mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			2251 lines
		
	
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2251 lines
		
	
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 2009  Red Hat, Inc.
 | |
|  *
 | |
|  *  This work is licensed under the terms of the GNU GPL, version 2. See
 | |
|  *  the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/shrinker.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/khugepaged.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/pfn_t.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/hashtable.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/page_idle.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| 
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * By default transparent hugepage support is disabled in order that avoid
 | |
|  * to risk increase the memory footprint of applications without a guaranteed
 | |
|  * benefit. When transparent hugepage support is enabled, is for all mappings,
 | |
|  * and khugepaged scans all mappings.
 | |
|  * Defrag is invoked by khugepaged hugepage allocations and by page faults
 | |
|  * for all hugepage allocations.
 | |
|  */
 | |
| unsigned long transparent_hugepage_flags __read_mostly =
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
 | |
| #endif
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | |
| 
 | |
| static struct shrinker deferred_split_shrinker;
 | |
| 
 | |
| static atomic_t huge_zero_refcount;
 | |
| struct page *huge_zero_page __read_mostly;
 | |
| 
 | |
| struct page *get_huge_zero_page(void)
 | |
| {
 | |
| 	struct page *zero_page;
 | |
| retry:
 | |
| 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 | |
| 		return READ_ONCE(huge_zero_page);
 | |
| 
 | |
| 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 | |
| 			HPAGE_PMD_ORDER);
 | |
| 	if (!zero_page) {
 | |
| 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	count_vm_event(THP_ZERO_PAGE_ALLOC);
 | |
| 	preempt_disable();
 | |
| 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 | |
| 		preempt_enable();
 | |
| 		__free_pages(zero_page, compound_order(zero_page));
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/* We take additional reference here. It will be put back by shrinker */
 | |
| 	atomic_set(&huge_zero_refcount, 2);
 | |
| 	preempt_enable();
 | |
| 	return READ_ONCE(huge_zero_page);
 | |
| }
 | |
| 
 | |
| void put_huge_zero_page(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Counter should never go to zero here. Only shrinker can put
 | |
| 	 * last reference.
 | |
| 	 */
 | |
| 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 | |
| }
 | |
| 
 | |
| static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 | |
| 					struct shrink_control *sc)
 | |
| {
 | |
| 	/* we can free zero page only if last reference remains */
 | |
| 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 | |
| }
 | |
| 
 | |
| static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 | |
| 				       struct shrink_control *sc)
 | |
| {
 | |
| 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 | |
| 		struct page *zero_page = xchg(&huge_zero_page, NULL);
 | |
| 		BUG_ON(zero_page == NULL);
 | |
| 		__free_pages(zero_page, compound_order(zero_page));
 | |
| 		return HPAGE_PMD_NR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct shrinker huge_zero_page_shrinker = {
 | |
| 	.count_objects = shrink_huge_zero_page_count,
 | |
| 	.scan_objects = shrink_huge_zero_page_scan,
 | |
| 	.seeks = DEFAULT_SEEKS,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| 
 | |
| static ssize_t triple_flag_store(struct kobject *kobj,
 | |
| 				 struct kobj_attribute *attr,
 | |
| 				 const char *buf, size_t count,
 | |
| 				 enum transparent_hugepage_flag enabled,
 | |
| 				 enum transparent_hugepage_flag deferred,
 | |
| 				 enum transparent_hugepage_flag req_madv)
 | |
| {
 | |
| 	if (!memcmp("defer", buf,
 | |
| 		    min(sizeof("defer")-1, count))) {
 | |
| 		if (enabled == deferred)
 | |
| 			return -EINVAL;
 | |
| 		clear_bit(enabled, &transparent_hugepage_flags);
 | |
| 		clear_bit(req_madv, &transparent_hugepage_flags);
 | |
| 		set_bit(deferred, &transparent_hugepage_flags);
 | |
| 	} else if (!memcmp("always", buf,
 | |
| 		    min(sizeof("always")-1, count))) {
 | |
| 		clear_bit(deferred, &transparent_hugepage_flags);
 | |
| 		clear_bit(req_madv, &transparent_hugepage_flags);
 | |
| 		set_bit(enabled, &transparent_hugepage_flags);
 | |
| 	} else if (!memcmp("madvise", buf,
 | |
| 			   min(sizeof("madvise")-1, count))) {
 | |
| 		clear_bit(enabled, &transparent_hugepage_flags);
 | |
| 		clear_bit(deferred, &transparent_hugepage_flags);
 | |
| 		set_bit(req_madv, &transparent_hugepage_flags);
 | |
| 	} else if (!memcmp("never", buf,
 | |
| 			   min(sizeof("never")-1, count))) {
 | |
| 		clear_bit(enabled, &transparent_hugepage_flags);
 | |
| 		clear_bit(req_madv, &transparent_hugepage_flags);
 | |
| 		clear_bit(deferred, &transparent_hugepage_flags);
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t enabled_show(struct kobject *kobj,
 | |
| 			    struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 | |
| 		return sprintf(buf, "[always] madvise never\n");
 | |
| 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 | |
| 		return sprintf(buf, "always [madvise] never\n");
 | |
| 	else
 | |
| 		return sprintf(buf, "always madvise [never]\n");
 | |
| }
 | |
| 
 | |
| static ssize_t enabled_store(struct kobject *kobj,
 | |
| 			     struct kobj_attribute *attr,
 | |
| 			     const char *buf, size_t count)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = triple_flag_store(kobj, attr, buf, count,
 | |
| 				TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 				TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 | |
| 
 | |
| 	if (ret > 0) {
 | |
| 		int err = start_stop_khugepaged();
 | |
| 		if (err)
 | |
| 			ret = err;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| static struct kobj_attribute enabled_attr =
 | |
| 	__ATTR(enabled, 0644, enabled_show, enabled_store);
 | |
| 
 | |
| ssize_t single_hugepage_flag_show(struct kobject *kobj,
 | |
| 				struct kobj_attribute *attr, char *buf,
 | |
| 				enum transparent_hugepage_flag flag)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n",
 | |
| 		       !!test_bit(flag, &transparent_hugepage_flags));
 | |
| }
 | |
| 
 | |
| ssize_t single_hugepage_flag_store(struct kobject *kobj,
 | |
| 				 struct kobj_attribute *attr,
 | |
| 				 const char *buf, size_t count,
 | |
| 				 enum transparent_hugepage_flag flag)
 | |
| {
 | |
| 	unsigned long value;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &value);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	if (value > 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (value)
 | |
| 		set_bit(flag, &transparent_hugepage_flags);
 | |
| 	else
 | |
| 		clear_bit(flag, &transparent_hugepage_flags);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 | |
|  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 | |
|  * memory just to allocate one more hugepage.
 | |
|  */
 | |
| static ssize_t defrag_show(struct kobject *kobj,
 | |
| 			   struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 | |
| 		return sprintf(buf, "[always] defer madvise never\n");
 | |
| 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 | |
| 		return sprintf(buf, "always [defer] madvise never\n");
 | |
| 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 | |
| 		return sprintf(buf, "always defer [madvise] never\n");
 | |
| 	else
 | |
| 		return sprintf(buf, "always defer madvise [never]\n");
 | |
| 
 | |
| }
 | |
| static ssize_t defrag_store(struct kobject *kobj,
 | |
| 			    struct kobj_attribute *attr,
 | |
| 			    const char *buf, size_t count)
 | |
| {
 | |
| 	return triple_flag_store(kobj, attr, buf, count,
 | |
| 				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 | |
| 				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 | |
| 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 | |
| }
 | |
| static struct kobj_attribute defrag_attr =
 | |
| 	__ATTR(defrag, 0644, defrag_show, defrag_store);
 | |
| 
 | |
| static ssize_t use_zero_page_show(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return single_hugepage_flag_show(kobj, attr, buf,
 | |
| 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | |
| }
 | |
| static ssize_t use_zero_page_store(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, const char *buf, size_t count)
 | |
| {
 | |
| 	return single_hugepage_flag_store(kobj, attr, buf, count,
 | |
| 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | |
| }
 | |
| static struct kobj_attribute use_zero_page_attr =
 | |
| 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static ssize_t debug_cow_show(struct kobject *kobj,
 | |
| 				struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return single_hugepage_flag_show(kobj, attr, buf,
 | |
| 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 | |
| }
 | |
| static ssize_t debug_cow_store(struct kobject *kobj,
 | |
| 			       struct kobj_attribute *attr,
 | |
| 			       const char *buf, size_t count)
 | |
| {
 | |
| 	return single_hugepage_flag_store(kobj, attr, buf, count,
 | |
| 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 | |
| }
 | |
| static struct kobj_attribute debug_cow_attr =
 | |
| 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 | |
| #endif /* CONFIG_DEBUG_VM */
 | |
| 
 | |
| static struct attribute *hugepage_attr[] = {
 | |
| 	&enabled_attr.attr,
 | |
| 	&defrag_attr.attr,
 | |
| 	&use_zero_page_attr.attr,
 | |
| #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 | |
| 	&shmem_enabled_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	&debug_cow_attr.attr,
 | |
| #endif
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group hugepage_attr_group = {
 | |
| 	.attrs = hugepage_attr,
 | |
| };
 | |
| 
 | |
| static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 | |
| 	if (unlikely(!*hugepage_kobj)) {
 | |
| 		pr_err("failed to create transparent hugepage kobject\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 | |
| 	if (err) {
 | |
| 		pr_err("failed to register transparent hugepage group\n");
 | |
| 		goto delete_obj;
 | |
| 	}
 | |
| 
 | |
| 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 | |
| 	if (err) {
 | |
| 		pr_err("failed to register transparent hugepage group\n");
 | |
| 		goto remove_hp_group;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| remove_hp_group:
 | |
| 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 | |
| delete_obj:
 | |
| 	kobject_put(*hugepage_kobj);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 | |
| {
 | |
| 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 | |
| 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 | |
| 	kobject_put(hugepage_kobj);
 | |
| }
 | |
| #else
 | |
| static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SYSFS */
 | |
| 
 | |
| static int __init hugepage_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 	struct kobject *hugepage_kobj;
 | |
| 
 | |
| 	if (!has_transparent_hugepage()) {
 | |
| 		transparent_hugepage_flags = 0;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * hugepages can't be allocated by the buddy allocator
 | |
| 	 */
 | |
| 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 | |
| 	/*
 | |
| 	 * we use page->mapping and page->index in second tail page
 | |
| 	 * as list_head: assuming THP order >= 2
 | |
| 	 */
 | |
| 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 | |
| 
 | |
| 	err = hugepage_init_sysfs(&hugepage_kobj);
 | |
| 	if (err)
 | |
| 		goto err_sysfs;
 | |
| 
 | |
| 	err = khugepaged_init();
 | |
| 	if (err)
 | |
| 		goto err_slab;
 | |
| 
 | |
| 	err = register_shrinker(&huge_zero_page_shrinker);
 | |
| 	if (err)
 | |
| 		goto err_hzp_shrinker;
 | |
| 	err = register_shrinker(&deferred_split_shrinker);
 | |
| 	if (err)
 | |
| 		goto err_split_shrinker;
 | |
| 
 | |
| 	/*
 | |
| 	 * By default disable transparent hugepages on smaller systems,
 | |
| 	 * where the extra memory used could hurt more than TLB overhead
 | |
| 	 * is likely to save.  The admin can still enable it through /sys.
