mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 16:48:26 +02:00 
			
		
		
		
	 6aa303defb
			
		
	
	
		6aa303defb
		
	
	
	
	
		
			
			Firmware Assisted Dump (FA_DUMP) on ppc64 reserves substantial amounts
of memory when booting a secondary kernel.  Srikar Dronamraju reported
that multiple nodes may have no memory managed by the buddy allocator
but still return true for populated_zone().
Commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") was reported to cause kswapd to spin at 100% CPU usage when
fadump was enabled.  The old code happened to deal with the situation of
a populated node with zero free pages by co-incidence but the current
code tries to reclaim populated zones without realising that is
impossible.
We cannot just convert populated_zone() as many existing users really
need to check for present_pages.  This patch introduces a managed_zone()
helper and uses it in the few cases where it is critical that the check
is made for managed pages -- zonelist construction and page reclaim.
Link: http://lkml.kernel.org/r/20160831195104.GB8119@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			7458 lines
		
	
	
	
		
			202 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7458 lines
		
	
	
	
		
			202 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/page_alloc.c
 | |
|  *
 | |
|  *  Manages the free list, the system allocates free pages here.
 | |
|  *  Note that kmalloc() lives in slab.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *  Swap reorganised 29.12.95, Stephen Tweedie
 | |
|  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 | |
|  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 | |
|  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 | |
|  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 | |
|  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 | |
|  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 | |
|  */
 | |
| 
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kmemcheck.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/vmstat.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/fault-inject.h>
 | |
| #include <linux/page-isolation.h>
 | |
| #include <linux/page_ext.h>
 | |
| #include <linux/debugobjects.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/compaction.h>
 | |
| #include <trace/events/kmem.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/page_ext.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/sched/rt.h>
 | |
| #include <linux/page_owner.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/memcontrol.h>
 | |
| 
 | |
| #include <asm/sections.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/div64.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
 | |
| static DEFINE_MUTEX(pcp_batch_high_lock);
 | |
| #define MIN_PERCPU_PAGELIST_FRACTION	(8)
 | |
| 
 | |
| #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 | |
| DEFINE_PER_CPU(int, numa_node);
 | |
| EXPORT_PER_CPU_SYMBOL(numa_node);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES
 | |
| /*
 | |
|  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 | |
|  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 | |
|  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 | |
|  * defined in <linux/topology.h>.
 | |
|  */
 | |
| DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 | |
| EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 | |
| int _node_numa_mem_[MAX_NUMNODES];
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Array of node states.
 | |
|  */
 | |
| nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 | |
| 	[N_POSSIBLE] = NODE_MASK_ALL,
 | |
| 	[N_ONLINE] = { { [0] = 1UL } },
 | |
| #ifndef CONFIG_NUMA
 | |
| 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 | |
| #endif
 | |
| #ifdef CONFIG_MOVABLE_NODE
 | |
| 	[N_MEMORY] = { { [0] = 1UL } },
 | |
| #endif
 | |
| 	[N_CPU] = { { [0] = 1UL } },
 | |
| #endif	/* NUMA */
 | |
| };
 | |
| EXPORT_SYMBOL(node_states);
 | |
| 
 | |
| /* Protect totalram_pages and zone->managed_pages */
 | |
| static DEFINE_SPINLOCK(managed_page_count_lock);
 | |
| 
 | |
| unsigned long totalram_pages __read_mostly;
 | |
| unsigned long totalreserve_pages __read_mostly;
 | |
| unsigned long totalcma_pages __read_mostly;
 | |
| 
 | |
| int percpu_pagelist_fraction;
 | |
| gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 | |
| 
 | |
| /*
 | |
|  * A cached value of the page's pageblock's migratetype, used when the page is
 | |
|  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 | |
|  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 | |
|  * Also the migratetype set in the page does not necessarily match the pcplist
 | |
|  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 | |
|  * other index - this ensures that it will be put on the correct CMA freelist.
 | |
|  */
 | |
| static inline int get_pcppage_migratetype(struct page *page)
 | |
| {
 | |
| 	return page->index;
 | |
| }
 | |
| 
 | |
| static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 | |
| {
 | |
| 	page->index = migratetype;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| /*
 | |
|  * The following functions are used by the suspend/hibernate code to temporarily
 | |
|  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 | |
|  * while devices are suspended.  To avoid races with the suspend/hibernate code,
 | |
|  * they should always be called with pm_mutex held (gfp_allowed_mask also should
 | |
|  * only be modified with pm_mutex held, unless the suspend/hibernate code is
 | |
|  * guaranteed not to run in parallel with that modification).
 | |
|  */
 | |
| 
 | |
| static gfp_t saved_gfp_mask;
 | |
| 
 | |
| void pm_restore_gfp_mask(void)
 | |
| {
 | |
| 	WARN_ON(!mutex_is_locked(&pm_mutex));
 | |
| 	if (saved_gfp_mask) {
 | |
| 		gfp_allowed_mask = saved_gfp_mask;
 | |
| 		saved_gfp_mask = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void pm_restrict_gfp_mask(void)
 | |
| {
 | |
| 	WARN_ON(!mutex_is_locked(&pm_mutex));
 | |
| 	WARN_ON(saved_gfp_mask);
 | |
| 	saved_gfp_mask = gfp_allowed_mask;
 | |
| 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 | |
| }
 | |
| 
 | |
| bool pm_suspended_storage(void)
 | |
| {
 | |
| 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| #endif /* CONFIG_PM_SLEEP */
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 | |
| unsigned int pageblock_order __read_mostly;
 | |
| #endif
 | |
| 
 | |
| static void __free_pages_ok(struct page *page, unsigned int order);
 | |
| 
 | |
| /*
 | |
|  * results with 256, 32 in the lowmem_reserve sysctl:
 | |
|  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 | |
|  *	1G machine -> (16M dma, 784M normal, 224M high)
 | |
|  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 | |
|  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 | |
|  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 | |
|  *
 | |
|  * TBD: should special case ZONE_DMA32 machines here - in those we normally
 | |
|  * don't need any ZONE_NORMAL reservation
 | |
|  */
 | |
| int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	 256,
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	 256,
 | |
| #endif
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	 32,
 | |
| #endif
 | |
| 	 32,
 | |
| };
 | |
| 
 | |
| EXPORT_SYMBOL(totalram_pages);
 | |
| 
 | |
| static char * const zone_names[MAX_NR_ZONES] = {
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	 "DMA",
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	 "DMA32",
 | |
| #endif
 | |
| 	 "Normal",
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	 "HighMem",
 | |
| #endif
 | |
| 	 "Movable",
 | |
| #ifdef CONFIG_ZONE_DEVICE
 | |
| 	 "Device",
 | |
| #endif
 | |
| };
 | |
| 
 | |
| char * const migratetype_names[MIGRATE_TYPES] = {
 | |
| 	"Unmovable",
 | |
| 	"Movable",
 | |
| 	"Reclaimable",
 | |
| 	"HighAtomic",
 | |
| #ifdef CONFIG_CMA
 | |
| 	"CMA",
 | |
| #endif
 | |
| #ifdef CONFIG_MEMORY_ISOLATION
 | |
| 	"Isolate",
 | |
| #endif
 | |
| };
 | |
| 
 | |
| compound_page_dtor * const compound_page_dtors[] = {
 | |
| 	NULL,
 | |
| 	free_compound_page,
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 	free_huge_page,
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	free_transhuge_page,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| int min_free_kbytes = 1024;
 | |
| int user_min_free_kbytes = -1;
 | |
| int watermark_scale_factor = 10;
 | |
| 
 | |
| static unsigned long __meminitdata nr_kernel_pages;
 | |
| static unsigned long __meminitdata nr_all_pages;
 | |
| static unsigned long __meminitdata dma_reserve;
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 | |
| static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 | |
| static unsigned long __initdata required_kernelcore;
 | |
| static unsigned long __initdata required_movablecore;
 | |
| static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 | |
| static bool mirrored_kernelcore;
 | |
| 
 | |
| /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 | |
| int movable_zone;
 | |
| EXPORT_SYMBOL(movable_zone);
 | |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| 
 | |
| #if MAX_NUMNODES > 1
 | |
| int nr_node_ids __read_mostly = MAX_NUMNODES;
 | |
| int nr_online_nodes __read_mostly = 1;
 | |
| EXPORT_SYMBOL(nr_node_ids);
 | |
| EXPORT_SYMBOL(nr_online_nodes);
 | |
| #endif
 | |
| 
 | |
| int page_group_by_mobility_disabled __read_mostly;
 | |
| 
 | |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | |
| static inline void reset_deferred_meminit(pg_data_t *pgdat)
 | |
| {
 | |
| 	pgdat->first_deferred_pfn = ULONG_MAX;
 | |
| }
 | |
| 
 | |
| /* Returns true if the struct page for the pfn is uninitialised */
 | |
| static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 | |
| {
 | |
| 	int nid = early_pfn_to_nid(pfn);
 | |
| 
 | |
| 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns false when the remaining initialisation should be deferred until
 | |
|  * later in the boot cycle when it can be parallelised.
