mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 c1470b33bb
			
		
	
	
		c1470b33bb
		
	
	
	
	
		
			
			When memory hotplug operates, free hugepages will be freed if the movable node is offline. Therefore, /proc/sys/vm/nr_hugepages will be incorrect. Fix it by reducing max_huge_pages when the node is offlined. n-horiguchi@ah.jp.nec.com said: : dissolve_free_huge_page intends to break a hugepage into buddy, and the : destination hugepage is supposed to be allocated from the pool of the : destination node, so the system-wide pool size is reduced. So adding : h->max_huge_pages-- makes sense to me. Link: http://lkml.kernel.org/r/1470624546-902-1-git-send-email-zhongjiang@huawei.com Signed-off-by: zhong jiang <zhongjiang@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			4462 lines
		
	
	
	
		
			120 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4462 lines
		
	
	
	
		
			120 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Generic hugetlb support.
 | |
|  * (C) Nadia Yvette Chambers, April 2004
 | |
|  */
 | |
| #include <linux/list.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/page-isolation.h>
 | |
| #include <linux/jhash.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlb.h>
 | |
| 
 | |
| #include <linux/io.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/hugetlb_cgroup.h>
 | |
| #include <linux/node.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| int hugepages_treat_as_movable;
 | |
| 
 | |
| int hugetlb_max_hstate __read_mostly;
 | |
| unsigned int default_hstate_idx;
 | |
| struct hstate hstates[HUGE_MAX_HSTATE];
 | |
| /*
 | |
|  * Minimum page order among possible hugepage sizes, set to a proper value
 | |
|  * at boot time.
 | |
|  */
 | |
| static unsigned int minimum_order __read_mostly = UINT_MAX;
 | |
| 
 | |
| __initdata LIST_HEAD(huge_boot_pages);
 | |
| 
 | |
| /* for command line parsing */
 | |
| static struct hstate * __initdata parsed_hstate;
 | |
| static unsigned long __initdata default_hstate_max_huge_pages;
 | |
| static unsigned long __initdata default_hstate_size;
 | |
| static bool __initdata parsed_valid_hugepagesz = true;
 | |
| 
 | |
| /*
 | |
|  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 | |
|  * free_huge_pages, and surplus_huge_pages.
 | |
|  */
 | |
| DEFINE_SPINLOCK(hugetlb_lock);
 | |
| 
 | |
| /*
 | |
|  * Serializes faults on the same logical page.  This is used to
 | |
|  * prevent spurious OOMs when the hugepage pool is fully utilized.
 | |
|  */
 | |
| static int num_fault_mutexes;
 | |
| struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
 | |
| 
 | |
| /* Forward declaration */
 | |
| static int hugetlb_acct_memory(struct hstate *h, long delta);
 | |
| 
 | |
| static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
 | |
| {
 | |
| 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
 | |
| 
 | |
| 	spin_unlock(&spool->lock);
 | |
| 
 | |
| 	/* If no pages are used, and no other handles to the subpool
 | |
| 	 * remain, give up any reservations mased on minimum size and
 | |
| 	 * free the subpool */
 | |
| 	if (free) {
 | |
| 		if (spool->min_hpages != -1)
 | |
| 			hugetlb_acct_memory(spool->hstate,
 | |
| 						-spool->min_hpages);
 | |
| 		kfree(spool);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 | |
| 						long min_hpages)
 | |
| {
 | |
| 	struct hugepage_subpool *spool;
 | |
| 
 | |
| 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 | |
| 	if (!spool)
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock_init(&spool->lock);
 | |
| 	spool->count = 1;
 | |
| 	spool->max_hpages = max_hpages;
 | |
| 	spool->hstate = h;
 | |
| 	spool->min_hpages = min_hpages;
 | |
| 
 | |
| 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 | |
| 		kfree(spool);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	spool->rsv_hpages = min_hpages;
 | |
| 
 | |
| 	return spool;
 | |
| }
 | |
| 
 | |
| void hugepage_put_subpool(struct hugepage_subpool *spool)
 | |
| {
 | |
| 	spin_lock(&spool->lock);
 | |
| 	BUG_ON(!spool->count);
 | |
| 	spool->count--;
 | |
| 	unlock_or_release_subpool(spool);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Subpool accounting for allocating and reserving pages.
 | |
|  * Return -ENOMEM if there are not enough resources to satisfy the
 | |
|  * the request.  Otherwise, return the number of pages by which the
 | |
|  * global pools must be adjusted (upward).  The returned value may
 | |
|  * only be different than the passed value (delta) in the case where
 | |
|  * a subpool minimum size must be manitained.
 | |
|  */
 | |
| static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 | |
| 				      long delta)
 | |
| {
 | |
| 	long ret = delta;
 | |
| 
 | |
| 	if (!spool)
 | |
| 		return ret;
 | |
| 
 | |
| 	spin_lock(&spool->lock);
 | |
| 
 | |
| 	if (spool->max_hpages != -1) {		/* maximum size accounting */
 | |
| 		if ((spool->used_hpages + delta) <= spool->max_hpages)
 | |
| 			spool->used_hpages += delta;
 | |
| 		else {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto unlock_ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* minimum size accounting */
 | |
| 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
 | |
| 		if (delta > spool->rsv_hpages) {
 | |
| 			/*
 | |
| 			 * Asking for more reserves than those already taken on
 | |
| 			 * behalf of subpool.  Return difference.
 | |
| 			 */
 | |
| 			ret = delta - spool->rsv_hpages;
 | |
| 			spool->rsv_hpages = 0;
 | |
| 		} else {
 | |
| 			ret = 0;	/* reserves already accounted for */
 | |
| 			spool->rsv_hpages -= delta;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unlock_ret:
 | |
| 	spin_unlock(&spool->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Subpool accounting for freeing and unreserving pages.
 | |
|  * Return the number of global page reservations that must be dropped.
 | |
|  * The return value may only be different than the passed value (delta)
 | |
|  * in the case where a subpool minimum size must be maintained.
 | |
|  */
 | |
| static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 | |
| 				       long delta)
 | |
| {
 | |
| 	long ret = delta;
 | |
| 
 | |
| 	if (!spool)
 | |
| 		return delta;
 | |
| 
 | |
| 	spin_lock(&spool->lock);
 | |
| 
 | |
| 	if (spool->max_hpages != -1)		/* maximum size accounting */
 | |
| 		spool->used_hpages -= delta;
 | |
| 
 | |
| 	 /* minimum size accounting */
 | |
| 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 | |
| 		if (spool->rsv_hpages + delta <= spool->min_hpages)
 | |
| 			ret = 0;
 | |
| 		else
 | |
| 			ret = spool->rsv_hpages + delta - spool->min_hpages;
 | |
| 
 | |
| 		spool->rsv_hpages += delta;
 | |
| 		if (spool->rsv_hpages > spool->min_hpages)
 | |
| 			spool->rsv_hpages = spool->min_hpages;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 | |
| 	 * quota reference, free it now.
 | |
| 	 */
 | |
| 	unlock_or_release_subpool(spool);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 | |
| {
 | |
| 	return HUGETLBFS_SB(inode->i_sb)->spool;
 | |
| }
 | |
| 
 | |
| static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return subpool_inode(file_inode(vma->vm_file));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Region tracking -- allows tracking of reservations and instantiated pages
 | |
|  *                    across the pages in a mapping.
 | |
|  *
 | |
|  * The region data structures are embedded into a resv_map and protected
 | |
|  * by a resv_map's lock.  The set of regions within the resv_map represent
 | |
|  * reservations for huge pages, or huge pages that have already been
 | |
|  * instantiated within the map.  The from and to elements are huge page
 | |
|  * indicies into the associated mapping.  from indicates the starting index
 | |
|  * of the region.  to represents the first index past the end of  the region.
 | |
|  *
 | |
|  * For example, a file region structure with from == 0 and to == 4 represents
 | |
|  * four huge pages in a mapping.  It is important to note that the to element
 | |
|  * represents the first element past the end of the region. This is used in
 | |
|  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 | |
|  *
 | |
|  * Interval notation of the form [from, to) will be used to indicate that
 | |
|  * the endpoint from is inclusive and to is exclusive.
 | |
|  */
 | |
| struct file_region {
 | |
| 	struct list_head link;
 | |
| 	long from;
 | |
| 	long to;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Add the huge page range represented by [f, t) to the reserve
 | |
|  * map.  In the normal case, existing regions will be expanded
 | |
|  * to accommodate the specified range.  Sufficient regions should
 | |
|  * exist for expansion due to the previous call to region_chg
 | |
|  * with the same range.  However, it is possible that region_del
 | |
|  * could have been called after region_chg and modifed the map
 | |
|  * in such a way that no region exists to be expanded.  In this
 | |
|  * case, pull a region descriptor from the cache associated with
 | |
|  * the map and use that for the new range.
 | |
|  *
 | |
|  * Return the number of new huge pages added to the map.  This
 | |
|  * number is greater than or equal to zero.
 | |
|  */
 | |
| static long region_add(struct resv_map *resv, long f, long t)
 | |
| {
 | |
| 	struct list_head *head = &resv->regions;
 | |
| 	struct file_region *rg, *nrg, *trg;
 | |
| 	long add = 0;
 | |
| 
 | |
| 	spin_lock(&resv->lock);
 | |
| 	/* Locate the region we are either in or before. */
 | |
| 	list_for_each_entry(rg, head, link)
 | |
| 		if (f <= rg->to)
 | |
| 			break;
 | |
| 
 | |
| 	/*
 | |
| 	 * If no region exists which can be expanded to include the
 | |
| 	 * specified range, the list must have been modified by an
 | |
| 	 * interleving call to region_del().  Pull a region descriptor
 | |
| 	 * from the cache and use it for this range.
 | |
| 	 */
 | |
| 	if (&rg->link == head || t < rg->from) {
 | |
| 		VM_BUG_ON(resv->region_cache_count <= 0);
 | |
| 
 | |
| 		resv->region_cache_count--;
 | |
| 		nrg = list_first_entry(&resv->region_cache, struct file_region,
 | |
| 					link);
 | |
| 		list_del(&nrg->link);
 | |
| 
 | |
| 		nrg->from = f;
 | |
| 		nrg->to = t;
 | |
| 		list_add(&nrg->link, rg->link.prev);
 | |
| 
 | |
| 		add += t - f;
 | |
| 		goto out_locked;
 | |
| 	}
 | |
| 
 | |
| 	/* Round our left edge to the current segment if it encloses us. */
 | |
| 	if (f > rg->from)
 | |
| 		f = rg->from;
 | |
| 
 | |
| 	/* Check for and consume any regions we now overlap with. */
 | |
| 	nrg = rg;
 | |
| 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 | |
| 		if (&rg->link == head)
 | |
| 			break;
 | |
| 		if (rg->from > t)
 | |
| 			break;
 | |
| 
 | |
| 		/* If this area reaches higher then extend our area to
 | |
| 		 * include it completely.  If this is not the first area
 | |
| 		 * which we intend to reuse, free it. */
 | |
| 		if (rg->to > t)
 | |
| 			t = rg->to;
 | |
| 		if (rg != nrg) {
 | |
| 			/* Decrement return value by the deleted range.
 | |
| 			 * Another range will span this area so that by
 | |
| 			 * end of routine add will be >= zero
 | |
| 			 */
 | |
| 			add -= (rg->to - rg->from);
 | |
| 			list_del(&rg->link);
 | |
| 			kfree(rg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	add += (nrg->from - f);		/* Added to beginning of region */
 | |
| 	nrg->from = f;
 | |
| 	add += t - nrg->to;		/* Added to end of region */
 | |
| 	nrg->to = t;
 | |
| 
 | |
| out_locked:
 | |
| 	resv->adds_in_progress--;
 | |
| 	spin_unlock(&resv->lock);
 | |
| 	VM_BUG_ON(add < 0);
 | |
| 	return add;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Examine the existing reserve map and determine how many
 | |
|  * huge pages in the specified range [f, t) are NOT currently
 | |
|  * represented.  This routine is called before a subsequent
 | |
|  * call to region_add that will actually modify the reserve
 | |
|  * map to add the specified range [f, t).  region_chg does
 | |
|  * not change the number of huge pages represented by the
 | |
|  * map.  However, if the existing regions in the map can not
 | |
|  * be expanded to represent the new range, a new file_region
 | |
|  * structure is added to the map as a placeholder.  This is
 | |
|  * so that the subsequent region_add call will have all the
 | |
|  * regions it needs and will not fail.
 | |
|  *
 | |
|  * Upon entry, region_chg will also examine the cache of region descriptors
 | |
|  * associated with the map.  If there are not enough descriptors cached, one
 | |
|  * will be allocated for the in progress add operation.
 | |
|  *
 | |
|  * Returns the number of huge pages that need to be added to the existing
 | |
|  * reservation map for the range [f, t).  This number is greater or equal to
 | |
|  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 | |
|  * is needed and can not be allocated.
 | |
|  */
 | |
| static long region_chg(struct resv_map *resv, long f, long t)
 | |
| {
 | |
| 	struct list_head *head = &resv->regions;
 | |
| 	struct file_region *rg, *nrg = NULL;
 | |
| 	long chg = 0;
 | |
| 
 | |
| retry:
 | |
| 	spin_lock(&resv->lock);
 | |
| retry_locked:
 | |
| 	resv->adds_in_progress++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for sufficient descriptors in the cache to accommodate
 | |
| 	 * the number of in progress add operations.
 | |
| 	 */
 | |
| 	if (resv->adds_in_progress > resv->region_cache_count) {
 | |
| 		struct file_region *trg;
 | |
| 
 | |
| 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 | |
| 		/* Must drop lock to allocate a new descriptor. */
 | |
| 		resv->adds_in_progress--;
 | |
| 		spin_unlock(&resv->lock);
 | |
| 
 | |
| 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 | |
| 		if (!trg) {
 | |
| 			kfree(nrg);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&resv->lock);
 | |
| 		list_add(&trg->link, &resv->region_cache);
 | |
| 		resv->region_cache_count++;
 | |
| 		goto retry_locked;
 | |
| 	}
 | |
| 
 | |
| 	/* Locate the region we are before or in. */
 | |
| 	list_for_each_entry(rg, head, link)
 | |
| 		if (f <= rg->to)
 | |
| 			break;
 | |
| 
 | |
| 	/* If we are below the current region then a new region is required.
 | |
| 	 * Subtle, allocate a new region at the position but make it zero
 | |
| 	 * size such that we can guarantee to record the reservation. */
 | |
| 	if (&rg->link == head || t < rg->from) {
 | |
| 		if (!nrg) {
 | |
| 			resv->adds_in_progress--;
 | |
| 			spin_unlock(&resv->lock);
 | |
| 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 | |
| 			if (!nrg)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			nrg->from = f;
 | |
| 			nrg->to   = f;
 | |
| 			INIT_LIST_HEAD(&nrg->link);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		list_add(&nrg->link, rg->link.prev);
 | |
| 		chg = t - f;
 | |
| 		goto out_nrg;
 | |
| 	}
 | |
| 
 | |
| 	/* Round our left edge to the current segment if it encloses us. */
 | |
| 	if (f > rg->from)
 | |
| 		f = rg->from;
 | |
| 	chg = t - f;
 | |
| 
 | |
| 	/* Check for and consume any regions we now overlap with. */
 | |
| 	list_for_each_entry(rg, rg->link.prev, link) {
 | |
| 		if (&rg->link == head)
 | |
| 			break;
 | |
| 		if (rg->from > t)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* We overlap with this area, if it extends further than
 | |
| 		 * us then we must extend ourselves.  Account for its
 | |
| 		 * existing reservation. */
 | |
| 		if (rg->to > t) {
 | |
| 			chg += rg->to - t;
 | |
| 			t = rg->to;
 | |
| 		}
 | |
| 		chg -= rg->to - rg->from;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&resv->lock);
 | |
| 	/*  We already know we raced and no longer need the new region */
 | |
| 	kfree(nrg);
 | |
| 	return chg;
 | |
| out_nrg:
 | |
| 	spin_unlock(&resv->lock);
 | |
| 	return chg;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Abort the in progress add operation.  The adds_in_progress field
 | |
|  * of the resv_map keeps track of the operations in progress between
 | |
|  * calls to region_chg and region_add.  Operations are sometimes
 | |
|  * aborted after the call to region_chg.  In such cases, region_abort
 | |
|  * is called to decrement the adds_in_progress counter.
 | |
|  *
 | |
|  * NOTE: The range arguments [f, t) are not needed or used in this
 | |
|  * routine.  They are kept to make reading the calling code easier as
 | |
|  * arguments will match the associated region_chg call.
 | |
|  */
 | |
| static void region_abort(struct resv_map *resv, long f, long t)
 | |
| {
 | |
| 	spin_lock(&resv->lock);
 | |
| 	VM_BUG_ON(!resv->region_cache_count);
 | |
| 	resv->adds_in_progress--;
 | |
| 	spin_unlock(&resv->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete the specified range [f, t) from the reserve map.  If the
 | |
|  * t parameter is LONG_MAX, this indicates that ALL regions after f
 | |
|  * should be deleted.  Locate the regions which intersect [f, t)
 | |
|  * and either trim, delete or split the existing regions.
 | |
|  *
 | |
|  * Returns the number of huge pages deleted from the reserve map.
 | |
|  * In the normal case, the return value is zero or more.  In the
 | |
|  * case where a region must be split, a new region descriptor must
 | |
|  * be allocated.  If the allocation fails, -ENOMEM will be returned.
 | |
|  * NOTE: If the parameter t == LONG_MAX, then we will never split
 | |
|  * a region and possibly return -ENOMEM.  Callers specifying
 | |
|  * t == LONG_MAX do not need to check for -ENOMEM error.
 | |
|  */
 | |
| static long region_del(struct resv_map *resv, long f, long t)
 | |
| {
 | |
| 	struct list_head *head = &resv->regions;
 | |
| 	struct file_region *rg, *trg;
 | |
| 	struct file_region *nrg = NULL;
 | |
| 	long del = 0;
 | |
| 
 | |
| retry:
 | |
| 	spin_lock(&resv->lock);
 | |
| 	list_for_each_entry_safe(rg, trg, head, link) {
 | |
| 		/*
 | |
| 		 * Skip regions before the range to be deleted.  file_region
 | |
| 		 * ranges are normally of the form [from, to).  However, there
 | |
| 		 * may be a "placeholder" entry in the map which is of the form
 | |
| 		 * (from, to) with from == to.  Check for placeholder entries
 | |
| 		 * at the beginning of the range to be deleted.