 | |
| 	 */
 | |
| 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 | |
| 		transparent_hugepage_flags = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	err = start_stop_khugepaged();
 | |
| 	if (err)
 | |
| 		goto err_khugepaged;
 | |
| 
 | |
| 	return 0;
 | |
| err_khugepaged:
 | |
| 	unregister_shrinker(&deferred_split_shrinker);
 | |
| err_split_shrinker:
 | |
| 	unregister_shrinker(&huge_zero_page_shrinker);
 | |
| err_hzp_shrinker:
 | |
| 	khugepaged_destroy();
 | |
| err_slab:
 | |
| 	hugepage_exit_sysfs(hugepage_kobj);
 | |
| err_sysfs:
 | |
| 	return err;
 | |
| }
 | |
| subsys_initcall(hugepage_init);
 | |
| 
 | |
| static int __init setup_transparent_hugepage(char *str)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	if (!str)
 | |
| 		goto out;
 | |
| 	if (!strcmp(str, "always")) {
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 			&transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		ret = 1;
 | |
| 	} else if (!strcmp(str, "madvise")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | |
| 			&transparent_hugepage_flags);
 | |
| 		ret = 1;
 | |
| 	} else if (!strcmp(str, "never")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| out:
 | |
| 	if (!ret)
 | |
| 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 | |
| 	return ret;
 | |
| }
 | |
| __setup("transparent_hugepage=", setup_transparent_hugepage);
 | |
| 
 | |
| pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (likely(vma->vm_flags & VM_WRITE))
 | |
| 		pmd = pmd_mkwrite(pmd);
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| static inline struct list_head *page_deferred_list(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * ->lru in the tail pages is occupied by compound_head.
 | |
| 	 * Let's use ->mapping + ->index in the second tail page as list_head.
 | |
| 	 */
 | |
| 	return (struct list_head *)&page[2].mapping;
 | |
| }
 | |
| 
 | |
| void prep_transhuge_page(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * we use page->mapping and page->indexlru in second tail page
 | |
| 	 * as list_head: assuming THP order >= 2
 | |
| 	 */
 | |
| 
 | |
| 	INIT_LIST_HEAD(page_deferred_list(page));
 | |
| 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 | |
| }
 | |
| 
 | |
| static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
 | |
| 		gfp_t gfp)
 | |
| {
 | |
| 	struct vm_area_struct *vma = fe->vma;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	pgtable_t pgtable;
 | |
| 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page), page);
 | |
| 
 | |
| 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 | |
| 		put_page(page);
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	}
 | |
| 
 | |
| 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 | |
| 	if (unlikely(!pgtable)) {
 | |
| 		mem_cgroup_cancel_charge(page, memcg, true);
 | |
| 		put_page(page);
 | |
| 		return VM_FAULT_OOM;
 | |
| 	}
 | |
| 
 | |
| 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 | |
| 	/*
 | |
| 	 * The memory barrier inside __SetPageUptodate makes sure that
 | |
| 	 * clear_huge_page writes become visible before the set_pmd_at()
 | |
| 	 * write.
 | |
| 	 */
 | |
| 	__SetPageUptodate(page);
 | |
| 
 | |
| 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 | |
| 	if (unlikely(!pmd_none(*fe->pmd))) {
 | |
| 		spin_unlock(fe->ptl);
 | |
| 		mem_cgroup_cancel_charge(page, memcg, true);
 | |
| 		put_page(page);
 | |
| 		pte_free(vma->vm_mm, pgtable);
 | |
| 	} else {
 | |
| 		pmd_t entry;
 | |
| 
 | |
| 		/* Deliver the page fault to userland */
 | |
| 		if (userfaultfd_missing(vma)) {
 | |
| 			int ret;
 | |
| 
 | |
| 			spin_unlock(fe->ptl);
 | |
| 			mem_cgroup_cancel_charge(page, memcg, true);
 | |
| 			put_page(page);
 | |
| 			pte_free(vma->vm_mm, pgtable);
 | |
| 			ret = handle_userfault(fe, VM_UFFD_MISSING);
 | |
| 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		entry = mk_huge_pmd(page, vma->vm_page_prot);
 | |
| 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | |
| 		page_add_new_anon_rmap(page, vma, haddr, true);
 | |
| 		mem_cgroup_commit_charge(page, memcg, false, true);
 | |
| 		lru_cache_add_active_or_unevictable(page, vma);
 | |
| 		pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
 | |
| 		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
 | |
| 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | |
| 		atomic_long_inc(&vma->vm_mm->nr_ptes);
 | |
| 		spin_unlock(fe->ptl);
 | |
| 		count_vm_event(THP_FAULT_ALLOC);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If THP defrag is set to always then directly reclaim/compact as necessary
 | |
|  * If set to defer then do only background reclaim/compact and defer to khugepaged
 | |
|  * If set to madvise and the VMA is flagged then directly reclaim/compact
 | |
|  * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
 | |
|  */
 | |
| static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 | |
| {
 | |
| 	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 | |
| 
 | |
| 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 | |
| 				&transparent_hugepage_flags) && vma_madvised)
 | |
| 		return GFP_TRANSHUGE;
 | |
| 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 | |
| 						&transparent_hugepage_flags))
 | |
| 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 | |
| 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 | |
| 						&transparent_hugepage_flags))
 | |
| 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 | |
| 
 | |
| 	return GFP_TRANSHUGE_LIGHT;
 | |
| }
 | |
| 
 | |
| /* Caller must hold page table lock. */
 | |
| static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 | |
| 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 | |
| 		struct page *zero_page)
 | |
| {
 | |
| 	pmd_t entry;
 | |
| 	if (!pmd_none(*pmd))
 | |
| 		return false;
 | |
| 	entry = mk_pmd(zero_page, vma->vm_page_prot);
 | |
| 	entry = pmd_mkhuge(entry);
 | |
| 	if (pgtable)
 | |
| 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 | |
| 	set_pmd_at(mm, haddr, pmd, entry);
 | |
| 	atomic_long_inc(&mm->nr_ptes);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int do_huge_pmd_anonymous_page(struct fault_env *fe)
 | |
| {
 | |
| 	struct vm_area_struct *vma = fe->vma;
 | |
| 	gfp_t gfp;
 | |
| 	struct page *page;
 | |
| 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 | |
| 
 | |
| 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	if (unlikely(anon_vma_prepare(vma)))
 | |
| 		return VM_FAULT_OOM;
 | |
| 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 | |
| 		return VM_FAULT_OOM;
 | |
| 	if (!(fe->flags & FAULT_FLAG_WRITE) &&
 | |
| 			!mm_forbids_zeropage(vma->vm_mm) &&
 | |
| 			transparent_hugepage_use_zero_page()) {
 | |
| 		pgtable_t pgtable;
 | |
| 		struct page *zero_page;
 | |
| 		bool set;
 | |
| 		int ret;
 | |
| 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 | |
| 		if (unlikely(!pgtable))
 | |
| 			return VM_FAULT_OOM;
 | |
| 		zero_page = get_huge_zero_page();
 | |
| 		if (unlikely(!zero_page)) {
 | |
| 			pte_free(vma->vm_mm, pgtable);
 | |
| 			count_vm_event(THP_FAULT_FALLBACK);
 | |
| 			return VM_FAULT_FALLBACK;
 | |
| 		}
 | |
| 		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 | |
| 		ret = 0;
 | |
| 		set = false;
 | |
| 		if (pmd_none(*fe->pmd)) {
 | |
| 			if (userfaultfd_missing(vma)) {
 | |
| 				spin_unlock(fe->ptl);
 | |
| 				ret = handle_userfault(fe, VM_UFFD_MISSING);
 | |
| 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 | |
| 			} else {
 | |
| 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 | |
| 						   haddr, fe->pmd, zero_page);
 | |
| 				spin_unlock(fe->ptl);
 | |
| 				set = true;
 | |
| 			}
 | |
| 		} else
 | |
| 			spin_unlock(fe->ptl);
 | |
| 		if (!set) {
 | |
| 			pte_free(vma->vm_mm, pgtable);
 | |
| 			put_huge_zero_page();
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 	gfp = alloc_hugepage_direct_gfpmask(vma);
 | |
| 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 | |
| 	if (unlikely(!page)) {
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	}
 | |
| 	prep_transhuge_page(page);
 | |
| 	return __do_huge_pmd_anonymous_page(fe, page, gfp);
 | |
| }
 | |
| 
 | |
| static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	pmd_t entry;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 | |
| 	if (pfn_t_devmap(pfn))
 | |
| 		entry = pmd_mkdevmap(entry);
 | |
| 	if (write) {
 | |
| 		entry = pmd_mkyoung(pmd_mkdirty(entry));
 | |
| 		entry = maybe_pmd_mkwrite(entry, vma);
 | |
| 	}
 | |
| 	set_pmd_at(mm, addr, pmd, entry);
 | |
| 	update_mmu_cache_pmd(vma, addr, pmd);
 | |
| 	spin_unlock(ptl);
 | |
| }
 | |
| 
 | |
| int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			pmd_t *pmd, pfn_t pfn, bool write)
 | |
| {
 | |
| 	pgprot_t pgprot = vma->vm_page_prot;
 | |
| 	/*
 | |
| 	 * If we had pmd_special, we could avoid all these restrictions,
 | |
| 	 * but we need to be consistent with PTEs and architectures that
 | |
| 	 * can't support a 'special' bit.