 | |
|  */
 | |
| static inline bool update_defer_init(pg_data_t *pgdat,
 | |
| 				unsigned long pfn, unsigned long zone_end,
 | |
| 				unsigned long *nr_initialised)
 | |
| {
 | |
| 	unsigned long max_initialise;
 | |
| 
 | |
| 	/* Always populate low zones for address-contrained allocations */
 | |
| 	if (zone_end < pgdat_end_pfn(pgdat))
 | |
| 		return true;
 | |
| 	/*
 | |
| 	 * Initialise at least 2G of a node but also take into account that
 | |
| 	 * two large system hashes that can take up 1GB for 0.25TB/node.
 | |
| 	 */
 | |
| 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
 | |
| 		(pgdat->node_spanned_pages >> 8));
 | |
| 
 | |
| 	(*nr_initialised)++;
 | |
| 	if ((*nr_initialised > max_initialise) &&
 | |
| 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 | |
| 		pgdat->first_deferred_pfn = pfn;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #else
 | |
| static inline void reset_deferred_meminit(pg_data_t *pgdat)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool early_page_uninitialised(unsigned long pfn)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool update_defer_init(pg_data_t *pgdat,
 | |
| 				unsigned long pfn, unsigned long zone_end,
 | |
| 				unsigned long *nr_initialised)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Return a pointer to the bitmap storing bits affecting a block of pages */
 | |
| static inline unsigned long *get_pageblock_bitmap(struct page *page,
 | |
| 							unsigned long pfn)
 | |
| {
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| 	return __pfn_to_section(pfn)->pageblock_flags;
 | |
| #else
 | |
| 	return page_zone(page)->pageblock_flags;
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| }
 | |
| 
 | |
| static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 | |
| {
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| 	pfn &= (PAGES_PER_SECTION-1);
 | |
| 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 | |
| #else
 | |
| 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 | |
| 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 | |
|  * @page: The page within the block of interest
 | |
|  * @pfn: The target page frame number
 | |
|  * @end_bitidx: The last bit of interest to retrieve
 | |
|  * @mask: mask of bits that the caller is interested in
 | |
|  *
 | |
|  * Return: pageblock_bits flags
 | |
|  */
 | |
| static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 | |
| 					unsigned long pfn,
 | |
| 					unsigned long end_bitidx,
 | |
| 					unsigned long mask)
 | |
| {
 | |
| 	unsigned long *bitmap;
 | |
| 	unsigned long bitidx, word_bitidx;
 | |
| 	unsigned long word;
 | |
| 
 | |
| 	bitmap = get_pageblock_bitmap(page, pfn);
 | |
| 	bitidx = pfn_to_bitidx(page, pfn);
 | |
| 	word_bitidx = bitidx / BITS_PER_LONG;
 | |
| 	bitidx &= (BITS_PER_LONG-1);
 | |
| 
 | |
| 	word = bitmap[word_bitidx];
 | |
| 	bitidx += end_bitidx;
 | |
| 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 | |
| }
 | |
| 
 | |
| unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 | |
| 					unsigned long end_bitidx,
 | |
| 					unsigned long mask)
 | |
| {
 | |
| 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 | |
| }
 | |
| 
 | |
| static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 | |
| {
 | |
| 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 | |
|  * @page: The page within the block of interest
 | |
|  * @flags: The flags to set
 | |
|  * @pfn: The target page frame number
 | |
|  * @end_bitidx: The last bit of interest
 | |
|  * @mask: mask of bits that the caller is interested in
 | |
|  */
 | |
| void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 | |
| 					unsigned long pfn,
 | |
| 					unsigned long end_bitidx,
 | |
| 					unsigned long mask)
 | |
| {
 | |
| 	unsigned long *bitmap;
 | |
| 	unsigned long bitidx, word_bitidx;
 | |
| 	unsigned long old_word, word;
 | |
| 
 | |
| 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 | |
| 
 | |
| 	bitmap = get_pageblock_bitmap(page, pfn);
 | |
| 	bitidx = pfn_to_bitidx(page, pfn);
 | |
| 	word_bitidx = bitidx / BITS_PER_LONG;
 | |
| 	bitidx &= (BITS_PER_LONG-1);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 | |
| 
 | |
| 	bitidx += end_bitidx;
 | |
| 	mask <<= (BITS_PER_LONG - bitidx - 1);
 | |
| 	flags <<= (BITS_PER_LONG - bitidx - 1);
 | |
| 
 | |
| 	word = READ_ONCE(bitmap[word_bitidx]);
 | |
| 	for (;;) {
 | |
| 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 | |
| 		if (word == old_word)
 | |
| 			break;
 | |
| 		word = old_word;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void set_pageblock_migratetype(struct page *page, int migratetype)
 | |
| {
 | |
| 	if (unlikely(page_group_by_mobility_disabled &&
 | |
| 		     migratetype < MIGRATE_PCPTYPES))
 | |
| 		migratetype = MIGRATE_UNMOVABLE;
 | |
| 
 | |
| 	set_pageblock_flags_group(page, (unsigned long)migratetype,
 | |
| 					PB_migrate, PB_migrate_end);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned seq;
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 	unsigned long sp, start_pfn;
 | |
| 
 | |
| 	do {
 | |
| 		seq = zone_span_seqbegin(zone);
 | |
| 		start_pfn = zone->zone_start_pfn;
 | |
| 		sp = zone->spanned_pages;
 | |
| 		if (!zone_spans_pfn(zone, pfn))
 | |
| 			ret = 1;
 | |
| 	} while (zone_span_seqretry(zone, seq));
 | |
| 
 | |
| 	if (ret)
 | |
| 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 | |
| 			pfn, zone_to_nid(zone), zone->name,
 | |
| 			start_pfn, start_pfn + sp);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int page_is_consistent(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	if (!pfn_valid_within(page_to_pfn(page)))
 | |
| 		return 0;
 | |
| 	if (zone != page_zone(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| /*
 | |
|  * Temporary debugging check for pages not lying within a given zone.
 | |
|  */
 | |
| static int bad_range(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	if (page_outside_zone_boundaries(zone, page))
 | |
| 		return 1;
 | |
| 	if (!page_is_consistent(zone, page))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static inline int bad_range(struct zone *zone, struct page *page)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void bad_page(struct page *page, const char *reason,
 | |
| 		unsigned long bad_flags)
 | |
| {
 | |
| 	static unsigned long resume;
 | |
| 	static unsigned long nr_shown;
 | |
| 	static unsigned long nr_unshown;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow a burst of 60 reports, then keep quiet for that minute;
 | |
| 	 * or allow a steady drip of one report per second.
 | |
| 	 */
 | |
| 	if (nr_shown == 60) {
 | |
| 		if (time_before(jiffies, resume)) {
 | |
| 			nr_unshown++;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (nr_unshown) {
 | |
| 			pr_alert(
 | |
| 			      "BUG: Bad page state: %lu messages suppressed\n",
 | |
| 				nr_unshown);
 | |
| 			nr_unshown = 0;
 | |
| 		}
 | |
| 		nr_shown = 0;
 | |
| 	}
 | |
| 	if (nr_shown++ == 0)
 | |
| 		resume = jiffies + 60 * HZ;
 | |
| 
 | |
| 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 | |
| 		current->comm, page_to_pfn(page));
 | |
| 	__dump_page(page, reason);
 | |
| 	bad_flags &= page->flags;
 | |
| 	if (bad_flags)
 | |
| 		pr_alert("bad because of flags: %#lx(%pGp)\n",
 | |
| 						bad_flags, &bad_flags);
 | |
| 	dump_page_owner(page);
 | |
| 
 | |
| 	print_modules();
 | |
| 	dump_stack();
 | |
| out:
 | |
| 	/* Leave bad fields for debug, except PageBuddy could make trouble */
 | |
| 	page_mapcount_reset(page); /* remove PageBuddy */
 | |
| 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Higher-order pages are called "compound pages".  They are structured thusly:
 | |
|  *
 | |
|  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 | |
|  *
 | |
|  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 | |
|  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 | |
|  *
 | |
|  * The first tail page's ->compound_dtor holds the offset in array of compound
 | |
|  * page destructors. See compound_page_dtors.
