_notify.sigev_signo = notification->sigev_signo;
 | |
| 	else
 | |
| 		context->mq_notify.sigev_signo = 0;
 | |
| 
 | |
| 	context->mq_notify.mqdes = mqdes;
 | |
| 	context->type = AUDIT_MQ_NOTIFY;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
 | |
|  * @mqdes: MQ descriptor
 | |
|  * @mqstat: MQ flags
 | |
|  *
 | |
|  */
 | |
| void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 	context->mq_getsetattr.mqdes = mqdes;
 | |
| 	context->mq_getsetattr.mqstat = *mqstat;
 | |
| 	context->type = AUDIT_MQ_GETSETATTR;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_ipc_obj - record audit data for ipc object
 | |
|  * @ipcp: ipc permissions
 | |
|  *
 | |
|  */
 | |
| void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 	context->ipc.uid = ipcp->uid;
 | |
| 	context->ipc.gid = ipcp->gid;
 | |
| 	context->ipc.mode = ipcp->mode;
 | |
| 	context->ipc.has_perm = 0;
 | |
| 	security_ipc_getsecid(ipcp, &context->ipc.osid);
 | |
| 	context->type = AUDIT_IPC;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_ipc_set_perm - record audit data for new ipc permissions
 | |
|  * @qbytes: msgq bytes
 | |
|  * @uid: msgq user id
 | |
|  * @gid: msgq group id
 | |
|  * @mode: msgq mode (permissions)
 | |
|  *
 | |
|  * Called only after audit_ipc_obj().
 | |
|  */
 | |
| void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 
 | |
| 	context->ipc.qbytes = qbytes;
 | |
| 	context->ipc.perm_uid = uid;
 | |
| 	context->ipc.perm_gid = gid;
 | |
| 	context->ipc.perm_mode = mode;
 | |
| 	context->ipc.has_perm = 1;
 | |
| }
 | |
| 
 | |
| int __audit_bprm(struct linux_binprm *bprm)
 | |
| {
 | |
| 	struct audit_aux_data_execve *ax;
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 
 | |
| 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
 | |
| 	if (!ax)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ax->argc = bprm->argc;
 | |
| 	ax->envc = bprm->envc;
 | |
| 	ax->mm = bprm->mm;
 | |
| 	ax->d.type = AUDIT_EXECVE;
 | |
| 	ax->d.next = context->aux;
 | |
| 	context->aux = (void *)ax;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * audit_socketcall - record audit data for sys_socketcall
 | |
|  * @nargs: number of args
 | |
|  * @args: args array
 | |
|  *
 | |
|  */
 | |
| void __audit_socketcall(int nargs, unsigned long *args)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 
 | |
| 	context->type = AUDIT_SOCKETCALL;
 | |
| 	context->socketcall.nargs = nargs;
 | |
| 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __audit_fd_pair - record audit data for pipe and socketpair
 | |
|  * @fd1: the first file descriptor
 | |
|  * @fd2: the second file descriptor
 | |
|  *
 | |
|  */
 | |
| void __audit_fd_pair(int fd1, int fd2)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 	context->fds[0] = fd1;
 | |
| 	context->fds[1] = fd2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
 | |
|  * @len: data length in user space
 | |
|  * @a: data address in kernel space
 | |
|  *
 | |
|  * Returns 0 for success or NULL context or < 0 on error.