 | |
| 	 */
 | |
| 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 | |
| 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 | |
| 						(VM_PFNMAP|VM_MIXEDMAP));
 | |
| 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 | |
| 	BUG_ON(!pfn_t_devmap(pfn));
 | |
| 
 | |
| 	if (addr < vma->vm_start || addr >= vma->vm_end)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	if (track_pfn_insert(vma, &pgprot, pfn))
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
 | |
| 	return VM_FAULT_NOPAGE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 | |
| 
 | |
| static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		pmd_t *pmd)
 | |
| {
 | |
| 	pmd_t _pmd;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should set the dirty bit only for FOLL_WRITE but for now
 | |
| 	 * the dirty bit in the pmd is meaningless.  And if the dirty
 | |
| 	 * bit will become meaningful and we'll only set it with
 | |
| 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
 | |
| 	 * set the young bit, instead of the current set_pmd_at.
 | |
| 	 */
 | |
| 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 | |
| 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 | |
| 				pmd, _pmd,  1))
 | |
| 		update_mmu_cache_pmd(vma, addr, pmd);
 | |
| }
 | |
| 
 | |
| struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		pmd_t *pmd, int flags)
 | |
| {
 | |
| 	unsigned long pfn = pmd_pfn(*pmd);
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct dev_pagemap *pgmap;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmd));
 | |
| 
 | |
| 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 | |
| 		/* pass */;
 | |
| 	else
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (flags & FOLL_TOUCH)
 | |
| 		touch_pmd(vma, addr, pmd);
 | |
| 
 | |
| 	/*
 | |
| 	 * device mapped pages can only be returned if the
 | |
| 	 * caller will manage the page reference count.
 | |
| 	 */
 | |
| 	if (!(flags & FOLL_GET))
 | |
| 		return ERR_PTR(-EEXIST);
 | |
| 
 | |
| 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 | |
| 	pgmap = get_dev_pagemap(pfn, NULL);
 | |
| 	if (!pgmap)
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	page = pfn_to_page(pfn);
 | |
| 	get_page(page);
 | |
| 	put_dev_pagemap(pgmap);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 | |
| 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 | |
| 		  struct vm_area_struct *vma)
 | |
| {
 | |
| 	spinlock_t *dst_ptl, *src_ptl;
 | |
| 	struct page *src_page;
 | |
| 	pmd_t pmd;
 | |
| 	pgtable_t pgtable = NULL;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	/* Skip if can be re-fill on fault */
 | |
| 	if (!vma_is_anonymous(vma))
 | |
| 		return 0;
 | |
| 
 | |
| 	pgtable = pte_alloc_one(dst_mm, addr);
 | |
| 	if (unlikely(!pgtable))
 | |
| 		goto out;
 | |
| 
 | |
| 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 | |
| 	src_ptl = pmd_lockptr(src_mm, src_pmd);
 | |
| 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	ret = -EAGAIN;
 | |
| 	pmd = *src_pmd;
 | |
| 	if (unlikely(!pmd_trans_huge(pmd))) {
 | |
| 		pte_free(dst_mm, pgtable);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * When page table lock is held, the huge zero pmd should not be
 | |
| 	 * under splitting since we don't split the page itself, only pmd to
 | |
| 	 * a page table.
 | |
| 	 */
 | |
| 	if (is_huge_zero_pmd(pmd)) {
 | |
| 		struct page *zero_page;
 | |
| 		/*
 | |
| 		 * get_huge_zero_page() will never allocate a new page here,
 | |
| 		 * since we already have a zero page to copy. It just takes a
 | |
| 		 * reference.
 | |
| 		 */
 | |
| 		zero_page = get_huge_zero_page();
 | |
| 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 | |
| 				zero_page);
 | |
| 		ret = 0;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	src_page = pmd_page(pmd);
 | |
| 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 | |
| 	get_page(src_page);
 | |
| 	page_dup_rmap(src_page, true);
 | |
| 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | |
| 	atomic_long_inc(&dst_mm->nr_ptes);
 | |
| 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 | |
| 
 | |
| 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 | |
| 	pmd = pmd_mkold(pmd_wrprotect(pmd));
 | |
| 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 | |
| 
 | |
| 	ret = 0;
 | |
| out_unlock:
 | |
| 	spin_unlock(src_ptl);
 | |
| 	spin_unlock(dst_ptl);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
 | |
| {
 | |
| 	pmd_t entry;
 | |
| 	unsigned long haddr;
 | |
| 
 | |
| 	fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
 | |
| 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	entry = pmd_mkyoung(orig_pmd);
 | |
| 	haddr = fe->address & HPAGE_PMD_MASK;
 | |
| 	if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
 | |
| 				fe->flags & FAULT_FLAG_WRITE))
 | |
| 		update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
 | |
| 
 | |
| unlock:
 | |
| 	spin_unlock(fe->ptl);
 | |
| }
 | |
| 
 | |
| static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
 | |
| 		struct page *page)
 | |
| {
 | |
| 	struct vm_area_struct *vma = fe->vma;
 | |
| 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	pgtable_t pgtable;
 | |
| 	pmd_t _pmd;
 | |
| 	int ret = 0, i;
 | |
| 	struct page **pages;
 | |
| 	unsigned long mmun_start;	/* For mmu_notifiers */
 | |
| 	unsigned long mmun_end;		/* For mmu_notifiers */
 | |
| 
 | |
| 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 | |
| 			GFP_KERNEL);
 | |
| 	if (unlikely(!pages)) {
 | |
| 		ret |= VM_FAULT_OOM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | |
| 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 | |
| 					       __GFP_OTHER_NODE, vma,
 | |
| 					       fe->address, page_to_nid(page));
 | |
| 		if (unlikely(!pages[i] ||
 | |
| 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
 | |
| 				     GFP_KERNEL, &memcg, false))) {
 | |
| 			if (pages[i])
 | |
| 				put_page(pages[i]);
 | |
| 			while (--i >= 0) {
 | |
| 				memcg = (void *)page_private(pages[i]);
 | |
| 				set_page_private(pages[i], 0);
 | |
| 				mem_cgroup_cancel_charge(pages[i], memcg,
 | |
| 						false);
 | |
| 				put_page(pages[i]);
 | |
| 			}
 | |
| 			kfree(pages);
 | |
| 			ret |= VM_FAULT_OOM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		set_page_private(pages[i], (unsigned long)memcg);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | |
| 		copy_user_highpage(pages[i], page + i,
 | |
| 				   haddr + PAGE_SIZE * i, vma);
 | |
| 		__SetPageUptodate(pages[i]);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	mmun_start = haddr;
 | |
| 	mmun_end   = haddr + HPAGE_PMD_SIZE;
 | |
| 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
 | |
| 
 | |
| 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 | |
| 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
 | |
| 		goto out_free_pages;
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 
 | |
| 	pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
 | |
| 	/* leave pmd empty until pte is filled */
 | |
| 
 | |
| 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
 | |
| 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 | |
| 		pte_t entry;
 | |
| 		entry = mk_pte(pages[i], vma->vm_page_prot);
 | |
| 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 | |
| 		memcg = (void *)page_private(pages[i]);
 | |
| 		set_page_private(pages[i], 0);
 | |
| 		page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
 | |
| 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
 | |
| 		lru_cache_add_active_or_unevictable(pages[i], vma);
 | |
| 		fe->pte = pte_offset_map(&_pmd, haddr);
 | |
| 		VM_BUG_ON(!pte_none(*fe->pte));
 | |
| 		set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
 | |
| 		pte_unmap(fe->pte);
 | |
| 	}
 | |
| 	kfree(pages);
 | |
| 
 | |
| 	smp_wmb(); /* make pte visible before pmd */
 | |
| 	pmd_populate(vma->vm_mm, fe->pmd, pgtable);
 | |
| 	page_remove_rmap(page, true);
 | |
| 	spin_unlock(fe->ptl);
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 | |
| 
 | |
| 	ret |= VM_FAULT_WRITE;
 | |
| 	put_page(page);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| out_free_pages:
 | |
| 	spin_unlock(fe->ptl);
 | |
| 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | |
| 		memcg = (void *)page_private(pages[i]);
 | |
| 		set_page_private(pages[i], 0);
 | |
| 		mem_cgroup_cancel_charge(pages[i], memcg, false);
 | |
| 		put_page(pages[i]);
 | |
| 	}
 | |
| 	kfree(pages);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
 | |
| {
 | |
| 	struct vm_area_struct *vma = fe->vma;
 | |
| 	struct page *page = NULL, *new_page;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 | |
| 	unsigned long mmun_start;	/* For mmu_notifiers */
 | |
| 	unsigned long mmun_end;		/* For mmu_notifiers */
 | |
| 	gfp_t huge_gfp;			/* for allocation and charge */
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
 | |
| 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 | |
| 	if (is_huge_zero_pmd(orig_pmd))
 | |
| 		goto alloc;
 | |
| 	spin_lock(fe->ptl);
 | |
| 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	page = pmd_page(orig_pmd);
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
 | |
| 	/*
 | |
| 	 * We can only reuse the page if nobody else maps the huge page or it's
 | |
| 	 * part.
