mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-03 18:20:25 +02:00 
			
		
		
		
	For any changes of struct fd representation we need to
turn existing accesses to fields into calls of wrappers.
Accesses to struct fd::flags are very few (3 in linux/file.h,
1 in net/socket.c, 3 in fs/overlayfs/file.c and 3 more in
explicit initializers).
	Those can be dealt with in the commit converting to
new layout; accesses to struct fd::file are too many for that.
	This commit converts (almost) all of f.file to
fd_file(f).  It's not entirely mechanical ('file' is used as
a member name more than just in struct fd) and it does not
even attempt to distinguish the uses in pointer context from
those in boolean context; the latter will be eventually turned
into a separate helper (fd_empty()).
	NOTE: mass conversion to fd_empty(), tempting as it
might be, is a bad idea; better do that piecewise in commit
that convert from fdget...() to CLASS(...).
[conflicts in fs/fhandle.c, kernel/bpf/syscall.c, mm/memcontrol.c
caught by git; fs/stat.c one got caught by git grep]
[fs/xattr.c conflict]
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
		
	
			
		
			
				
	
	
		
			769 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			769 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * Generic pidhash and scalable, time-bounded PID allocator
 | 
						|
 *
 | 
						|
 * (C) 2002-2003 Nadia Yvette Chambers, IBM
 | 
						|
 * (C) 2004 Nadia Yvette Chambers, Oracle
 | 
						|
 * (C) 2002-2004 Ingo Molnar, Red Hat
 | 
						|
 *
 | 
						|
 * pid-structures are backing objects for tasks sharing a given ID to chain
 | 
						|
 * against. There is very little to them aside from hashing them and
 | 
						|
 * parking tasks using given ID's on a list.
 | 
						|
 *
 | 
						|
 * The hash is always changed with the tasklist_lock write-acquired,
 | 
						|
 * and the hash is only accessed with the tasklist_lock at least
 | 
						|
 * read-acquired, so there's no additional SMP locking needed here.
 | 
						|
 *
 | 
						|
 * We have a list of bitmap pages, which bitmaps represent the PID space.
 | 
						|
 * Allocating and freeing PIDs is completely lockless. The worst-case
 | 
						|
 * allocation scenario when all but one out of 1 million PIDs possible are
 | 
						|
 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 | 
						|
 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 | 
						|
 *
 | 
						|
 * Pid namespaces:
 | 
						|
 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 | 
						|
 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 | 
						|
 *     Many thanks to Oleg Nesterov for comments and help
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/rculist.h>
 | 
						|
#include <linux/memblock.h>
 | 
						|
#include <linux/pid_namespace.h>
 | 
						|
#include <linux/init_task.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/proc_ns.h>
 | 
						|
#include <linux/refcount.h>
 | 
						|
#include <linux/anon_inodes.h>
 | 
						|
#include <linux/sched/signal.h>
 | 
						|
#include <linux/sched/task.h>
 | 
						|
#include <linux/idr.h>
 | 
						|
#include <linux/pidfs.h>
 | 
						|
#include <net/sock.h>
 | 
						|
#include <uapi/linux/pidfd.h>
 | 
						|
 | 
						|
struct pid init_struct_pid = {
 | 
						|
	.count		= REFCOUNT_INIT(1),
 | 
						|
	.tasks		= {
 | 
						|
		{ .first = NULL },
 | 
						|
		{ .first = NULL },
 | 
						|
		{ .first = NULL },
 | 
						|
	},
 | 
						|
	.level		= 0,
 | 
						|
	.numbers	= { {
 | 
						|
		.nr		= 0,
 | 
						|
		.ns		= &init_pid_ns,
 | 
						|
	}, }
 | 
						|
};
 | 
						|
 | 
						|
int pid_max = PID_MAX_DEFAULT;
 | 
						|
 | 
						|
int pid_max_min = RESERVED_PIDS + 1;
 | 
						|
int pid_max_max = PID_MAX_LIMIT;
 | 
						|
/*
 | 
						|
 * Pseudo filesystems start inode numbering after one. We use Reserved
 | 
						|
 * PIDs as a natural offset.