 | |
|  *
 | |
|  * The first tail page's ->compound_order holds the order of allocation.
 | |
|  * This usage means that zero-order pages may not be compound.
 | |
|  */
 | |
| 
 | |
| void free_compound_page(struct page *page)
 | |
| {
 | |
| 	__free_pages_ok(page, compound_order(page));
 | |
| }
 | |
| 
 | |
| void prep_compound_page(struct page *page, unsigned int order)
 | |
| {
 | |
| 	int i;
 | |
| 	int nr_pages = 1 << order;
 | |
| 
 | |
| 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 | |
| 	set_compound_order(page, order);
 | |
| 	__SetPageHead(page);
 | |
| 	for (i = 1; i < nr_pages; i++) {
 | |
| 		struct page *p = page + i;
 | |
| 		set_page_count(p, 0);
 | |
| 		p->mapping = TAIL_MAPPING;
 | |
| 		set_compound_head(p, page);
 | |
| 	}
 | |
| 	atomic_set(compound_mapcount_ptr(page), -1);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| unsigned int _debug_guardpage_minorder;
 | |
| bool _debug_pagealloc_enabled __read_mostly
 | |
| 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 | |
| EXPORT_SYMBOL(_debug_pagealloc_enabled);
 | |
| bool _debug_guardpage_enabled __read_mostly;
 | |
| 
 | |
| static int __init early_debug_pagealloc(char *buf)
 | |
| {
 | |
| 	if (!buf)
 | |
| 		return -EINVAL;
 | |
| 	return kstrtobool(buf, &_debug_pagealloc_enabled);
 | |
| }
 | |
| early_param("debug_pagealloc", early_debug_pagealloc);
 | |
| 
 | |
| static bool need_debug_guardpage(void)
 | |
| {
 | |
| 	/* If we don't use debug_pagealloc, we don't need guard page */
 | |
| 	if (!debug_pagealloc_enabled())
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void init_debug_guardpage(void)
 | |
| {
 | |
| 	if (!debug_pagealloc_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	_debug_guardpage_enabled = true;
 | |
| }
 | |
| 
 | |
| struct page_ext_operations debug_guardpage_ops = {
 | |
| 	.need = need_debug_guardpage,
 | |
| 	.init = init_debug_guardpage,
 | |
| };
 | |
| 
 | |
| static int __init debug_guardpage_minorder_setup(char *buf)
 | |
| {
 | |
| 	unsigned long res;
 | |
| 
 | |
| 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 | |
| 		pr_err("Bad debug_guardpage_minorder value\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	_debug_guardpage_minorder = res;
 | |
| 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 | |
| 	return 0;
 | |
| }
 | |
| __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
 | |
| 
 | |
| static inline void set_page_guard(struct zone *zone, struct page *page,
 | |
| 				unsigned int order, int migratetype)
 | |
| {
 | |
| 	struct page_ext *page_ext;
 | |
| 
 | |
| 	if (!debug_guardpage_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	page_ext = lookup_page_ext(page);
 | |
| 	if (unlikely(!page_ext))
 | |
| 		return;
 | |
| 
 | |
| 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&page->lru);
 | |
| 	set_page_private(page, order);
 | |
| 	/* Guard pages are not available for any usage */
 | |
| 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 | |
| }
 | |
| 
 | |
| static inline void clear_page_guard(struct zone *zone, struct page *page,
 | |
| 				unsigned int order, int migratetype)
 | |
| {
 | |
| 	struct page_ext *page_ext;
 | |
| 
 | |
| 	if (!debug_guardpage_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	page_ext = lookup_page_ext(page);
 | |
| 	if (unlikely(!page_ext))
 | |
| 		return;
 | |
| 
 | |
| 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 | |
| 
 | |
| 	set_page_private(page, 0);
 | |
| 	if (!is_migrate_isolate(migratetype))
 | |
| 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 | |
| }
 | |
| #else
 | |
| struct page_ext_operations debug_guardpage_ops = { NULL, };
 | |
| static inline void set_page_guard(struct zone *zone, struct page *page,
 | |
| 				unsigned int order, int migratetype) {}
 | |
| static inline void clear_page_guard(struct zone *zone, struct page *page,
 | |
| 				unsigned int order, int migratetype) {}
 | |
| #endif
 | |
| 
 | |
| static inline void set_page_order(struct page *page, unsigned int order)
 | |
| {
 | |
| 	set_page_private(page, order);
 | |
| 	__SetPageBuddy(page);
 | |
| }
 | |
| 
 | |
| static inline void rmv_page_order(struct page *page)
 | |
| {
 | |
| 	__ClearPageBuddy(page);
 | |
| 	set_page_private(page, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function checks whether a page is free && is the buddy
 | |
|  * we can do coalesce a page and its buddy if
 | |
|  * (a) the buddy is not in a hole &&
 | |
|  * (b) the buddy is in the buddy system &&
 | |
|  * (c) a page and its buddy have the same order &&
 | |
|  * (d) a page and its buddy are in the same zone.
 | |
|  *
 | |
|  * For recording whether a page is in the buddy system, we set ->_mapcount
 | |
|  * PAGE_BUDDY_MAPCOUNT_VALUE.
 | |
|  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 | |
|  * serialized by zone->lock.
 | |
|  *
 | |
|  * For recording page's order, we use page_private(page).
 | |
|  */
 | |
| static inline int page_is_buddy(struct page *page, struct page *buddy,
 | |
| 							unsigned int order)
 | |
| {
 | |
| 	if (!pfn_valid_within(page_to_pfn(buddy)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (page_is_guard(buddy) && page_order(buddy) == order) {
 | |
| 		if (page_zone_id(page) != page_zone_id(buddy))
 | |
| 			return 0;
 | |
| 
 | |
| 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (PageBuddy(buddy) && page_order(buddy) == order) {
 | |
| 		/*
 | |
| 		 * zone check is done late to avoid uselessly
 | |
| 		 * calculating zone/node ids for pages that could
 | |
| 		 * never merge.
 | |
| 		 */
 | |
| 		if (page_zone_id(page) != page_zone_id(buddy))
 | |
| 			return 0;
 | |
| 
 | |
| 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Freeing function for a buddy system allocator.
 | |
|  *
 | |
|  * The concept of a buddy system is to maintain direct-mapped table
 | |
|  * (containing bit values) for memory blocks of various "orders".
 | |
|  * The bottom level table contains the map for the smallest allocatable
 | |
|  * units of memory (here, pages), and each level above it describes
 | |
|  * pairs of units from the levels below, hence, "buddies".
 | |
|  * At a high level, all that happens here is marking the table entry
 | |
|  * at the bottom level available, and propagating the changes upward
 | |
|  * as necessary, plus some accounting needed to play nicely with other
 | |
|  * parts of the VM system.
 | |
|  * At each level, we keep a list of pages, which are heads of continuous
 | |
|  * free pages of length of (1 << order) and marked with _mapcount
 | |
|  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 | |
|  * field.
 | |
|  * So when we are allocating or freeing one, we can derive the state of the
 | |
|  * other.  That is, if we allocate a small block, and both were
 | |
|  * free, the remainder of the region must be split into blocks.
 | |
|  * If a block is freed, and its buddy is also free, then this
 | |
|  * triggers coalescing into a block of larger size.
 | |
|  *
 | |
|  * -- nyc
 | |
|  */
 | |
| 
 | |
| static inline void __free_one_page(struct page *page,
 | |
| 		unsigned long pfn,
 | |
| 		struct zone *zone, unsigned int order,
 | |
| 		int migratetype)
 | |
| {
 | |
| 	unsigned long page_idx;
 | |
| 	unsigned long combined_idx;
 | |
| 	unsigned long uninitialized_var(buddy_idx);
 | |
| 	struct page *buddy;
 | |
| 	unsigned int max_order;
 | |
| 
 | |
| 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 | |
| 
 | |
| 	VM_BUG_ON(!zone_is_initialized(zone));
 | |
| 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 | |
| 
 | |
| 	VM_BUG_ON(migratetype == -1);
 | |
| 	if (likely(!is_migrate_isolate(migratetype)))
 | |
| 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 | |
| 
 | |
| 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
 | |
| 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 | |
| 
 | |
| continue_merging:
 | |
| 	while (order < max_order - 1) {
 | |
| 		buddy_idx = __find_buddy_index(page_idx, order);
 | |
| 		buddy = page + (buddy_idx - page_idx);
 | |
| 		if (!page_is_buddy(page, buddy, order))
 | |
| 			goto done_merging;
 | |
| 		/*
 | |
| 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 | |
| 		 * merge with it and move up one order.