 | |
| 		 */
 | |
| 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 | |
| 			continue;
 | |
| 
 | |
| 		if (rg->from >= t)
 | |
| 			break;
 | |
| 
 | |
| 		if (f > rg->from && t < rg->to) { /* Must split region */
 | |
| 			/*
 | |
| 			 * Check for an entry in the cache before dropping
 | |
| 			 * lock and attempting allocation.
 | |
| 			 */
 | |
| 			if (!nrg &&
 | |
| 			    resv->region_cache_count > resv->adds_in_progress) {
 | |
| 				nrg = list_first_entry(&resv->region_cache,
 | |
| 							struct file_region,
 | |
| 							link);
 | |
| 				list_del(&nrg->link);
 | |
| 				resv->region_cache_count--;
 | |
| 			}
 | |
| 
 | |
| 			if (!nrg) {
 | |
| 				spin_unlock(&resv->lock);
 | |
| 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 | |
| 				if (!nrg)
 | |
| 					return -ENOMEM;
 | |
| 				goto retry;
 | |
| 			}
 | |
| 
 | |
| 			del += t - f;
 | |
| 
 | |
| 			/* New entry for end of split region */
 | |
| 			nrg->from = t;
 | |
| 			nrg->to = rg->to;
 | |
| 			INIT_LIST_HEAD(&nrg->link);
 | |
| 
 | |
| 			/* Original entry is trimmed */
 | |
| 			rg->to = f;
 | |
| 
 | |
| 			list_add(&nrg->link, &rg->link);
 | |
| 			nrg = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 | |
| 			del += rg->to - rg->from;
 | |
| 			list_del(&rg->link);
 | |
| 			kfree(rg);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (f <= rg->from) {	/* Trim beginning of region */
 | |
| 			del += t - rg->from;
 | |
| 			rg->from = t;
 | |
| 		} else {		/* Trim end of region */
 | |
| 			del += rg->to - f;
 | |
| 			rg->to = f;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&resv->lock);
 | |
| 	kfree(nrg);
 | |
| 	return del;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A rare out of memory error was encountered which prevented removal of
 | |
|  * the reserve map region for a page.  The huge page itself was free'ed
 | |
|  * and removed from the page cache.  This routine will adjust the subpool
 | |
|  * usage count, and the global reserve count if needed.  By incrementing
 | |
|  * these counts, the reserve map entry which could not be deleted will
 | |
|  * appear as a "reserved" entry instead of simply dangling with incorrect
 | |
|  * counts.
 | |
|  */
 | |
| void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
 | |
| {
 | |
| 	struct hugepage_subpool *spool = subpool_inode(inode);
 | |
| 	long rsv_adjust;
 | |
| 
 | |
| 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 | |
| 	if (restore_reserve && rsv_adjust) {
 | |
| 		struct hstate *h = hstate_inode(inode);
 | |
| 
 | |
| 		hugetlb_acct_memory(h, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Count and return the number of huge pages in the reserve map
 | |
|  * that intersect with the range [f, t).
 | |
|  */
 | |
| static long region_count(struct resv_map *resv, long f, long t)
 | |
| {
 | |
| 	struct list_head *head = &resv->regions;
 | |
| 	struct file_region *rg;
 | |
| 	long chg = 0;
 | |
| 
 | |
| 	spin_lock(&resv->lock);
 | |
| 	/* Locate each segment we overlap with, and count that overlap. */
 | |
| 	list_for_each_entry(rg, head, link) {
 | |
| 		long seg_from;
 | |
| 		long seg_to;
 | |
| 
 | |
| 		if (rg->to <= f)
 | |
| 			continue;
 | |
| 		if (rg->from >= t)
 | |
| 			break;
 | |
| 
 | |
| 		seg_from = max(rg->from, f);
 | |
| 		seg_to = min(rg->to, t);
 | |
| 
 | |
| 		chg += seg_to - seg_from;
 | |
| 	}
 | |
| 	spin_unlock(&resv->lock);
 | |
| 
 | |
| 	return chg;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert the address within this vma to the page offset within
 | |
|  * the mapping, in pagecache page units; huge pages here.
 | |
|  */
 | |
| static pgoff_t vma_hugecache_offset(struct hstate *h,
 | |
| 			struct vm_area_struct *vma, unsigned long address)
 | |
| {
 | |
| 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 | |
| 			(vma->vm_pgoff >> huge_page_order(h));
 | |
| }
 | |
| 
 | |
| pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 | |
| 				     unsigned long address)
 | |
| {
 | |
| 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(linear_hugepage_index);
 | |
| 
 | |
| /*
 | |
|  * Return the size of the pages allocated when backing a VMA. In the majority
 | |
|  * cases this will be same size as used by the page table entries.
 | |
|  */
 | |
| unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct hstate *hstate;
 | |
| 
 | |
| 	if (!is_vm_hugetlb_page(vma))
 | |
| 		return PAGE_SIZE;
 | |
| 
 | |
| 	hstate = hstate_vma(vma);
 | |
| 
 | |
| 	return 1UL << huge_page_shift(hstate);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 | |
| 
 | |
| /*
 | |
|  * Return the page size being used by the MMU to back a VMA. In the majority
 | |
|  * of cases, the page size used by the kernel matches the MMU size. On
 | |
|  * architectures where it differs, an architecture-specific version of this
 | |
|  * function is required.
 | |
|  */
 | |
| #ifndef vma_mmu_pagesize
 | |
| unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return vma_kernel_pagesize(vma);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 | |
|  * bits of the reservation map pointer, which are always clear due to
 | |
|  * alignment.
 | |
|  */
 | |
| #define HPAGE_RESV_OWNER    (1UL << 0)
 | |
| #define HPAGE_RESV_UNMAPPED (1UL << 1)
 | |
| #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 | |
| 
 | |
| /*
 | |
|  * These helpers are used to track how many pages are reserved for
 | |
|  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 | |
|  * is guaranteed to have their future faults succeed.
 | |
|  *
 | |
|  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 | |
|  * the reserve counters are updated with the hugetlb_lock held. It is safe
 | |
|  * to reset the VMA at fork() time as it is not in use yet and there is no
 | |
|  * chance of the global counters getting corrupted as a result of the values.
 | |
|  *
 | |
|  * The private mapping reservation is represented in a subtly different
 | |
|  * manner to a shared mapping.  A shared mapping has a region map associated
 | |
|  * with the underlying file, this region map represents the backing file
 | |
|  * pages which have ever had a reservation assigned which this persists even
 | |
|  * after the page is instantiated.  A private mapping has a region map
 | |
|  * associated with the original mmap which is attached to all VMAs which
 | |
|  * reference it, this region map represents those offsets which have consumed
 | |
|  * reservation ie. where pages have been instantiated.
 | |
|  */
 | |
| static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return (unsigned long)vma->vm_private_data;
 | |
| }
 | |
| 
 | |
| static void set_vma_private_data(struct vm_area_struct *vma,
 | |
| 							unsigned long value)
 | |
| {
 | |
| 	vma->vm_private_data = (void *)value;
 | |
| }
 | |
| 
 | |
| struct resv_map *resv_map_alloc(void)
 | |
| {
 | |
| 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 | |
| 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 | |
| 
 | |
| 	if (!resv_map || !rg) {
 | |
| 		kfree(resv_map);
 | |
| 		kfree(rg);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	kref_init(&resv_map->refs);
 | |
| 	spin_lock_init(&resv_map->lock);
 | |
| 	INIT_LIST_HEAD(&resv_map->regions);
 | |
| 
 | |
| 	resv_map->adds_in_progress = 0;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&resv_map->region_cache);
 | |
| 	list_add(&rg->link, &resv_map->region_cache);
 | |
| 	resv_map->region_cache_count = 1;
 | |
| 
 | |
| 	return resv_map;
 | |
| }
 | |
| 
 | |
| void resv_map_release(struct kref *ref)
 | |
| {
 | |
| 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 | |
| 	struct list_head *head = &resv_map->region_cache;
 | |
| 	struct file_region *rg, *trg;
 | |
| 
 | |
| 	/* Clear out any active regions before we release the map. */
 | |
| 	region_del(resv_map, 0, LONG_MAX);
 | |
| 
 | |
| 	/* ... and any entries left in the cache */
 | |
| 	list_for_each_entry_safe(rg, trg, head, link) {
 | |
| 		list_del(&rg->link);
 | |
| 		kfree(rg);
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON(resv_map->adds_in_progress);
 | |
| 
 | |
| 	kfree(resv_map);
 | |
| }
 | |
| 
 | |
| static inline struct resv_map *inode_resv_map(struct inode *inode)
 | |
| {
 | |
| 	return inode->i_mapping->private_data;
 | |
| }
 | |
| 
 | |
| static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 | |
| {
 | |
| 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | |
| 	if (vma->vm_flags & VM_MAYSHARE) {
 | |
| 		struct address_space *mapping = vma->vm_file->f_mapping;
 | |
| 		struct inode *inode = mapping->host;
 | |
| 
 | |
| 		return inode_resv_map(inode);
 | |
| 
 | |
| 	} else {
 | |
| 		return (struct resv_map *)(get_vma_private_data(vma) &
 | |
| 							~HPAGE_RESV_MASK);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 | |
| {
 | |
| 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | |
| 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 | |
| 
 | |
| 	set_vma_private_data(vma, (get_vma_private_data(vma) &
 | |
| 				HPAGE_RESV_MASK) | (unsigned long)map);
 | |
| }
 | |
| 
 | |
| static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 | |
| {
 | |
| 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | |
| 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 | |
| 
 | |
| 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 | |
| }
 | |
| 
 | |
| static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 | |
| {
 | |
| 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | |
| 
 | |
| 	return (get_vma_private_data(vma) & flag) != 0;
 | |
| }
 | |
| 
 | |
| /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 | |
| void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 | |
| {
 | |
| 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 | |
| 	if (!(vma->vm_flags & VM_MAYSHARE))
 | |
| 		vma->vm_private_data = (void *)0;
 | |
| }
 | |
| 
 | |
| /* Returns true if the VMA has associated reserve pages */
 | |
| static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 | |
| {
 | |
| 	if (vma->vm_flags & VM_NORESERVE) {
 | |
| 		/*
 | |
| 		 * This address is already reserved by other process(chg == 0),
 | |
| 		 * so, we should decrement reserved count. Without decrementing,
 | |
| 		 * reserve count remains after releasing inode, because this
 | |
| 		 * allocated page will go into page cache and is regarded as
 | |
| 		 * coming from reserved pool in releasing step.  Currently, we
 | |
| 		 * don't have any other solution to deal with this situation
 | |
| 		 * properly, so add work-around here.
 | |
| 		 */
 | |
| 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 | |
| 			return true;
 | |
| 		else
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Shared mappings always use reserves */
 | |
| 	if (vma->vm_flags & VM_MAYSHARE) {
 | |
| 		/*
 | |
| 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 | |
| 		 * be a region map for all pages.  The only situation where
 | |
| 		 * there is no region map is if a hole was punched via
 | |
| 		 * fallocate.  In this case, there really are no reverves to
 | |
| 		 * use.  This situation is indicated if chg != 0.
 | |
| 		 */
 | |
| 		if (chg)
 | |
| 			return false;
 | |
| 		else
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only the process that called mmap() has reserves for
 | |
| 	 * private mappings.
 | |
| 	 */
 | |
| 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 | |
| 		/*
 | |
| 		 * Like the shared case above, a hole punch or truncate
 | |
| 		 * could have been performed on the private mapping.
 | |
| 		 * Examine the value of chg to determine if reserves
 | |
| 		 * actually exist or were previously consumed.
 | |
| 		 * Very Subtle - The value of chg comes from a previous
 | |
| 		 * call to vma_needs_reserves().  The reserve map for
 | |
| 		 * private mappings has different (opposite) semantics
 | |
| 		 * than that of shared mappings.  vma_needs_reserves()
 | |
| 		 * has already taken this difference in semantics into
 | |
| 		 * account.  Therefore, the meaning of chg is the same
 | |
| 		 * as in the shared case above.  Code could easily be
 | |
| 		 * combined, but keeping it separate draws attention to
 | |
| 		 * subtle differences.
 | |
| 		 */
 | |
| 		if (chg)
 | |
| 			return false;
 | |
| 		else
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void enqueue_huge_page(struct hstate *h, struct page *page)
 | |
| {
 | |
| 	int nid = page_to_nid(page);
 | |
| 	list_move(&page->lru, &h->hugepage_freelists[nid]);
 | |
| 	h->free_huge_pages++;
 | |
| 	h->free_huge_pages_node[nid]++;
 | |
| }
 | |
| 
 | |
| static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 | |
| 		if (!is_migrate_isolate_page(page))
 | |
| 			break;
 | |
| 	/*
 | |
| 	 * if 'non-isolated free hugepage' not found on the list,
 | |
| 	 * the allocation fails.
 | |
| 	 */
 | |
| 	if (&h->hugepage_freelists[nid] == &page->lru)
 | |
| 		return NULL;
 | |
| 	list_move(&page->lru, &h->hugepage_activelist);
 | |
| 	set_page_refcounted(page);
 | |
| 	h->free_huge_pages--;
 | |
| 	h->free_huge_pages_node[nid]--;
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /* Movability of hugepages depends on migration support. */
 | |
| static inline gfp_t htlb_alloc_mask(struct hstate *h)
 | |
| {
 | |
| 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
 | |
| 		return GFP_HIGHUSER_MOVABLE;
 | |
| 	else
 | |
| 		return GFP_HIGHUSER;
 | |
| }
 | |
| 
 | |
| static struct page *dequeue_huge_page_vma(struct hstate *h,
 | |
| 				struct vm_area_struct *vma,
 | |
| 				unsigned long address, int avoid_reserve,
 | |
| 				long chg)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	struct mempolicy *mpol;
 | |
| 	nodemask_t *nodemask;
 | |
| 	struct zonelist *zonelist;
 | |
| 	struct zone *zone;
 | |
| 	struct zoneref *z;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 
 | |
| 	/*
 | |
| 	 * A child process with MAP_PRIVATE mappings created by their parent
 | |
| 	 * have no page reserves. This check ensures that reservations are
 | |
| 	 * not "stolen". The child may still get SIGKILLed
 | |
| 	 */
 | |
| 	if (!vma_has_reserves(vma, chg) &&
 | |
| 			h->free_huge_pages - h->resv_huge_pages == 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* If reserves cannot be used, ensure enough pages are in the pool */
 | |
| 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 | |
| 		goto err;
 | |
| 
 | |
| retry_cpuset:
 | |
| 	cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 	zonelist = huge_zonelist(vma, address,
 | |
| 					htlb_alloc_mask(h), &mpol, &nodemask);
 | |
| 
 | |
| 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 | |
| 						MAX_NR_ZONES - 1, nodemask) {
 | |
| 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
 | |
| 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
 | |
| 			if (page) {
 | |
| 				if (avoid_reserve)
 | |
| 					break;
 | |
| 				if (!vma_has_reserves(vma, chg))
 | |
| 					break;
 | |
| 
 | |
| 				SetPagePrivate(page);
 | |
| 				h->resv_huge_pages--;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mpol_cond_put(mpol);
 | |
| 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 | |
| 		goto retry_cpuset;
 | |
| 	return page;
 | |
| 
 | |
| err:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * common helper functions for hstate_next_node_to_{alloc|free}.
 | |
|  * We may have allocated or freed a huge page based on a different
 | |
|  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 | |
|  * be outside of *nodes_allowed.  Ensure that we use an allowed
 | |
|  * node for alloc or free.
 | |
|  */
 | |
| static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 | |
| {
 | |
| 	nid = next_node_in(nid, *nodes_allowed);
 | |
| 	VM_BUG_ON(nid >= MAX_NUMNODES);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 | |
| {
 | |
| 	if (!node_isset(nid, *nodes_allowed))
 | |
| 		nid = next_node_allowed(nid, nodes_allowed);
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns the previously saved node ["this node"] from which to
 | |
|  * allocate a persistent huge page for the pool and advance the
 | |
|  * next node from which to allocate, handling wrap at end of node
 | |
|  * mask.
 | |
|  */
 | |
| static int hstate_next_node_to_alloc(struct hstate *h,
 | |
| 					nodemask_t *nodes_allowed)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	VM_BUG_ON(!nodes_allowed);
 | |
| 
 | |
| 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 | |
| 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper for free_pool_huge_page() - return the previously saved
 | |
|  * node ["this node"] from which to free a huge page.  Advance the
 | |
|  * next node id whether or not we find a free huge page to free so
 | |
|  * that the next attempt to free addresses the next node.
 | |
|  */
 | |
| static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	VM_BUG_ON(!nodes_allowed);
 | |
| 
 | |
| 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 | |
| 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
 | |
| 	for (nr_nodes = nodes_weight(*mask);				\
 | |
| 		nr_nodes > 0 &&						\
 | |
| 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
 | |
| 		nr_nodes--)
 | |
| 
 | |
| #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
 | |
| 	for (nr_nodes = nodes_weight(*mask);				\
 | |
| 		nr_nodes > 0 &&						\
 | |
| 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
 | |
| 		nr_nodes--)
 | |
| 
 | |
| #if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
 | |
| 	((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
 | |
| 	defined(CONFIG_CMA))
 | |
| static void destroy_compound_gigantic_page(struct page *page,
 | |
| 					unsigned int order)
 | |
| {
 | |
| 	int i;
 | |
| 	int nr_pages = 1 << order;
 | |
| 	struct page *p = page + 1;
 | |
| 
 | |
| 	atomic_set(compound_mapcount_ptr(page), 0);
 | |
| 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 | |
| 		clear_compound_head(p);
 | |
| 		set_page_refcounted(p);
 | |
| 	}
 | |
| 
 | |
| 	set_compound_order(page, 0);
 | |
| 	__ClearPageHead(page);
 | |
| }
 | |
| 
 | |
| static void free_gigantic_page(struct page *page, unsigned int order)
 | |
| {
 | |
| 	free_contig_range(page_to_pfn(page), 1 << order);
 | |
| }
 | |
| 
 | |
| static int __alloc_gigantic_page(unsigned long start_pfn,
 | |
| 				unsigned long nr_pages)
 | |
| {
 | |
| 	unsigned long end_pfn = start_pfn + nr_pages;
 | |
| 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
 | |
| }
 | |
| 
 | |
| static bool pfn_range_valid_gigantic(struct zone *z,
 | |
| 			unsigned long start_pfn, unsigned long nr_pages)
 | |
| {
 | |
| 	unsigned long i, end_pfn = start_pfn + nr_pages;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	for (i = start_pfn; i < end_pfn; i++) {
 | |
| 		if (!pfn_valid(i))
 | |
| 			return false;
 | |
| 
 | |
| 		page = pfn_to_page(i);
 | |
| 
 | |
| 		if (page_zone(page) != z)
 | |
| 			return false;
 | |
| 
 | |
| 		if (PageReserved(page))
 | |
| 			return false;
 | |
| 
 | |
| 		if (page_count(page) > 0)
 | |
| 			return false;
 | |
| 
 | |
| 		if (PageHuge(page))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool zone_spans_last_pfn(const struct zone *zone,
 | |
| 			unsigned long start_pfn, unsigned long nr_pages)
 | |
| {
 | |
| 	unsigned long last_pfn = start_pfn + nr_pages - 1;
 | |
| 	return zone_spans_pfn(zone, last_pfn);
 | |
| }
 | |
| 
 | |
| static struct page *alloc_gigantic_page(int nid, unsigned int order)
 | |
| {
 | |
| 	unsigned long nr_pages = 1 << order;
 | |
| 	unsigned long ret, pfn, flags;
 | |
| 	struct zone *z;
 | |
| 
 | |
| 	z = NODE_DATA(nid)->node_zones;
 | |
| 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
 | |
| 		spin_lock_irqsave(&z->lock, flags);
 | |
| 
 | |
| 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
 | |
| 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
 | |
| 			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
 | |
| 				/*
 | |
| 				 * We release the zone lock here because
 | |
| 				 * alloc_contig_range() will also lock the zone
 | |
| 				 * at some point. If there's an allocation
 | |
| 				 * spinning on this lock, it may win the race
 | |
| 				 * and cause alloc_contig_range() to fail...