 | 
						|
 */
 | 
						|
static u64 pidfs_ino = RESERVED_PIDS;
 | 
						|
 | 
						|
/*
 | 
						|
 * PID-map pages start out as NULL, they get allocated upon
 | 
						|
 * first use and are never deallocated. This way a low pid_max
 | 
						|
 * value does not cause lots of bitmaps to be allocated, but
 | 
						|
 * the scheme scales to up to 4 million PIDs, runtime.
 | 
						|
 */
 | 
						|
struct pid_namespace init_pid_ns = {
 | 
						|
	.ns.count = REFCOUNT_INIT(2),
 | 
						|
	.idr = IDR_INIT(init_pid_ns.idr),
 | 
						|
	.pid_allocated = PIDNS_ADDING,
 | 
						|
	.level = 0,
 | 
						|
	.child_reaper = &init_task,
 | 
						|
	.user_ns = &init_user_ns,
 | 
						|
	.ns.inum = PROC_PID_INIT_INO,
 | 
						|
#ifdef CONFIG_PID_NS
 | 
						|
	.ns.ops = &pidns_operations,
 | 
						|
#endif
 | 
						|
#if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
 | 
						|
	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
 | 
						|
#endif
 | 
						|
};
 | 
						|
EXPORT_SYMBOL_GPL(init_pid_ns);
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: disable interrupts while the pidmap_lock is held as an
 | 
						|
 * interrupt might come in and do read_lock(&tasklist_lock).
 | 
						|
 *
 | 
						|
 * If we don't disable interrupts there is a nasty deadlock between
 | 
						|
 * detach_pid()->free_pid() and another cpu that does
 | 
						|
 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 | 
						|
 * read_lock(&tasklist_lock);
 | 
						|
 *
 | 
						|
 * After we clean up the tasklist_lock and know there are no
 | 
						|
 * irq handlers that take it we can leave the interrupts enabled.
 | 
						|
 * For now it is easier to be safe than to prove it can't happen.
 | 
						|
 */
 | 
						|
 | 
						|
static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
 | 
						|
 | 
						|
void put_pid(struct pid *pid)
 | 
						|
{
 | 
						|
	struct pid_namespace *ns;
 | 
						|
 | 
						|
	if (!pid)
 | 
						|
		return;
 | 
						|
 | 
						|
	ns = pid->numbers[pid->level].ns;
 | 
						|
	if (refcount_dec_and_test(&pid->count)) {
 | 
						|
		kmem_cache_free(ns->pid_cachep, pid);
 | 
						|
		put_pid_ns(ns);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(put_pid);
 | 
						|
 | 
						|
static void delayed_put_pid(struct rcu_head *rhp)
 | 
						|
{
 | 
						|
	struct pid *pid = container_of(rhp, struct pid, rcu);
 | 
						|
	put_pid(pid);
 | 
						|
}
 | 
						|
 | 
						|
void free_pid(struct pid *pid)
 | 
						|
{
 | 
						|
	/* We can be called with write_lock_irq(&tasklist_lock) held */
 | 
						|
	int i;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&pidmap_lock, flags);
 | 
						|
	for (i = 0; i <= pid->level; i++) {
 | 
						|
		struct upid *upid = pid->numbers + i;
 | 
						|
		struct pid_namespace *ns = upid->ns;
 | 
						|
		switch (--ns->pid_allocated) {
 | 
						|
		case 2:
 | 
						|
		case 1:
 | 
						|
			/* When all that is left in the pid namespace
 | 
						|
			 * is the reaper wake up the reaper.  The reaper
 | 
						|
			 * may be sleeping in zap_pid_ns_processes().