 | |
| 		 */
 | |
| 		if (page_is_guard(buddy)) {
 | |
| 			clear_page_guard(zone, buddy, order, migratetype);
 | |
| 		} else {
 | |
| 			list_del(&buddy->lru);
 | |
| 			zone->free_area[order].nr_free--;
 | |
| 			rmv_page_order(buddy);
 | |
| 		}
 | |
| 		combined_idx = buddy_idx & page_idx;
 | |
| 		page = page + (combined_idx - page_idx);
 | |
| 		page_idx = combined_idx;
 | |
| 		order++;
 | |
| 	}
 | |
| 	if (max_order < MAX_ORDER) {
 | |
| 		/* If we are here, it means order is >= pageblock_order.
 | |
| 		 * We want to prevent merge between freepages on isolate
 | |
| 		 * pageblock and normal pageblock. Without this, pageblock
 | |
| 		 * isolation could cause incorrect freepage or CMA accounting.
 | |
| 		 *
 | |
| 		 * We don't want to hit this code for the more frequent
 | |
| 		 * low-order merging.
 | |
| 		 */
 | |
| 		if (unlikely(has_isolate_pageblock(zone))) {
 | |
| 			int buddy_mt;
 | |
| 
 | |
| 			buddy_idx = __find_buddy_index(page_idx, order);
 | |
| 			buddy = page + (buddy_idx - page_idx);
 | |
| 			buddy_mt = get_pageblock_migratetype(buddy);
 | |
| 
 | |
| 			if (migratetype != buddy_mt
 | |
| 					&& (is_migrate_isolate(migratetype) ||
 | |
| 						is_migrate_isolate(buddy_mt)))
 | |
| 				goto done_merging;
 | |
| 		}
 | |
| 		max_order++;
 | |
| 		goto continue_merging;
 | |
| 	}
 | |
| 
 | |
| done_merging:
 | |
| 	set_page_order(page, order);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is not the largest possible page, check if the buddy
 | |
| 	 * of the next-highest order is free. If it is, it's possible
 | |
| 	 * that pages are being freed that will coalesce soon. In case,
 | |
| 	 * that is happening, add the free page to the tail of the list
 | |
| 	 * so it's less likely to be used soon and more likely to be merged
 | |
| 	 * as a higher order page
 | |
| 	 */
 | |
| 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 | |
| 		struct page *higher_page, *higher_buddy;
 | |
| 		combined_idx = buddy_idx & page_idx;
 | |
| 		higher_page = page + (combined_idx - page_idx);
 | |
| 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 | |
| 		higher_buddy = higher_page + (buddy_idx - combined_idx);
 | |
| 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 | |
| 			list_add_tail(&page->lru,
 | |
| 				&zone->free_area[order].free_list[migratetype]);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 | |
| out:
 | |
| 	zone->free_area[order].nr_free++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A bad page could be due to a number of fields. Instead of multiple branches,
 | |
|  * try and check multiple fields with one check. The caller must do a detailed
 | |
|  * check if necessary.
 | |
|  */
 | |
| static inline bool page_expected_state(struct page *page,
 | |
| 					unsigned long check_flags)
 | |
| {
 | |
| 	if (unlikely(atomic_read(&page->_mapcount) != -1))
 | |
| 		return false;
 | |
| 
 | |
| 	if (unlikely((unsigned long)page->mapping |
 | |
| 			page_ref_count(page) |
 | |
| #ifdef CONFIG_MEMCG
 | |
| 			(unsigned long)page->mem_cgroup |
 | |
| #endif
 | |
| 			(page->flags & check_flags)))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void free_pages_check_bad(struct page *page)
 | |
| {
 | |
| 	const char *bad_reason;
 | |
| 	unsigned long bad_flags;
 | |
| 
 | |
| 	bad_reason = NULL;
 | |
| 	bad_flags = 0;
 | |
| 
 | |
| 	if (unlikely(atomic_read(&page->_mapcount) != -1))
 | |
| 		bad_reason = "nonzero mapcount";
 | |
| 	if (unlikely(page->mapping != NULL))
 | |
| 		bad_reason = "non-NULL mapping";
 | |
| 	if (unlikely(page_ref_count(page) != 0))
 | |
| 		bad_reason = "nonzero _refcount";
 | |
| 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 | |
| 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 | |
| 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 | |
| 	}
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	if (unlikely(page->mem_cgroup))
 | |
| 		bad_reason = "page still charged to cgroup";
 | |
| #endif
 | |
| 	bad_page(page, bad_reason, bad_flags);
 | |
| }
 | |
| 
 | |
| static inline int free_pages_check(struct page *page)
 | |
| {
 | |
| 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Something has gone sideways, find it */
 | |
| 	free_pages_check_bad(page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int free_tail_pages_check(struct page *head_page, struct page *page)
 | |
| {
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We rely page->lru.next never has bit 0 set, unless the page
 | |
| 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	switch (page - head_page) {
 | |
| 	case 1:
 | |
| 		/* the first tail page: ->mapping is compound_mapcount() */
 | |
| 		if (unlikely(compound_mapcount(page))) {
 | |
| 			bad_page(page, "nonzero compound_mapcount", 0);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		/*
 | |
| 		 * the second tail page: ->mapping is
 | |
| 		 * page_deferred_list().next -- ignore value.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (page->mapping != TAIL_MAPPING) {
 | |
| 			bad_page(page, "corrupted mapping in tail page", 0);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	if (unlikely(!PageTail(page))) {
 | |
| 		bad_page(page, "PageTail not set", 0);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (unlikely(compound_head(page) != head_page)) {
 | |
| 		bad_page(page, "compound_head not consistent", 0);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	page->mapping = NULL;
 | |
| 	clear_compound_head(page);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static __always_inline bool free_pages_prepare(struct page *page,
 | |
| 					unsigned int order, bool check_free)
 | |
| {
 | |
| 	int bad = 0;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 
 | |
| 	trace_mm_page_free(page, order);
 | |
| 	kmemcheck_free_shadow(page, order);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check tail pages before head page information is cleared to
 | |
| 	 * avoid checking PageCompound for order-0 pages.
 | |
| 	 */
 | |
| 	if (unlikely(order)) {
 | |
| 		bool compound = PageCompound(page);
 | |
| 		int i;
 | |
| 
 | |
| 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
 | |
| 
 | |
| 		if (compound)
 | |
| 			ClearPageDoubleMap(page);
 | |
| 		for (i = 1; i < (1 << order); i++) {
 | |
| 			if (compound)
 | |
| 				bad += free_tail_pages_check(page, page + i);
 | |
| 			if (unlikely(free_pages_check(page + i))) {
 | |
| 				bad++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 | |
| 		}
 | |
| 	}
 | |
| 	if (PageMappingFlags(page))
 | |
| 		page->mapping = NULL;
 | |
| 	if (memcg_kmem_enabled() && PageKmemcg(page))
 | |
| 		memcg_kmem_uncharge(page, order);
 | |
| 	if (check_free)
 | |
| 		bad += free_pages_check(page);
 | |
| 	if (bad)
 | |
| 		return false;
 | |
| 
 | |
| 	page_cpupid_reset_last(page);
 | |
| 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 | |
| 	reset_page_owner(page, order);
 | |
| 
 | |
| 	if (!PageHighMem(page)) {
 | |
| 		debug_check_no_locks_freed(page_address(page),
 | |
| 					   PAGE_SIZE << order);
 | |
| 		debug_check_no_obj_freed(page_address(page),
 | |
| 					   PAGE_SIZE << order);
 | |
| 	}
 | |
| 	arch_free_page(page, order);
 | |
| 	kernel_poison_pages(page, 1 << order, 0);
 | |
| 	kernel_map_pages(page, 1 << order, 0);
 | |
| 	kasan_free_pages(page, order);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static inline bool free_pcp_prepare(struct page *page)
 | |
| {
 | |
| 	return free_pages_prepare(page, 0, true);
 | |
| }
 | |
| 
 | |
| static inline bool bulkfree_pcp_prepare(struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #else
 | |
| static bool free_pcp_prepare(struct page *page)
 | |
| {
 | |
| 	return free_pages_prepare(page, 0, false);
 | |
| }
 | |
| 
 | |
| static bool bulkfree_pcp_prepare(struct page *page)
 | |
| {
 | |
| 	return free_pages_check(page);
 | |
| }
 | |
| #endif /* CONFIG_DEBUG_VM */
 | |
| 
 | |
| /*
 | |
|  * Frees a number of pages from the PCP lists
 | |
|  * Assumes all pages on list are in same zone, and of same order.