 | |
| 				 */
 | |
| 				spin_unlock_irqrestore(&z->lock, flags);
 | |
| 				ret = __alloc_gigantic_page(pfn, nr_pages);
 | |
| 				if (!ret)
 | |
| 					return pfn_to_page(pfn);
 | |
| 				spin_lock_irqsave(&z->lock, flags);
 | |
| 			}
 | |
| 			pfn += nr_pages;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock_irqrestore(&z->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
 | |
| static void prep_compound_gigantic_page(struct page *page, unsigned int order);
 | |
| 
 | |
| static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = alloc_gigantic_page(nid, huge_page_order(h));
 | |
| 	if (page) {
 | |
| 		prep_compound_gigantic_page(page, huge_page_order(h));
 | |
| 		prep_new_huge_page(h, page, nid);
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static int alloc_fresh_gigantic_page(struct hstate *h,
 | |
| 				nodemask_t *nodes_allowed)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	int nr_nodes, node;
 | |
| 
 | |
| 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
 | |
| 		page = alloc_fresh_gigantic_page_node(h, node);
 | |
| 		if (page)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline bool gigantic_page_supported(void) { return true; }
 | |
| #else
 | |
| static inline bool gigantic_page_supported(void) { return false; }
 | |
| static inline void free_gigantic_page(struct page *page, unsigned int order) { }
 | |
| static inline void destroy_compound_gigantic_page(struct page *page,
 | |
| 						unsigned int order) { }
 | |
| static inline int alloc_fresh_gigantic_page(struct hstate *h,
 | |
| 					nodemask_t *nodes_allowed) { return 0; }
 | |
| #endif
 | |
| 
 | |
| static void update_and_free_page(struct hstate *h, struct page *page)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
 | |
| 		return;
 | |
| 
 | |
| 	h->nr_huge_pages--;
 | |
| 	h->nr_huge_pages_node[page_to_nid(page)]--;
 | |
| 	for (i = 0; i < pages_per_huge_page(h); i++) {
 | |
| 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
 | |
| 				1 << PG_referenced | 1 << PG_dirty |
 | |
| 				1 << PG_active | 1 << PG_private |
 | |
| 				1 << PG_writeback);
 | |
| 	}
 | |
| 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
 | |
| 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
 | |
| 	set_page_refcounted(page);
 | |
| 	if (hstate_is_gigantic(h)) {
 | |
| 		destroy_compound_gigantic_page(page, huge_page_order(h));
 | |
| 		free_gigantic_page(page, huge_page_order(h));
 | |
| 	} else {
 | |
| 		__free_pages(page, huge_page_order(h));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct hstate *size_to_hstate(unsigned long size)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 
 | |
| 	for_each_hstate(h) {
 | |
| 		if (huge_page_size(h) == size)
 | |
| 			return h;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 | |
|  * to hstate->hugepage_activelist.)
 | |
|  *
 | |
|  * This function can be called for tail pages, but never returns true for them.
 | |
|  */
 | |
| bool page_huge_active(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!PageHuge(page), page);
 | |
| 	return PageHead(page) && PagePrivate(&page[1]);
 | |
| }
 | |
| 
 | |
| /* never called for tail page */
 | |
| static void set_page_huge_active(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
 | |
| 	SetPagePrivate(&page[1]);
 | |
| }
 | |
| 
 | |
| static void clear_page_huge_active(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
 | |
| 	ClearPagePrivate(&page[1]);
 | |
| }
 | |
| 
 | |
| void free_huge_page(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * Can't pass hstate in here because it is called from the
 | |
| 	 * compound page destructor.
 | |
| 	 */
 | |
| 	struct hstate *h = page_hstate(page);
 | |
| 	int nid = page_to_nid(page);
 | |
| 	struct hugepage_subpool *spool =
 | |
| 		(struct hugepage_subpool *)page_private(page);
 | |
| 	bool restore_reserve;
 | |
| 
 | |
| 	set_page_private(page, 0);
 | |
| 	page->mapping = NULL;
 | |
| 	VM_BUG_ON_PAGE(page_count(page), page);
 | |
| 	VM_BUG_ON_PAGE(page_mapcount(page), page);
 | |
| 	restore_reserve = PagePrivate(page);
 | |
| 	ClearPagePrivate(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * A return code of zero implies that the subpool will be under its
 | |
| 	 * minimum size if the reservation is not restored after page is free.
 | |
| 	 * Therefore, force restore_reserve operation.
 | |
| 	 */
 | |
| 	if (hugepage_subpool_put_pages(spool, 1) == 0)
 | |
| 		restore_reserve = true;
 | |
| 
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	clear_page_huge_active(page);
 | |
| 	hugetlb_cgroup_uncharge_page(hstate_index(h),
 | |
| 				     pages_per_huge_page(h), page);
 | |
| 	if (restore_reserve)
 | |
| 		h->resv_huge_pages++;
 | |
| 
 | |
| 	if (h->surplus_huge_pages_node[nid]) {
 | |
| 		/* remove the page from active list */
 | |
| 		list_del(&page->lru);
 | |
| 		update_and_free_page(h, page);
 | |
| 		h->surplus_huge_pages--;
 | |
| 		h->surplus_huge_pages_node[nid]--;
 | |
| 	} else {
 | |
| 		arch_clear_hugepage_flags(page);
 | |
| 		enqueue_huge_page(h, page);
 | |
| 	}
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| }
 | |
| 
 | |
| static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
 | |
| {
 | |
| 	INIT_LIST_HEAD(&page->lru);
 | |
| 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	set_hugetlb_cgroup(page, NULL);
 | |
| 	h->nr_huge_pages++;
 | |
| 	h->nr_huge_pages_node[nid]++;
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 	put_page(page); /* free it into the hugepage allocator */
 | |
| }
 | |
| 
 | |
| static void prep_compound_gigantic_page(struct page *page, unsigned int order)
 | |
| {
 | |
| 	int i;
 | |
| 	int nr_pages = 1 << order;
 | |
| 	struct page *p = page + 1;
 | |
| 
 | |
| 	/* we rely on prep_new_huge_page to set the destructor */
 | |
| 	set_compound_order(page, order);
 | |
| 	__ClearPageReserved(page);
 | |
| 	__SetPageHead(page);
 | |
| 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 | |
| 		/*
 | |
| 		 * For gigantic hugepages allocated through bootmem at
 | |
| 		 * boot, it's safer to be consistent with the not-gigantic
 | |
| 		 * hugepages and clear the PG_reserved bit from all tail pages
 | |
| 		 * too.  Otherwse drivers using get_user_pages() to access tail
 | |
| 		 * pages may get the reference counting wrong if they see
 | |
| 		 * PG_reserved set on a tail page (despite the head page not
 | |
| 		 * having PG_reserved set).  Enforcing this consistency between
 | |
| 		 * head and tail pages allows drivers to optimize away a check
 | |
| 		 * on the head page when they need know if put_page() is needed
 | |
| 		 * after get_user_pages().
 | |
| 		 */
 | |
| 		__ClearPageReserved(p);
 | |
| 		set_page_count(p, 0);
 | |
| 		set_compound_head(p, page);
 | |
| 	}
 | |
| 	atomic_set(compound_mapcount_ptr(page), -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 | |
|  * transparent huge pages.  See the PageTransHuge() documentation for more
 | |
|  * details.
 | |
|  */
 | |
| int PageHuge(struct page *page)
 | |
| {
 | |
| 	if (!PageCompound(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	page = compound_head(page);
 | |
| 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(PageHuge);
 | |
| 
 | |
| /*
 | |
|  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 | |
|  * normal or transparent huge pages.
 | |
|  */
 | |
| int PageHeadHuge(struct page *page_head)
 | |
| {
 | |
| 	if (!PageHead(page_head))
 | |
| 		return 0;
 | |
| 
 | |
| 	return get_compound_page_dtor(page_head) == free_huge_page;
 | |
| }
 | |
| 
 | |
| pgoff_t __basepage_index(struct page *page)
 | |
| {
 | |
| 	struct page *page_head = compound_head(page);
 | |
| 	pgoff_t index = page_index(page_head);
 | |
| 	unsigned long compound_idx;
 | |
| 
 | |
| 	if (!PageHuge(page_head))
 | |
| 		return page_index(page);
 | |
| 
 | |
| 	if (compound_order(page_head) >= MAX_ORDER)
 | |
| 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
 | |
| 	else
 | |
| 		compound_idx = page - page_head;
 | |
| 
 | |
| 	return (index << compound_order(page_head)) + compound_idx;
 | |
| }
 | |
| 
 | |
| static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = __alloc_pages_node(nid,
 | |
| 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
 | |
| 						__GFP_REPEAT|__GFP_NOWARN,
 | |
| 		huge_page_order(h));
 | |
| 	if (page) {
 | |
| 		prep_new_huge_page(h, page, nid);
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int nr_nodes, node;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
 | |
| 		page = alloc_fresh_huge_page_node(h, node);
 | |
| 		if (page) {
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		count_vm_event(HTLB_BUDDY_PGALLOC);
 | |
| 	else
 | |
| 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free huge page from pool from next node to free.
 | |
|  * Attempt to keep persistent huge pages more or less
 | |
|  * balanced over allowed nodes.
 | |
|  * Called with hugetlb_lock locked.
 | |
|  */
 | |
| static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
 | |
| 							 bool acct_surplus)
 | |
| {
 | |
| 	int nr_nodes, node;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 | |
| 		/*
 | |
| 		 * If we're returning unused surplus pages, only examine
 | |
| 		 * nodes with surplus pages.
 | |
| 		 */
 | |
| 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
 | |
| 		    !list_empty(&h->hugepage_freelists[node])) {
 | |
| 			struct page *page =
 | |
| 				list_entry(h->hugepage_freelists[node].next,
 | |
| 					  struct page, lru);
 | |
| 			list_del(&page->lru);
 | |
| 			h->free_huge_pages--;
 | |
| 			h->free_huge_pages_node[node]--;
 | |
| 			if (acct_surplus) {
 | |
| 				h->surplus_huge_pages--;
 | |
| 				h->surplus_huge_pages_node[node]--;
 | |
| 			}
 | |
| 			update_and_free_page(h, page);
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dissolve a given free hugepage into free buddy pages. This function does
 | |
|  * nothing for in-use (including surplus) hugepages.
 | |
|  */
 | |
| static void dissolve_free_huge_page(struct page *page)
 | |
| {
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	if (PageHuge(page) && !page_count(page)) {
 | |
| 		struct hstate *h = page_hstate(page);
 | |
| 		int nid = page_to_nid(page);
 | |
| 		list_del(&page->lru);
 | |
| 		h->free_huge_pages--;
 | |
| 		h->free_huge_pages_node[nid]--;
 | |
| 		h->max_huge_pages--;
 | |
| 		update_and_free_page(h, page);
 | |
| 	}
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 | |
|  * make specified memory blocks removable from the system.
 | |
|  * Note that start_pfn should aligned with (minimum) hugepage size.
 | |
|  */
 | |
| void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	if (!hugepages_supported())
 | |
| 		return;
 | |
| 
 | |
| 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
 | |
| 		dissolve_free_huge_page(pfn_to_page(pfn));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are 3 ways this can get called:
 | |
|  * 1. With vma+addr: we use the VMA's memory policy
 | |
|  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 | |
|  *    page from any node, and let the buddy allocator itself figure
 | |
|  *    it out.
 | |
|  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 | |
|  *    strictly from 'nid'
 | |
|  */
 | |
| static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
 | |
| 		struct vm_area_struct *vma, unsigned long addr, int nid)
 | |
| {
 | |
| 	int order = huge_page_order(h);
 | |
| 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need a VMA to get a memory policy.  If we do not
 | |
| 	 * have one, we use the 'nid' argument.
 | |
| 	 *
 | |
| 	 * The mempolicy stuff below has some non-inlined bits
 | |
| 	 * and calls ->vm_ops.  That makes it hard to optimize at
 | |
| 	 * compile-time, even when NUMA is off and it does
 | |
| 	 * nothing.  This helps the compiler optimize it out.
 | |
| 	 */
 | |
| 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
 | |
| 		/*
 | |
| 		 * If a specific node is requested, make sure to
 | |
| 		 * get memory from there, but only when a node
 | |
| 		 * is explicitly specified.
 | |
| 		 */
 | |
| 		if (nid != NUMA_NO_NODE)
 | |
| 			gfp |= __GFP_THISNODE;
 | |
| 		/*
 | |
| 		 * Make sure to call something that can handle
 | |
| 		 * nid=NUMA_NO_NODE
 | |
| 		 */
 | |
| 		return alloc_pages_node(nid, gfp, order);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
 | |
| 	 * allocate a huge page with it.  We will only reach this
 | |
| 	 * when CONFIG_NUMA=y.
 | |
| 	 */
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		struct mempolicy *mpol;
 | |
| 		struct zonelist *zl;
 | |
| 		nodemask_t *nodemask;
 | |
| 
 | |
| 		cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
 | |
| 		mpol_cond_put(mpol);
 | |
| 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
 | |
| 		if (page)
 | |
| 			return page;
 | |
| 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are two ways to allocate a huge page:
 | |
|  * 1. When you have a VMA and an address (like a fault)
 | |
|  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 | |
|  *
 | |
|  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 | |
|  * this case which signifies that the allocation should be done with
 | |
|  * respect for the VMA's memory policy.
 | |
|  *
 | |
|  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 | |
|  * implies that memory policies will not be taken in to account.
 | |
|  */
 | |
| static struct page *__alloc_buddy_huge_page(struct hstate *h,
 | |
| 		struct vm_area_struct *vma, unsigned long addr, int nid)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned int r_nid;
 | |
| 
 | |
| 	if (hstate_is_gigantic(h))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
 | |
| 	 * This makes sure the caller is picking _one_ of the modes with which
 | |
| 	 * we can call this function, not both.
 | |
| 	 */
 | |
| 	if (vma || (addr != -1)) {
 | |
| 		VM_WARN_ON_ONCE(addr == -1);
 | |
| 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Assume we will successfully allocate the surplus page to
 | |
| 	 * prevent racing processes from causing the surplus to exceed
 | |
| 	 * overcommit
 | |
| 	 *
 | |
| 	 * This however introduces a different race, where a process B
 | |
| 	 * tries to grow the static hugepage pool while alloc_pages() is
 | |
| 	 * called by process A. B will only examine the per-node
 | |
| 	 * counters in determining if surplus huge pages can be
 | |
| 	 * converted to normal huge pages in adjust_pool_surplus(). A
 | |
| 	 * won't be able to increment the per-node counter, until the
 | |
| 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
 | |
| 	 * no more huge pages can be converted from surplus to normal
 | |
| 	 * state (and doesn't try to convert again). Thus, we have a
 | |
| 	 * case where a surplus huge page exists, the pool is grown, and
 | |
| 	 * the surplus huge page still exists after, even though it
 | |
| 	 * should just have been converted to a normal huge page. This
 | |
| 	 * does not leak memory, though, as the hugepage will be freed
 | |
| 	 * once it is out of use. It also does not allow the counters to
 | |
| 	 * go out of whack in adjust_pool_surplus() as we don't modify
 | |
| 	 * the node values until we've gotten the hugepage and only the
 | |
| 	 * per-node value is checked there.
 | |
| 	 */
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
 | |
| 		spin_unlock(&hugetlb_lock);
 | |
| 		return NULL;
 | |
| 	} else {
 | |
| 		h->nr_huge_pages++;
 | |
| 		h->surplus_huge_pages++;
 | |
| 	}
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 
 | |
| 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
 | |
| 
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	if (page) {
 | |
| 		INIT_LIST_HEAD(&page->lru);
 | |
| 		r_nid = page_to_nid(page);
 | |
| 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
 | |
| 		set_hugetlb_cgroup(page, NULL);
 | |
| 		/*
 | |
| 		 * We incremented the global counters already
 | |
| 		 */
 | |
| 		h->nr_huge_pages_node[r_nid]++;
 | |
| 		h->surplus_huge_pages_node[r_nid]++;
 | |
| 		__count_vm_event(HTLB_BUDDY_PGALLOC);
 | |
| 	} else {
 | |
| 		h->nr_huge_pages--;
 | |
| 		h->surplus_huge_pages--;
 | |
| 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 | |
| 	}
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a huge page from 'nid'.  Note, 'nid' may be
 | |
|  * NUMA_NO_NODE, which means that it may be allocated
 | |
|  * anywhere.
 | |
|  */
 | |
| static
 | |
| struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
 | |
| {
 | |
| 	unsigned long addr = -1;
 | |
| 
 | |
| 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the VMA's mpolicy to allocate a huge page from the buddy.
 | |
|  */
 | |
| static
 | |
| struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
 | |
| 		struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This allocation function is useful in the context where vma is irrelevant.
 | |
|  * E.g. soft-offlining uses this function because it only cares physical
 | |
|  * address of error page.
 | |
|  */
 | |
| struct page *alloc_huge_page_node(struct hstate *h, int nid)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	if (h->free_huge_pages - h->resv_huge_pages > 0)
 | |
| 		page = dequeue_huge_page_node(h, nid);
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 
 | |
| 	if (!page)
 | |
| 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increase the hugetlb pool such that it can accommodate a reservation
 | |
|  * of size 'delta'.