 | |
| 	 */
 | |
| 	if (page_trans_huge_mapcount(page, NULL) == 1) {
 | |
| 		pmd_t entry;
 | |
| 		entry = pmd_mkyoung(orig_pmd);
 | |
| 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | |
| 		if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
 | |
| 			update_mmu_cache_pmd(vma, fe->address, fe->pmd);
 | |
| 		ret |= VM_FAULT_WRITE;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	get_page(page);
 | |
| 	spin_unlock(fe->ptl);
 | |
| alloc:
 | |
| 	if (transparent_hugepage_enabled(vma) &&
 | |
| 	    !transparent_hugepage_debug_cow()) {
 | |
| 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
 | |
| 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
 | |
| 	} else
 | |
| 		new_page = NULL;
 | |
| 
 | |
| 	if (likely(new_page)) {
 | |
| 		prep_transhuge_page(new_page);
 | |
| 	} else {
 | |
| 		if (!page) {
 | |
| 			split_huge_pmd(vma, fe->pmd, fe->address);
 | |
| 			ret |= VM_FAULT_FALLBACK;
 | |
| 		} else {
 | |
| 			ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
 | |
| 			if (ret & VM_FAULT_OOM) {
 | |
| 				split_huge_pmd(vma, fe->pmd, fe->address);
 | |
| 				ret |= VM_FAULT_FALLBACK;
 | |
| 			}
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
 | |
| 					huge_gfp, &memcg, true))) {
 | |
| 		put_page(new_page);
 | |
| 		split_huge_pmd(vma, fe->pmd, fe->address);
 | |
| 		if (page)
 | |
| 			put_page(page);
 | |
| 		ret |= VM_FAULT_FALLBACK;
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	count_vm_event(THP_FAULT_ALLOC);
 | |
| 
 | |
| 	if (!page)
 | |
| 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
 | |
| 	else
 | |
| 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 | |
| 	__SetPageUptodate(new_page);
 | |
| 
 | |
| 	mmun_start = haddr;
 | |
| 	mmun_end   = haddr + HPAGE_PMD_SIZE;
 | |
| 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
 | |
| 
 | |
| 	spin_lock(fe->ptl);
 | |
| 	if (page)
 | |
| 		put_page(page);
 | |
| 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
 | |
| 		spin_unlock(fe->ptl);
 | |
| 		mem_cgroup_cancel_charge(new_page, memcg, true);
 | |
| 		put_page(new_page);
 | |
| 		goto out_mn;
 | |
| 	} else {
 | |
| 		pmd_t entry;
 | |
| 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 | |
| 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | |
| 		pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
 | |
| 		page_add_new_anon_rmap(new_page, vma, haddr, true);
 | |
| 		mem_cgroup_commit_charge(new_page, memcg, false, true);
 | |
| 		lru_cache_add_active_or_unevictable(new_page, vma);
 | |
| 		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
 | |
| 		update_mmu_cache_pmd(vma, fe->address, fe->pmd);
 | |
| 		if (!page) {
 | |
| 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | |
| 			put_huge_zero_page();
 | |
| 		} else {
 | |
| 			VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 			page_remove_rmap(page, true);
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 		ret |= VM_FAULT_WRITE;
 | |
| 	}
 | |
| 	spin_unlock(fe->ptl);
 | |
| out_mn:
 | |
| 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 | |
| out:
 | |
| 	return ret;
 | |
| out_unlock:
 | |
| 	spin_unlock(fe->ptl);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
 | |
| 				   unsigned long addr,
 | |
| 				   pmd_t *pmd,
 | |
| 				   unsigned int flags)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page = NULL;
 | |
| 
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmd));
 | |
| 
 | |
| 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Avoid dumping huge zero page */
 | |
| 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 	/* Full NUMA hinting faults to serialise migration in fault paths */
 | |
| 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	page = pmd_page(*pmd);
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
 | |
| 	if (flags & FOLL_TOUCH)
 | |
| 		touch_pmd(vma, addr, pmd);
 | |
| 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 | |
| 		/*
 | |
| 		 * We don't mlock() pte-mapped THPs. This way we can avoid
 | |
| 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
 | |
| 		 *
 | |
| 		 * For anon THP:
 | |
| 		 *
 | |
| 		 * In most cases the pmd is the only mapping of the page as we
 | |
| 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
 | |
| 		 * writable private mappings in populate_vma_page_range().
 | |
| 		 *
 | |
| 		 * The only scenario when we have the page shared here is if we
 | |
| 		 * mlocking read-only mapping shared over fork(). We skip
 | |
| 		 * mlocking such pages.
 | |
| 		 *
 | |
| 		 * For file THP:
 | |
| 		 *
 | |
| 		 * We can expect PageDoubleMap() to be stable under page lock:
 | |
| 		 * for file pages we set it in page_add_file_rmap(), which
 | |
| 		 * requires page to be locked.
 | |
| 		 */
 | |
| 
 | |
| 		if (PageAnon(page) && compound_mapcount(page) != 1)
 | |
| 			goto skip_mlock;
 | |
| 		if (PageDoubleMap(page) || !page->mapping)
 | |
| 			goto skip_mlock;
 | |
| 		if (!trylock_page(page))
 | |
| 			goto skip_mlock;
 | |
| 		lru_add_drain();
 | |
| 		if (page->mapping && !PageDoubleMap(page))
 | |
| 			mlock_vma_page(page);
 | |
| 		unlock_page(page);
 | |
| 	}
 | |
| skip_mlock:
 | |
| 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
 | |
| 	if (flags & FOLL_GET)
 | |
| 		get_page(page);
 | |
| 
 | |
| out:
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /* NUMA hinting page fault entry point for trans huge pmds */
 | |
| int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
 | |
| {
 | |
| 	struct vm_area_struct *vma = fe->vma;
 | |
| 	struct anon_vma *anon_vma = NULL;
 | |
| 	struct page *page;
 | |
| 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 | |
| 	int page_nid = -1, this_nid = numa_node_id();
 | |
| 	int target_nid, last_cpupid = -1;
 | |
| 	bool page_locked;
 | |
| 	bool migrated = false;
 | |
| 	bool was_writable;
 | |
| 	int flags = 0;
 | |
| 
 | |
| 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 | |
| 	if (unlikely(!pmd_same(pmd, *fe->pmd)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are potential migrations, wait for completion and retry
 | |
| 	 * without disrupting NUMA hinting information. Do not relock and
 | |
| 	 * check_same as the page may no longer be mapped.
