mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 9984de1a5a
			
		
	
	
		9984de1a5a
		
	
	
	
	
		
			
			The changed files were only including linux/module.h for the EXPORT_SYMBOL infrastructure, and nothing else. Revector them onto the isolated export header for faster compile times. Nothing to see here but a whole lot of instances of: -#include <linux/module.h> +#include <linux/export.h> This commit is only changing the kernel dir; next targets will probably be mm, fs, the arch dirs, etc. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
		
			
				
	
	
		
			711 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			711 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/time.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *
 | |
|  *  This file contains the interface functions for the various
 | |
|  *  time related system calls: time, stime, gettimeofday, settimeofday,
 | |
|  *			       adjtime
 | |
|  */
 | |
| /*
 | |
|  * Modification history kernel/time.c
 | |
|  *
 | |
|  * 1993-09-02    Philip Gladstone
 | |
|  *      Created file with time related functions from sched.c and adjtimex()
 | |
|  * 1993-10-08    Torsten Duwe
 | |
|  *      adjtime interface update and CMOS clock write code
 | |
|  * 1995-08-13    Torsten Duwe
 | |
|  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 | |
|  * 1999-01-16    Ulrich Windl
 | |
|  *	Introduced error checking for many cases in adjtimex().
 | |
|  *	Updated NTP code according to technical memorandum Jan '96
 | |
|  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 | |
|  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 | |
|  *	(Even though the technical memorandum forbids it)
 | |
|  * 2004-07-14	 Christoph Lameter
 | |
|  *	Added getnstimeofday to allow the posix timer functions to return
 | |
|  *	with nanosecond accuracy
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/ptrace.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/unistd.h>
 | |
| 
 | |
| #include "timeconst.h"
 | |
| 
 | |
| /*
 | |
|  * The timezone where the local system is located.  Used as a default by some
 | |
|  * programs who obtain this value by using gettimeofday.
 | |
|  */
 | |
| struct timezone sys_tz;
 | |
| 
 | |
| EXPORT_SYMBOL(sys_tz);
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_TIME
 | |
| 
 | |
| /*
 | |
|  * sys_time() can be implemented in user-level using
 | |
|  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 | |
|  * why not move it into the appropriate arch directory (for those
 | |
|  * architectures that need it).
 | |
|  */
 | |
| SYSCALL_DEFINE1(time, time_t __user *, tloc)
 | |
| {
 | |
| 	time_t i = get_seconds();
 | |
| 
 | |
| 	if (tloc) {
 | |
| 		if (put_user(i,tloc))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	force_successful_syscall_return();
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sys_stime() can be implemented in user-level using
 | |
|  * sys_settimeofday().  Is this for backwards compatibility?  If so,
 | |
|  * why not move it into the appropriate arch directory (for those
 | |
|  * architectures that need it).
 | |
|  */
 | |
| 
 | |
| SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 | |
| {
 | |
| 	struct timespec tv;
 | |
| 	int err;
 | |
| 
 | |
| 	if (get_user(tv.tv_sec, tptr))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	tv.tv_nsec = 0;
 | |
| 
 | |
| 	err = security_settime(&tv, NULL);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	do_settimeofday(&tv);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* __ARCH_WANT_SYS_TIME */
 | |
| 
 | |
| SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
 | |
| 		struct timezone __user *, tz)
 | |
| {
 | |
| 	if (likely(tv != NULL)) {
 | |
| 		struct timeval ktv;
 | |
| 		do_gettimeofday(&ktv);
 | |
| 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	if (unlikely(tz != NULL)) {
 | |
| 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust the time obtained from the CMOS to be UTC time instead of
 | |
|  * local time.
 | |
|  *
 | |
|  * This is ugly, but preferable to the alternatives.  Otherwise we
 | |
|  * would either need to write a program to do it in /etc/rc (and risk
 | |
|  * confusion if the program gets run more than once; it would also be
 | |
|  * hard to make the program warp the clock precisely n hours)  or
 | |
|  * compile in the timezone information into the kernel.  Bad, bad....