 | |
|  */
 | |
| static int gather_surplus_pages(struct hstate *h, int delta)
 | |
| {
 | |
| 	struct list_head surplus_list;
 | |
| 	struct page *page, *tmp;
 | |
| 	int ret, i;
 | |
| 	int needed, allocated;
 | |
| 	bool alloc_ok = true;
 | |
| 
 | |
| 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
 | |
| 	if (needed <= 0) {
 | |
| 		h->resv_huge_pages += delta;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	allocated = 0;
 | |
| 	INIT_LIST_HEAD(&surplus_list);
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| retry:
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 	for (i = 0; i < needed; i++) {
 | |
| 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
 | |
| 		if (!page) {
 | |
| 			alloc_ok = false;
 | |
| 			break;
 | |
| 		}
 | |
| 		list_add(&page->lru, &surplus_list);
 | |
| 	}
 | |
| 	allocated += i;
 | |
| 
 | |
| 	/*
 | |
| 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
 | |
| 	 * because either resv_huge_pages or free_huge_pages may have changed.
 | |
| 	 */
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	needed = (h->resv_huge_pages + delta) -
 | |
| 			(h->free_huge_pages + allocated);
 | |
| 	if (needed > 0) {
 | |
| 		if (alloc_ok)
 | |
| 			goto retry;
 | |
| 		/*
 | |
| 		 * We were not able to allocate enough pages to
 | |
| 		 * satisfy the entire reservation so we free what
 | |
| 		 * we've allocated so far.
 | |
| 		 */
 | |
| 		goto free;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * The surplus_list now contains _at_least_ the number of extra pages
 | |
| 	 * needed to accommodate the reservation.  Add the appropriate number
 | |
| 	 * of pages to the hugetlb pool and free the extras back to the buddy
 | |
| 	 * allocator.  Commit the entire reservation here to prevent another
 | |
| 	 * process from stealing the pages as they are added to the pool but
 | |
| 	 * before they are reserved.
 | |
| 	 */
 | |
| 	needed += allocated;
 | |
| 	h->resv_huge_pages += delta;
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/* Free the needed pages to the hugetlb pool */
 | |
| 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
 | |
| 		if ((--needed) < 0)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * This page is now managed by the hugetlb allocator and has
 | |
| 		 * no users -- drop the buddy allocator's reference.
 | |
| 		 */
 | |
| 		put_page_testzero(page);
 | |
| 		VM_BUG_ON_PAGE(page_count(page), page);
 | |
| 		enqueue_huge_page(h, page);
 | |
| 	}
 | |
| free:
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 
 | |
| 	/* Free unnecessary surplus pages to the buddy allocator */
 | |
| 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
 | |
| 		put_page(page);
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When releasing a hugetlb pool reservation, any surplus pages that were
 | |
|  * allocated to satisfy the reservation must be explicitly freed if they were
 | |
|  * never used.
 | |
|  * Called with hugetlb_lock held.
 | |
|  */
 | |
| static void return_unused_surplus_pages(struct hstate *h,
 | |
| 					unsigned long unused_resv_pages)
 | |
| {
 | |
| 	unsigned long nr_pages;
 | |
| 
 | |
| 	/* Uncommit the reservation */
 | |
| 	h->resv_huge_pages -= unused_resv_pages;
 | |
| 
 | |
| 	/* Cannot return gigantic pages currently */
 | |
| 	if (hstate_is_gigantic(h))
 | |
| 		return;
 | |
| 
 | |
| 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to release as many surplus pages as possible, spread
 | |
| 	 * evenly across all nodes with memory. Iterate across these nodes
 | |
| 	 * until we can no longer free unreserved surplus pages. This occurs
 | |
| 	 * when the nodes with surplus pages have no free pages.
 | |
| 	 * free_pool_huge_page() will balance the the freed pages across the
 | |
| 	 * on-line nodes with memory and will handle the hstate accounting.
 | |
| 	 */
 | |
| 	while (nr_pages--) {
 | |
| 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
 | |
| 			break;
 | |
| 		cond_resched_lock(&hugetlb_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
 | |
|  * are used by the huge page allocation routines to manage reservations.
 | |
|  *
 | |
|  * vma_needs_reservation is called to determine if the huge page at addr
 | |
|  * within the vma has an associated reservation.  If a reservation is
 | |
|  * needed, the value 1 is returned.  The caller is then responsible for
 | |
|  * managing the global reservation and subpool usage counts.  After
 | |
|  * the huge page has been allocated, vma_commit_reservation is called
 | |
|  * to add the page to the reservation map.  If the page allocation fails,
 | |
|  * the reservation must be ended instead of committed.  vma_end_reservation
 | |
|  * is called in such cases.
 | |
|  *
 | |
|  * In the normal case, vma_commit_reservation returns the same value
 | |
|  * as the preceding vma_needs_reservation call.  The only time this
 | |
|  * is not the case is if a reserve map was changed between calls.  It
 | |
|  * is the responsibility of the caller to notice the difference and
 | |
|  * take appropriate action.
 | |
|  */
 | |
| enum vma_resv_mode {
 | |
| 	VMA_NEEDS_RESV,
 | |
| 	VMA_COMMIT_RESV,
 | |
| 	VMA_END_RESV,
 | |
| };
 | |
| static long __vma_reservation_common(struct hstate *h,
 | |
| 				struct vm_area_struct *vma, unsigned long addr,
 | |
| 				enum vma_resv_mode mode)
 | |
| {
 | |
| 	struct resv_map *resv;
 | |
| 	pgoff_t idx;
 | |
| 	long ret;
 | |
| 
 | |
| 	resv = vma_resv_map(vma);
 | |
| 	if (!resv)
 | |
| 		return 1;
 | |
| 
 | |
| 	idx = vma_hugecache_offset(h, vma, addr);
 | |
| 	switch (mode) {
 | |
| 	case VMA_NEEDS_RESV:
 | |
| 		ret = region_chg(resv, idx, idx + 1);
 | |
| 		break;
 | |
| 	case VMA_COMMIT_RESV:
 | |
| 		ret = region_add(resv, idx, idx + 1);
 | |
| 		break;
 | |
| 	case VMA_END_RESV:
 | |
| 		region_abort(resv, idx, idx + 1);
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (vma->vm_flags & VM_MAYSHARE)
 | |
| 		return ret;
 | |
| 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
 | |
| 		/*
 | |
| 		 * In most cases, reserves always exist for private mappings.
 | |
| 		 * However, a file associated with mapping could have been
 | |
| 		 * hole punched or truncated after reserves were consumed.
 | |
| 		 * As subsequent fault on such a range will not use reserves.
 | |
| 		 * Subtle - The reserve map for private mappings has the
 | |
| 		 * opposite meaning than that of shared mappings.  If NO
 | |
| 		 * entry is in the reserve map, it means a reservation exists.
 | |
| 		 * If an entry exists in the reserve map, it means the
 | |
| 		 * reservation has already been consumed.  As a result, the
 | |
| 		 * return value of this routine is the opposite of the
 | |
| 		 * value returned from reserve map manipulation routines above.
 | |
| 		 */
 | |
| 		if (ret)
 | |
| 			return 0;
 | |
| 		else
 | |
| 			return 1;
 | |
| 	}
 | |
| 	else
 | |
| 		return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| static long vma_needs_reservation(struct hstate *h,
 | |
| 			struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
 | |
| }
 | |
| 
 | |
| static long vma_commit_reservation(struct hstate *h,
 | |
| 			struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
 | |
| }
 | |
| 
 | |
| static void vma_end_reservation(struct hstate *h,
 | |
| 			struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
 | |
| }
 | |
| 
 | |
| struct page *alloc_huge_page(struct vm_area_struct *vma,
 | |
| 				    unsigned long addr, int avoid_reserve)
 | |
| {
 | |
| 	struct hugepage_subpool *spool = subpool_vma(vma);
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	struct page *page;
 | |
| 	long map_chg, map_commit;
 | |
| 	long gbl_chg;
 | |
| 	int ret, idx;
 | |
| 	struct hugetlb_cgroup *h_cg;
 | |
| 
 | |
| 	idx = hstate_index(h);
 | |
| 	/*
 | |
| 	 * Examine the region/reserve map to determine if the process
 | |
| 	 * has a reservation for the page to be allocated.  A return
 | |
| 	 * code of zero indicates a reservation exists (no change).
 | |
| 	 */
 | |
| 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
 | |
| 	if (map_chg < 0)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/*
 | |
| 	 * Processes that did not create the mapping will have no
 | |
| 	 * reserves as indicated by the region/reserve map. Check
 | |
| 	 * that the allocation will not exceed the subpool limit.
 | |
| 	 * Allocations for MAP_NORESERVE mappings also need to be
 | |
| 	 * checked against any subpool limit.
 | |
| 	 */
 | |
| 	if (map_chg || avoid_reserve) {
 | |
| 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
 | |
| 		if (gbl_chg < 0) {
 | |
| 			vma_end_reservation(h, vma, addr);
 | |
| 			return ERR_PTR(-ENOSPC);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Even though there was no reservation in the region/reserve
 | |
| 		 * map, there could be reservations associated with the
 | |
| 		 * subpool that can be used.  This would be indicated if the
 | |
| 		 * return value of hugepage_subpool_get_pages() is zero.
 | |
| 		 * However, if avoid_reserve is specified we still avoid even
 | |
| 		 * the subpool reservations.
 | |
| 		 */
 | |
| 		if (avoid_reserve)
 | |
| 			gbl_chg = 1;
 | |
| 	}
 | |
| 
 | |
| 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
 | |
| 	if (ret)
 | |
| 		goto out_subpool_put;
 | |
| 
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	/*
 | |
| 	 * glb_chg is passed to indicate whether or not a page must be taken
 | |
| 	 * from the global free pool (global change).  gbl_chg == 0 indicates
 | |
| 	 * a reservation exists for the allocation.
 | |
| 	 */
 | |
| 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
 | |
| 	if (!page) {
 | |
| 		spin_unlock(&hugetlb_lock);
 | |
| 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
 | |
| 		if (!page)
 | |
| 			goto out_uncharge_cgroup;
 | |
| 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
 | |
| 			SetPagePrivate(page);
 | |
| 			h->resv_huge_pages--;
 | |
| 		}
 | |
| 		spin_lock(&hugetlb_lock);
 | |
| 		list_move(&page->lru, &h->hugepage_activelist);
 | |
| 		/* Fall through */
 | |
| 	}
 | |
| 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 
 | |
| 	set_page_private(page, (unsigned long)spool);
 | |
| 
 | |
| 	map_commit = vma_commit_reservation(h, vma, addr);
 | |
| 	if (unlikely(map_chg > map_commit)) {
 | |
| 		/*
 | |
| 		 * The page was added to the reservation map between
 | |
| 		 * vma_needs_reservation and vma_commit_reservation.
 | |
| 		 * This indicates a race with hugetlb_reserve_pages.
 | |
| 		 * Adjust for the subpool count incremented above AND
 | |
| 		 * in hugetlb_reserve_pages for the same page.  Also,
 | |
| 		 * the reservation count added in hugetlb_reserve_pages
 | |
| 		 * no longer applies.
 | |
| 		 */
 | |
| 		long rsv_adjust;
 | |
| 
 | |
| 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
 | |
| 		hugetlb_acct_memory(h, -rsv_adjust);
 | |
| 	}
 | |
| 	return page;
 | |
| 
 | |
| out_uncharge_cgroup:
 | |
| 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
 | |
| out_subpool_put:
 | |
| 	if (map_chg || avoid_reserve)
 | |
| 		hugepage_subpool_put_pages(spool, 1);
 | |
| 	vma_end_reservation(h, vma, addr);
 | |
| 	return ERR_PTR(-ENOSPC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * alloc_huge_page()'s wrapper which simply returns the page if allocation
 | |
|  * succeeds, otherwise NULL. This function is called from new_vma_page(),
 | |
|  * where no ERR_VALUE is expected to be returned.
 | |
|  */
 | |
| struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
 | |
| 				unsigned long addr, int avoid_reserve)
 | |
| {
 | |
| 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
 | |
| 	if (IS_ERR(page))
 | |
| 		page = NULL;
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| int __weak alloc_bootmem_huge_page(struct hstate *h)
 | |
| {
 | |
| 	struct huge_bootmem_page *m;
 | |
| 	int nr_nodes, node;
 | |
| 
 | |
| 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
 | |
| 		void *addr;
 | |
| 
 | |
| 		addr = memblock_virt_alloc_try_nid_nopanic(
 | |
| 				huge_page_size(h), huge_page_size(h),
 | |
| 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
 | |
| 		if (addr) {
 | |
| 			/*
 | |
| 			 * Use the beginning of the huge page to store the
 | |
| 			 * huge_bootmem_page struct (until gather_bootmem
 | |
| 			 * puts them into the mem_map).
 | |
| 			 */
 | |
| 			m = addr;
 | |
| 			goto found;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| found:
 | |
| 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
 | |
| 	/* Put them into a private list first because mem_map is not up yet */
 | |
| 	list_add(&m->list, &huge_boot_pages);
 | |
| 	m->hstate = h;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void __init prep_compound_huge_page(struct page *page,
 | |
| 		unsigned int order)
 | |
| {
 | |
| 	if (unlikely(order > (MAX_ORDER - 1)))
 | |
| 		prep_compound_gigantic_page(page, order);
 | |
| 	else
 | |
| 		prep_compound_page(page, order);
 | |
| }
 | |
| 
 | |
| /* Put bootmem huge pages into the standard lists after mem_map is up */
 | |
| static void __init gather_bootmem_prealloc(void)
 | |
| {
 | |
| 	struct huge_bootmem_page *m;
 | |
| 
 | |
| 	list_for_each_entry(m, &huge_boot_pages, list) {
 | |
| 		struct hstate *h = m->hstate;
 | |
| 		struct page *page;
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
 | |
| 		memblock_free_late(__pa(m),
 | |
| 				   sizeof(struct huge_bootmem_page));
 | |
| #else
 | |
| 		page = virt_to_page(m);
 | |
| #endif
 | |
| 		WARN_ON(page_count(page) != 1);
 | |
| 		prep_compound_huge_page(page, h->order);
 | |
| 		WARN_ON(PageReserved(page));
 | |
| 		prep_new_huge_page(h, page, page_to_nid(page));
 | |
| 		/*
 | |
| 		 * If we had gigantic hugepages allocated at boot time, we need
 | |
| 		 * to restore the 'stolen' pages to totalram_pages in order to
 | |
| 		 * fix confusing memory reports from free(1) and another
 | |
| 		 * side-effects, like CommitLimit going negative.
 | |
| 		 */
 | |
| 		if (hstate_is_gigantic(h))
 | |
| 			adjust_managed_page_count(page, 1 << h->order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < h->max_huge_pages; ++i) {
 | |
| 		if (hstate_is_gigantic(h)) {
 | |
| 			if (!alloc_bootmem_huge_page(h))
 | |
| 				break;
 | |
| 		} else if (!alloc_fresh_huge_page(h,
 | |
| 					 &node_states[N_MEMORY]))
 | |
| 			break;
 | |
| 	}
 | |
| 	h->max_huge_pages = i;
 | |
| }
 | |
| 
 | |
| static void __init hugetlb_init_hstates(void)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 
 | |
| 	for_each_hstate(h) {
 | |
| 		if (minimum_order > huge_page_order(h))
 | |
| 			minimum_order = huge_page_order(h);
 | |
| 
 | |
| 		/* oversize hugepages were init'ed in early boot */
 | |
| 		if (!hstate_is_gigantic(h))
 | |
| 			hugetlb_hstate_alloc_pages(h);
 | |
| 	}
 | |
| 	VM_BUG_ON(minimum_order == UINT_MAX);
 | |
| }
 | |
| 
 | |
| static char * __init memfmt(char *buf, unsigned long n)
 | |
| {
 | |
| 	if (n >= (1UL << 30))
 | |
| 		sprintf(buf, "%lu GB", n >> 30);
 | |
| 	else if (n >= (1UL << 20))
 | |
| 		sprintf(buf, "%lu MB", n >> 20);
 | |
| 	else
 | |
| 		sprintf(buf, "%lu KB", n >> 10);
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| static void __init report_hugepages(void)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 
 | |
| 	for_each_hstate(h) {
 | |
| 		char buf[32];
 | |
| 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
 | |
| 			memfmt(buf, huge_page_size(h)),
 | |
| 			h->free_huge_pages);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| static void try_to_free_low(struct hstate *h, unsigned long count,
 | |
| 						nodemask_t *nodes_allowed)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (hstate_is_gigantic(h))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_node_mask(i, *nodes_allowed) {
 | |
| 		struct page *page, *next;
 | |
| 		struct list_head *freel = &h->hugepage_freelists[i];
 | |
| 		list_for_each_entry_safe(page, next, freel, lru) {
 | |
| 			if (count >= h->nr_huge_pages)
 | |
| 				return;
 | |
| 			if (PageHighMem(page))
 | |
| 				continue;
 | |
| 			list_del(&page->lru);
 | |
| 			update_and_free_page(h, page);
 | |
| 			h->free_huge_pages--;
 | |
| 			h->free_huge_pages_node[page_to_nid(page)]--;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void try_to_free_low(struct hstate *h, unsigned long count,
 | |
| 						nodemask_t *nodes_allowed)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 | |
|  * balanced by operating on them in a round-robin fashion.
 | |
|  * Returns 1 if an adjustment was made.
 | |
|  */
 | |
| static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
 | |
| 				int delta)
 | |
| {
 | |
| 	int nr_nodes, node;
 | |
| 
 | |
| 	VM_BUG_ON(delta != -1 && delta != 1);
 | |
| 
 | |
| 	if (delta < 0) {
 | |
| 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
 | |
| 			if (h->surplus_huge_pages_node[node])
 | |
| 				goto found;
 | |
| 		}
 | |
| 	} else {
 | |
| 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 | |
| 			if (h->surplus_huge_pages_node[node] <
 | |
| 					h->nr_huge_pages_node[node])
 | |
| 				goto found;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| found:
 | |
| 	h->surplus_huge_pages += delta;
 | |
| 	h->surplus_huge_pages_node[node] += delta;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
 | |
| static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
 | |
| 						nodemask_t *nodes_allowed)
 | |
| {
 | |
| 	unsigned long min_count, ret;
 | |
| 
 | |
| 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
 | |
| 		return h->max_huge_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Increase the pool size
 | |
| 	 * First take pages out of surplus state.  Then make up the
 | |
| 	 * remaining difference by allocating fresh huge pages.