 | 
						|
			 */
 | 
						|
			wake_up_process(ns->child_reaper);
 | 
						|
			break;
 | 
						|
		case PIDNS_ADDING:
 | 
						|
			/* Handle a fork failure of the first process */
 | 
						|
			WARN_ON(ns->child_reaper);
 | 
						|
			ns->pid_allocated = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		idr_remove(&ns->idr, upid->nr);
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&pidmap_lock, flags);
 | 
						|
 | 
						|
	call_rcu(&pid->rcu, delayed_put_pid);
 | 
						|
}
 | 
						|
 | 
						|
struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
 | 
						|
		      size_t set_tid_size)
 | 
						|
{
 | 
						|
	struct pid *pid;
 | 
						|
	enum pid_type type;
 | 
						|
	int i, nr;
 | 
						|
	struct pid_namespace *tmp;
 | 
						|
	struct upid *upid;
 | 
						|
	int retval = -ENOMEM;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * set_tid_size contains the size of the set_tid array. Starting at
 | 
						|
	 * the most nested currently active PID namespace it tells alloc_pid()
 | 
						|
	 * which PID to set for a process in that most nested PID namespace
 | 
						|
	 * up to set_tid_size PID namespaces. It does not have to set the PID
 | 
						|
	 * for a process in all nested PID namespaces but set_tid_size must
 | 
						|
	 * never be greater than the current ns->level + 1.
 | 
						|
	 */
 | 
						|
	if (set_tid_size > ns->level + 1)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
 | 
						|
	if (!pid)
 | 
						|
		return ERR_PTR(retval);
 | 
						|
 | 
						|
	tmp = ns;
 | 
						|
	pid->level = ns->level;
 | 
						|
 | 
						|
	for (i = ns->level; i >= 0; i--) {
 | 
						|
		int tid = 0;
 | 
						|
 | 
						|
		if (set_tid_size) {
 | 
						|
			tid = set_tid[ns->level - i];
 | 
						|
 | 
						|
			retval = -EINVAL;
 | 
						|
			if (tid < 1 || tid >= pid_max)
 | 
						|
				goto out_free;
 | 
						|
			/*
 | 
						|
			 * Also fail if a PID != 1 is requested and
 | 
						|
			 * no PID 1 exists.
 | 
						|
			 */
 | 
						|
			if (tid != 1 && !tmp->child_reaper)
 | 
						|
				goto out_free;
 | 
						|
			retval = -EPERM;
 | 
						|
			if (!checkpoint_restore_ns_capable(tmp->user_ns))
 | 
						|
				goto out_free;
 | 
						|
			set_tid_size--;
 | 
						|
		}
 | 
						|
 | 
						|
		idr_preload(GFP_KERNEL);
 | 
						|
		spin_lock_irq(&pidmap_lock);
 | 
						|
 | 
						|
		if (tid) {
 | 
						|
			nr = idr_alloc(&tmp->idr, NULL, tid,
 | 
						|
				       tid + 1, GFP_ATOMIC);
 | 
						|
			/*
 | 
						|
			 * If ENOSPC is returned it means that the PID is
 | 
						|
			 * alreay in use. Return EEXIST in that case.
 | 
						|
			 */
 | 
						|
			if (nr == -ENOSPC)
 | 
						|
				nr = -EEXIST;
 | 
						|
		} else {
 | 
						|
			int pid_min = 1;
 | 
						|
			/*
 | 
						|
			 * init really needs pid 1, but after reaching the
 | 
						|
			 * maximum wrap back to RESERVED_PIDS
 | 
						|
			 */
 | 
						|
			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
 | 
						|
				pid_min = RESERVED_PIDS;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Store a null pointer so find_pid_ns does not find
 | 
						|
			 * a partially initialized PID (see below).