 | |
| 	 */
 | |
| 	if (unlikely(pmd_trans_migrating(*fe->pmd))) {
 | |
| 		page = pmd_page(*fe->pmd);
 | |
| 		spin_unlock(fe->ptl);
 | |
| 		wait_on_page_locked(page);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	page = pmd_page(pmd);
 | |
| 	BUG_ON(is_huge_zero_page(page));
 | |
| 	page_nid = page_to_nid(page);
 | |
| 	last_cpupid = page_cpupid_last(page);
 | |
| 	count_vm_numa_event(NUMA_HINT_FAULTS);
 | |
| 	if (page_nid == this_nid) {
 | |
| 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
 | |
| 		flags |= TNF_FAULT_LOCAL;
 | |
| 	}
 | |
| 
 | |
| 	/* See similar comment in do_numa_page for explanation */
 | |
| 	if (!pmd_write(pmd))
 | |
| 		flags |= TNF_NO_GROUP;
 | |
| 
 | |
| 	/*
 | |
| 	 * Acquire the page lock to serialise THP migrations but avoid dropping
 | |
| 	 * page_table_lock if at all possible
 | |
| 	 */
 | |
| 	page_locked = trylock_page(page);
 | |
| 	target_nid = mpol_misplaced(page, vma, haddr);
 | |
| 	if (target_nid == -1) {
 | |
| 		/* If the page was locked, there are no parallel migrations */
 | |
| 		if (page_locked)
 | |
| 			goto clear_pmdnuma;
 | |
| 	}
 | |
| 
 | |
| 	/* Migration could have started since the pmd_trans_migrating check */
 | |
| 	if (!page_locked) {
 | |
| 		spin_unlock(fe->ptl);
 | |
| 		wait_on_page_locked(page);
 | |
| 		page_nid = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
 | |
| 	 * to serialises splits
 | |
| 	 */
 | |
| 	get_page(page);
 | |
| 	spin_unlock(fe->ptl);
 | |
| 	anon_vma = page_lock_anon_vma_read(page);
 | |
| 
 | |
| 	/* Confirm the PMD did not change while page_table_lock was released */
 | |
| 	spin_lock(fe->ptl);
 | |
| 	if (unlikely(!pmd_same(pmd, *fe->pmd))) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		page_nid = -1;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Bail if we fail to protect against THP splits for any reason */
 | |
| 	if (unlikely(!anon_vma)) {
 | |
| 		put_page(page);
 | |
| 		page_nid = -1;
 | |
| 		goto clear_pmdnuma;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Migrate the THP to the requested node, returns with page unlocked
 | |
| 	 * and access rights restored.
 | |
| 	 */
 | |
| 	spin_unlock(fe->ptl);
 | |
| 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
 | |
| 				fe->pmd, pmd, fe->address, page, target_nid);
 | |
| 	if (migrated) {
 | |
| 		flags |= TNF_MIGRATED;
 | |
| 		page_nid = target_nid;
 | |
| 	} else
 | |
| 		flags |= TNF_MIGRATE_FAIL;
 | |
| 
 | |
| 	goto out;
 | |
| clear_pmdnuma:
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 	was_writable = pmd_write(pmd);
 | |
| 	pmd = pmd_modify(pmd, vma->vm_page_prot);
 | |
| 	pmd = pmd_mkyoung(pmd);
 | |
| 	if (was_writable)
 | |
| 		pmd = pmd_mkwrite(pmd);
 | |
| 	set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
 | |
| 	update_mmu_cache_pmd(vma, fe->address, fe->pmd);
 | |
| 	unlock_page(page);
 | |
| out_unlock:
 | |
| 	spin_unlock(fe->ptl);
 | |
| 
 | |
| out:
 | |
| 	if (anon_vma)
 | |
| 		page_unlock_anon_vma_read(anon_vma);
 | |
| 
 | |
| 	if (page_nid != -1)
 | |
| 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if we do MADV_FREE successfully on entire pmd page.
 | |
|  * Otherwise, return false.
 | |
|  */
 | |
| bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | |
| 		pmd_t *pmd, unsigned long addr, unsigned long next)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	pmd_t orig_pmd;
 | |
| 	struct page *page;
 | |
| 	struct mm_struct *mm = tlb->mm;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	ptl = pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (!ptl)
 | |
| 		goto out_unlocked;
 | |
| 
 | |
| 	orig_pmd = *pmd;
 | |
| 	if (is_huge_zero_pmd(orig_pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	page = pmd_page(orig_pmd);
 | |
| 	/*
 | |
| 	 * If other processes are mapping this page, we couldn't discard
 | |
| 	 * the page unless they all do MADV_FREE so let's skip the page.
 | |
| 	 */
 | |
| 	if (page_mapcount(page) != 1)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!trylock_page(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If user want to discard part-pages of THP, split it so MADV_FREE
 | |
| 	 * will deactivate only them.
 | |
| 	 */
 | |
| 	if (next - addr != HPAGE_PMD_SIZE) {
 | |
| 		get_page(page);
 | |
| 		spin_unlock(ptl);
 | |
| 		split_huge_page(page);
 | |
| 		put_page(page);
 | |
| 		unlock_page(page);
 | |
| 		goto out_unlocked;
 | |
| 	}
 | |
| 
 | |
| 	if (PageDirty(page))
 | |
| 		ClearPageDirty(page);
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	if (PageActive(page))
 | |
| 		deactivate_page(page);
 | |
| 
 | |
| 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
 | |
| 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
 | |
| 			tlb->fullmm);
 | |
| 		orig_pmd = pmd_mkold(orig_pmd);
 | |
| 		orig_pmd = pmd_mkclean(orig_pmd);
 | |
| 
 | |
| 		set_pmd_at(mm, addr, pmd, orig_pmd);
 | |
| 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 | |
| 	}
 | |
| 	ret = true;
 | |
| out:
 | |
| 	spin_unlock(ptl);
 | |
| out_unlocked:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | |
| 		 pmd_t *pmd, unsigned long addr)
 | |
| {
 | |
| 	pmd_t orig_pmd;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = __pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (!ptl)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * For architectures like ppc64 we look at deposited pgtable
 | |
| 	 * when calling pmdp_huge_get_and_clear. So do the
 | |
| 	 * pgtable_trans_huge_withdraw after finishing pmdp related
 | |
| 	 * operations.
 | |
| 	 */
 | |
| 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
 | |
| 			tlb->fullmm);
 | |
| 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 | |
| 	if (vma_is_dax(vma)) {
 | |
| 		spin_unlock(ptl);
 | |
| 		if (is_huge_zero_pmd(orig_pmd))
 | |
| 			tlb_remove_page(tlb, pmd_page(orig_pmd));
 | |
| 	} else if (is_huge_zero_pmd(orig_pmd)) {
 | |
| 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
 | |
| 		atomic_long_dec(&tlb->mm->nr_ptes);
 | |
| 		spin_unlock(ptl);
 | |
| 		tlb_remove_page(tlb, pmd_page(orig_pmd));
 | |
| 	} else {
 | |
| 		struct page *page = pmd_page(orig_pmd);
 | |
| 		page_remove_rmap(page, true);
 | |
| 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
 | |
| 		VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 		if (PageAnon(page)) {
 | |
| 			pgtable_t pgtable;
 | |
| 			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
 | |
| 			pte_free(tlb->mm, pgtable);
 | |
| 			atomic_long_dec(&tlb->mm->nr_ptes);
 | |
| 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
 | |
| 		} else {
 | |
| 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
 | |
| 		}
 | |
| 		spin_unlock(ptl);
 | |
| 		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
 | |
| 		  unsigned long new_addr, unsigned long old_end,
 | |
| 		  pmd_t *old_pmd, pmd_t *new_pmd)
 | |
| {
 | |
| 	spinlock_t *old_ptl, *new_ptl;
 | |
| 	pmd_t pmd;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 
 | |
| 	if ((old_addr & ~HPAGE_PMD_MASK) ||
 | |
| 	    (new_addr & ~HPAGE_PMD_MASK) ||
 | |
| 	    old_end - old_addr < HPAGE_PMD_SIZE)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The destination pmd shouldn't be established, free_pgtables()
 | |
| 	 * should have release it.
 | |
| 	 */
 | |
| 	if (WARN_ON(!pmd_none(*new_pmd))) {
 | |
| 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't have to worry about the ordering of src and dst
 | |
| 	 * ptlocks because exclusive mmap_sem prevents deadlock.
 | |
| 	 */
 | |
| 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
 | |
| 	if (old_ptl) {
 | |
| 		new_ptl = pmd_lockptr(mm, new_pmd);
 | |
| 		if (new_ptl != old_ptl)
 | |
| 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 | |
| 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
 | |
| 		VM_BUG_ON(!pmd_none(*new_pmd));
 | |
| 
 | |
| 		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
 | |
| 				vma_is_anonymous(vma)) {
 | |
| 			pgtable_t pgtable;
 | |
| 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
 | |
| 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
 | |
| 		}
 | |
| 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
 | |
| 		if (new_ptl != old_ptl)
 | |
| 			spin_unlock(new_ptl);
 | |
| 		spin_unlock(old_ptl);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns
 | |
|  *  - 0 if PMD could not be locked
 | |
|  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 | |
|  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 | |
|  */
 | |
| int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long addr, pgprot_t newprot, int prot_numa)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	spinlock_t *ptl;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ptl = __pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (ptl) {
 | |
| 		pmd_t entry;
 | |
| 		bool preserve_write = prot_numa && pmd_write(*pmd);
 | |
| 		ret = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Avoid trapping faults against the zero page. The read-only
 | |
| 		 * data is likely to be read-cached on the local CPU and
 | |
| 		 * local/remote hits to the zero page are not interesting.
 | |
| 		 */
 | |
| 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
 | |
| 			spin_unlock(ptl);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		if (!prot_numa || !pmd_protnone(*pmd)) {
 | |
| 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
 | |
| 			entry = pmd_modify(entry, newprot);
 | |
| 			if (preserve_write)
 | |
| 				entry = pmd_mkwrite(entry);
 | |
| 			ret = HPAGE_PMD_NR;
 | |
| 			set_pmd_at(mm, addr, pmd, entry);
 | |
| 			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
 | |
| 					pmd_write(entry));
 | |
| 		}
 | |
| 		spin_unlock(ptl);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
 | |
|  *
 | |
|  * Note that if it returns page table lock pointer, this routine returns without
 | |
|  * unlocking page table lock. So callers must unlock it.