 | |
| 	 *
 | |
| 	 * We might race with __alloc_buddy_huge_page() here and be unable
 | |
| 	 * to convert a surplus huge page to a normal huge page. That is
 | |
| 	 * not critical, though, it just means the overall size of the
 | |
| 	 * pool might be one hugepage larger than it needs to be, but
 | |
| 	 * within all the constraints specified by the sysctls.
 | |
| 	 */
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
 | |
| 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	while (count > persistent_huge_pages(h)) {
 | |
| 		/*
 | |
| 		 * If this allocation races such that we no longer need the
 | |
| 		 * page, free_huge_page will handle it by freeing the page
 | |
| 		 * and reducing the surplus.
 | |
| 		 */
 | |
| 		spin_unlock(&hugetlb_lock);
 | |
| 
 | |
| 		/* yield cpu to avoid soft lockup */
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (hstate_is_gigantic(h))
 | |
| 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
 | |
| 		else
 | |
| 			ret = alloc_fresh_huge_page(h, nodes_allowed);
 | |
| 		spin_lock(&hugetlb_lock);
 | |
| 		if (!ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* Bail for signals. Probably ctrl-c from user */
 | |
| 		if (signal_pending(current))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Decrease the pool size
 | |
| 	 * First return free pages to the buddy allocator (being careful
 | |
| 	 * to keep enough around to satisfy reservations).  Then place
 | |
| 	 * pages into surplus state as needed so the pool will shrink
 | |
| 	 * to the desired size as pages become free.
 | |
| 	 *
 | |
| 	 * By placing pages into the surplus state independent of the
 | |
| 	 * overcommit value, we are allowing the surplus pool size to
 | |
| 	 * exceed overcommit. There are few sane options here. Since
 | |
| 	 * __alloc_buddy_huge_page() is checking the global counter,
 | |
| 	 * though, we'll note that we're not allowed to exceed surplus
 | |
| 	 * and won't grow the pool anywhere else. Not until one of the
 | |
| 	 * sysctls are changed, or the surplus pages go out of use.
 | |
| 	 */
 | |
| 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
 | |
| 	min_count = max(count, min_count);
 | |
| 	try_to_free_low(h, min_count, nodes_allowed);
 | |
| 	while (min_count < persistent_huge_pages(h)) {
 | |
| 		if (!free_pool_huge_page(h, nodes_allowed, 0))
 | |
| 			break;
 | |
| 		cond_resched_lock(&hugetlb_lock);
 | |
| 	}
 | |
| 	while (count < persistent_huge_pages(h)) {
 | |
| 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	ret = persistent_huge_pages(h);
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define HSTATE_ATTR_RO(_name) \
 | |
| 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
 | |
| 
 | |
| #define HSTATE_ATTR(_name) \
 | |
| 	static struct kobj_attribute _name##_attr = \
 | |
| 		__ATTR(_name, 0644, _name##_show, _name##_store)
 | |
| 
 | |
| static struct kobject *hugepages_kobj;
 | |
| static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
 | |
| 
 | |
| static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
 | |
| 
 | |
| static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
 | |
| 		if (hstate_kobjs[i] == kobj) {
 | |
| 			if (nidp)
 | |
| 				*nidp = NUMA_NO_NODE;
 | |
| 			return &hstates[i];
 | |
| 		}
 | |
| 
 | |
| 	return kobj_to_node_hstate(kobj, nidp);
 | |
| }
 | |
| 
 | |
| static ssize_t nr_hugepages_show_common(struct kobject *kobj,
 | |
| 					struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 	unsigned long nr_huge_pages;
 | |
| 	int nid;
 | |
| 
 | |
| 	h = kobj_to_hstate(kobj, &nid);
 | |
| 	if (nid == NUMA_NO_NODE)
 | |
| 		nr_huge_pages = h->nr_huge_pages;
 | |
| 	else
 | |
| 		nr_huge_pages = h->nr_huge_pages_node[nid];
 | |
| 
 | |
| 	return sprintf(buf, "%lu\n", nr_huge_pages);
 | |
| }
 | |
| 
 | |
| static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
 | |
| 					   struct hstate *h, int nid,
 | |
| 					   unsigned long count, size_t len)
 | |
| {
 | |
| 	int err;
 | |
| 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
 | |
| 
 | |
| 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (nid == NUMA_NO_NODE) {
 | |
| 		/*
 | |
| 		 * global hstate attribute
 | |
| 		 */
 | |
| 		if (!(obey_mempolicy &&
 | |
| 				init_nodemask_of_mempolicy(nodes_allowed))) {
 | |
| 			NODEMASK_FREE(nodes_allowed);
 | |
| 			nodes_allowed = &node_states[N_MEMORY];
 | |
| 		}
 | |
| 	} else if (nodes_allowed) {
 | |
| 		/*
 | |
| 		 * per node hstate attribute: adjust count to global,
 | |
| 		 * but restrict alloc/free to the specified node.
 | |
| 		 */
 | |
| 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
 | |
| 		init_nodemask_of_node(nodes_allowed, nid);
 | |
| 	} else
 | |
| 		nodes_allowed = &node_states[N_MEMORY];
 | |
| 
 | |
| 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
 | |
| 
 | |
| 	if (nodes_allowed != &node_states[N_MEMORY])
 | |
| 		NODEMASK_FREE(nodes_allowed);
 | |
| 
 | |
| 	return len;
 | |
| out:
 | |
| 	NODEMASK_FREE(nodes_allowed);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
 | |
| 					 struct kobject *kobj, const char *buf,
 | |
| 					 size_t len)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 	unsigned long count;
 | |
| 	int nid;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &count);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	h = kobj_to_hstate(kobj, &nid);
 | |
| 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
 | |
| }
 | |
| 
 | |
| static ssize_t nr_hugepages_show(struct kobject *kobj,
 | |
| 				       struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return nr_hugepages_show_common(kobj, attr, buf);
 | |
| }
 | |
| 
 | |
| static ssize_t nr_hugepages_store(struct kobject *kobj,
 | |
| 	       struct kobj_attribute *attr, const char *buf, size_t len)
 | |
| {
 | |
| 	return nr_hugepages_store_common(false, kobj, buf, len);
 | |
| }
 | |
| HSTATE_ATTR(nr_hugepages);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 
 | |
| /*
 | |
|  * hstate attribute for optionally mempolicy-based constraint on persistent
 | |
|  * huge page alloc/free.
 | |
|  */
 | |
| static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
 | |
| 				       struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return nr_hugepages_show_common(kobj, attr, buf);
 | |
| }
 | |
| 
 | |
| static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
 | |
| 	       struct kobj_attribute *attr, const char *buf, size_t len)
 | |
| {
 | |
| 	return nr_hugepages_store_common(true, kobj, buf, len);
 | |
| }
 | |
| HSTATE_ATTR(nr_hugepages_mempolicy);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
 | |
| 					struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct hstate *h = kobj_to_hstate(kobj, NULL);
 | |
| 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
 | |
| }
 | |
| 
 | |
| static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, const char *buf, size_t count)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long input;
 | |
| 	struct hstate *h = kobj_to_hstate(kobj, NULL);
 | |
| 
 | |
| 	if (hstate_is_gigantic(h))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &input);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	h->nr_overcommit_huge_pages = input;
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| HSTATE_ATTR(nr_overcommit_hugepages);
 | |
| 
 | |
| static ssize_t free_hugepages_show(struct kobject *kobj,
 | |
| 					struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 	unsigned long free_huge_pages;
 | |
| 	int nid;
 | |
| 
 | |
| 	h = kobj_to_hstate(kobj, &nid);
 | |
| 	if (nid == NUMA_NO_NODE)
 | |
| 		free_huge_pages = h->free_huge_pages;
 | |
| 	else
 | |
| 		free_huge_pages = h->free_huge_pages_node[nid];
 | |
| 
 | |
| 	return sprintf(buf, "%lu\n", free_huge_pages);
 | |
| }
 | |
| HSTATE_ATTR_RO(free_hugepages);
 | |
| 
 | |
| static ssize_t resv_hugepages_show(struct kobject *kobj,
 | |
| 					struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct hstate *h = kobj_to_hstate(kobj, NULL);
 | |
| 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
 | |
| }
 | |
| HSTATE_ATTR_RO(resv_hugepages);
 | |
| 
 | |
| static ssize_t surplus_hugepages_show(struct kobject *kobj,
 | |
| 					struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 	unsigned long surplus_huge_pages;
 | |
| 	int nid;
 | |
| 
 | |
| 	h = kobj_to_hstate(kobj, &nid);
 | |
| 	if (nid == NUMA_NO_NODE)
 | |
| 		surplus_huge_pages = h->surplus_huge_pages;
 | |
| 	else
 | |
| 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
 | |
| 
 | |
| 	return sprintf(buf, "%lu\n", surplus_huge_pages);
 | |
| }
 | |
| HSTATE_ATTR_RO(surplus_hugepages);
 | |
| 
 | |
| static struct attribute *hstate_attrs[] = {
 | |
| 	&nr_hugepages_attr.attr,
 | |
| 	&nr_overcommit_hugepages_attr.attr,
 | |
| 	&free_hugepages_attr.attr,
 | |
| 	&resv_hugepages_attr.attr,
 | |
| 	&surplus_hugepages_attr.attr,
 | |
| #ifdef CONFIG_NUMA
 | |
| 	&nr_hugepages_mempolicy_attr.attr,
 | |
| #endif
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group hstate_attr_group = {
 | |
| 	.attrs = hstate_attrs,
 | |
| };
 | |
| 
 | |
| static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
 | |
| 				    struct kobject **hstate_kobjs,
 | |
| 				    struct attribute_group *hstate_attr_group)
 | |
| {
 | |
| 	int retval;
 | |
| 	int hi = hstate_index(h);
 | |
| 
 | |
| 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
 | |
| 	if (!hstate_kobjs[hi])
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
 | |
| 	if (retval)
 | |
| 		kobject_put(hstate_kobjs[hi]);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void __init hugetlb_sysfs_init(void)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 	int err;
 | |
| 
 | |
| 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
 | |
| 	if (!hugepages_kobj)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_hstate(h) {
 | |
| 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
 | |
| 					 hstate_kobjs, &hstate_attr_group);
 | |
| 		if (err)
 | |
| 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 
 | |
| /*
 | |
|  * node_hstate/s - associate per node hstate attributes, via their kobjects,
 | |
|  * with node devices in node_devices[] using a parallel array.  The array
 | |
|  * index of a node device or _hstate == node id.
 | |
|  * This is here to avoid any static dependency of the node device driver, in
 | |
|  * the base kernel, on the hugetlb module.
 | |
|  */
 | |
| struct node_hstate {
 | |
| 	struct kobject		*hugepages_kobj;
 | |
| 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
 | |
| };
 | |
| static struct node_hstate node_hstates[MAX_NUMNODES];
 | |
| 
 | |
| /*
 | |
|  * A subset of global hstate attributes for node devices
 | |
|  */
 | |
| static struct attribute *per_node_hstate_attrs[] = {
 | |
| 	&nr_hugepages_attr.attr,
 | |
| 	&free_hugepages_attr.attr,
 | |
| 	&surplus_hugepages_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group per_node_hstate_attr_group = {
 | |
| 	.attrs = per_node_hstate_attrs,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
 | |
|  * Returns node id via non-NULL nidp.
 | |
|  */
 | |
| static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	for (nid = 0; nid < nr_node_ids; nid++) {
 | |
| 		struct node_hstate *nhs = &node_hstates[nid];
 | |
| 		int i;
 | |
| 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
 | |
| 			if (nhs->hstate_kobjs[i] == kobj) {
 | |
| 				if (nidp)
 | |
| 					*nidp = nid;
 | |
| 				return &hstates[i];
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	BUG();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unregister hstate attributes from a single node device.
 | |
|  * No-op if no hstate attributes attached.
 | |
|  */
 | |
| static void hugetlb_unregister_node(struct node *node)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 	struct node_hstate *nhs = &node_hstates[node->dev.id];
 | |
| 
 | |
| 	if (!nhs->hugepages_kobj)
 | |
| 		return;		/* no hstate attributes */
 | |
| 
 | |
| 	for_each_hstate(h) {
 | |
| 		int idx = hstate_index(h);
 | |
| 		if (nhs->hstate_kobjs[idx]) {
 | |
| 			kobject_put(nhs->hstate_kobjs[idx]);
 | |
| 			nhs->hstate_kobjs[idx] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kobject_put(nhs->hugepages_kobj);
 | |
| 	nhs->hugepages_kobj = NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Register hstate attributes for a single node device.
 | |
|  * No-op if attributes already registered.
 | |
|  */
 | |
| static void hugetlb_register_node(struct node *node)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 	struct node_hstate *nhs = &node_hstates[node->dev.id];
 | |
| 	int err;
 | |
| 
 | |
| 	if (nhs->hugepages_kobj)
 | |
| 		return;		/* already allocated */
 | |
| 
 | |
| 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
 | |
| 							&node->dev.kobj);
 | |
| 	if (!nhs->hugepages_kobj)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_hstate(h) {
 | |
| 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
 | |
| 						nhs->hstate_kobjs,
 | |
| 						&per_node_hstate_attr_group);
 | |
| 		if (err) {
 | |
| 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
 | |
| 				h->name, node->dev.id);
 | |
| 			hugetlb_unregister_node(node);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hugetlb init time:  register hstate attributes for all registered node
 | |
|  * devices of nodes that have memory.  All on-line nodes should have
 | |
|  * registered their associated device by this time.
 | |
|  */
 | |
| static void __init hugetlb_register_all_nodes(void)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		struct node *node = node_devices[nid];
 | |
| 		if (node->dev.id == nid)
 | |
| 			hugetlb_register_node(node);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Let the node device driver know we're here so it can
 | |
| 	 * [un]register hstate attributes on node hotplug.
 | |
| 	 */
 | |
| 	register_hugetlbfs_with_node(hugetlb_register_node,
 | |
| 				     hugetlb_unregister_node);
 | |
| }
 | |
| #else	/* !CONFIG_NUMA */
 | |
| 
 | |
| static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
 | |
| {
 | |
| 	BUG();
 | |
| 	if (nidp)
 | |
| 		*nidp = -1;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void hugetlb_register_all_nodes(void) { }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int __init hugetlb_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!hugepages_supported())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!size_to_hstate(default_hstate_size)) {
 | |
| 		default_hstate_size = HPAGE_SIZE;
 | |
| 		if (!size_to_hstate(default_hstate_size))
 | |
| 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
 | |
| 	}
 | |
| 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
 | |
| 	if (default_hstate_max_huge_pages) {
 | |
| 		if (!default_hstate.max_huge_pages)
 | |
| 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
 | |
| 	}
 | |
| 
 | |
| 	hugetlb_init_hstates();
 | |
| 	gather_bootmem_prealloc();
 | |
| 	report_hugepages();
 | |
| 
 | |
| 	hugetlb_sysfs_init();
 | |
| 	hugetlb_register_all_nodes();
 | |
| 	hugetlb_cgroup_file_init();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
 | |
| #else
 | |
| 	num_fault_mutexes = 1;
 | |
| #endif
 | |
| 	hugetlb_fault_mutex_table =
 | |
| 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
 | |
| 	BUG_ON(!hugetlb_fault_mutex_table);
 | |
| 
 | |
| 	for (i = 0; i < num_fault_mutexes; i++)
 | |
| 		mutex_init(&hugetlb_fault_mutex_table[i]);
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(hugetlb_init);
 | |
| 
 | |
| /* Should be called on processing a hugepagesz=... option */
 | |
| void __init hugetlb_bad_size(void)
 | |
| {
 | |
| 	parsed_valid_hugepagesz = false;
 | |
| }
 | |
| 
 | |
| void __init hugetlb_add_hstate(unsigned int order)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	if (size_to_hstate(PAGE_SIZE << order)) {
 | |
| 		pr_warn("hugepagesz= specified twice, ignoring\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
 | |
| 	BUG_ON(order == 0);
 | |
| 	h = &hstates[hugetlb_max_hstate++];
 | |
| 	h->order = order;
 | |
| 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
 | |
| 	h->nr_huge_pages = 0;
 | |
| 	h->free_huge_pages = 0;
 | |
| 	for (i = 0; i < MAX_NUMNODES; ++i)
 | |
| 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
 | |
| 	INIT_LIST_HEAD(&h->hugepage_activelist);
 | |
| 	h->next_nid_to_alloc = first_memory_node;
 | |
| 	h->next_nid_to_free = first_memory_node;
 | |
| 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
 | |
| 					huge_page_size(h)/1024);
 | |
| 
 | |
| 	parsed_hstate = h;
 | |
| }
 | |
| 
 | |
| static int __init hugetlb_nrpages_setup(char *s)
 | |
| {
 | |
| 	unsigned long *mhp;
 | |
| 	static unsigned long *last_mhp;
 | |
| 
 | |
| 	if (!parsed_valid_hugepagesz) {
 | |
| 		pr_warn("hugepages = %s preceded by "
 | |
| 			"an unsupported hugepagesz, ignoring\n", s);
 | |
| 		parsed_valid_hugepagesz = true;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
 | |
| 	 * so this hugepages= parameter goes to the "default hstate".
 | |
| 	 */
 | |
| 	else if (!hugetlb_max_hstate)
 | |
| 		mhp = &default_hstate_max_huge_pages;
 | |
| 	else
 | |
| 		mhp = &parsed_hstate->max_huge_pages;
 | |
| 
 | |
| 	if (mhp == last_mhp) {
 | |
| 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (sscanf(s, "%lu", mhp) <= 0)
 | |
| 		*mhp = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Global state is always initialized later in hugetlb_init.
 | |
| 	 * But we need to allocate >= MAX_ORDER hstates here early to still
 | |
| 	 * use the bootmem allocator.