 | 
						|
			 */
 | 
						|
			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
 | 
						|
					      pid_max, GFP_ATOMIC);
 | 
						|
		}
 | 
						|
		spin_unlock_irq(&pidmap_lock);
 | 
						|
		idr_preload_end();
 | 
						|
 | 
						|
		if (nr < 0) {
 | 
						|
			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
 | 
						|
			goto out_free;
 | 
						|
		}
 | 
						|
 | 
						|
		pid->numbers[i].nr = nr;
 | 
						|
		pid->numbers[i].ns = tmp;
 | 
						|
		tmp = tmp->parent;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * ENOMEM is not the most obvious choice especially for the case
 | 
						|
	 * where the child subreaper has already exited and the pid
 | 
						|
	 * namespace denies the creation of any new processes. But ENOMEM
 | 
						|
	 * is what we have exposed to userspace for a long time and it is
 | 
						|
	 * documented behavior for pid namespaces. So we can't easily
 | 
						|
	 * change it even if there were an error code better suited.
 | 
						|
	 */
 | 
						|
	retval = -ENOMEM;
 | 
						|
 | 
						|
	get_pid_ns(ns);
 | 
						|
	refcount_set(&pid->count, 1);
 | 
						|
	spin_lock_init(&pid->lock);
 | 
						|
	for (type = 0; type < PIDTYPE_MAX; ++type)
 | 
						|
		INIT_HLIST_HEAD(&pid->tasks[type]);
 | 
						|
 | 
						|
	init_waitqueue_head(&pid->wait_pidfd);
 | 
						|
	INIT_HLIST_HEAD(&pid->inodes);
 | 
						|
 | 
						|
	upid = pid->numbers + ns->level;
 | 
						|
	spin_lock_irq(&pidmap_lock);
 | 
						|
	if (!(ns->pid_allocated & PIDNS_ADDING))
 | 
						|
		goto out_unlock;
 | 
						|
	pid->stashed = NULL;
 | 
						|
	pid->ino = ++pidfs_ino;
 | 
						|
	for ( ; upid >= pid->numbers; --upid) {
 | 
						|
		/* Make the PID visible to find_pid_ns. */
 | 
						|
		idr_replace(&upid->ns->idr, pid, upid->nr);
 | 
						|
		upid->ns->pid_allocated++;
 | 
						|
	}
 | 
						|
	spin_unlock_irq(&pidmap_lock);
 | 
						|
 | 
						|
	return pid;
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	spin_unlock_irq(&pidmap_lock);
 | 
						|
	put_pid_ns(ns);
 | 
						|
 | 
						|
out_free:
 | 
						|
	spin_lock_irq(&pidmap_lock);
 | 
						|
	while (++i <= ns->level) {
 | 
						|
		upid = pid->numbers + i;
 | 
						|
		idr_remove(&upid->ns->idr, upid->nr);
 | 
						|
	}
 | 
						|
 | 
						|
	/* On failure to allocate the first pid, reset the state */
 | 
						|
	if (ns->pid_allocated == PIDNS_ADDING)
 | 
						|
		idr_set_cursor(&ns->idr, 0);
 | 
						|
 | 
						|
	spin_unlock_irq(&pidmap_lock);
 | 
						|
 | 
						|
	kmem_cache_free(ns->pid_cachep, pid);
 | 
						|
	return ERR_PTR(retval);
 | 
						|
}
 | 
						|
 | 
						|
void disable_pid_allocation(struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	spin_lock_irq(&pidmap_lock);
 | 
						|
	ns->pid_allocated &= ~PIDNS_ADDING;
 | 
						|
	spin_unlock_irq(&pidmap_lock);
 | 
						|
}
 | 
						|
 | 
						|
struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	return idr_find(&ns->idr, nr);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(find_pid_ns);
 | 
						|
 | 
						|
struct pid *find_vpid(int nr)
 | 
						|
{
 | 
						|
	return find_pid_ns(nr, task_active_pid_ns(current));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(find_vpid);
 | 
						|
 | 
						|
static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
 | 
						|
{
 | 
						|
	return (type == PIDTYPE_PID) ?