 | |
|  */
 | |
| spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	ptl = pmd_lock(vma->vm_mm, pmd);
 | |
| 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
 | |
| 		return ptl;
 | |
| 	spin_unlock(ptl);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
 | |
| 		unsigned long haddr, pmd_t *pmd)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	pgtable_t pgtable;
 | |
| 	pmd_t _pmd;
 | |
| 	int i;
 | |
| 
 | |
| 	/* leave pmd empty until pte is filled */
 | |
| 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 | |
| 
 | |
| 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
 | |
| 	pmd_populate(mm, &_pmd, pgtable);
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 | |
| 		pte_t *pte, entry;
 | |
| 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
 | |
| 		entry = pte_mkspecial(entry);
 | |
| 		pte = pte_offset_map(&_pmd, haddr);
 | |
| 		VM_BUG_ON(!pte_none(*pte));
 | |
| 		set_pte_at(mm, haddr, pte, entry);
 | |
| 		pte_unmap(pte);
 | |
| 	}
 | |
| 	smp_wmb(); /* make pte visible before pmd */
 | |
| 	pmd_populate(mm, pmd, pgtable);
 | |
| 	put_huge_zero_page();
 | |
| }
 | |
| 
 | |
| static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long haddr, bool freeze)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page;
 | |
| 	pgtable_t pgtable;
 | |
| 	pmd_t _pmd;
 | |
| 	bool young, write, dirty, soft_dirty;
 | |
| 	unsigned long addr;
 | |
| 	int i;
 | |
| 
 | |
| 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
 | |
| 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
 | |
| 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
 | |
| 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
 | |
| 
 | |
| 	count_vm_event(THP_SPLIT_PMD);
 | |
| 
 | |
| 	if (!vma_is_anonymous(vma)) {
 | |
| 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 | |
| 		if (is_huge_zero_pmd(_pmd))
 | |
| 			put_huge_zero_page();
 | |
| 		if (vma_is_dax(vma))
 | |
| 			return;
 | |
| 		page = pmd_page(_pmd);
 | |
| 		if (!PageReferenced(page) && pmd_young(_pmd))
 | |
| 			SetPageReferenced(page);
 | |
| 		page_remove_rmap(page, true);
 | |
| 		put_page(page);
 | |
| 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
 | |
| 		return;
 | |
| 	} else if (is_huge_zero_pmd(*pmd)) {
 | |
| 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
 | |
| 	}
 | |
| 
 | |
| 	page = pmd_page(*pmd);
 | |
| 	VM_BUG_ON_PAGE(!page_count(page), page);
 | |
| 	page_ref_add(page, HPAGE_PMD_NR - 1);
 | |
| 	write = pmd_write(*pmd);
 | |
| 	young = pmd_young(*pmd);
 | |
| 	dirty = pmd_dirty(*pmd);
 | |
| 	soft_dirty = pmd_soft_dirty(*pmd);
 | |
| 
 | |
| 	pmdp_huge_split_prepare(vma, haddr, pmd);
 | |
| 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
 | |
| 	pmd_populate(mm, &_pmd, pgtable);
 | |
| 
 | |
| 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
 | |
| 		pte_t entry, *pte;
 | |
| 		/*
 | |
| 		 * Note that NUMA hinting access restrictions are not
 | |
| 		 * transferred to avoid any possibility of altering
 | |
| 		 * permissions across VMAs.
 | |
| 		 */
 | |
| 		if (freeze) {
 | |
| 			swp_entry_t swp_entry;
 | |
| 			swp_entry = make_migration_entry(page + i, write);
 | |
| 			entry = swp_entry_to_pte(swp_entry);
 | |
| 			if (soft_dirty)
 | |
| 				entry = pte_swp_mksoft_dirty(entry);
 | |
| 		} else {
 | |
| 			entry = mk_pte(page + i, vma->vm_page_prot);
 | |
| 			entry = maybe_mkwrite(entry, vma);
 | |
| 			if (!write)
 | |
| 				entry = pte_wrprotect(entry);
 | |
| 			if (!young)
 | |
| 				entry = pte_mkold(entry);
 | |
| 			if (soft_dirty)
 | |
| 				entry = pte_mksoft_dirty(entry);
 | |
| 		}
 | |
| 		if (dirty)
 | |
| 			SetPageDirty(page + i);
 | |
| 		pte = pte_offset_map(&_pmd, addr);
 | |
| 		BUG_ON(!pte_none(*pte));
 | |
| 		set_pte_at(mm, addr, pte, entry);
 | |
| 		atomic_inc(&page[i]._mapcount);
 | |
| 		pte_unmap(pte);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set PG_double_map before dropping compound_mapcount to avoid
 | |
| 	 * false-negative page_mapped().
 | |
| 	 */
 | |
| 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
 | |
| 		for (i = 0; i < HPAGE_PMD_NR; i++)
 | |
| 			atomic_inc(&page[i]._mapcount);
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
 | |
| 		/* Last compound_mapcount is gone. */
 | |
| 		__dec_node_page_state(page, NR_ANON_THPS);
 | |
| 		if (TestClearPageDoubleMap(page)) {
 | |
| 			/* No need in mapcount reference anymore */
 | |
| 			for (i = 0; i < HPAGE_PMD_NR; i++)
 | |
| 				atomic_dec(&page[i]._mapcount);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	smp_wmb(); /* make pte visible before pmd */
 | |
| 	/*
 | |
| 	 * Up to this point the pmd is present and huge and userland has the
 | |
| 	 * whole access to the hugepage during the split (which happens in
 | |
| 	 * place). If we overwrite the pmd with the not-huge version pointing
 | |
| 	 * to the pte here (which of course we could if all CPUs were bug
 | |
| 	 * free), userland could trigger a small page size TLB miss on the
 | |
| 	 * small sized TLB while the hugepage TLB entry is still established in
 | |
| 	 * the huge TLB. Some CPU doesn't like that.
 | |
| 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
 | |
| 	 * 383 on page 93. Intel should be safe but is also warns that it's
 | |
| 	 * only safe if the permission and cache attributes of the two entries
 | |
| 	 * loaded in the two TLB is identical (which should be the case here).
 | |
| 	 * But it is generally safer to never allow small and huge TLB entries
 | |
| 	 * for the same virtual address to be loaded simultaneously. So instead
 | |
| 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
 | |
| 	 * current pmd notpresent (atomically because here the pmd_trans_huge
 | |
| 	 * and pmd_trans_splitting must remain set at all times on the pmd
 | |
| 	 * until the split is complete for this pmd), then we flush the SMP TLB
 | |
| 	 * and finally we write the non-huge version of the pmd entry with
 | |
| 	 * pmd_populate.
 | |
| 	 */
 | |
| 	pmdp_invalidate(vma, haddr, pmd);
 | |
| 	pmd_populate(mm, pmd, pgtable);
 | |
| 
 | |
| 	if (freeze) {
 | |
| 		for (i = 0; i < HPAGE_PMD_NR; i++) {
 | |
| 			page_remove_rmap(page + i, false);
 | |
| 			put_page(page + i);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long address, bool freeze, struct page *page)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long haddr = address & HPAGE_PMD_MASK;
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 
 | |
| 	/*
 | |
| 	 * If caller asks to setup a migration entries, we need a page to check
 | |
| 	 * pmd against. Otherwise we can end up replacing wrong page.
 | |
| 	 */
 | |
| 	VM_BUG_ON(freeze && !page);
 | |
| 	if (page && page != pmd_page(*pmd))
 | |
| 	        goto out;
 | |
| 
 | |
| 	if (pmd_trans_huge(*pmd)) {
 | |
| 		page = pmd_page(*pmd);
 | |
| 		if (PageMlocked(page))
 | |
| 			clear_page_mlock(page);
 | |
| 	} else if (!pmd_devmap(*pmd))
 | |
| 		goto out;
 | |
| 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
 | |
| out:
 | |
| 	spin_unlock(ptl);
 | |
| 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
 | |
| }
 | |
| 
 | |
| void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
 | |
| 		bool freeze, struct page *page)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, address);
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		return;
 | |
| 
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	if (!pud_present(*pud))
 | |
| 		return;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 
 | |
| 	__split_huge_pmd(vma, pmd, address, freeze, page);
 | |
| }
 | |
| 
 | |
| void vma_adjust_trans_huge(struct vm_area_struct *vma,
 | |
| 			     unsigned long start,
 | |
| 			     unsigned long end,
 | |
| 			     long adjust_next)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the new start address isn't hpage aligned and it could
 | |
| 	 * previously contain an hugepage: check if we need to split
 | |
| 	 * an huge pmd.
 | |
| 	 */
 | |
| 	if (start & ~HPAGE_PMD_MASK &&
 | |
| 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
 | |
| 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
 | |
| 		split_huge_pmd_address(vma, start, false, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new end address isn't hpage aligned and it could
 | |
| 	 * previously contain an hugepage: check if we need to split
 | |
| 	 * an huge pmd.
 | |
| 	 */
 | |
| 	if (end & ~HPAGE_PMD_MASK &&
 | |
| 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
 | |
| 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
 | |
| 		split_huge_pmd_address(vma, end, false, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're also updating the vma->vm_next->vm_start, if the new
 | |
| 	 * vm_next->vm_start isn't page aligned and it could previously
 | |
| 	 * contain an hugepage: check if we need to split an huge pmd.