 | |
| 	 */
 | |
| 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
 | |
| 		hugetlb_hstate_alloc_pages(parsed_hstate);
 | |
| 
 | |
| 	last_mhp = mhp;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("hugepages=", hugetlb_nrpages_setup);
 | |
| 
 | |
| static int __init hugetlb_default_setup(char *s)
 | |
| {
 | |
| 	default_hstate_size = memparse(s, &s);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("default_hugepagesz=", hugetlb_default_setup);
 | |
| 
 | |
| static unsigned int cpuset_mems_nr(unsigned int *array)
 | |
| {
 | |
| 	int node;
 | |
| 	unsigned int nr = 0;
 | |
| 
 | |
| 	for_each_node_mask(node, cpuset_current_mems_allowed)
 | |
| 		nr += array[node];
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
 | |
| 			 struct ctl_table *table, int write,
 | |
| 			 void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	struct hstate *h = &default_hstate;
 | |
| 	unsigned long tmp = h->max_huge_pages;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!hugepages_supported())
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	table->data = &tmp;
 | |
| 	table->maxlen = sizeof(unsigned long);
 | |
| 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (write)
 | |
| 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
 | |
| 						  NUMA_NO_NODE, tmp, *length);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int hugetlb_sysctl_handler(struct ctl_table *table, int write,
 | |
| 			  void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 
 | |
| 	return hugetlb_sysctl_handler_common(false, table, write,
 | |
| 							buffer, length, ppos);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
 | |
| 			  void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	return hugetlb_sysctl_handler_common(true, table, write,
 | |
| 							buffer, length, ppos);
 | |
| }
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| int hugetlb_overcommit_handler(struct ctl_table *table, int write,
 | |
| 			void __user *buffer,
 | |
| 			size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	struct hstate *h = &default_hstate;
 | |
| 	unsigned long tmp;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!hugepages_supported())
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	tmp = h->nr_overcommit_huge_pages;
 | |
| 
 | |
| 	if (write && hstate_is_gigantic(h))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	table->data = &tmp;
 | |
| 	table->maxlen = sizeof(unsigned long);
 | |
| 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (write) {
 | |
| 		spin_lock(&hugetlb_lock);
 | |
| 		h->nr_overcommit_huge_pages = tmp;
 | |
| 		spin_unlock(&hugetlb_lock);
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SYSCTL */
 | |
| 
 | |
| void hugetlb_report_meminfo(struct seq_file *m)
 | |
| {
 | |
| 	struct hstate *h = &default_hstate;
 | |
| 	if (!hugepages_supported())
 | |
| 		return;
 | |
| 	seq_printf(m,
 | |
| 			"HugePages_Total:   %5lu\n"
 | |
| 			"HugePages_Free:    %5lu\n"
 | |
| 			"HugePages_Rsvd:    %5lu\n"
 | |
| 			"HugePages_Surp:    %5lu\n"
 | |
| 			"Hugepagesize:   %8lu kB\n",
 | |
| 			h->nr_huge_pages,
 | |
| 			h->free_huge_pages,
 | |
| 			h->resv_huge_pages,
 | |
| 			h->surplus_huge_pages,
 | |
| 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
 | |
| }
 | |
| 
 | |
| int hugetlb_report_node_meminfo(int nid, char *buf)
 | |
| {
 | |
| 	struct hstate *h = &default_hstate;
 | |
| 	if (!hugepages_supported())
 | |
| 		return 0;
 | |
| 	return sprintf(buf,
 | |
| 		"Node %d HugePages_Total: %5u\n"
 | |
| 		"Node %d HugePages_Free:  %5u\n"
 | |
| 		"Node %d HugePages_Surp:  %5u\n",
 | |
| 		nid, h->nr_huge_pages_node[nid],
 | |
| 		nid, h->free_huge_pages_node[nid],
 | |
| 		nid, h->surplus_huge_pages_node[nid]);
 | |
| }
 | |
| 
 | |
| void hugetlb_show_meminfo(void)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 	int nid;
 | |
| 
 | |
| 	if (!hugepages_supported())
 | |
| 		return;
 | |
| 
 | |
| 	for_each_node_state(nid, N_MEMORY)
 | |
| 		for_each_hstate(h)
 | |
| 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
 | |
| 				nid,
 | |
| 				h->nr_huge_pages_node[nid],
 | |
| 				h->free_huge_pages_node[nid],
 | |
| 				h->surplus_huge_pages_node[nid],
 | |
| 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
 | |
| }
 | |
| 
 | |
| void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
 | |
| {
 | |
| 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
 | |
| 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
 | |
| }
 | |
| 
 | |
| /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
 | |
| unsigned long hugetlb_total_pages(void)
 | |
| {
 | |
| 	struct hstate *h;
 | |
| 	unsigned long nr_total_pages = 0;
 | |
| 
 | |
| 	for_each_hstate(h)
 | |
| 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
 | |
| 	return nr_total_pages;
 | |
| }
 | |
| 
 | |
| static int hugetlb_acct_memory(struct hstate *h, long delta)
 | |
| {
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	/*
 | |
| 	 * When cpuset is configured, it breaks the strict hugetlb page
 | |
| 	 * reservation as the accounting is done on a global variable. Such
 | |
| 	 * reservation is completely rubbish in the presence of cpuset because
 | |
| 	 * the reservation is not checked against page availability for the
 | |
| 	 * current cpuset. Application can still potentially OOM'ed by kernel
 | |
| 	 * with lack of free htlb page in cpuset that the task is in.
 | |
| 	 * Attempt to enforce strict accounting with cpuset is almost
 | |
| 	 * impossible (or too ugly) because cpuset is too fluid that
 | |
| 	 * task or memory node can be dynamically moved between cpusets.
 | |
| 	 *
 | |
| 	 * The change of semantics for shared hugetlb mapping with cpuset is
 | |
| 	 * undesirable. However, in order to preserve some of the semantics,
 | |
| 	 * we fall back to check against current free page availability as
 | |
| 	 * a best attempt and hopefully to minimize the impact of changing
 | |
| 	 * semantics that cpuset has.
 | |
| 	 */
 | |
| 	if (delta > 0) {
 | |
| 		if (gather_surplus_pages(h, delta) < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
 | |
| 			return_unused_surplus_pages(h, delta);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 	if (delta < 0)
 | |
| 		return_unused_surplus_pages(h, (unsigned long) -delta);
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void hugetlb_vm_op_open(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct resv_map *resv = vma_resv_map(vma);
 | |
| 
 | |
| 	/*
 | |
| 	 * This new VMA should share its siblings reservation map if present.
 | |
| 	 * The VMA will only ever have a valid reservation map pointer where
 | |
| 	 * it is being copied for another still existing VMA.  As that VMA
 | |
| 	 * has a reference to the reservation map it cannot disappear until
 | |
| 	 * after this open call completes.  It is therefore safe to take a
 | |
| 	 * new reference here without additional locking.
 | |
| 	 */
 | |
| 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 | |
| 		kref_get(&resv->refs);
 | |
| }
 | |
| 
 | |
| static void hugetlb_vm_op_close(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	struct resv_map *resv = vma_resv_map(vma);
 | |
| 	struct hugepage_subpool *spool = subpool_vma(vma);
 | |
| 	unsigned long reserve, start, end;
 | |
| 	long gbl_reserve;
 | |
| 
 | |
| 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 | |
| 		return;
 | |
| 
 | |
| 	start = vma_hugecache_offset(h, vma, vma->vm_start);
 | |
| 	end = vma_hugecache_offset(h, vma, vma->vm_end);
 | |
| 
 | |
| 	reserve = (end - start) - region_count(resv, start, end);
 | |
| 
 | |
| 	kref_put(&resv->refs, resv_map_release);
 | |
| 
 | |
| 	if (reserve) {
 | |
| 		/*
 | |
| 		 * Decrement reserve counts.  The global reserve count may be
 | |
| 		 * adjusted if the subpool has a minimum size.
 | |
| 		 */
 | |
| 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
 | |
| 		hugetlb_acct_memory(h, -gbl_reserve);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We cannot handle pagefaults against hugetlb pages at all.  They cause
 | |
|  * handle_mm_fault() to try to instantiate regular-sized pages in the
 | |
|  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 | |
|  * this far.
 | |
|  */
 | |
| static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 | |
| {
 | |
| 	BUG();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const struct vm_operations_struct hugetlb_vm_ops = {
 | |
| 	.fault = hugetlb_vm_op_fault,
 | |
| 	.open = hugetlb_vm_op_open,
 | |
| 	.close = hugetlb_vm_op_close,
 | |
| };
 | |
| 
 | |
| static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
 | |
| 				int writable)
 | |
| {
 | |
| 	pte_t entry;
 | |
| 
 | |
| 	if (writable) {
 | |
| 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
 | |
| 					 vma->vm_page_prot)));
 | |
| 	} else {
 | |
| 		entry = huge_pte_wrprotect(mk_huge_pte(page,
 | |
| 					   vma->vm_page_prot));
 | |
| 	}
 | |
| 	entry = pte_mkyoung(entry);
 | |
| 	entry = pte_mkhuge(entry);
 | |
| 	entry = arch_make_huge_pte(entry, vma, page, writable);
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static void set_huge_ptep_writable(struct vm_area_struct *vma,
 | |
| 				   unsigned long address, pte_t *ptep)
 | |
| {
 | |
| 	pte_t entry;
 | |
| 
 | |
| 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
 | |
| 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
 | |
| 		update_mmu_cache(vma, address, ptep);
 | |
| }
 | |
| 
 | |
| static int is_hugetlb_entry_migration(pte_t pte)
 | |
| {
 | |
| 	swp_entry_t swp;
 | |
| 
 | |
| 	if (huge_pte_none(pte) || pte_present(pte))
 | |
| 		return 0;
 | |
| 	swp = pte_to_swp_entry(pte);
 | |
| 	if (non_swap_entry(swp) && is_migration_entry(swp))
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static int is_hugetlb_entry_hwpoisoned(pte_t pte)
 | |
| {
 | |
| 	swp_entry_t swp;
 | |
| 
 | |
| 	if (huge_pte_none(pte) || pte_present(pte))
 | |
| 		return 0;
 | |
| 	swp = pte_to_swp_entry(pte);
 | |
| 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
 | |
| 			    struct vm_area_struct *vma)
 | |
| {
 | |
| 	pte_t *src_pte, *dst_pte, entry;
 | |
| 	struct page *ptepage;
 | |
| 	unsigned long addr;
 | |
| 	int cow;
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	unsigned long sz = huge_page_size(h);
 | |
| 	unsigned long mmun_start;	/* For mmu_notifiers */
 | |
| 	unsigned long mmun_end;		/* For mmu_notifiers */
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 | |
| 
 | |
| 	mmun_start = vma->vm_start;
 | |
| 	mmun_end = vma->vm_end;
 | |
| 	if (cow)
 | |
| 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
 | |
| 
 | |
| 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
 | |
| 		spinlock_t *src_ptl, *dst_ptl;
 | |
| 		src_pte = huge_pte_offset(src, addr);
 | |
| 		if (!src_pte)
 | |
| 			continue;
 | |
| 		dst_pte = huge_pte_alloc(dst, addr, sz);
 | |
| 		if (!dst_pte) {
 | |
| 			ret = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* If the pagetables are shared don't copy or take references */
 | |
| 		if (dst_pte == src_pte)
 | |
| 			continue;
 | |
| 
 | |
| 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
 | |
| 		src_ptl = huge_pte_lockptr(h, src, src_pte);
 | |
| 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 | |
| 		entry = huge_ptep_get(src_pte);
 | |
| 		if (huge_pte_none(entry)) { /* skip none entry */
 | |
| 			;
 | |
| 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
 | |
| 				    is_hugetlb_entry_hwpoisoned(entry))) {
 | |
| 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
 | |
| 
 | |
| 			if (is_write_migration_entry(swp_entry) && cow) {
 | |
| 				/*
 | |
| 				 * COW mappings require pages in both
 | |
| 				 * parent and child to be set to read.
 | |
| 				 */
 | |
| 				make_migration_entry_read(&swp_entry);
 | |
| 				entry = swp_entry_to_pte(swp_entry);
 | |
| 				set_huge_pte_at(src, addr, src_pte, entry);
 | |
| 			}
 | |
| 			set_huge_pte_at(dst, addr, dst_pte, entry);
 | |
| 		} else {
 | |
| 			if (cow) {
 | |
| 				huge_ptep_set_wrprotect(src, addr, src_pte);
 | |
| 				mmu_notifier_invalidate_range(src, mmun_start,
 | |
| 								   mmun_end);
 | |
| 			}
 | |
| 			entry = huge_ptep_get(src_pte);
 | |
| 			ptepage = pte_page(entry);
 | |
| 			get_page(ptepage);
 | |
| 			page_dup_rmap(ptepage, true);
 | |
| 			set_huge_pte_at(dst, addr, dst_pte, entry);
 | |
| 			hugetlb_count_add(pages_per_huge_page(h), dst);
 | |
| 		}
 | |
| 		spin_unlock(src_ptl);
 | |
| 		spin_unlock(dst_ptl);
 | |
| 	}
 | |
| 
 | |
| 	if (cow)
 | |
| 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | |
| 			    unsigned long start, unsigned long end,
 | |
| 			    struct page *ref_page)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long address;
 | |
| 	pte_t *ptep;
 | |
| 	pte_t pte;
 | |
| 	spinlock_t *ptl;
 | |
| 	struct page *page;
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	unsigned long sz = huge_page_size(h);
 | |
| 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
 | |
| 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
 | |
| 
 | |
| 	WARN_ON(!is_vm_hugetlb_page(vma));
 | |
| 	BUG_ON(start & ~huge_page_mask(h));
 | |
| 	BUG_ON(end & ~huge_page_mask(h));
 | |
| 
 | |
| 	tlb_start_vma(tlb, vma);
 | |
| 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 | |
| 	address = start;
 | |
| 	for (; address < end; address += sz) {
 | |
| 		ptep = huge_pte_offset(mm, address);
 | |
| 		if (!ptep)
 | |
| 			continue;
 | |
| 
 | |
| 		ptl = huge_pte_lock(h, mm, ptep);
 | |
| 		if (huge_pmd_unshare(mm, &address, ptep)) {
 | |
| 			spin_unlock(ptl);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pte = huge_ptep_get(ptep);
 | |
| 		if (huge_pte_none(pte)) {
 | |
| 			spin_unlock(ptl);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Migrating hugepage or HWPoisoned hugepage is already
 | |
| 		 * unmapped and its refcount is dropped, so just clear pte here.
 | |
| 		 */
 | |
| 		if (unlikely(!pte_present(pte))) {
 | |
| 			huge_pte_clear(mm, address, ptep);
 | |
| 			spin_unlock(ptl);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		page = pte_page(pte);
 | |
| 		/*
 | |
| 		 * If a reference page is supplied, it is because a specific
 | |
| 		 * page is being unmapped, not a range. Ensure the page we
 | |
| 		 * are about to unmap is the actual page of interest.
 | |
| 		 */
 | |
| 		if (ref_page) {
 | |
| 			if (page != ref_page) {
 | |
| 				spin_unlock(ptl);
 | |
| 				continue;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Mark the VMA as having unmapped its page so that
 | |
| 			 * future faults in this VMA will fail rather than
 | |
| 			 * looking like data was lost
 | |
| 			 */
 | |
| 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
 | |
| 		}
 | |
| 
 | |
| 		pte = huge_ptep_get_and_clear(mm, address, ptep);
 | |
| 		tlb_remove_tlb_entry(tlb, ptep, address);
 | |
| 		if (huge_pte_dirty(pte))
 | |
| 			set_page_dirty(page);
 | |
| 
 | |
| 		hugetlb_count_sub(pages_per_huge_page(h), mm);
 | |
| 		page_remove_rmap(page, true);
 | |
| 
 | |
| 		spin_unlock(ptl);
 | |
| 		tlb_remove_page_size(tlb, page, huge_page_size(h));
 | |
| 		/*
 | |
| 		 * Bail out after unmapping reference page if supplied
 | |
| 		 */
 | |
| 		if (ref_page)
 | |
| 			break;
 | |
| 	}
 | |
| 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 | |
| 	tlb_end_vma(tlb, vma);
 | |
| }
 | |
| 
 | |
| void __unmap_hugepage_range_final(struct mmu_gather *tlb,
 | |
| 			  struct vm_area_struct *vma, unsigned long start,
 | |
| 			  unsigned long end, struct page *ref_page)
 | |
| {
 | |
| 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
 | |
| 	 * test will fail on a vma being torn down, and not grab a page table
 | |
| 	 * on its way out.  We're lucky that the flag has such an appropriate
 | |
| 	 * name, and can in fact be safely cleared here. We could clear it
 | |
| 	 * before the __unmap_hugepage_range above, but all that's necessary
 | |
| 	 * is to clear it before releasing the i_mmap_rwsem. This works
 | |
| 	 * because in the context this is called, the VMA is about to be
 | |
| 	 * destroyed and the i_mmap_rwsem is held.
 | |
| 	 */
 | |
| 	vma->vm_flags &= ~VM_MAYSHARE;
 | |
| }
 | |
| 
 | |
| void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
 | |
| 			  unsigned long end, struct page *ref_page)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	struct mmu_gather tlb;
 | |
| 
 | |
| 	mm = vma->vm_mm;
 | |
| 
 | |
| 	tlb_gather_mmu(&tlb, mm, start, end);
 | |
| 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
 | |
| 	tlb_finish_mmu(&tlb, start, end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when the original mapper is failing to COW a MAP_PRIVATE
 | |
|  * mappping it owns the reserve page for. The intention is to unmap the page
 | |
|  * from other VMAs and let the children be SIGKILLed if they are faulting the
 | |
|  * same region.
 | |
|  */
 | |
| static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 			      struct page *page, unsigned long address)
 | |
| {
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	struct vm_area_struct *iter_vma;
 | |
| 	struct address_space *mapping;
 | |
| 	pgoff_t pgoff;
 | |
| 
 | |
| 	/*
 | |
| 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
 | |
| 	 * from page cache lookup which is in HPAGE_SIZE units.
 | |
| 	 */
 | |
| 	address = address & huge_page_mask(h);
 | |
| 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
 | |
| 			vma->vm_pgoff;
 | |
| 	mapping = vma->vm_file->f_mapping;
 | |
| 
 | |
| 	/*
 | |
| 	 * Take the mapping lock for the duration of the table walk. As
 | |
| 	 * this mapping should be shared between all the VMAs,
 | |
| 	 * __unmap_hugepage_range() is called as the lock is already held
 | |
| 	 */
 | |
| 	i_mmap_lock_write(mapping);
 | |
| 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
 | |
| 		/* Do not unmap the current VMA */
 | |
| 		if (iter_vma == vma)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Shared VMAs have their own reserves and do not affect
 | |
| 		 * MAP_PRIVATE accounting but it is possible that a shared
 | |
| 		 * VMA is using the same page so check and skip such VMAs.
 | |
| 		 */
 | |
| 		if (iter_vma->vm_flags & VM_MAYSHARE)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Unmap the page from other VMAs without their own reserves.
 | |
| 		 * They get marked to be SIGKILLed if they fault in these
 | |
| 		 * areas. This is because a future no-page fault on this VMA
 | |
| 		 * could insert a zeroed page instead of the data existing
 | |
| 		 * from the time of fork. This would look like data corruption
 | |
| 		 */
 | |
| 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
 | |
| 			unmap_hugepage_range(iter_vma, address,
 | |
| 					     address + huge_page_size(h), page);
 | |
| 	}
 | |
| 	i_mmap_unlock_write(mapping);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hugetlb_cow() should be called with page lock of the original hugepage held.