 | 
						|
		&task->thread_pid :
 | 
						|
		&task->signal->pids[type];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * attach_pid() must be called with the tasklist_lock write-held.
 | 
						|
 */
 | 
						|
void attach_pid(struct task_struct *task, enum pid_type type)
 | 
						|
{
 | 
						|
	struct pid *pid = *task_pid_ptr(task, type);
 | 
						|
	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
 | 
						|
}
 | 
						|
 | 
						|
static void __change_pid(struct task_struct *task, enum pid_type type,
 | 
						|
			struct pid *new)
 | 
						|
{
 | 
						|
	struct pid **pid_ptr = task_pid_ptr(task, type);
 | 
						|
	struct pid *pid;
 | 
						|
	int tmp;
 | 
						|
 | 
						|
	pid = *pid_ptr;
 | 
						|
 | 
						|
	hlist_del_rcu(&task->pid_links[type]);
 | 
						|
	*pid_ptr = new;
 | 
						|
 | 
						|
	if (type == PIDTYPE_PID) {
 | 
						|
		WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
 | 
						|
		wake_up_all(&pid->wait_pidfd);
 | 
						|
	}
 | 
						|
 | 
						|
	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
 | 
						|
		if (pid_has_task(pid, tmp))
 | 
						|
			return;
 | 
						|
 | 
						|
	free_pid(pid);
 | 
						|
}
 | 
						|
 | 
						|
void detach_pid(struct task_struct *task, enum pid_type type)
 | 
						|
{
 | 
						|
	__change_pid(task, type, NULL);
 | 
						|
}
 | 
						|
 | 
						|
void change_pid(struct task_struct *task, enum pid_type type,
 | 
						|
		struct pid *pid)
 | 
						|
{
 | 
						|
	__change_pid(task, type, pid);
 | 
						|
	attach_pid(task, type);
 | 
						|
}
 | 
						|
 | 
						|
void exchange_tids(struct task_struct *left, struct task_struct *right)
 | 
						|
{
 | 
						|
	struct pid *pid1 = left->thread_pid;
 | 
						|
	struct pid *pid2 = right->thread_pid;
 | 
						|
	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
 | 
						|
	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
 | 
						|
 | 
						|
	/* Swap the single entry tid lists */
 | 
						|
	hlists_swap_heads_rcu(head1, head2);
 | 
						|
 | 
						|
	/* Swap the per task_struct pid */
 | 
						|
	rcu_assign_pointer(left->thread_pid, pid2);
 | 
						|
	rcu_assign_pointer(right->thread_pid, pid1);
 | 
						|
 | 
						|
	/* Swap the cached value */
 | 
						|
	WRITE_ONCE(left->pid, pid_nr(pid2));
 | 
						|
	WRITE_ONCE(right->pid, pid_nr(pid1));
 | 
						|
}
 | 
						|
 | 
						|
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
 | 
						|
void transfer_pid(struct task_struct *old, struct task_struct *new,
 | 
						|
			   enum pid_type type)
 | 
						|
{
 | 
						|
	WARN_ON_ONCE(type == PIDTYPE_PID);
 | 
						|
	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
 | 
						|
}
 | 
						|
 | 
						|
struct task_struct *pid_task(struct pid *pid, enum pid_type type)
 | 
						|
{
 | 
						|
	struct task_struct *result = NULL;
 | 
						|
	if (pid) {
 | 
						|
		struct hlist_node *first;
 | 
						|
		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
 | 
						|
					      lockdep_tasklist_lock_is_held());
 | 
						|
		if (first)
 | 
						|
			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(pid_task);
 | 
						|
 | 
						|
/*
 | 
						|
 * Must be called under rcu_read_lock().