 | |
| 	 */
 | |
| 	if (adjust_next > 0) {
 | |
| 		struct vm_area_struct *next = vma->vm_next;
 | |
| 		unsigned long nstart = next->vm_start;
 | |
| 		nstart += adjust_next << PAGE_SHIFT;
 | |
| 		if (nstart & ~HPAGE_PMD_MASK &&
 | |
| 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
 | |
| 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
 | |
| 			split_huge_pmd_address(next, nstart, false, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void freeze_page(struct page *page)
 | |
| {
 | |
| 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
 | |
| 		TTU_RMAP_LOCKED;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 
 | |
| 	if (PageAnon(page))
 | |
| 		ttu_flags |= TTU_MIGRATION;
 | |
| 
 | |
| 	/* We only need TTU_SPLIT_HUGE_PMD once */
 | |
| 	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
 | |
| 	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
 | |
| 		/* Cut short if the page is unmapped */
 | |
| 		if (page_count(page) == 1)
 | |
| 			return;
 | |
| 
 | |
| 		ret = try_to_unmap(page + i, ttu_flags);
 | |
| 	}
 | |
| 	VM_BUG_ON_PAGE(ret, page + i - 1);
 | |
| }
 | |
| 
 | |
| static void unfreeze_page(struct page *page)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++)
 | |
| 		remove_migration_ptes(page + i, page + i, true);
 | |
| }
 | |
| 
 | |
| static void __split_huge_page_tail(struct page *head, int tail,
 | |
| 		struct lruvec *lruvec, struct list_head *list)
 | |
| {
 | |
| 	struct page *page_tail = head + tail;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
 | |
| 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
 | |
| 
 | |
| 	/*
 | |
| 	 * tail_page->_refcount is zero and not changing from under us. But
 | |
| 	 * get_page_unless_zero() may be running from under us on the
 | |
| 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
 | |
| 	 * atomic_add(), we would then run atomic_set() concurrently with
 | |
| 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
 | |
| 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
 | |
| 	 * because of PPro errata 66, 92, so unless somebody can guarantee
 | |
| 	 * atomic_set() here would be safe on all archs (and not only on x86),
 | |
| 	 * it's safer to use atomic_inc()/atomic_add().
 | |
| 	 */
 | |
| 	if (PageAnon(head)) {
 | |
| 		page_ref_inc(page_tail);
 | |
| 	} else {
 | |
| 		/* Additional pin to radix tree */
 | |
| 		page_ref_add(page_tail, 2);
 | |
| 	}
 | |
| 
 | |
| 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 | |
| 	page_tail->flags |= (head->flags &
 | |
| 			((1L << PG_referenced) |
 | |
| 			 (1L << PG_swapbacked) |
 | |
| 			 (1L << PG_mlocked) |
 | |
| 			 (1L << PG_uptodate) |
 | |
| 			 (1L << PG_active) |
 | |
| 			 (1L << PG_locked) |
 | |
| 			 (1L << PG_unevictable) |
 | |
| 			 (1L << PG_dirty)));
 | |
| 
 | |
| 	/*
 | |
| 	 * After clearing PageTail the gup refcount can be released.
 | |
| 	 * Page flags also must be visible before we make the page non-compound.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	clear_compound_head(page_tail);
 | |
| 
 | |
| 	if (page_is_young(head))
 | |
| 		set_page_young(page_tail);
 | |
| 	if (page_is_idle(head))
 | |
| 		set_page_idle(page_tail);
 | |
| 
 | |
| 	/* ->mapping in first tail page is compound_mapcount */
 | |
| 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
 | |
| 			page_tail);
 | |
| 	page_tail->mapping = head->mapping;
 | |
| 
 | |
| 	page_tail->index = head->index + tail;
 | |
| 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
 | |
| 	lru_add_page_tail(head, page_tail, lruvec, list);
 | |
| }
 | |
| 
 | |
| static void __split_huge_page(struct page *page, struct list_head *list,
 | |
| 		unsigned long flags)
 | |
| {
 | |
| 	struct page *head = compound_head(page);
 | |
| 	struct zone *zone = page_zone(head);
 | |
| 	struct lruvec *lruvec;
 | |
| 	pgoff_t end = -1;
 | |
| 	int i;
 | |
| 
 | |
| 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
 | |
| 
 | |
| 	/* complete memcg works before add pages to LRU */
 | |
| 	mem_cgroup_split_huge_fixup(head);
 | |
| 
 | |
| 	if (!PageAnon(page))
 | |
| 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
 | |
| 
 | |
| 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
 | |
| 		__split_huge_page_tail(head, i, lruvec, list);
 | |
| 		/* Some pages can be beyond i_size: drop them from page cache */
 | |
| 		if (head[i].index >= end) {
 | |
| 			__ClearPageDirty(head + i);
 | |
| 			__delete_from_page_cache(head + i, NULL);
 | |
| 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
 | |
| 				shmem_uncharge(head->mapping->host, 1);
 | |
| 			put_page(head + i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ClearPageCompound(head);
 | |
| 	/* See comment in __split_huge_page_tail() */
 | |
| 	if (PageAnon(head)) {
 | |
| 		page_ref_inc(head);
 | |
| 	} else {
 | |
| 		/* Additional pin to radix tree */
 | |
| 		page_ref_add(head, 2);
 | |
| 		spin_unlock(&head->mapping->tree_lock);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
 | |
| 
 | |
| 	unfreeze_page(head);
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | |
| 		struct page *subpage = head + i;
 | |
| 		if (subpage == page)
 | |
| 			continue;
 | |
| 		unlock_page(subpage);
 | |
| 
 | |
| 		/*
 | |
| 		 * Subpages may be freed if there wasn't any mapping
 | |
| 		 * like if add_to_swap() is running on a lru page that
 | |
| 		 * had its mapping zapped. And freeing these pages
 | |
| 		 * requires taking the lru_lock so we do the put_page
 | |
| 		 * of the tail pages after the split is complete.
 | |
| 		 */
 | |
| 		put_page(subpage);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int total_mapcount(struct page *page)
 | |
| {
 | |
| 	int i, compound, ret;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 
 | |
| 	if (likely(!PageCompound(page)))
 | |
| 		return atomic_read(&page->_mapcount) + 1;
 | |
| 
 | |
| 	compound = compound_mapcount(page);
 | |
| 	if (PageHuge(page))
 | |
| 		return compound;
 | |
| 	ret = compound;
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++)
 | |
| 		ret += atomic_read(&page[i]._mapcount) + 1;
 | |
| 	/* File pages has compound_mapcount included in _mapcount */
 | |
| 	if (!PageAnon(page))
 | |
| 		return ret - compound * HPAGE_PMD_NR;
 | |
| 	if (PageDoubleMap(page))
 | |
| 		ret -= HPAGE_PMD_NR;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This calculates accurately how many mappings a transparent hugepage
 | |
|  * has (unlike page_mapcount() which isn't fully accurate). This full
 | |
|  * accuracy is primarily needed to know if copy-on-write faults can
 | |
|  * reuse the page and change the mapping to read-write instead of
 | |
|  * copying them. At the same time this returns the total_mapcount too.
 | |
|  *
 | |
|  * The function returns the highest mapcount any one of the subpages
 | |
|  * has. If the return value is one, even if different processes are
 | |
|  * mapping different subpages of the transparent hugepage, they can
 | |
|  * all reuse it, because each process is reusing a different subpage.
 | |
|  *
 | |
|  * The total_mapcount is instead counting all virtual mappings of the
 | |
|  * subpages. If the total_mapcount is equal to "one", it tells the
 | |
|  * caller all mappings belong to the same "mm" and in turn the
 | |
|  * anon_vma of the transparent hugepage can become the vma->anon_vma
 | |
|  * local one as no other process may be mapping any of the subpages.
 | |
|  *
 | |
|  * It would be more accurate to replace page_mapcount() with
 | |
|  * page_trans_huge_mapcount(), however we only use
 | |
|  * page_trans_huge_mapcount() in the copy-on-write faults where we
 | |
|  * need full accuracy to avoid breaking page pinning, because
 | |
|  * page_trans_huge_mapcount() is slower than page_mapcount().
 | |
|  */
 | |
| int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
 | |
| {
 | |
| 	int i, ret, _total_mapcount, mapcount;
 | |
| 
 | |
| 	/* hugetlbfs shouldn't call it */
 | |
| 	VM_BUG_ON_PAGE(PageHuge(page), page);
 | |
| 
 | |
| 	if (likely(!PageTransCompound(page))) {
 | |
| 		mapcount = atomic_read(&page->_mapcount) + 1;
 | |
| 		if (total_mapcount)
 | |
| 			*total_mapcount = mapcount;
 | |
| 		return mapcount;
 | |
| 	}
 | |
| 
 | |
| 	page = compound_head(page);
 | |
| 
 | |
| 	_total_mapcount = ret = 0;
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | |
| 		mapcount = atomic_read(&page[i]._mapcount) + 1;
 | |
| 		ret = max(ret, mapcount);
 | |
| 		_total_mapcount += mapcount;
 | |
| 	}
 | |
| 	if (PageDoubleMap(page)) {
 | |
| 		ret -= 1;
 | |
| 		_total_mapcount -= HPAGE_PMD_NR;
 | |
| 	}
 | |
| 	mapcount = compound_mapcount(page);
 | |
| 	ret += mapcount;
 | |
| 	_total_mapcount += mapcount;
 | |
| 	if (total_mapcount)
 | |
| 		*total_mapcount = _total_mapcount;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function splits huge page into normal pages. @page can point to any
 | |
|  * subpage of huge page to split. Split doesn't change the position of @page.