 | |
|  *
 | |
|  *						- TYT, 1992-01-01
 | |
|  *
 | |
|  * The best thing to do is to keep the CMOS clock in universal time (UTC)
 | |
|  * as real UNIX machines always do it. This avoids all headaches about
 | |
|  * daylight saving times and warping kernel clocks.
 | |
|  */
 | |
| static inline void warp_clock(void)
 | |
| {
 | |
| 	struct timespec adjust;
 | |
| 
 | |
| 	adjust = current_kernel_time();
 | |
| 	adjust.tv_sec += sys_tz.tz_minuteswest * 60;
 | |
| 	do_settimeofday(&adjust);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In case for some reason the CMOS clock has not already been running
 | |
|  * in UTC, but in some local time: The first time we set the timezone,
 | |
|  * we will warp the clock so that it is ticking UTC time instead of
 | |
|  * local time. Presumably, if someone is setting the timezone then we
 | |
|  * are running in an environment where the programs understand about
 | |
|  * timezones. This should be done at boot time in the /etc/rc script,
 | |
|  * as soon as possible, so that the clock can be set right. Otherwise,
 | |
|  * various programs will get confused when the clock gets warped.
 | |
|  */
 | |
| 
 | |
| int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
 | |
| {
 | |
| 	static int firsttime = 1;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (tv && !timespec_valid(tv))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = security_settime(tv, tz);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (tz) {
 | |
| 		/* SMP safe, global irq locking makes it work. */
 | |
| 		sys_tz = *tz;
 | |
| 		update_vsyscall_tz();
 | |
| 		if (firsttime) {
 | |
| 			firsttime = 0;
 | |
| 			if (!tv)
 | |
| 				warp_clock();
 | |
| 		}
 | |
| 	}
 | |
| 	if (tv)
 | |
| 	{
 | |
| 		/* SMP safe, again the code in arch/foo/time.c should
 | |
| 		 * globally block out interrupts when it runs.
 | |
| 		 */
 | |
| 		return do_settimeofday(tv);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
 | |
| 		struct timezone __user *, tz)
 | |
| {
 | |
| 	struct timeval user_tv;
 | |
| 	struct timespec	new_ts;
 | |
| 	struct timezone new_tz;
 | |
| 
 | |
| 	if (tv) {
 | |
| 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
 | |
| 			return -EFAULT;
 | |
| 		new_ts.tv_sec = user_tv.tv_sec;
 | |
| 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
 | |
| 	}
 | |
| 	if (tz) {
 | |
| 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
 | |
| {
 | |
| 	struct timex txc;		/* Local copy of parameter */
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Copy the user data space into the kernel copy
 | |
| 	 * structure. But bear in mind that the structures
 | |
| 	 * may change
 | |
| 	 */
 | |
| 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
 | |
| 		return -EFAULT;
 | |
| 	ret = do_adjtimex(&txc);
 | |
| 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * current_fs_time - Return FS time
 | |
|  * @sb: Superblock.
 | |
|  *
 | |
|  * Return the current time truncated to the time granularity supported by
 | |
|  * the fs.
 | |
|  */
 | |
| struct timespec current_fs_time(struct super_block *sb)
 | |
| {
 | |
| 	struct timespec now = current_kernel_time();
 | |
| 	return timespec_trunc(now, sb->s_time_gran);
 | |
| }
 | |
| EXPORT_SYMBOL(current_fs_time);
 | |
| 
 | |
| /*
 | |
|  * Convert jiffies to milliseconds and back.
 | |
|  *
 | |
|  * Avoid unnecessary multiplications/divisions in the
 | |
|  * two most common HZ cases:
 | |
|  */
 | |
| inline unsigned int jiffies_to_msecs(const unsigned long j)
 | |
| {
 | |
| #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 | |
| 	return (MSEC_PER_SEC / HZ) * j;
 | |
| #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 | |
| 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
 | |
| #else
 | |
| # if BITS_PER_LONG == 32
 | |
| 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
 | |
| # else
 | |
| 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
 | |
| # endif
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_to_msecs);
 | |
| 
 | |
| inline unsigned int jiffies_to_usecs(const unsigned long j)
 | |
| {
 | |
| #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
 | |
| 	return (USEC_PER_SEC / HZ) * j;
 | |
| #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
 | |
| 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
 | |
| #else
 | |
| # if BITS_PER_LONG == 32
 | |
| 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
 | |
| # else
 | |
| 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
 | |
| # endif
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_to_usecs);
 | |
| 
 | |
| /**
 | |
|  * timespec_trunc - Truncate timespec to a granularity
 | |
|  * @t: Timespec
 | |
|  * @gran: Granularity in ns.