 | |
|  */
 | |
| int __audit_sockaddr(int len, void *a)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 
 | |
| 	if (!context->sockaddr) {
 | |
| 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 | |
| 		if (!p)
 | |
| 			return -ENOMEM;
 | |
| 		context->sockaddr = p;
 | |
| 	}
 | |
| 
 | |
| 	context->sockaddr_len = len;
 | |
| 	memcpy(context->sockaddr, a, len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __audit_ptrace(struct task_struct *t)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 
 | |
| 	context->target_pid = t->pid;
 | |
| 	context->target_auid = audit_get_loginuid(t);
 | |
| 	context->target_uid = task_uid(t);
 | |
| 	context->target_sessionid = audit_get_sessionid(t);
 | |
| 	security_task_getsecid(t, &context->target_sid);
 | |
| 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * audit_signal_info - record signal info for shutting down audit subsystem
 | |
|  * @sig: signal value
 | |
|  * @t: task being signaled
 | |
|  *
 | |
|  * If the audit subsystem is being terminated, record the task (pid)
 | |
|  * and uid that is doing that.
 | |
|  */
 | |
| int __audit_signal_info(int sig, struct task_struct *t)
 | |
| {
 | |
| 	struct audit_aux_data_pids *axp;
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct audit_context *ctx = tsk->audit_context;
 | |
| 	uid_t uid = current_uid(), t_uid = task_uid(t);
 | |
| 
 | |
| 	if (audit_pid && t->tgid == audit_pid) {
 | |
| 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
 | |
| 			audit_sig_pid = tsk->pid;
 | |
| 			if (tsk->loginuid != -1)
 | |
| 				audit_sig_uid = tsk->loginuid;
 | |
| 			else
 | |
| 				audit_sig_uid = uid;
 | |
| 			security_task_getsecid(tsk, &audit_sig_sid);
 | |
| 		}
 | |
| 		if (!audit_signals || audit_dummy_context())
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* optimize the common case by putting first signal recipient directly
 | |
| 	 * in audit_context */
 | |
| 	if (!ctx->target_pid) {
 | |
| 		ctx->target_pid = t->tgid;
 | |
| 		ctx->target_auid = audit_get_loginuid(t);
 | |
| 		ctx->target_uid = t_uid;
 | |
| 		ctx->target_sessionid = audit_get_sessionid(t);
 | |
| 		security_task_getsecid(t, &ctx->target_sid);
 | |
| 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	axp = (void *)ctx->aux_pids;
 | |
| 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
 | |
| 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
 | |
| 		if (!axp)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		axp->d.type = AUDIT_OBJ_PID;
 | |
| 		axp->d.next = ctx->aux_pids;
 | |
| 		ctx->aux_pids = (void *)axp;
 | |
| 	}
 | |
| 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
 | |
| 
 | |
| 	axp->target_pid[axp->pid_count] = t->tgid;
 | |
| 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
 | |
| 	axp->target_uid[axp->pid_count] = t_uid;
 | |
| 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
 | |
| 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
 | |
| 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
 | |
| 	axp->pid_count++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
 | |
|  * @bprm: pointer to the bprm being processed
 | |
|  * @new: the proposed new credentials
 | |
|  * @old: the old credentials
 | |
|  *
 | |
|  * Simply check if the proc already has the caps given by the file and if not
 | |
|  * store the priv escalation info for later auditing at the end of the syscall
 | |
|  *
 | |
|  * -Eric
 | |
|  */
 | |
| int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
 | |
| 			   const struct cred *new, const struct cred *old)
 | |
| {
 | |
| 	struct audit_aux_data_bprm_fcaps *ax;
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 	struct cpu_vfs_cap_data vcaps;
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
 | |