 | 
						|
 */
 | 
						|
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
 | 
						|
			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
 | 
						|
	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
 | 
						|
}
 | 
						|
 | 
						|
struct task_struct *find_task_by_vpid(pid_t vnr)
 | 
						|
{
 | 
						|
	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
 | 
						|
}
 | 
						|
 | 
						|
struct task_struct *find_get_task_by_vpid(pid_t nr)
 | 
						|
{
 | 
						|
	struct task_struct *task;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	task = find_task_by_vpid(nr);
 | 
						|
	if (task)
 | 
						|
		get_task_struct(task);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return task;
 | 
						|
}
 | 
						|
 | 
						|
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
 | 
						|
{
 | 
						|
	struct pid *pid;
 | 
						|
	rcu_read_lock();
 | 
						|
	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
 | 
						|
	rcu_read_unlock();
 | 
						|
	return pid;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_task_pid);
 | 
						|
 | 
						|
struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
 | 
						|
{
 | 
						|
	struct task_struct *result;
 | 
						|
	rcu_read_lock();
 | 
						|
	result = pid_task(pid, type);
 | 
						|
	if (result)
 | 
						|
		get_task_struct(result);
 | 
						|
	rcu_read_unlock();
 | 
						|
	return result;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_pid_task);
 | 
						|
 | 
						|
struct pid *find_get_pid(pid_t nr)
 | 
						|
{
 | 
						|
	struct pid *pid;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	pid = get_pid(find_vpid(nr));
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return pid;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(find_get_pid);
 | 
						|
 | 
						|
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	struct upid *upid;
 | 
						|
	pid_t nr = 0;
 | 
						|
 | 
						|
	if (pid && ns->level <= pid->level) {
 | 
						|
		upid = &pid->numbers[ns->level];
 | 
						|
		if (upid->ns == ns)
 | 
						|
			nr = upid->nr;
 | 
						|
	}
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(pid_nr_ns);
 | 
						|
 | 
						|
pid_t pid_vnr(struct pid *pid)
 | 
						|
{
 | 
						|
	return pid_nr_ns(pid, task_active_pid_ns(current));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(pid_vnr);
 | 
						|
 | 
						|
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
 | 
						|
			struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	pid_t nr = 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	if (!ns)
 | 
						|
		ns = task_active_pid_ns(current);
 | 
						|
	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__task_pid_nr_ns);
 | 
						|
 | 
						|
struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	return ns_of_pid(task_pid(tsk));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(task_active_pid_ns);
 | 
						|
 | 
						|
/*
 | 
						|
 * Used by proc to find the first pid that is greater than or equal to nr.
 | 
						|
 *
 | 
						|
 * If there is a pid at nr this function is exactly the same as find_pid_ns.
 | 
						|
 */
 | 
						|
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
 | 
						|
{
 | 
						|
	return idr_get_next(&ns->idr, &nr);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(find_ge_pid);
 | 
						|
 | 
						|
struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
 | 
						|
{
 | 
						|
	struct fd f;
 | 
						|
	struct pid *pid;
 | 
						|
 | 
						|
	f = fdget(fd);
 | 
						|
	if (!fd_file(f))
 | 
						|
		return ERR_PTR(-EBADF);
 | 
						|
 | 
						|
	pid = pidfd_pid(fd_file(f));
 | 
						|
	if (!IS_ERR(pid)) {
 | 
						|
		get_pid(pid);
 | 
						|
		*flags = fd_file(f)->f_flags;
 | 
						|
	}
 | 
						|
 | 
						|
	fdput(f);
 | 
						|
	return pid;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pidfd_get_task() - Get the task associated with a pidfd
 | 
						|
 *
 | 
						|
 * @pidfd: pidfd for which to get the task
 | 
						|
 * @flags: flags associated with this pidfd
 | 
						|
 *
 | 
						|
 * Return the task associated with @pidfd. The function takes a reference on
 | 
						|
 * the returned task. The caller is responsible for releasing that reference.
 | 
						|
 *
 | 
						|
 * Return: On success, the task_struct associated with the pidfd.
 | 
						|
 *	   On error, a negative errno number will be returned.