 | |
|  *
 | |
|  * Truncate a timespec to a granularity. gran must be smaller than a second.
 | |
|  * Always rounds down.
 | |
|  *
 | |
|  * This function should be only used for timestamps returned by
 | |
|  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
 | |
|  * it doesn't handle the better resolution of the latter.
 | |
|  */
 | |
| struct timespec timespec_trunc(struct timespec t, unsigned gran)
 | |
| {
 | |
| 	/*
 | |
| 	 * Division is pretty slow so avoid it for common cases.
 | |
| 	 * Currently current_kernel_time() never returns better than
 | |
| 	 * jiffies resolution. Exploit that.
 | |
| 	 */
 | |
| 	if (gran <= jiffies_to_usecs(1) * 1000) {
 | |
| 		/* nothing */
 | |
| 	} else if (gran == 1000000000) {
 | |
| 		t.tv_nsec = 0;
 | |
| 	} else {
 | |
| 		t.tv_nsec -= t.tv_nsec % gran;
 | |
| 	}
 | |
| 	return t;
 | |
| }
 | |
| EXPORT_SYMBOL(timespec_trunc);
 | |
| 
 | |
| /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 | |
|  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 | |
|  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 | |
|  *
 | |
|  * [For the Julian calendar (which was used in Russia before 1917,
 | |
|  * Britain & colonies before 1752, anywhere else before 1582,
 | |
|  * and is still in use by some communities) leave out the
 | |
|  * -year/100+year/400 terms, and add 10.]
 | |
|  *
 | |
|  * This algorithm was first published by Gauss (I think).
 | |
|  *
 | |
|  * WARNING: this function will overflow on 2106-02-07 06:28:16 on
 | |
|  * machines where long is 32-bit! (However, as time_t is signed, we
 | |
|  * will already get problems at other places on 2038-01-19 03:14:08)
 | |
|  */
 | |
| unsigned long
 | |
| mktime(const unsigned int year0, const unsigned int mon0,
 | |
|        const unsigned int day, const unsigned int hour,
 | |
|        const unsigned int min, const unsigned int sec)
 | |
| {
 | |
| 	unsigned int mon = mon0, year = year0;
 | |
| 
 | |
| 	/* 1..12 -> 11,12,1..10 */
 | |
| 	if (0 >= (int) (mon -= 2)) {
 | |
| 		mon += 12;	/* Puts Feb last since it has leap day */
 | |
| 		year -= 1;
 | |
| 	}
 | |
| 
 | |
| 	return ((((unsigned long)
 | |
| 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
 | |
| 		  year*365 - 719499
 | |
| 	    )*24 + hour /* now have hours */
 | |
| 	  )*60 + min /* now have minutes */
 | |
| 	)*60 + sec; /* finally seconds */
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(mktime);
 | |
| 
 | |
| /**
 | |
|  * set_normalized_timespec - set timespec sec and nsec parts and normalize
 | |
|  *
 | |
|  * @ts:		pointer to timespec variable to be set
 | |
|  * @sec:	seconds to set
 | |
|  * @nsec:	nanoseconds to set
 | |
|  *
 | |
|  * Set seconds and nanoseconds field of a timespec variable and
 | |
|  * normalize to the timespec storage format
 | |
|  *
 | |
|  * Note: The tv_nsec part is always in the range of
 | |
|  *	0 <= tv_nsec < NSEC_PER_SEC
 | |
|  * For negative values only the tv_sec field is negative !