 | |
|  * count is the number of pages to free.
 | |
|  *
 | |
|  * If the zone was previously in an "all pages pinned" state then look to
 | |
|  * see if this freeing clears that state.
 | |
|  *
 | |
|  * And clear the zone's pages_scanned counter, to hold off the "all pages are
 | |
|  * pinned" detection logic.
 | |
|  */
 | |
| static void free_pcppages_bulk(struct zone *zone, int count,
 | |
| 					struct per_cpu_pages *pcp)
 | |
| {
 | |
| 	int migratetype = 0;
 | |
| 	int batch_free = 0;
 | |
| 	unsigned long nr_scanned;
 | |
| 	bool isolated_pageblocks;
 | |
| 
 | |
| 	spin_lock(&zone->lock);
 | |
| 	isolated_pageblocks = has_isolate_pageblock(zone);
 | |
| 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
 | |
| 	if (nr_scanned)
 | |
| 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
 | |
| 
 | |
| 	while (count) {
 | |
| 		struct page *page;
 | |
| 		struct list_head *list;
 | |
| 
 | |
| 		/*
 | |
| 		 * Remove pages from lists in a round-robin fashion. A
 | |
| 		 * batch_free count is maintained that is incremented when an
 | |
| 		 * empty list is encountered.  This is so more pages are freed
 | |
| 		 * off fuller lists instead of spinning excessively around empty
 | |
| 		 * lists
 | |
| 		 */
 | |
| 		do {
 | |
| 			batch_free++;
 | |
| 			if (++migratetype == MIGRATE_PCPTYPES)
 | |
| 				migratetype = 0;
 | |
| 			list = &pcp->lists[migratetype];
 | |
| 		} while (list_empty(list));
 | |
| 
 | |
| 		/* This is the only non-empty list. Free them all. */
 | |
| 		if (batch_free == MIGRATE_PCPTYPES)
 | |
| 			batch_free = count;
 | |
| 
 | |
| 		do {
 | |
| 			int mt;	/* migratetype of the to-be-freed page */
 | |
| 
 | |
| 			page = list_last_entry(list, struct page, lru);
 | |
| 			/* must delete as __free_one_page list manipulates */
 | |
| 			list_del(&page->lru);
 | |
| 
 | |
| 			mt = get_pcppage_migratetype(page);
 | |
| 			/* MIGRATE_ISOLATE page should not go to pcplists */
 | |
| 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
 | |
| 			/* Pageblock could have been isolated meanwhile */
 | |
| 			if (unlikely(isolated_pageblocks))
 | |
| 				mt = get_pageblock_migratetype(page);
 | |
| 
 | |
| 			if (bulkfree_pcp_prepare(page))
 | |
| 				continue;
 | |
| 
 | |
| 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
 | |
| 			trace_mm_page_pcpu_drain(page, 0, mt);
 | |
| 		} while (--count && --batch_free && !list_empty(list));
 | |
| 	}
 | |
| 	spin_unlock(&zone->lock);
 | |
| }
 | |
| 
 | |
| static void free_one_page(struct zone *zone,
 | |
| 				struct page *page, unsigned long pfn,
 | |
| 				unsigned int order,
 | |
| 				int migratetype)
 | |
| {
 | |
| 	unsigned long nr_scanned;
 | |
| 	spin_lock(&zone->lock);
 | |
| 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
 | |
| 	if (nr_scanned)
 | |
| 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
 | |
| 
 | |
| 	if (unlikely(has_isolate_pageblock(zone) ||
 | |
| 		is_migrate_isolate(migratetype))) {
 | |
| 		migratetype = get_pfnblock_migratetype(page, pfn);
 | |
| 	}
 | |
| 	__free_one_page(page, pfn, zone, order, migratetype);
 | |
| 	spin_unlock(&zone->lock);
 | |
| }
 | |
| 
 | |
| static void __meminit __init_single_page(struct page *page, unsigned long pfn,
 | |
| 				unsigned long zone, int nid)
 | |
| {
 | |
| 	set_page_links(page, zone, nid, pfn);
 | |
| 	init_page_count(page);
 | |
| 	page_mapcount_reset(page);
 | |
| 	page_cpupid_reset_last(page);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&page->lru);
 | |
| #ifdef WANT_PAGE_VIRTUAL
 | |
| 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
 | |
| 	if (!is_highmem_idx(zone))
 | |
| 		set_page_address(page, __va(pfn << PAGE_SHIFT));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
 | |
| 					int nid)
 | |
| {
 | |
| 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | |
| static void init_reserved_page(unsigned long pfn)
 | |
| {
 | |
| 	pg_data_t *pgdat;
 | |
| 	int nid, zid;
 | |
| 
 | |
| 	if (!early_page_uninitialised(pfn))
 | |
| 		return;
 | |
| 
 | |
| 	nid = early_pfn_to_nid(pfn);
 | |
| 	pgdat = NODE_DATA(nid);
 | |
| 
 | |
| 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | |
| 		struct zone *zone = &pgdat->node_zones[zid];
 | |
| 
 | |
| 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
 | |
| 			break;
 | |
| 	}
 | |
| 	__init_single_pfn(pfn, zid, nid);
 | |
| }
 | |
| #else
 | |
| static inline void init_reserved_page(unsigned long pfn)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 | |
| 
 | |
| /*
 | |
|  * Initialised pages do not have PageReserved set. This function is
 | |
|  * called for each range allocated by the bootmem allocator and
 | |
|  * marks the pages PageReserved. The remaining valid pages are later
 | |
|  * sent to the buddy page allocator.
 | |
|  */
 | |
| void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
 | |
| {
 | |
| 	unsigned long start_pfn = PFN_DOWN(start);
 | |
| 	unsigned long end_pfn = PFN_UP(end);
 | |
| 
 | |
| 	for (; start_pfn < end_pfn; start_pfn++) {
 | |
| 		if (pfn_valid(start_pfn)) {
 | |
| 			struct page *page = pfn_to_page(start_pfn);
 | |
| 
 | |
| 			init_reserved_page(start_pfn);
 | |
| 
 | |
| 			/* Avoid false-positive PageTail() */
 | |
| 			INIT_LIST_HEAD(&page->lru);
 | |
| 
 | |
| 			SetPageReserved(page);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __free_pages_ok(struct page *page, unsigned int order)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int migratetype;
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 
 | |
| 	if (!free_pages_prepare(page, order, true))
 | |
| 		return;
 | |
| 
 | |
| 	migratetype = get_pfnblock_migratetype(page, pfn);
 | |
| 	local_irq_save(flags);
 | |
| 	__count_vm_events(PGFREE, 1 << order);
 | |
| 	free_one_page(page_zone(page), page, pfn, order, migratetype);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static void __init __free_pages_boot_core(struct page *page, unsigned int order)
 | |
| {
 | |
| 	unsigned int nr_pages = 1 << order;
 | |
| 	struct page *p = page;
 | |
| 	unsigned int loop;
 | |
| 
 | |
| 	prefetchw(p);
 | |
| 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
 | |
| 		prefetchw(p + 1);
 | |
| 		__ClearPageReserved(p);
 | |
| 		set_page_count(p, 0);
 | |
| 	}
 | |
| 	__ClearPageReserved(p);
 | |
| 	set_page_count(p, 0);
 | |
| 
 | |
| 	page_zone(page)->managed_pages += nr_pages;
 | |
| 	set_page_refcounted(page);
 | |
| 	__free_pages(page, order);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
 | |
| 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
 | |
| 
 | |
| static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
 | |
| 
 | |
| int __meminit early_pfn_to_nid(unsigned long pfn)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(early_pfn_lock);
 | |
| 	int nid;
 | |
| 
 | |
| 	spin_lock(&early_pfn_lock);
 | |
| 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
 | |
| 	if (nid < 0)
 | |
| 		nid = first_online_node;
 | |
| 	spin_unlock(&early_pfn_lock);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NODES_SPAN_OTHER_NODES
 | |
| static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
 | |
| 					struct mminit_pfnnid_cache *state)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	nid = __early_pfn_to_nid(pfn, state);
 | |
| 	if (nid >= 0 && nid != node)
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Only safe to use early in boot when initialisation is single-threaded */
 | |
| static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
 | |
| {
 | |
| 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
 | |
| 					struct mminit_pfnnid_cache *state)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
 | |
| 							unsigned int order)
 | |
| {
 | |
| 	if (early_page_uninitialised(pfn))
 | |
| 		return;
 | |
| 	return __free_pages_boot_core(page, order);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the whole (or subset of) a pageblock given by the interval of
 | |
|  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 | |
|  * with the migration of free compaction scanner. The scanners then need to
 | |
|  * use only pfn_valid_within() check for arches that allow holes within
 | |
|  * pageblocks.