 | 
						|
 */
 | 
						|
struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
 | 
						|
{
 | 
						|
	unsigned int f_flags;
 | 
						|
	struct pid *pid;
 | 
						|
	struct task_struct *task;
 | 
						|
 | 
						|
	pid = pidfd_get_pid(pidfd, &f_flags);
 | 
						|
	if (IS_ERR(pid))
 | 
						|
		return ERR_CAST(pid);
 | 
						|
 | 
						|
	task = get_pid_task(pid, PIDTYPE_TGID);
 | 
						|
	put_pid(pid);
 | 
						|
	if (!task)
 | 
						|
		return ERR_PTR(-ESRCH);
 | 
						|
 | 
						|
	*flags = f_flags;
 | 
						|
	return task;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pidfd_create() - Create a new pid file descriptor.
 | 
						|
 *
 | 
						|
 * @pid:   struct pid that the pidfd will reference
 | 
						|
 * @flags: flags to pass
 | 
						|
 *
 | 
						|
 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
 | 
						|
 *
 | 
						|
 * Note, that this function can only be called after the fd table has
 | 
						|
 * been unshared to avoid leaking the pidfd to the new process.
 | 
						|
 *
 | 
						|
 * This symbol should not be explicitly exported to loadable modules.
 | 
						|
 *
 | 
						|
 * Return: On success, a cloexec pidfd is returned.
 | 
						|
 *         On error, a negative errno number will be returned.
 | 
						|
 */
 | 
						|
static int pidfd_create(struct pid *pid, unsigned int flags)
 | 
						|
{
 | 
						|
	int pidfd;
 | 
						|
	struct file *pidfd_file;
 | 
						|
 | 
						|
	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
 | 
						|
	if (pidfd < 0)
 | 
						|
		return pidfd;
 | 
						|
 | 
						|
	fd_install(pidfd, pidfd_file);
 | 
						|
	return pidfd;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_pidfd_open() - Open new pid file descriptor.
 | 
						|
 *
 | 
						|
 * @pid:   pid for which to retrieve a pidfd
 | 
						|
 * @flags: flags to pass
 | 
						|
 *
 | 
						|
 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
 | 
						|
 * the task identified by @pid. Without PIDFD_THREAD flag the target task
 | 
						|
 * must be a thread-group leader.
 | 
						|
 *
 | 
						|
 * Return: On success, a cloexec pidfd is returned.
 | 
						|
 *         On error, a negative errno number will be returned.
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
 | 
						|
{
 | 
						|
	int fd;
 | 
						|
	struct pid *p;
 | 
						|
 | 
						|
	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (pid <= 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	p = find_get_pid(pid);
 | 
						|
	if (!p)
 | 
						|
		return -ESRCH;
 | 
						|
 | 
						|
	fd = pidfd_create(p, flags);
 | 
						|
 | 
						|
	put_pid(p);
 | 
						|
	return fd;
 | 
						|
}
 | 
						|
 | 
						|
void __init pid_idr_init(void)
 | 
						|
{
 | 
						|
	/* Verify no one has done anything silly: */
 | 
						|
	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
 | 
						|
 | 
						|
	/* bump default and minimum pid_max based on number of cpus */
 | 
						|
	pid_max = min(pid_max_max, max_t(int, pid_max,
 | 
						|
				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
 | 
						|
	pid_max_min = max_t(int, pid_max_min,
 | 
						|
				PIDS_PER_CPU_MIN * num_possible_cpus());
 | 
						|
	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
 | 
						|
 | 
						|
	idr_init(&init_pid_ns.idr);
 | 
						|
 | 
						|
	init_pid_ns.pid_cachep = kmem_cache_create("pid",
 | 
						|
			struct_size_t(struct pid, numbers, 1),
 | 
						|
			__alignof__(struct pid),
 | 
						|
			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
 | 
						|
			NULL);
 | 
						|
}
 | 
						|
 | 
						|
static struct file *__pidfd_fget(struct task_struct *task, int fd)
 | 
						|
{
 | 
						|
	struct file *file;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = down_read_killable(&task->signal->exec_update_lock);
 | 
						|
	if (ret)
 | 
						|
		return ERR_PTR(ret);
 | 
						|
 | 
						|
	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
 | 
						|
		file = fget_task(task, fd);
 | 
						|
	else
 | 
						|
		file = ERR_PTR(-EPERM);
 | 
						|
 | 
						|
	up_read(&task->signal->exec_update_lock);
 | 
						|
 | 
						|
	if (!file) {
 | 
						|
		/*
 | 
						|
		 * It is possible that the target thread is exiting; it can be
 | 
						|
		 * either:
 | 
						|
		 * 1. before exit_signals(), which gives a real fd
 | 
						|
		 * 2. before exit_files() takes the task_lock() gives a real fd
 | 
						|
		 * 3. after exit_files() releases task_lock(), ->files is NULL;
 | 
						|
		 *    this has PF_EXITING, since it was set in exit_signals(),
 | 
						|
		 *    __pidfd_fget() returns EBADF.