 | |
|  */
 | |
| void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
 | |
| {
 | |
| 	while (nsec >= NSEC_PER_SEC) {
 | |
| 		/*
 | |
| 		 * The following asm() prevents the compiler from
 | |
| 		 * optimising this loop into a modulo operation. See
 | |
| 		 * also __iter_div_u64_rem() in include/linux/time.h
 | |
| 		 */
 | |
| 		asm("" : "+rm"(nsec));
 | |
| 		nsec -= NSEC_PER_SEC;
 | |
| 		++sec;
 | |
| 	}
 | |
| 	while (nsec < 0) {
 | |
| 		asm("" : "+rm"(nsec));
 | |
| 		nsec += NSEC_PER_SEC;
 | |
| 		--sec;
 | |
| 	}
 | |
| 	ts->tv_sec = sec;
 | |
| 	ts->tv_nsec = nsec;
 | |
| }
 | |
| EXPORT_SYMBOL(set_normalized_timespec);
 | |
| 
 | |
| /**
 | |
|  * ns_to_timespec - Convert nanoseconds to timespec
 | |
|  * @nsec:       the nanoseconds value to be converted
 | |
|  *
 | |
|  * Returns the timespec representation of the nsec parameter.
 | |
|  */
 | |
| struct timespec ns_to_timespec(const s64 nsec)
 | |
| {
 | |
| 	struct timespec ts;
 | |
| 	s32 rem;
 | |
| 
 | |
| 	if (!nsec)
 | |
| 		return (struct timespec) {0, 0};
 | |
| 
 | |
| 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
 | |
| 	if (unlikely(rem < 0)) {
 | |
| 		ts.tv_sec--;
 | |
| 		rem += NSEC_PER_SEC;
 | |
| 	}
 | |
| 	ts.tv_nsec = rem;
 | |
| 
 | |
| 	return ts;
 | |
| }
 | |
| EXPORT_SYMBOL(ns_to_timespec);
 | |
| 
 | |
| /**
 | |
|  * ns_to_timeval - Convert nanoseconds to timeval
 | |
|  * @nsec:       the nanoseconds value to be converted
 | |
|  *
 | |
|  * Returns the timeval representation of the nsec parameter.
 | |
|  */
 | |
| struct timeval ns_to_timeval(const s64 nsec)
 | |
| {
 | |
| 	struct timespec ts = ns_to_timespec(nsec);
 | |
| 	struct timeval tv;
 | |
| 
 | |
| 	tv.tv_sec = ts.tv_sec;
 | |
| 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
 | |
| 
 | |
| 	return tv;
 | |
| }
 | |
| EXPORT_SYMBOL(ns_to_timeval);
 | |
| 
 | |
| /*
 | |
|  * When we convert to jiffies then we interpret incoming values
 | |
|  * the following way:
 | |
|  *
 | |
|  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 | |
|  *
 | |
|  * - 'too large' values [that would result in larger than
 | |
|  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 | |
|  *
 | |
|  * - all other values are converted to jiffies by either multiplying
 | |
|  *   the input value by a factor or dividing it with a factor
 | |
|  *
 | |
|  * We must also be careful about 32-bit overflows.
 | |
|  */
 | |
| unsigned long msecs_to_jiffies(const unsigned int m)
 | |
| {
 | |
| 	/*
 | |
| 	 * Negative value, means infinite timeout:
 | |
| 	 */
 | |
| 	if ((int)m < 0)
 | |
| 		return MAX_JIFFY_OFFSET;
 | |
| 
 | |
| #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 | |
| 	/*
 | |
| 	 * HZ is equal to or smaller than 1000, and 1000 is a nice
 | |
| 	 * round multiple of HZ, divide with the factor between them,
 | |
| 	 * but round upwards:
 | |
| 	 */
 | |
| 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
 | |
| #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 | |
| 	/*
 | |
| 	 * HZ is larger than 1000, and HZ is a nice round multiple of
 | |
| 	 * 1000 - simply multiply with the factor between them.