 | |
|  *
 | |
|  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 | |
|  *
 | |
|  * It's possible on some configurations to have a setup like node0 node1 node0
 | |
|  * i.e. it's possible that all pages within a zones range of pages do not
 | |
|  * belong to a single zone. We assume that a border between node0 and node1
 | |
|  * can occur within a single pageblock, but not a node0 node1 node0
 | |
|  * interleaving within a single pageblock. It is therefore sufficient to check
 | |
|  * the first and last page of a pageblock and avoid checking each individual
 | |
|  * page in a pageblock.
 | |
|  */
 | |
| struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
 | |
| 				     unsigned long end_pfn, struct zone *zone)
 | |
| {
 | |
| 	struct page *start_page;
 | |
| 	struct page *end_page;
 | |
| 
 | |
| 	/* end_pfn is one past the range we are checking */
 | |
| 	end_pfn--;
 | |
| 
 | |
| 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
 | |
| 		return NULL;
 | |
| 
 | |
| 	start_page = pfn_to_page(start_pfn);
 | |
| 
 | |
| 	if (page_zone(start_page) != zone)
 | |
| 		return NULL;
 | |
| 
 | |
| 	end_page = pfn_to_page(end_pfn);
 | |
| 
 | |
| 	/* This gives a shorter code than deriving page_zone(end_page) */
 | |
| 	if (page_zone_id(start_page) != page_zone_id(end_page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return start_page;
 | |
| }
 | |
| 
 | |
| void set_zone_contiguous(struct zone *zone)
 | |
| {
 | |
| 	unsigned long block_start_pfn = zone->zone_start_pfn;
 | |
| 	unsigned long block_end_pfn;
 | |
| 
 | |
| 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
 | |
| 	for (; block_start_pfn < zone_end_pfn(zone);
 | |
| 			block_start_pfn = block_end_pfn,
 | |
| 			 block_end_pfn += pageblock_nr_pages) {
 | |
| 
 | |
| 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
 | |
| 
 | |
| 		if (!__pageblock_pfn_to_page(block_start_pfn,
 | |
| 					     block_end_pfn, zone))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* We confirm that there is no hole */
 | |
| 	zone->contiguous = true;
 | |
| }
 | |
| 
 | |
| void clear_zone_contiguous(struct zone *zone)
 | |
| {
 | |
| 	zone->contiguous = false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | |
| static void __init deferred_free_range(struct page *page,
 | |
| 					unsigned long pfn, int nr_pages)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!page)
 | |
| 		return;
 | |
| 
 | |
| 	/* Free a large naturally-aligned chunk if possible */
 | |
| 	if (nr_pages == MAX_ORDER_NR_PAGES &&
 | |
| 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
 | |
| 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 | |
| 		__free_pages_boot_core(page, MAX_ORDER-1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++, page++)
 | |
| 		__free_pages_boot_core(page, 0);
 | |
| }
 | |
| 
 | |
| /* Completion tracking for deferred_init_memmap() threads */
 | |
| static atomic_t pgdat_init_n_undone __initdata;
 | |
| static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
 | |
| 
 | |
| static inline void __init pgdat_init_report_one_done(void)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&pgdat_init_n_undone))
 | |
| 		complete(&pgdat_init_all_done_comp);
 | |
| }
 | |
| 
 | |
| /* Initialise remaining memory on a node */
 | |
| static int __init deferred_init_memmap(void *data)
 | |
| {
 | |
| 	pg_data_t *pgdat = data;
 | |
| 	int nid = pgdat->node_id;
 | |
| 	struct mminit_pfnnid_cache nid_init_state = { };
 | |
| 	unsigned long start = jiffies;
 | |
| 	unsigned long nr_pages = 0;
 | |
| 	unsigned long walk_start, walk_end;
 | |
| 	int i, zid;
 | |
| 	struct zone *zone;
 | |
| 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
 | |
| 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
 | |
| 
 | |
| 	if (first_init_pfn == ULONG_MAX) {
 | |
| 		pgdat_init_report_one_done();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Bind memory initialisation thread to a local node if possible */
 | |
| 	if (!cpumask_empty(cpumask))
 | |
| 		set_cpus_allowed_ptr(current, cpumask);
 | |
| 
 | |
| 	/* Sanity check boundaries */
 | |
| 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
 | |
| 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
 | |
| 	pgdat->first_deferred_pfn = ULONG_MAX;
 | |
| 
 | |
| 	/* Only the highest zone is deferred so find it */
 | |
| 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | |
| 		zone = pgdat->node_zones + zid;
 | |
| 		if (first_init_pfn < zone_end_pfn(zone))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
 | |
| 		unsigned long pfn, end_pfn;
 | |
| 		struct page *page = NULL;
 | |
| 		struct page *free_base_page = NULL;
 | |
| 		unsigned long free_base_pfn = 0;
 | |
| 		int nr_to_free = 0;
 | |
| 
 | |
| 		end_pfn = min(walk_end, zone_end_pfn(zone));
 | |
| 		pfn = first_init_pfn;
 | |
| 		if (pfn < walk_start)
 | |
| 			pfn = walk_start;
 | |
| 		if (pfn < zone->zone_start_pfn)
 | |
| 			pfn = zone->zone_start_pfn;
 | |
| 
 | |
| 		for (; pfn < end_pfn; pfn++) {
 | |
| 			if (!pfn_valid_within(pfn))
 | |
| 				goto free_range;
 | |
| 
 | |
| 			/*
 | |
| 			 * Ensure pfn_valid is checked every
 | |
| 			 * MAX_ORDER_NR_PAGES for memory holes
 | |
| 			 */
 | |
| 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
 | |
| 				if (!pfn_valid(pfn)) {
 | |
| 					page = NULL;
 | |
| 					goto free_range;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
 | |
| 				page = NULL;
 | |
| 				goto free_range;
 | |
| 			}
 | |
| 
 | |
| 			/* Minimise pfn page lookups and scheduler checks */
 | |
| 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
 | |
| 				page++;
 | |
| 			} else {
 | |
| 				nr_pages += nr_to_free;
 | |
| 				deferred_free_range(free_base_page,
 | |
| 						free_base_pfn, nr_to_free);
 | |
| 				free_base_page = NULL;
 | |
| 				free_base_pfn = nr_to_free = 0;
 | |
| 
 | |
| 				page = pfn_to_page(pfn);
 | |
| 				cond_resched();
 | |
| 			}
 | |
| 
 | |
| 			if (page->flags) {
 | |
| 				VM_BUG_ON(page_zone(page) != zone);
 | |
| 				goto free_range;
 | |
| 			}
 | |
| 
 | |
| 			__init_single_page(page, pfn, zid, nid);
 | |
| 			if (!free_base_page) {
 | |
| 				free_base_page = page;
 | |
| 				free_base_pfn = pfn;
 | |
| 				nr_to_free = 0;
 | |
| 			}
 | |
| 			nr_to_free++;
 | |
| 
 | |
| 			/* Where possible, batch up pages for a single free */
 | |
| 			continue;
 | |
| free_range:
 | |
| 			/* Free the current block of pages to allocator */
 | |
| 			nr_pages += nr_to_free;
 | |
| 			deferred_free_range(free_base_page, free_base_pfn,
 | |
| 								nr_to_free);
 | |
| 			free_base_page = NULL;
 | |
| 			free_base_pfn = nr_to_free = 0;
 | |
| 		}
 | |
| 
 | |
| 		first_init_pfn = max(end_pfn, first_init_pfn);
 | |
| 	}
 | |
| 
 | |
| 	/* Sanity check that the next zone really is unpopulated */
 | |
| 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
 | |
| 
 | |
| 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
 | |
| 					jiffies_to_msecs(jiffies - start));
 | |
| 
 | |
| 	pgdat_init_report_one_done();
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 | |
| 
 | |
| void __init page_alloc_init_late(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | |
| 	int nid;
 | |
| 
 | |
| 	/* There will be num_node_state(N_MEMORY) threads */
 | |
| 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
 | |
| 	}
 | |
| 
 | |
| 	/* Block until all are initialised */
 | |
| 	wait_for_completion(&pgdat_init_all_done_comp);
 | |
| 
 | |
| 	/* Reinit limits that are based on free pages after the kernel is up */
 | |
| 	files_maxfiles_init();
 | |
| #endif
 | |
| 
 | |
| 	for_each_populated_zone(zone)
 | |
| 		set_zone_contiguous(zone);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CMA
 | |
| /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
 | |
| void __init init_cma_reserved_pageblock(struct page *page)
 | |
| {
 | |
| 	unsigned i = pageblock_nr_pages;
 | |
| 	struct page *p = page;
 | |
| 
 | |
| 	do {
 | |
| 		__ClearPageReserved(p);
 | |
| 		set_page_count(p, 0);
 | |
| 	} while (++p, --i);
 | |
| 
 | |
| 	set_pageblock_migratetype(page, MIGRATE_CMA);
 | |
| 
 | |
| 	if (pageblock_order >= MAX_ORDER) {
 | |
| 		i = pageblock_nr_pages;
 | |
| 		p = page;
 | |
| 		do {
 | |
| 			set_page_refcounted(p);
 | |
| 			__free_pages(p, MAX_ORDER - 1);
 | |
| 			p += MAX_ORDER_NR_PAGES;
 | |
| 		} while (i -= MAX_ORDER_NR_PAGES);
 | |
| 	} else {
 | |
| 		set_page_refcounted(page);
 | |
| 		__free_pages(page, pageblock_order);
 | |
| 	}
 | |
| 
 | |
| 	adjust_managed_page_count(page, pageblock_nr_pages);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The order of subdivision here is critical for the IO subsystem.