| 	if (!ax)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ax->d.type = AUDIT_BPRM_FCAPS;
 | |
| 	ax->d.next = context->aux;
 | |
| 	context->aux = (void *)ax;
 | |
| 
 | |
| 	dentry = dget(bprm->file->f_dentry);
 | |
| 	get_vfs_caps_from_disk(dentry, &vcaps);
 | |
| 	dput(dentry);
 | |
| 
 | |
| 	ax->fcap.permitted = vcaps.permitted;
 | |
| 	ax->fcap.inheritable = vcaps.inheritable;
 | |
| 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 | |
| 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
 | |
| 
 | |
| 	ax->old_pcap.permitted   = old->cap_permitted;
 | |
| 	ax->old_pcap.inheritable = old->cap_inheritable;
 | |
| 	ax->old_pcap.effective   = old->cap_effective;
 | |
| 
 | |
| 	ax->new_pcap.permitted   = new->cap_permitted;
 | |
| 	ax->new_pcap.inheritable = new->cap_inheritable;
 | |
| 	ax->new_pcap.effective   = new->cap_effective;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __audit_log_capset - store information about the arguments to the capset syscall
 | |
|  * @pid: target pid of the capset call
 | |
|  * @new: the new credentials
 | |
|  * @old: the old (current) credentials
 | |
|  *
 | |
|  * Record the aguments userspace sent to sys_capset for later printing by the
 | |
|  * audit system if applicable
 | |
|  */
 | |
| void __audit_log_capset(pid_t pid,
 | |
| 		       const struct cred *new, const struct cred *old)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 	context->capset.pid = pid;
 | |
| 	context->capset.cap.effective   = new->cap_effective;
 | |
| 	context->capset.cap.inheritable = new->cap_effective;
 | |
| 	context->capset.cap.permitted   = new->cap_permitted;
 | |
| 	context->type = AUDIT_CAPSET;
 | |
| }
 | |
| 
 | |
| void __audit_mmap_fd(int fd, int flags)
 | |
| {
 | |
| 	struct audit_context *context = current->audit_context;
 | |
| 	context->mmap.fd = fd;
 | |
| 	context->mmap.flags = flags;
 | |
| 	context->type = AUDIT_MMAP;
 | |
| }
 | |
| 
 | |
| static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
 | |
| {
 | |
| 	uid_t auid, uid;
 | |
| 	gid_t gid;
 | |
| 	unsigned int sessionid;
 | |
| 
 | |
| 	auid = audit_get_loginuid(current);
 | |
| 	sessionid = audit_get_sessionid(current);
 | |
| 	current_uid_gid(&uid, &gid);
 | |
| 
 | |
| 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
 | |
| 			 auid, uid, gid, sessionid);
 | |
| 	audit_log_task_context(ab);
 | |
| 	audit_log_format(ab, " pid=%d comm=", current->pid);
 | |
| 	audit_log_untrustedstring(ab, current->comm);
 | |
| 	audit_log_format(ab, " reason=");
 | |
| 	audit_log_string(ab, reason);
 | |
| 	audit_log_format(ab, " sig=%ld", signr);
 | |
| }
 | |
| /**
 | |
|  * audit_core_dumps - record information about processes that end abnormally
 | |
|  * @signr: signal value
 | |
|  *
 | |
|  * If a process ends with a core dump, something fishy is going on and we
 | |
|  * should record the event for investigation.
 | |
|  */
 | |
| void audit_core_dumps(long signr)
 | |
| {
 | |
| 	struct audit_buffer *ab;
 | |
| 
 | |
| 	if (!audit_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	if (signr == SIGQUIT)	/* don't care for those */
 | |
| 		return;
 | |
| 
 | |
| 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
 | |
| 	audit_log_abend(ab, "memory violation", signr);
 | |
| 	audit_log_end(ab);
 | |
| }
 | |
| 
 | |
| void __audit_seccomp(unsigned long syscall)
 | |
| {
 | |
| 	struct audit_buffer *ab;
 | |
| 
 | |
| 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
 | |
| 	audit_log_abend(ab, "seccomp", SIGKILL);
 | |
| 	audit_log_format(ab, " syscall=%ld", syscall);
 | |
| 	audit_log_end(ab);
 | |
| }
 | |
| 
 | |
| struct list_head *audit_killed_trees(void)
 | |
| {
 | |
| 	struct audit_context *ctx = current->audit_context;
 | |
| 	if (likely(!ctx || !ctx->in_syscall))
 | |
| 		return NULL;
 | |
| 	return &ctx->killed_trees;
 | |
| }
 |