 | |
|  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 | |
|  * cannot race with other handlers or page migration.
 | |
|  * Keep the pte_same checks anyway to make transition from the mutex easier.
 | |
|  */
 | |
| static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 			unsigned long address, pte_t *ptep, pte_t pte,
 | |
| 			struct page *pagecache_page, spinlock_t *ptl)
 | |
| {
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	struct page *old_page, *new_page;
 | |
| 	int ret = 0, outside_reserve = 0;
 | |
| 	unsigned long mmun_start;	/* For mmu_notifiers */
 | |
| 	unsigned long mmun_end;		/* For mmu_notifiers */
 | |
| 
 | |
| 	old_page = pte_page(pte);
 | |
| 
 | |
| retry_avoidcopy:
 | |
| 	/* If no-one else is actually using this page, avoid the copy
 | |
| 	 * and just make the page writable */
 | |
| 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
 | |
| 		page_move_anon_rmap(old_page, vma);
 | |
| 		set_huge_ptep_writable(vma, address, ptep);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the process that created a MAP_PRIVATE mapping is about to
 | |
| 	 * perform a COW due to a shared page count, attempt to satisfy
 | |
| 	 * the allocation without using the existing reserves. The pagecache
 | |
| 	 * page is used to determine if the reserve at this address was
 | |
| 	 * consumed or not. If reserves were used, a partial faulted mapping
 | |
| 	 * at the time of fork() could consume its reserves on COW instead
 | |
| 	 * of the full address range.
 | |
| 	 */
 | |
| 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
 | |
| 			old_page != pagecache_page)
 | |
| 		outside_reserve = 1;
 | |
| 
 | |
| 	get_page(old_page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop page table lock as buddy allocator may be called. It will
 | |
| 	 * be acquired again before returning to the caller, as expected.
 | |
| 	 */
 | |
| 	spin_unlock(ptl);
 | |
| 	new_page = alloc_huge_page(vma, address, outside_reserve);
 | |
| 
 | |
| 	if (IS_ERR(new_page)) {
 | |
| 		/*
 | |
| 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
 | |
| 		 * it is due to references held by a child and an insufficient
 | |
| 		 * huge page pool. To guarantee the original mappers
 | |
| 		 * reliability, unmap the page from child processes. The child
 | |
| 		 * may get SIGKILLed if it later faults.
 | |
| 		 */
 | |
| 		if (outside_reserve) {
 | |
| 			put_page(old_page);
 | |
| 			BUG_ON(huge_pte_none(pte));
 | |
| 			unmap_ref_private(mm, vma, old_page, address);
 | |
| 			BUG_ON(huge_pte_none(pte));
 | |
| 			spin_lock(ptl);
 | |
| 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
 | |
| 			if (likely(ptep &&
 | |
| 				   pte_same(huge_ptep_get(ptep), pte)))
 | |
| 				goto retry_avoidcopy;
 | |
| 			/*
 | |
| 			 * race occurs while re-acquiring page table
 | |
| 			 * lock, and our job is done.
 | |
| 			 */
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
 | |
| 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
 | |
| 		goto out_release_old;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When the original hugepage is shared one, it does not have
 | |
| 	 * anon_vma prepared.
 | |
| 	 */
 | |
| 	if (unlikely(anon_vma_prepare(vma))) {
 | |
| 		ret = VM_FAULT_OOM;
 | |
| 		goto out_release_all;
 | |
| 	}
 | |
| 
 | |
| 	copy_user_huge_page(new_page, old_page, address, vma,
 | |
| 			    pages_per_huge_page(h));
 | |
| 	__SetPageUptodate(new_page);
 | |
| 	set_page_huge_active(new_page);
 | |
| 
 | |
| 	mmun_start = address & huge_page_mask(h);
 | |
| 	mmun_end = mmun_start + huge_page_size(h);
 | |
| 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Retake the page table lock to check for racing updates
 | |
| 	 * before the page tables are altered
 | |
| 	 */
 | |
| 	spin_lock(ptl);
 | |
| 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
 | |
| 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
 | |
| 		ClearPagePrivate(new_page);
 | |
| 
 | |
| 		/* Break COW */
 | |
| 		huge_ptep_clear_flush(vma, address, ptep);
 | |
| 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
 | |
| 		set_huge_pte_at(mm, address, ptep,
 | |
| 				make_huge_pte(vma, new_page, 1));
 | |
| 		page_remove_rmap(old_page, true);
 | |
| 		hugepage_add_new_anon_rmap(new_page, vma, address);
 | |
| 		/* Make the old page be freed below */
 | |
| 		new_page = old_page;
 | |
| 	}
 | |
| 	spin_unlock(ptl);
 | |
| 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 | |
| out_release_all:
 | |
| 	put_page(new_page);
 | |
| out_release_old:
 | |
| 	put_page(old_page);
 | |
| 
 | |
| 	spin_lock(ptl); /* Caller expects lock to be held */
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Return the pagecache page at a given address within a VMA */
 | |
| static struct page *hugetlbfs_pagecache_page(struct hstate *h,
 | |
| 			struct vm_area_struct *vma, unsigned long address)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 	pgoff_t idx;
 | |
| 
 | |
| 	mapping = vma->vm_file->f_mapping;
 | |
| 	idx = vma_hugecache_offset(h, vma, address);
 | |
| 
 | |
| 	return find_lock_page(mapping, idx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return whether there is a pagecache page to back given address within VMA.
 | |
|  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 | |
|  */
 | |
| static bool hugetlbfs_pagecache_present(struct hstate *h,
 | |
| 			struct vm_area_struct *vma, unsigned long address)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 	pgoff_t idx;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	mapping = vma->vm_file->f_mapping;
 | |
| 	idx = vma_hugecache_offset(h, vma, address);
 | |
| 
 | |
| 	page = find_get_page(mapping, idx);
 | |
| 	if (page)
 | |
| 		put_page(page);
 | |
| 	return page != NULL;
 | |
| }
 | |
| 
 | |
| int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
 | |
| 			   pgoff_t idx)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	ClearPagePrivate(page);
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	inode->i_blocks += blocks_per_huge_page(h);
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 			   struct address_space *mapping, pgoff_t idx,
 | |
| 			   unsigned long address, pte_t *ptep, unsigned int flags)
 | |
| {
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	int ret = VM_FAULT_SIGBUS;
 | |
| 	int anon_rmap = 0;
 | |
| 	unsigned long size;
 | |
| 	struct page *page;
 | |
| 	pte_t new_pte;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently, we are forced to kill the process in the event the
 | |
| 	 * original mapper has unmapped pages from the child due to a failed
 | |
| 	 * COW. Warn that such a situation has occurred as it may not be obvious
 | |
| 	 */
 | |
| 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
 | |
| 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
 | |
| 			   current->pid);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use page lock to guard against racing truncation
 | |
| 	 * before we get page_table_lock.
 | |
| 	 */
 | |
| retry:
 | |
| 	page = find_lock_page(mapping, idx);
 | |
| 	if (!page) {
 | |
| 		size = i_size_read(mapping->host) >> huge_page_shift(h);
 | |
| 		if (idx >= size)
 | |
| 			goto out;
 | |
| 		page = alloc_huge_page(vma, address, 0);
 | |
| 		if (IS_ERR(page)) {
 | |
| 			ret = PTR_ERR(page);
 | |
| 			if (ret == -ENOMEM)
 | |
| 				ret = VM_FAULT_OOM;
 | |
| 			else
 | |
| 				ret = VM_FAULT_SIGBUS;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		clear_huge_page(page, address, pages_per_huge_page(h));
 | |
| 		__SetPageUptodate(page);
 | |
| 		set_page_huge_active(page);
 | |
| 
 | |
| 		if (vma->vm_flags & VM_MAYSHARE) {
 | |
| 			int err = huge_add_to_page_cache(page, mapping, idx);
 | |
| 			if (err) {
 | |
| 				put_page(page);
 | |
| 				if (err == -EEXIST)
 | |
| 					goto retry;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} else {
 | |
| 			lock_page(page);
 | |
| 			if (unlikely(anon_vma_prepare(vma))) {
 | |
| 				ret = VM_FAULT_OOM;
 | |
| 				goto backout_unlocked;
 | |
| 			}
 | |
| 			anon_rmap = 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If memory error occurs between mmap() and fault, some process
 | |
| 		 * don't have hwpoisoned swap entry for errored virtual address.
 | |
| 		 * So we need to block hugepage fault by PG_hwpoison bit check.
 | |
| 		 */
 | |
| 		if (unlikely(PageHWPoison(page))) {
 | |
| 			ret = VM_FAULT_HWPOISON |
 | |
| 				VM_FAULT_SET_HINDEX(hstate_index(h));
 | |
| 			goto backout_unlocked;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are going to COW a private mapping later, we examine the
 | |
| 	 * pending reservations for this page now. This will ensure that
 | |
| 	 * any allocations necessary to record that reservation occur outside
 | |
| 	 * the spinlock.
 | |
| 	 */
 | |
| 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
 | |
| 		if (vma_needs_reservation(h, vma, address) < 0) {
 | |
| 			ret = VM_FAULT_OOM;
 | |
| 			goto backout_unlocked;
 | |
| 		}
 | |
| 		/* Just decrements count, does not deallocate */
 | |
| 		vma_end_reservation(h, vma, address);
 | |
| 	}
 | |
| 
 | |
| 	ptl = huge_pte_lockptr(h, mm, ptep);
 | |
| 	spin_lock(ptl);
 | |
| 	size = i_size_read(mapping->host) >> huge_page_shift(h);
 | |
| 	if (idx >= size)
 | |
| 		goto backout;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	if (!huge_pte_none(huge_ptep_get(ptep)))
 | |
| 		goto backout;
 | |
| 
 | |
| 	if (anon_rmap) {
 | |
| 		ClearPagePrivate(page);
 | |
| 		hugepage_add_new_anon_rmap(page, vma, address);
 | |
| 	} else
 | |
| 		page_dup_rmap(page, true);
 | |
| 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
 | |
| 				&& (vma->vm_flags & VM_SHARED)));
 | |
| 	set_huge_pte_at(mm, address, ptep, new_pte);
 | |
| 
 | |
| 	hugetlb_count_add(pages_per_huge_page(h), mm);
 | |
| 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
 | |
| 		/* Optimization, do the COW without a second fault */
 | |
| 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(ptl);
 | |
| 	unlock_page(page);
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| backout:
 | |
| 	spin_unlock(ptl);
 | |
| backout_unlocked:
 | |
| 	unlock_page(page);
 | |
| 	put_page(page);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
 | |
| 			    struct vm_area_struct *vma,
 | |
| 			    struct address_space *mapping,
 | |
| 			    pgoff_t idx, unsigned long address)
 | |
| {
 | |
| 	unsigned long key[2];
 | |
| 	u32 hash;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_SHARED) {
 | |
| 		key[0] = (unsigned long) mapping;
 | |
| 		key[1] = idx;
 | |
| 	} else {
 | |
| 		key[0] = (unsigned long) mm;
 | |
| 		key[1] = address >> huge_page_shift(h);
 | |
| 	}
 | |
| 
 | |
| 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
 | |
| 
 | |
| 	return hash & (num_fault_mutexes - 1);
 | |
| }
 | |
| #else
 | |
| /*
 | |
|  * For uniprocesor systems we always use a single mutex, so just
 | |
|  * return 0 and avoid the hashing overhead.
 | |
|  */
 | |
| u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
 | |
| 			    struct vm_area_struct *vma,
 | |
| 			    struct address_space *mapping,
 | |
| 			    pgoff_t idx, unsigned long address)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 			unsigned long address, unsigned int flags)
 | |
| {
 | |
| 	pte_t *ptep, entry;
 | |
| 	spinlock_t *ptl;
 | |
| 	int ret;
 | |
| 	u32 hash;
 | |
| 	pgoff_t idx;
 | |
| 	struct page *page = NULL;
 | |
| 	struct page *pagecache_page = NULL;
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	struct address_space *mapping;
 | |
| 	int need_wait_lock = 0;
 | |
| 
 | |
| 	address &= huge_page_mask(h);
 | |
| 
 | |
| 	ptep = huge_pte_offset(mm, address);
 | |
| 	if (ptep) {
 | |
| 		entry = huge_ptep_get(ptep);
 | |
| 		if (unlikely(is_hugetlb_entry_migration(entry))) {
 | |
| 			migration_entry_wait_huge(vma, mm, ptep);
 | |
| 			return 0;
 | |
| 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
 | |
| 			return VM_FAULT_HWPOISON_LARGE |
 | |
| 				VM_FAULT_SET_HINDEX(hstate_index(h));
 | |
| 	} else {
 | |
| 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
 | |
| 		if (!ptep)
 | |
| 			return VM_FAULT_OOM;
 | |
| 	}
 | |
| 
 | |
| 	mapping = vma->vm_file->f_mapping;
 | |
| 	idx = vma_hugecache_offset(h, vma, address);
 | |
| 
 | |
| 	/*
 | |
| 	 * Serialize hugepage allocation and instantiation, so that we don't
 | |
| 	 * get spurious allocation failures if two CPUs race to instantiate
 | |
| 	 * the same page in the page cache.
 | |
| 	 */
 | |
| 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
 | |
| 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | |
| 
 | |
| 	entry = huge_ptep_get(ptep);
 | |
| 	if (huge_pte_none(entry)) {
 | |
| 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
 | |
| 		goto out_mutex;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * entry could be a migration/hwpoison entry at this point, so this
 | |
| 	 * check prevents the kernel from going below assuming that we have
 | |
| 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
 | |
| 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
 | |
| 	 * handle it.
 | |
| 	 */
 | |
| 	if (!pte_present(entry))
 | |
| 		goto out_mutex;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are going to COW the mapping later, we examine the pending
 | |
| 	 * reservations for this page now. This will ensure that any
 | |
| 	 * allocations necessary to record that reservation occur outside the
 | |
| 	 * spinlock. For private mappings, we also lookup the pagecache
 | |
| 	 * page now as it is used to determine if a reservation has been
 | |
| 	 * consumed.
 | |
| 	 */
 | |
| 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
 | |
| 		if (vma_needs_reservation(h, vma, address) < 0) {
 | |
| 			ret = VM_FAULT_OOM;
 | |
| 			goto out_mutex;
 | |
| 		}
 | |
| 		/* Just decrements count, does not deallocate */
 | |
| 		vma_end_reservation(h, vma, address);
 | |
| 
 | |
| 		if (!(vma->vm_flags & VM_MAYSHARE))
 | |
| 			pagecache_page = hugetlbfs_pagecache_page(h,
 | |
| 								vma, address);
 | |
| 	}
 | |
| 
 | |
| 	ptl = huge_pte_lock(h, mm, ptep);
 | |
| 
 | |
| 	/* Check for a racing update before calling hugetlb_cow */
 | |
| 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
 | |
| 		goto out_ptl;
 | |
| 
 | |
| 	/*
 | |
| 	 * hugetlb_cow() requires page locks of pte_page(entry) and
 | |
| 	 * pagecache_page, so here we need take the former one
 | |
| 	 * when page != pagecache_page or !pagecache_page.
 | |
| 	 */
 | |
| 	page = pte_page(entry);
 | |
| 	if (page != pagecache_page)
 | |
| 		if (!trylock_page(page)) {
 | |
| 			need_wait_lock = 1;
 | |
| 			goto out_ptl;
 | |
| 		}
 | |
| 
 | |
| 	get_page(page);
 | |
| 
 | |
| 	if (flags & FAULT_FLAG_WRITE) {
 | |
| 		if (!huge_pte_write(entry)) {
 | |
| 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
 | |
| 					pagecache_page, ptl);
 | |
| 			goto out_put_page;
 | |
| 		}
 | |
| 		entry = huge_pte_mkdirty(entry);
 | |
| 	}
 | |
| 	entry = pte_mkyoung(entry);
 | |
| 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
 | |
| 						flags & FAULT_FLAG_WRITE))
 | |
| 		update_mmu_cache(vma, address, ptep);
 | |
| out_put_page:
 | |
| 	if (page != pagecache_page)
 | |
| 		unlock_page(page);
 | |
| 	put_page(page);
 | |
| out_ptl:
 | |
| 	spin_unlock(ptl);
 | |
| 
 | |
| 	if (pagecache_page) {
 | |
| 		unlock_page(pagecache_page);
 | |
| 		put_page(pagecache_page);
 | |
| 	}
 | |
| out_mutex:
 | |
| 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 	/*
 | |
| 	 * Generally it's safe to hold refcount during waiting page lock. But
 | |
| 	 * here we just wait to defer the next page fault to avoid busy loop and
 | |
| 	 * the page is not used after unlocked before returning from the current
 | |
| 	 * page fault. So we are safe from accessing freed page, even if we wait
 | |
| 	 * here without taking refcount.
 | |
| 	 */
 | |
| 	if (need_wait_lock)
 | |
| 		wait_on_page_locked(page);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 			 struct page **pages, struct vm_area_struct **vmas,
 | |
| 			 unsigned long *position, unsigned long *nr_pages,
 | |
| 			 long i, unsigned int flags)
 | |
| {
 | |
| 	unsigned long pfn_offset;
 | |
| 	unsigned long vaddr = *position;
 | |
| 	unsigned long remainder = *nr_pages;
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 
 | |
| 	while (vaddr < vma->vm_end && remainder) {
 | |
| 		pte_t *pte;
 | |
| 		spinlock_t *ptl = NULL;
 | |
| 		int absent;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have a pending SIGKILL, don't keep faulting pages and
 | |
| 		 * potentially allocating memory.
 | |
| 		 */
 | |
| 		if (unlikely(fatal_signal_pending(current))) {
 | |
| 			remainder = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Some archs (sparc64, sh*) have multiple pte_ts to
 | |
| 		 * each hugepage.  We have to make sure we get the
 | |
| 		 * first, for the page indexing below to work.
 | |
| 		 *
 | |
| 		 * Note that page table lock is not held when pte is null.
 | |
| 		 */
 | |
| 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
 | |
| 		if (pte)
 | |
| 			ptl = huge_pte_lock(h, mm, pte);
 | |
| 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
 | |
| 
 | |
| 		/*
 | |
| 		 * When coredumping, it suits get_dump_page if we just return
 | |
| 		 * an error where there's an empty slot with no huge pagecache
 | |
| 		 * to back it.  This way, we avoid allocating a hugepage, and
 | |
| 		 * the sparse dumpfile avoids allocating disk blocks, but its
 | |
| 		 * huge holes still show up with zeroes where they need to be.