 | |
|  * Please do not alter this order without good reasons and regression
 | |
|  * testing. Specifically, as large blocks of memory are subdivided,
 | |
|  * the order in which smaller blocks are delivered depends on the order
 | |
|  * they're subdivided in this function. This is the primary factor
 | |
|  * influencing the order in which pages are delivered to the IO
 | |
|  * subsystem according to empirical testing, and this is also justified
 | |
|  * by considering the behavior of a buddy system containing a single
 | |
|  * large block of memory acted on by a series of small allocations.
 | |
|  * This behavior is a critical factor in sglist merging's success.
 | |
|  *
 | |
|  * -- nyc
 | |
|  */
 | |
| static inline void expand(struct zone *zone, struct page *page,
 | |
| 	int low, int high, struct free_area *area,
 | |
| 	int migratetype)
 | |
| {
 | |
| 	unsigned long size = 1 << high;
 | |
| 
 | |
| 	while (high > low) {
 | |
| 		area--;
 | |
| 		high--;
 | |
| 		size >>= 1;
 | |
| 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
 | |
| 
 | |
| 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
 | |
| 			debug_guardpage_enabled() &&
 | |
| 			high < debug_guardpage_minorder()) {
 | |
| 			/*
 | |
| 			 * Mark as guard pages (or page), that will allow to
 | |
| 			 * merge back to allocator when buddy will be freed.
 | |
| 			 * Corresponding page table entries will not be touched,
 | |
| 			 * pages will stay not present in virtual address space
 | |
| 			 */
 | |
| 			set_page_guard(zone, &page[size], high, migratetype);
 | |
| 			continue;
 | |
| 		}
 | |
| 		list_add(&page[size].lru, &area->free_list[migratetype]);
 | |
| 		area->nr_free++;
 | |
| 		set_page_order(&page[size], high);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void check_new_page_bad(struct page *page)
 | |
| {
 | |
| 	const char *bad_reason = NULL;
 | |
| 	unsigned long bad_flags = 0;
 | |
| 
 | |
| 	if (unlikely(atomic_read(&page->_mapcount) != -1))
 | |
| 		bad_reason = "nonzero mapcount";
 | |
| 	if (unlikely(page->mapping != NULL))
 | |
| 		bad_reason = "non-NULL mapping";
 | |
| 	if (unlikely(page_ref_count(page) != 0))
 | |
| 		bad_reason = "nonzero _count";
 | |
| 	if (unlikely(page->flags & __PG_HWPOISON)) {
 | |
| 		bad_reason = "HWPoisoned (hardware-corrupted)";
 | |
| 		bad_flags = __PG_HWPOISON;
 | |
| 		/* Don't complain about hwpoisoned pages */
 | |
| 		page_mapcount_reset(page); /* remove PageBuddy */
 | |
| 		return;
 | |
| 	}
 | |
| 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
 | |
| 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
 | |
| 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
 | |
| 	}
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	if (unlikely(page->mem_cgroup))
 | |
| 		bad_reason = "page still charged to cgroup";
 | |
| #endif
 | |
| 	bad_page(page, bad_reason, bad_flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This page is about to be returned from the page allocator
 | |
|  */
 | |
| static inline int check_new_page(struct page *page)
 | |
| {
 | |
| 	if (likely(page_expected_state(page,
 | |
| 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
 | |
| 		return 0;
 | |
| 
 | |
| 	check_new_page_bad(page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline bool free_pages_prezeroed(bool poisoned)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
 | |
| 		page_poisoning_enabled() && poisoned;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static bool check_pcp_refill(struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool check_new_pcp(struct page *page)
 | |
| {
 | |
| 	return check_new_page(page);
 | |
| }
 | |
| #else
 | |
| static bool check_pcp_refill(struct page *page)
 | |
| {
 | |
| 	return check_new_page(page);
 | |
| }
 | |
| static bool check_new_pcp(struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_DEBUG_VM */
 | |
| 
 | |
| static bool check_new_pages(struct page *page, unsigned int order)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < (1 << order); i++) {
 | |
| 		struct page *p = page + i;
 | |
| 
 | |
| 		if (unlikely(check_new_page(p)))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| inline void post_alloc_hook(struct page *page, unsigned int order,
 | |
| 				gfp_t gfp_flags)
 | |
| {
 | |
| 	set_page_private(page, 0);
 | |
| 	set_page_refcounted(page);
 | |
| 
 | |
| 	arch_alloc_page(page, order);
 | |
| 	kernel_map_pages(page, 1 << order, 1);
 | |
| 	kernel_poison_pages(page, 1 << order, 1);
 | |
| 	kasan_alloc_pages(page, order);
 | |
| 	set_page_owner(page, order, gfp_flags);
 | |
| }
 | |
| 
 | |
| static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
 | |
| 							unsigned int alloc_flags)
 | |
| {
 | |
| 	int i;
 | |
| 	bool poisoned = true;
 | |
| 
 | |
| 	for (i = 0; i < (1 << order); i++) {
 | |
| 		struct page *p = page + i;
 | |
| 		if (poisoned)
 | |
| 			poisoned &= page_is_poisoned(p);
 | |
| 	}
 | |
| 
 | |
| 	post_alloc_hook(page, order, gfp_flags);
 | |
| 
 | |
| 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
 | |
| 		for (i = 0; i < (1 << order); i++)
 | |
| 			clear_highpage(page + i);
 | |
| 
 | |
| 	if (order && (gfp_flags & __GFP_COMP))
 | |
| 		prep_compound_page(page, order);
 | |
| 
 | |
| 	/*
 | |
| 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
 | |
| 	 * allocate the page. The expectation is that the caller is taking
 | |
| 	 * steps that will free more memory. The caller should avoid the page
 | |
| 	 * being used for !PFMEMALLOC purposes.