 | 
						|
		 * In case 3 we get EBADF, but that really means ESRCH, since
 | 
						|
		 * the task is currently exiting and has freed its files
 | 
						|
		 * struct, so we fix it up.
 | 
						|
		 */
 | 
						|
		if (task->flags & PF_EXITING)
 | 
						|
			file = ERR_PTR(-ESRCH);
 | 
						|
		else
 | 
						|
			file = ERR_PTR(-EBADF);
 | 
						|
	}
 | 
						|
 | 
						|
	return file;
 | 
						|
}
 | 
						|
 | 
						|
static int pidfd_getfd(struct pid *pid, int fd)
 | 
						|
{
 | 
						|
	struct task_struct *task;
 | 
						|
	struct file *file;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	task = get_pid_task(pid, PIDTYPE_PID);
 | 
						|
	if (!task)
 | 
						|
		return -ESRCH;
 | 
						|
 | 
						|
	file = __pidfd_fget(task, fd);
 | 
						|
	put_task_struct(task);
 | 
						|
	if (IS_ERR(file))
 | 
						|
		return PTR_ERR(file);
 | 
						|
 | 
						|
	ret = receive_fd(file, NULL, O_CLOEXEC);
 | 
						|
	fput(file);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * sys_pidfd_getfd() - Get a file descriptor from another process
 | 
						|
 *
 | 
						|
 * @pidfd:	the pidfd file descriptor of the process
 | 
						|
 * @fd:		the file descriptor number to get
 | 
						|
 * @flags:	flags on how to get the fd (reserved)
 | 
						|
 *
 | 
						|
 * This syscall gets a copy of a file descriptor from another process
 | 
						|
 * based on the pidfd, and file descriptor number. It requires that
 | 
						|
 * the calling process has the ability to ptrace the process represented
 | 
						|
 * by the pidfd. The process which is having its file descriptor copied
 | 
						|
 * is otherwise unaffected.
 | 
						|
 *
 | 
						|
 * Return: On success, a cloexec file descriptor is returned.
 | 
						|
 *         On error, a negative errno number will be returned.
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
 | 
						|
		unsigned int, flags)
 | 
						|
{
 | 
						|
	struct pid *pid;
 | 
						|
	struct fd f;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* flags is currently unused - make sure it's unset */
 | 
						|
	if (flags)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	f = fdget(pidfd);
 | 
						|
	if (!fd_file(f))
 | 
						|
		return -EBADF;
 | 
						|
 | 
						|
	pid = pidfd_pid(fd_file(f));
 | 
						|
	if (IS_ERR(pid))
 | 
						|
		ret = PTR_ERR(pid);
 | 
						|
	else
 | 
						|
		ret = pidfd_getfd(pid, fd);
 | 
						|
 | 
						|
	fdput(f);
 | 
						|
	return ret;
 | 
						|
}
 |