 | |
| 		 */
 | |
| 		if (absent && (flags & FOLL_DUMP) &&
 | |
| 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
 | |
| 			if (pte)
 | |
| 				spin_unlock(ptl);
 | |
| 			remainder = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We need call hugetlb_fault for both hugepages under migration
 | |
| 		 * (in which case hugetlb_fault waits for the migration,) and
 | |
| 		 * hwpoisoned hugepages (in which case we need to prevent the
 | |
| 		 * caller from accessing to them.) In order to do this, we use
 | |
| 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
 | |
| 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
 | |
| 		 * both cases, and because we can't follow correct pages
 | |
| 		 * directly from any kind of swap entries.
 | |
| 		 */
 | |
| 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
 | |
| 		    ((flags & FOLL_WRITE) &&
 | |
| 		      !huge_pte_write(huge_ptep_get(pte)))) {
 | |
| 			int ret;
 | |
| 
 | |
| 			if (pte)
 | |
| 				spin_unlock(ptl);
 | |
| 			ret = hugetlb_fault(mm, vma, vaddr,
 | |
| 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
 | |
| 			if (!(ret & VM_FAULT_ERROR))
 | |
| 				continue;
 | |
| 
 | |
| 			remainder = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
 | |
| 		page = pte_page(huge_ptep_get(pte));
 | |
| same_page:
 | |
| 		if (pages) {
 | |
| 			pages[i] = mem_map_offset(page, pfn_offset);
 | |
| 			get_page(pages[i]);
 | |
| 		}
 | |
| 
 | |
| 		if (vmas)
 | |
| 			vmas[i] = vma;
 | |
| 
 | |
| 		vaddr += PAGE_SIZE;
 | |
| 		++pfn_offset;
 | |
| 		--remainder;
 | |
| 		++i;
 | |
| 		if (vaddr < vma->vm_end && remainder &&
 | |
| 				pfn_offset < pages_per_huge_page(h)) {
 | |
| 			/*
 | |
| 			 * We use pfn_offset to avoid touching the pageframes
 | |
| 			 * of this compound page.
 | |
| 			 */
 | |
| 			goto same_page;
 | |
| 		}
 | |
| 		spin_unlock(ptl);
 | |
| 	}
 | |
| 	*nr_pages = remainder;
 | |
| 	*position = vaddr;
 | |
| 
 | |
| 	return i ? i : -EFAULT;
 | |
| }
 | |
| 
 | |
| #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
 | |
| /*
 | |
|  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 | |
|  * implement this.
 | |
|  */
 | |
| #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
 | |
| #endif
 | |
| 
 | |
| unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
 | |
| 		unsigned long address, unsigned long end, pgprot_t newprot)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long start = address;
 | |
| 	pte_t *ptep;
 | |
| 	pte_t pte;
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	unsigned long pages = 0;
 | |
| 
 | |
| 	BUG_ON(address >= end);
 | |
| 	flush_cache_range(vma, address, end);
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_start(mm, start, end);
 | |
| 	i_mmap_lock_write(vma->vm_file->f_mapping);
 | |
| 	for (; address < end; address += huge_page_size(h)) {
 | |
| 		spinlock_t *ptl;
 | |
| 		ptep = huge_pte_offset(mm, address);
 | |
| 		if (!ptep)
 | |
| 			continue;
 | |
| 		ptl = huge_pte_lock(h, mm, ptep);
 | |
| 		if (huge_pmd_unshare(mm, &address, ptep)) {
 | |
| 			pages++;
 | |
| 			spin_unlock(ptl);
 | |
| 			continue;
 | |
| 		}
 | |
| 		pte = huge_ptep_get(ptep);
 | |
| 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
 | |
| 			spin_unlock(ptl);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (unlikely(is_hugetlb_entry_migration(pte))) {
 | |
| 			swp_entry_t entry = pte_to_swp_entry(pte);
 | |
| 
 | |
| 			if (is_write_migration_entry(entry)) {
 | |
| 				pte_t newpte;
 | |
| 
 | |
| 				make_migration_entry_read(&entry);
 | |
| 				newpte = swp_entry_to_pte(entry);
 | |
| 				set_huge_pte_at(mm, address, ptep, newpte);
 | |
| 				pages++;
 | |
| 			}
 | |
| 			spin_unlock(ptl);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!huge_pte_none(pte)) {
 | |
| 			pte = huge_ptep_get_and_clear(mm, address, ptep);
 | |
| 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
 | |
| 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
 | |
| 			set_huge_pte_at(mm, address, ptep, pte);
 | |
| 			pages++;
 | |
| 		}
 | |
| 		spin_unlock(ptl);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
 | |
| 	 * may have cleared our pud entry and done put_page on the page table:
 | |
| 	 * once we release i_mmap_rwsem, another task can do the final put_page
 | |
| 	 * and that page table be reused and filled with junk.
 | |
| 	 */
 | |
| 	flush_hugetlb_tlb_range(vma, start, end);
 | |
| 	mmu_notifier_invalidate_range(mm, start, end);
 | |
| 	i_mmap_unlock_write(vma->vm_file->f_mapping);
 | |
| 	mmu_notifier_invalidate_range_end(mm, start, end);
 | |
| 
 | |
| 	return pages << h->order;
 | |
| }
 | |
| 
 | |
| int hugetlb_reserve_pages(struct inode *inode,
 | |
| 					long from, long to,
 | |
| 					struct vm_area_struct *vma,
 | |
| 					vm_flags_t vm_flags)
 | |
| {
 | |
| 	long ret, chg;
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	struct hugepage_subpool *spool = subpool_inode(inode);
 | |
| 	struct resv_map *resv_map;
 | |
| 	long gbl_reserve;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only apply hugepage reservation if asked. At fault time, an
 | |
| 	 * attempt will be made for VM_NORESERVE to allocate a page
 | |
| 	 * without using reserves
 | |
| 	 */
 | |
| 	if (vm_flags & VM_NORESERVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Shared mappings base their reservation on the number of pages that
 | |
| 	 * are already allocated on behalf of the file. Private mappings need
 | |
| 	 * to reserve the full area even if read-only as mprotect() may be
 | |
| 	 * called to make the mapping read-write. Assume !vma is a shm mapping
 | |
| 	 */
 | |
| 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
 | |
| 		resv_map = inode_resv_map(inode);
 | |
| 
 | |
| 		chg = region_chg(resv_map, from, to);
 | |
| 
 | |
| 	} else {
 | |
| 		resv_map = resv_map_alloc();
 | |
| 		if (!resv_map)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		chg = to - from;
 | |
| 
 | |
| 		set_vma_resv_map(vma, resv_map);
 | |
| 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
 | |
| 	}
 | |
| 
 | |
| 	if (chg < 0) {
 | |
| 		ret = chg;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * There must be enough pages in the subpool for the mapping. If
 | |
| 	 * the subpool has a minimum size, there may be some global
 | |
| 	 * reservations already in place (gbl_reserve).
 | |
| 	 */
 | |
| 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
 | |
| 	if (gbl_reserve < 0) {
 | |
| 		ret = -ENOSPC;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check enough hugepages are available for the reservation.
 | |
| 	 * Hand the pages back to the subpool if there are not
 | |
| 	 */
 | |
| 	ret = hugetlb_acct_memory(h, gbl_reserve);
 | |
| 	if (ret < 0) {
 | |
| 		/* put back original number of pages, chg */
 | |
| 		(void)hugepage_subpool_put_pages(spool, chg);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Account for the reservations made. Shared mappings record regions
 | |
| 	 * that have reservations as they are shared by multiple VMAs.
 | |
| 	 * When the last VMA disappears, the region map says how much
 | |
| 	 * the reservation was and the page cache tells how much of
 | |
| 	 * the reservation was consumed. Private mappings are per-VMA and
 | |
| 	 * only the consumed reservations are tracked. When the VMA
 | |
| 	 * disappears, the original reservation is the VMA size and the
 | |
| 	 * consumed reservations are stored in the map. Hence, nothing
 | |
| 	 * else has to be done for private mappings here
 | |
| 	 */
 | |
| 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
 | |
| 		long add = region_add(resv_map, from, to);
 | |
| 
 | |
| 		if (unlikely(chg > add)) {
 | |
| 			/*
 | |
| 			 * pages in this range were added to the reserve
 | |
| 			 * map between region_chg and region_add.  This
 | |
| 			 * indicates a race with alloc_huge_page.  Adjust
 | |
| 			 * the subpool and reserve counts modified above
 | |
| 			 * based on the difference.
 | |
| 			 */
 | |
| 			long rsv_adjust;
 | |
| 
 | |
| 			rsv_adjust = hugepage_subpool_put_pages(spool,
 | |
| 								chg - add);
 | |
| 			hugetlb_acct_memory(h, -rsv_adjust);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| out_err:
 | |
| 	if (!vma || vma->vm_flags & VM_MAYSHARE)
 | |
| 		region_abort(resv_map, from, to);
 | |
| 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 | |
| 		kref_put(&resv_map->refs, resv_map_release);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
 | |
| 								long freed)
 | |
| {
 | |
| 	struct hstate *h = hstate_inode(inode);
 | |
| 	struct resv_map *resv_map = inode_resv_map(inode);
 | |
| 	long chg = 0;
 | |
| 	struct hugepage_subpool *spool = subpool_inode(inode);
 | |
| 	long gbl_reserve;
 | |
| 
 | |
| 	if (resv_map) {
 | |
| 		chg = region_del(resv_map, start, end);
 | |
| 		/*
 | |
| 		 * region_del() can fail in the rare case where a region
 | |
| 		 * must be split and another region descriptor can not be
 | |
| 		 * allocated.  If end == LONG_MAX, it will not fail.
 | |
| 		 */
 | |
| 		if (chg < 0)
 | |
| 			return chg;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the subpool has a minimum size, the number of global
 | |
| 	 * reservations to be released may be adjusted.
 | |
| 	 */
 | |
| 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
 | |
| 	hugetlb_acct_memory(h, -gbl_reserve);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
 | |
| static unsigned long page_table_shareable(struct vm_area_struct *svma,
 | |
| 				struct vm_area_struct *vma,
 | |
| 				unsigned long addr, pgoff_t idx)
 | |
| {
 | |
| 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
 | |
| 				svma->vm_start;
 | |
| 	unsigned long sbase = saddr & PUD_MASK;
 | |
| 	unsigned long s_end = sbase + PUD_SIZE;
 | |
| 
 | |
| 	/* Allow segments to share if only one is marked locked */
 | |
| 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 | |
| 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * match the virtual addresses, permission and the alignment of the
 | |
| 	 * page table page.
 | |
| 	 */
 | |
| 	if (pmd_index(addr) != pmd_index(saddr) ||
 | |
| 	    vm_flags != svm_flags ||
 | |
| 	    sbase < svma->vm_start || svma->vm_end < s_end)
 | |
| 		return 0;
 | |
| 
 | |
| 	return saddr;
 | |
| }
 | |
| 
 | |
| static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	unsigned long base = addr & PUD_MASK;
 | |
| 	unsigned long end = base + PUD_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * check on proper vm_flags and page table alignment
 | |
| 	 */
 | |
| 	if (vma->vm_flags & VM_MAYSHARE &&
 | |
| 	    vma->vm_start <= base && end <= vma->vm_end)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 | |
|  * and returns the corresponding pte. While this is not necessary for the
 | |
|  * !shared pmd case because we can allocate the pmd later as well, it makes the
 | |
|  * code much cleaner. pmd allocation is essential for the shared case because
 | |
|  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
 | |
|  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 | |
|  * bad pmd for sharing.
 | |
|  */
 | |
| pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 | |
| {
 | |
| 	struct vm_area_struct *vma = find_vma(mm, addr);
 | |
| 	struct address_space *mapping = vma->vm_file->f_mapping;
 | |
| 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
 | |
| 			vma->vm_pgoff;
 | |
| 	struct vm_area_struct *svma;
 | |
| 	unsigned long saddr;
 | |
| 	pte_t *spte = NULL;
 | |
| 	pte_t *pte;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	if (!vma_shareable(vma, addr))
 | |
| 		return (pte_t *)pmd_alloc(mm, pud, addr);
 | |
| 
 | |
| 	i_mmap_lock_write(mapping);
 | |
| 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
 | |
| 		if (svma == vma)
 | |
| 			continue;
 | |
| 
 | |
| 		saddr = page_table_shareable(svma, vma, addr, idx);
 | |
| 		if (saddr) {
 | |
| 			spte = huge_pte_offset(svma->vm_mm, saddr);
 | |
| 			if (spte) {
 | |
| 				get_page(virt_to_page(spte));
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!spte)
 | |
| 		goto out;
 | |
| 
 | |
| 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
 | |
| 	spin_lock(ptl);
 | |
| 	if (pud_none(*pud)) {
 | |
| 		pud_populate(mm, pud,
 | |
| 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
 | |
| 		mm_inc_nr_pmds(mm);
 | |
| 	} else {
 | |
| 		put_page(virt_to_page(spte));
 | |
| 	}
 | |
| 	spin_unlock(ptl);
 | |
| out:
 | |
| 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
 | |
| 	i_mmap_unlock_write(mapping);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * unmap huge page backed by shared pte.
 | |
|  *
 | |
|  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 | |
|  * indicated by page_count > 1, unmap is achieved by clearing pud and
 | |
|  * decrementing the ref count. If count == 1, the pte page is not shared.
 | |
|  *
 | |
|  * called with page table lock held.
 | |
|  *
 | |
|  * returns: 1 successfully unmapped a shared pte page
 | |
|  *	    0 the underlying pte page is not shared, or it is the last user
 | |
|  */
 | |
| int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 | |
| {
 | |
| 	pgd_t *pgd = pgd_offset(mm, *addr);
 | |
| 	pud_t *pud = pud_offset(pgd, *addr);
 | |
| 
 | |
| 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
 | |
| 	if (page_count(virt_to_page(ptep)) == 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	pud_clear(pud);
 | |
| 	put_page(virt_to_page(ptep));
 | |
| 	mm_dec_nr_pmds(mm);
 | |
| 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
 | |
| 	return 1;
 | |
| }
 | |
| #define want_pmd_share()	(1)
 | |
| #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
 | |
| pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #define want_pmd_share()	(0)
 | |
| #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
 | |
| 
 | |
| #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
 | |
| pte_t *huge_pte_alloc(struct mm_struct *mm,
 | |
| 			unsigned long addr, unsigned long sz)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pte_t *pte = NULL;
 | |
| 
 | |
| 	pgd = pgd_offset(mm, addr);
 | |
| 	pud = pud_alloc(mm, pgd, addr);
 | |
| 	if (pud) {
 | |
| 		if (sz == PUD_SIZE) {
 | |
| 			pte = (pte_t *)pud;
 | |
| 		} else {
 | |
| 			BUG_ON(sz != PMD_SIZE);
 | |
| 			if (want_pmd_share() && pud_none(*pud))
 | |
| 				pte = huge_pmd_share(mm, addr, pud);
 | |
| 			else
 | |
| 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
 | |
| 		}
 | |
| 	}
 | |
| 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd = NULL;
 | |
| 
 | |
| 	pgd = pgd_offset(mm, addr);
 | |
| 	if (pgd_present(*pgd)) {
 | |
| 		pud = pud_offset(pgd, addr);
 | |
| 		if (pud_present(*pud)) {
 | |
| 			if (pud_huge(*pud))
 | |
| 				return (pte_t *)pud;
 | |
| 			pmd = pmd_offset(pud, addr);
 | |
| 		}
 | |
| 	}
 | |
| 	return (pte_t *) pmd;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
 | |
| 
 | |
| /*
 | |
|  * These functions are overwritable if your architecture needs its own
 | |
|  * behavior.
 | |
|  */
 | |
| struct page * __weak
 | |
| follow_huge_addr(struct mm_struct *mm, unsigned long address,
 | |
| 			      int write)
 | |
| {
 | |
| 	return ERR_PTR(-EINVAL);
 | |
| }
 | |
| 
 | |
| struct page * __weak
 | |
| follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 | |
| 		pmd_t *pmd, int flags)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	spinlock_t *ptl;
 | |
| retry:
 | |
| 	ptl = pmd_lockptr(mm, pmd);
 | |
| 	spin_lock(ptl);
 | |
| 	/*
 | |
| 	 * make sure that the address range covered by this pmd is not
 | |
| 	 * unmapped from other threads.
 | |
| 	 */
 | |
| 	if (!pmd_huge(*pmd))
 | |
| 		goto out;
 | |
| 	if (pmd_present(*pmd)) {
 | |
| 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
 | |
| 		if (flags & FOLL_GET)
 | |
| 			get_page(page);
 | |
| 	} else {
 | |
| 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
 | |
| 			spin_unlock(ptl);
 | |
| 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * hwpoisoned entry is treated as no_page_table in
 | |
| 		 * follow_page_mask().
 | |
| 		 */
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(ptl);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| struct page * __weak
 | |
| follow_huge_pud(struct mm_struct *mm, unsigned long address,
 | |
| 		pud_t *pud, int flags)
 | |
| {
 | |
| 	if (flags & FOLL_GET)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| 
 | |
| /*
 | |
|  * This function is called from memory failure code.
 | |
|  */
 | |
| int dequeue_hwpoisoned_huge_page(struct page *hpage)
 | |
| {
 | |
| 	struct hstate *h = page_hstate(hpage);
 | |
| 	int nid = page_to_nid(hpage);
 | |
| 	int ret = -EBUSY;
 | |
| 
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	/*
 | |
| 	 * Just checking !page_huge_active is not enough, because that could be
 | |
| 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
 | |
| 	 */
 | |
| 	if (!page_huge_active(hpage) && !page_count(hpage)) {
 | |
| 		/*
 | |
| 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
 | |
| 		 * but dangling hpage->lru can trigger list-debug warnings
 | |
| 		 * (this happens when we call unpoison_memory() on it),
 | |
| 		 * so let it point to itself with list_del_init().
 | |
| 		 */
 | |
| 		list_del_init(&hpage->lru);
 | |
| 		set_page_refcounted(hpage);
 | |
| 		h->free_huge_pages--;
 | |
| 		h->free_huge_pages_node[nid]--;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool isolate_huge_page(struct page *page, struct list_head *list)
 | |
| {
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
 | |
| 		ret = false;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	clear_page_huge_active(page);
 | |
| 	list_move_tail(&page->lru, list);
 | |
| unlock:
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void putback_active_hugepage(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 	spin_lock(&hugetlb_lock);
 | |
| 	set_page_huge_active(page);
 | |
| 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
 | |
| 	spin_unlock(&hugetlb_lock);
 | |
| 	put_page(page);
 | |
| }
 |