 | |
|  *
 | |
|  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 | |
|  * The huge page must be locked.
 | |
|  *
 | |
|  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 | |
|  *
 | |
|  * Both head page and tail pages will inherit mapping, flags, and so on from
 | |
|  * the hugepage.
 | |
|  *
 | |
|  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 | |
|  * they are not mapped.
 | |
|  *
 | |
|  * Returns 0 if the hugepage is split successfully.
 | |
|  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 | |
|  * us.
 | |
|  */
 | |
| int split_huge_page_to_list(struct page *page, struct list_head *list)
 | |
| {
 | |
| 	struct page *head = compound_head(page);
 | |
| 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
 | |
| 	struct anon_vma *anon_vma = NULL;
 | |
| 	struct address_space *mapping = NULL;
 | |
| 	int count, mapcount, extra_pins, ret;
 | |
| 	bool mlocked;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page), page);
 | |
| 
 | |
| 	if (PageAnon(head)) {
 | |
| 		/*
 | |
| 		 * The caller does not necessarily hold an mmap_sem that would
 | |
| 		 * prevent the anon_vma disappearing so we first we take a
 | |
| 		 * reference to it and then lock the anon_vma for write. This
 | |
| 		 * is similar to page_lock_anon_vma_read except the write lock
 | |
| 		 * is taken to serialise against parallel split or collapse
 | |
| 		 * operations.
 | |
| 		 */
 | |
| 		anon_vma = page_get_anon_vma(head);
 | |
| 		if (!anon_vma) {
 | |
| 			ret = -EBUSY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		extra_pins = 0;
 | |
| 		mapping = NULL;
 | |
| 		anon_vma_lock_write(anon_vma);
 | |
| 	} else {
 | |
| 		mapping = head->mapping;
 | |
| 
 | |
| 		/* Truncated ? */
 | |
| 		if (!mapping) {
 | |
| 			ret = -EBUSY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* Addidional pins from radix tree */
 | |
| 		extra_pins = HPAGE_PMD_NR;
 | |
| 		anon_vma = NULL;
 | |
| 		i_mmap_lock_read(mapping);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Racy check if we can split the page, before freeze_page() will
 | |
| 	 * split PMDs
 | |
| 	 */
 | |
| 	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	mlocked = PageMlocked(page);
 | |
| 	freeze_page(head);
 | |
| 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
 | |
| 
 | |
| 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
 | |
| 	if (mlocked)
 | |
| 		lru_add_drain();
 | |
| 
 | |
| 	/* prevent PageLRU to go away from under us, and freeze lru stats */
 | |
| 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
 | |
| 
 | |
| 	if (mapping) {
 | |
| 		void **pslot;
 | |
| 
 | |
| 		spin_lock(&mapping->tree_lock);
 | |
| 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
 | |
| 				page_index(head));
 | |
| 		/*
 | |
| 		 * Check if the head page is present in radix tree.
 | |
| 		 * We assume all tail are present too, if head is there.
 | |
| 		 */
 | |
| 		if (radix_tree_deref_slot_protected(pslot,
 | |
| 					&mapping->tree_lock) != head)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* Prevent deferred_split_scan() touching ->_refcount */
 | |
| 	spin_lock(&pgdata->split_queue_lock);
 | |
| 	count = page_count(head);
 | |
| 	mapcount = total_mapcount(head);
 | |
| 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
 | |
| 		if (!list_empty(page_deferred_list(head))) {
 | |
| 			pgdata->split_queue_len--;
 | |
| 			list_del(page_deferred_list(head));
 | |
| 		}
 | |
| 		if (mapping)
 | |
| 			__dec_node_page_state(page, NR_SHMEM_THPS);
 | |
| 		spin_unlock(&pgdata->split_queue_lock);
 | |
| 		__split_huge_page(page, list, flags);
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
 | |
| 			pr_alert("total_mapcount: %u, page_count(): %u\n",
 | |
| 					mapcount, count);
 | |
| 			if (PageTail(page))
 | |
| 				dump_page(head, NULL);
 | |
| 			dump_page(page, "total_mapcount(head) > 0");
 | |
| 			BUG();
 | |
| 		}
 | |
| 		spin_unlock(&pgdata->split_queue_lock);
 | |
| fail:		if (mapping)
 | |
| 			spin_unlock(&mapping->tree_lock);
 | |
| 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
 | |
| 		unfreeze_page(head);
 | |
| 		ret = -EBUSY;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	if (anon_vma) {
 | |
| 		anon_vma_unlock_write(anon_vma);
 | |
| 		put_anon_vma(anon_vma);
 | |
| 	}
 | |
| 	if (mapping)
 | |
| 		i_mmap_unlock_read(mapping);
 | |
| out:
 | |
| 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void free_transhuge_page(struct page *page)
 | |
| {
 | |
| 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 | |
| 	if (!list_empty(page_deferred_list(page))) {
 | |
| 		pgdata->split_queue_len--;
 | |
| 		list_del(page_deferred_list(page));
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 | |
| 	free_compound_page(page);
 | |
| }
 | |
| 
 | |
| void deferred_split_huge_page(struct page *page)
 | |
| {
 | |
| 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 | |
| 
 | |
| 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 | |
| 	if (list_empty(page_deferred_list(page))) {
 | |
| 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
 | |
| 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
 | |
| 		pgdata->split_queue_len++;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 | |
| }
 | |
| 
 | |
| static unsigned long deferred_split_count(struct shrinker *shrink,
 | |
| 		struct shrink_control *sc)
 | |
| {
 | |
| 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
 | |
| 	return ACCESS_ONCE(pgdata->split_queue_len);
 | |
| }
 | |
| 
 | |
| static unsigned long deferred_split_scan(struct shrinker *shrink,
 | |
| 		struct shrink_control *sc)
 | |
| {
 | |
| 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list), *pos, *next;
 | |
| 	struct page *page;
 | |
| 	int split = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 | |
| 	/* Take pin on all head pages to avoid freeing them under us */
 | |
| 	list_for_each_safe(pos, next, &pgdata->split_queue) {
 | |
| 		page = list_entry((void *)pos, struct page, mapping);
 | |
| 		page = compound_head(page);
 | |
| 		if (get_page_unless_zero(page)) {
 | |
| 			list_move(page_deferred_list(page), &list);
 | |
| 		} else {
 | |
| 			/* We lost race with put_compound_page() */
 | |
| 			list_del_init(page_deferred_list(page));
 | |
| 			pgdata->split_queue_len--;
 | |
| 		}
 | |
| 		if (!--sc->nr_to_scan)
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 | |
| 
 | |
| 	list_for_each_safe(pos, next, &list) {
 | |
| 		page = list_entry((void *)pos, struct page, mapping);
 | |
| 		lock_page(page);
 | |
| 		/* split_huge_page() removes page from list on success */
 | |
| 		if (!split_huge_page(page))
 | |
| 			split++;
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 | |
| 	list_splice_tail(&list, &pgdata->split_queue);
 | |
| 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Stop shrinker if we didn't split any page, but the queue is empty.
 | |
| 	 * This can happen if pages were freed under us.
 | |
| 	 */
 | |
| 	if (!split && list_empty(&pgdata->split_queue))
 | |
| 		return SHRINK_STOP;
 | |
| 	return split;
 | |
| }
 | |
| 
 | |
| static struct shrinker deferred_split_shrinker = {
 | |
| 	.count_objects = deferred_split_count,
 | |
| 	.scan_objects = deferred_split_scan,
 | |
| 	.seeks = DEFAULT_SEEKS,
 | |
| 	.flags = SHRINKER_NUMA_AWARE,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| static int split_huge_pages_set(void *data, u64 val)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	struct page *page;
 | |
| 	unsigned long pfn, max_zone_pfn;
 | |
| 	unsigned long total = 0, split = 0;
 | |
| 
 | |
| 	if (val != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		max_zone_pfn = zone_end_pfn(zone);
 | |
| 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
 | |
| 			if (!pfn_valid(pfn))
 | |
| 				continue;
 | |
| 
 | |
| 			page = pfn_to_page(pfn);
 | |
| 			if (!get_page_unless_zero(page))
 | |
| 				continue;
 | |
| 
 | |
| 			if (zone != page_zone(page))
 | |
| 				goto next;
 | |
| 
 | |
| 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
 | |
| 				goto next;
 | |
| 
 | |
| 			total++;
 | |
| 			lock_page(page);
 | |
| 			if (!split_huge_page(page))
 | |
| 				split++;
 | |
| 			unlock_page(page);
 | |
| next:
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pr_info("%lu of %lu THP split\n", split, total);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
 | |
| 		"%llu\n");
 | |
| 
 | |
| static int __init split_huge_pages_debugfs(void)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
 | |
| 			&split_huge_pages_fops);
 | |
| 	if (!ret)
 | |
| 		pr_warn("Failed to create split_huge_pages in debugfs");
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(split_huge_pages_debugfs);
 | |
| #endif
 | 