 | |
| 	 *
 | |
| 	 * But first make sure the multiplication result cannot
 | |
| 	 * overflow:
 | |
| 	 */
 | |
| 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 | |
| 		return MAX_JIFFY_OFFSET;
 | |
| 
 | |
| 	return m * (HZ / MSEC_PER_SEC);
 | |
| #else
 | |
| 	/*
 | |
| 	 * Generic case - multiply, round and divide. But first
 | |
| 	 * check that if we are doing a net multiplication, that
 | |
| 	 * we wouldn't overflow:
 | |
| 	 */
 | |
| 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 | |
| 		return MAX_JIFFY_OFFSET;
 | |
| 
 | |
| 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
 | |
| 		>> MSEC_TO_HZ_SHR32;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(msecs_to_jiffies);
 | |
| 
 | |
| unsigned long usecs_to_jiffies(const unsigned int u)
 | |
| {
 | |
| 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 | |
| 		return MAX_JIFFY_OFFSET;
 | |
| #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
 | |
| 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
 | |
| #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
 | |
| 	return u * (HZ / USEC_PER_SEC);
 | |
| #else
 | |
| 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
 | |
| 		>> USEC_TO_HZ_SHR32;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(usecs_to_jiffies);
 | |
| 
 | |
| /*
 | |
|  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 | |
|  * that a remainder subtract here would not do the right thing as the
 | |
|  * resolution values don't fall on second boundries.  I.e. the line:
 | |
|  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 | |
|  *
 | |
|  * Rather, we just shift the bits off the right.
 | |
|  *
 | |
|  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 | |
|  * value to a scaled second value.
 | |
|  */
 | |
| unsigned long
 | |
| timespec_to_jiffies(const struct timespec *value)
 | |
| {
 | |
| 	unsigned long sec = value->tv_sec;
 | |
| 	long nsec = value->tv_nsec + TICK_NSEC - 1;
 | |
| 
 | |
| 	if (sec >= MAX_SEC_IN_JIFFIES){
 | |
| 		sec = MAX_SEC_IN_JIFFIES;
 | |
| 		nsec = 0;
 | |
| 	}
 | |
| 	return (((u64)sec * SEC_CONVERSION) +
 | |
| 		(((u64)nsec * NSEC_CONVERSION) >>
 | |
| 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(timespec_to_jiffies);
 | |
| 
 | |
| void
 | |
| jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
 | |
| {
 | |
| 	/*
 | |
| 	 * Convert jiffies to nanoseconds and separate with
 | |
| 	 * one divide.
 | |
| 	 */
 | |
| 	u32 rem;
 | |
| 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 | |
| 				    NSEC_PER_SEC, &rem);
 | |
| 	value->tv_nsec = rem;
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_to_timespec);
 | |
| 
 | |
| /* Same for "timeval"
 | |
|  *
 | |
|  * Well, almost.  The problem here is that the real system resolution is
 | |
|  * in nanoseconds and the value being converted is in micro seconds.
 | |
|  * Also for some machines (those that use HZ = 1024, in-particular),
 | |
|  * there is a LARGE error in the tick size in microseconds.
 | |
| 
 | |
|  * The solution we use is to do the rounding AFTER we convert the
 | |
|  * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
 | |
|  * Instruction wise, this should cost only an additional add with carry
 | |
|  * instruction above the way it was done above.
 | |
|  */
 | |
| unsigned long
 | |
| timeval_to_jiffies(const struct timeval *value)
 | |
| {
 | |
| 	unsigned long sec = value->tv_sec;
 | |
| 	long usec = value->tv_usec;
 | |
| 
 | |
| 	if (sec >= MAX_SEC_IN_JIFFIES){
 | |
| 		sec = MAX_SEC_IN_JIFFIES;
 | |
| 		usec = 0;
 | |
| 	}
 | |
| 	return (((u64)sec * SEC_CONVERSION) +
 | |
| 		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
 | |
| 		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 | |
| }
 | |
| EXPORT_SYMBOL(timeval_to_jiffies);
 | |
| 
 | |
| void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
 | |
| {
 | |
| 	/*
 | |
| 	 * Convert jiffies to nanoseconds and separate with
 | |
| 	 * one divide.
 | |
| 	 */
 | |
| 	u32 rem;
 | |
| 
 | |
| 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 | |
| 				    NSEC_PER_SEC, &rem);
 | |
| 	value->tv_usec = rem / NSEC_PER_USEC;
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_to_timeval);
 | |
| 
 | |
| /*
 | |
|  * Convert jiffies/jiffies_64 to clock_t and back.
 | |
|  */
 | |
| clock_t jiffies_to_clock_t(unsigned long x)
 | |
| {
 | |
| #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 | |
| # if HZ < USER_HZ
 | |
| 	return x * (USER_HZ / HZ);
 | |
| # else
 | |
| 	return x / (HZ / USER_HZ);
 | |
| # endif
 | |
| #else
 | |
| 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_to_clock_t);
 | |
| 
 | |
| unsigned long clock_t_to_jiffies(unsigned long x)
 | |
| {
 | |
| #if (HZ % USER_HZ)==0
 | |
| 	if (x >= ~0UL / (HZ / USER_HZ))
 | |
| 		return ~0UL;
 | |
| 	return x * (HZ / USER_HZ);
 | |
| #else
 | |
| 	/* Don't worry about loss of precision here .. */
 | |
| 	if (x >= ~0UL / HZ * USER_HZ)
 | |
| 		return ~0UL;
 | |
| 
 | |
| 	/* .. but do try to contain it here */
 | |
| 	return div_u64((u64)x * HZ, USER_HZ);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(clock_t_to_jiffies);
 | |
| 
 | |
| u64 jiffies_64_to_clock_t(u64 x)
 | |
| {
 | |
| #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 | |
| # if HZ < USER_HZ
 | |
| 	x = div_u64(x * USER_HZ, HZ);
 | |
| # elif HZ > USER_HZ
 | |
| 	x = div_u64(x, HZ / USER_HZ);
 | |
| # else
 | |
| 	/* Nothing to do */
 | |
| # endif
 | |
| #else
 | |
| 	/*
 | |
| 	 * There are better ways that don't overflow early,
 | |
| 	 * but even this doesn't overflow in hundreds of years
 | |
| 	 * in 64 bits, so..
 | |
| 	 */
 | |
| 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
 | |
| #endif
 | |
| 	return x;
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_64_to_clock_t);
 | |
| 
 | |
| u64 nsec_to_clock_t(u64 x)
 | |
| {
 | |
| #if (NSEC_PER_SEC % USER_HZ) == 0
 | |
| 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
 | |
| #elif (USER_HZ % 512) == 0
 | |
| 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
 | |
| #else
 | |
| 	/*
 | |
|          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
 | |
|          * overflow after 64.99 years.
 | |
|          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
 | |
|          */
 | |
| 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
 | |
|  *
 | |
|  * @n:	nsecs in u64
 | |
|  *
 | |
|  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 | |
|  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 | |
|  * for scheduler, not for use in device drivers to calculate timeout value.
 | |
|  *
 | |
|  * note:
 | |
|  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 | |
|  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 | |
|  */
 | |
| u64 nsecs_to_jiffies64(u64 n)
 | |
| {
 | |
| #if (NSEC_PER_SEC % HZ) == 0
 | |
| 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
 | |
| 	return div_u64(n, NSEC_PER_SEC / HZ);
 | |
| #elif (HZ % 512) == 0
 | |
| 	/* overflow after 292 years if HZ = 1024 */
 | |
| 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
 | |
| #else
 | |
| 	/*
 | |
| 	 * Generic case - optimized for cases where HZ is a multiple of 3.
 | |
| 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
 | |
| 	 */
 | |
| 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 | |
|  *
 | |
|  * @n:	nsecs in u64
 | |
|  *
 | |
|  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 | |
|  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 | |
|  * for scheduler, not for use in device drivers to calculate timeout value.
 | |
|  *
 | |
|  * note:
 | |
|  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 | |
|  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 | |
|  */
 | |
| unsigned long nsecs_to_jiffies(u64 n)
 | |
| {
 | |
| 	return (unsigned long)nsecs_to_jiffies64(n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add two timespec values and do a safety check for overflow.
 | |
|  * It's assumed that both values are valid (>= 0)
 | |
|  */
 | |
| struct timespec timespec_add_safe(const struct timespec lhs,
 | |
| 				  const struct timespec rhs)
 | |
| {
 | |
| 	struct timespec res;
 | |
| 
 | |
| 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
 | |
| 				lhs.tv_nsec + rhs.tv_nsec);
 | |
| 
 | |
| 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
 | |
| 		res.tv_sec = TIME_T_MAX;
 | |
| 
 | |
| 	return res;
 | |
| }
 |