 | |
| 	 */
 | |
| 	if (alloc_flags & ALLOC_NO_WATERMARKS)
 | |
| 		set_page_pfmemalloc(page);
 | |
| 	else
 | |
| 		clear_page_pfmemalloc(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Go through the free lists for the given migratetype and remove
 | |
|  * the smallest available page from the freelists
 | |
|  */
 | |
| static inline
 | |
| struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 | |
| 						int migratetype)
 | |
| {
 | |
| 	unsigned int current_order;
 | |
| 	struct free_area *area;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/* Find a page of the appropriate size in the preferred list */
 | |
| 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 | |
| 		area = &(zone->free_area[current_order]);
 | |
| 		page = list_first_entry_or_null(&area->free_list[migratetype],
 | |
| 							struct page, lru);
 | |
| 		if (!page)
 | |
| 			continue;
 | |
| 		list_del(&page->lru);
 | |
| 		rmv_page_order(page);
 | |
| 		area->nr_free--;
 | |
| 		expand(zone, page, order, current_order, area, migratetype);
 | |
| 		set_pcppage_migratetype(page, migratetype);
 | |
| 		return page;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This array describes the order lists are fallen back to when
 | |
|  * the free lists for the desirable migrate type are depleted
 | |
|  */
 | |
| static int fallbacks[MIGRATE_TYPES][4] = {
 | |
| 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
 | |
| 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
 | |
| 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
 | |
| #ifdef CONFIG_CMA
 | |
| 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
 | |
| #endif
 | |
| #ifdef CONFIG_MEMORY_ISOLATION
 | |
| 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_CMA
 | |
| static struct page *__rmqueue_cma_fallback(struct zone *zone,
 | |
| 					unsigned int order)
 | |
| {
 | |
| 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
 | |
| }
 | |
| #else
 | |
| static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
 | |
| 					unsigned int order) { return NULL; }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Move the free pages in a range to the free lists of the requested type.
 | |
|  * Note that start_page and end_pages are not aligned on a pageblock
 | |
|  * boundary. If alignment is required, use move_freepages_block()
 | |
|  */
 | |
| int move_freepages(struct zone *zone,
 | |
| 			  struct page *start_page, struct page *end_page,
 | |
| 			  int migratetype)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned int order;
 | |
| 	int pages_moved = 0;
 | |
| 
 | |
| #ifndef CONFIG_HOLES_IN_ZONE
 | |
| 	/*
 | |
| 	 * page_zone is not safe to call in this context when
 | |
| 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 | |
| 	 * anyway as we check zone boundaries in move_freepages_block().
 | |
| 	 * Remove at a later date when no bug reports exist related to
 | |
| 	 * grouping pages by mobility
 | |
| 	 */
 | |
| 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
 | |
| #endif
 | |
| 
 | |
| 	for (page = start_page; page <= end_page;) {
 | |
| 		/* Make sure we are not inadvertently changing nodes */
 | |
| 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
 | |
| 
 | |
| 		if (!pfn_valid_within(page_to_pfn(page))) {
 | |
| 			page++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!PageBuddy(page)) {
 | |
| 			page++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		order = page_order(page);
 | |
| 		list_move(&page->lru,
 | |
| 			  &zone->free_area[order].free_list[migratetype]);
 | |
| 		page += 1 << order;
 | |
| 		pages_moved += 1 << order;
 | |
| 	}
 | |
| 
 | |
| 	return pages_moved;
 | |
| }
 | |
| 
 | |
| int move_freepages_block(struct zone *zone, struct page *page,
 | |
| 				int migratetype)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	struct page *start_page, *end_page;
 | |
| 
 | |
| 	start_pfn = page_to_pfn(page);
 | |
| 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
 | |
| 	start_page = pfn_to_page(start_pfn);
 | |
| 	end_page = start_page + pageblock_nr_pages - 1;
 | |
| 	end_pfn = start_pfn + pageblock_nr_pages - 1;
 | |
| 
 | |
| 	/* Do not cross zone boundaries */
 | |
| 	if (!zone_spans_pfn(zone, start_pfn))
 | |
| 		start_page = page;
 | |
| 	if (!zone_spans_pfn(zone, end_pfn))
 | |
| 		return 0;
 | |
| 
 | |
| 	return move_freepages(zone, start_page, end_page, migratetype);
 | |
| }
 | |
| 
 | |
| static void change_pageblock_range(struct page *pageblock_page,
 | |
| 					int start_order, int migratetype)
 | |
| {
 | |
| 	int nr_pageblocks = 1 << (start_order - pageblock_order);
 | |
| 
 | |
| 	while (nr_pageblocks--) {
 | |
| 		set_pageblock_migratetype(pageblock_page, migratetype);
 | |
| 		pageblock_page += pageblock_nr_pages;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we are falling back to another migratetype during allocation, try to
 | |
|  * steal extra free pages from the same pageblocks to satisfy further
 | |
|  * allocations, instead of polluting multiple pageblocks.
 | |
|  *
 | |
|  * If we are stealing a relatively large buddy page, it is likely there will
 | |
|  * be more free pages in the pageblock, so try to steal them all. For
 | |
|  * reclaimable and unmovable allocations, we steal regardless of page size,
 | |
|  * as fragmentation caused by those allocations polluting movable pageblocks
 | |
|  * is worse than movable allocations stealing from unmovable and reclaimable
 | |
|  * pageblocks.
 | |
|  */
 | |
| static bool can_steal_fallback(unsigned int order, int start_mt)
 | |
| {
 | |
| 	/*
 | |
| 	 * Leaving this order check is intended, although there is
 | |
| 	 * relaxed order check in next check. The reason is that
 | |
| 	 * we can actually steal whole pageblock if this condition met,
 | |
| 	 * but, below check doesn't guarantee it and that is just heuristic
 | |
| 	 * so could be changed anytime.
 | |
| 	 */
 | |
| 	if (order >= pageblock_order)
 | |
| 		return true;
 | |
| 
 | |
| 	if (order >= pageblock_order / 2 ||
 | |
| 		start_mt == MIGRATE_RECLAIMABLE ||
 | |
| 		start_mt == MIGRATE_UNMOVABLE ||
 | |
| 		page_group_by_mobility_disabled)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function implements actual steal behaviour. If order is large enough,
 | |
|  * we can steal whole pageblock. If not, we first move freepages in this
 | |
|  * pageblock and check whether half of pages are moved or not. If half of
 | |
|  * pages are moved, we can change migratetype of pageblock and permanently
 | |
|  * use it's pages as requested migratetype in the future.
 | |
|  */
 | |
| static void steal_suitable_fallback(struct zone *zone, struct page *page,
 | |
| 							  int start_type)
 | |
| {
 | |
| 	unsigned int current_order = page_order(page);
 | |
| 	int pages;
 | |
| 
 | |
| 	/* Take ownership for orders >= pageblock_order */
 | |
| 	if (current_order >= pageblock_order) {
 | |
| 		change_pageblock_range(page, current_order, start_type);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pages = move_freepages_block(zone, page, start_type);
 | |
| 
 | |
| 	/* Claim the whole block if over half of it is free */
 | |
| 	if (pages >= (1 << (pageblock_order-1)) ||
 | |
| 			page_group_by_mobility_disabled)
 | |
| 		set_pageblock_migratetype(page, start_type);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether there is a suitable fallback freepage with requested order.
 | |
|  * If only_stealable is true, this function returns fallback_mt only if
 | |
|  * we can steal other freepages all together. This would help to reduce
 | |
|  * fragmentation due to mixed migratetype pages in one pageblock.
 | |
|  */
 | |
| int find_suitable_fallback(struct free_area *area, unsigned int order,
 | |
| 			int migratetype, bool only_stealable, bool *can_steal)
 | |
| {
 | |
| 	int i;
 | |
| 	int fallback_mt;
 | |
| 
 | |
| 	if (area->nr_free == 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	*can_steal = false;
 | |
| 	for (i = 0;; i++) {
 | |
| 		fallback_mt = fallbacks[migratetype][i];
 | |
| 		if (fallback_mt == MIGRATE_TYPES)
 | |
| 			break;
 | |
| 
 | |
| 		if (list_empty(&area->free_list[fallback_mt]))
 | |
| 			continue;
 | |
| 
 | |
| 		if (can_steal_fallback(order, migratetype))
 | |
| 			*can_steal = true;
 | |
| 
 | |
| 		if (!only_stealable)
 | |
| 			return fallback_mt;
 | |
| 
 | |
| 		if (*can_steal)
 | |
| 			return fallback_mt;
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reserve a pageblock for exclusive use of high-order atomic allocations if
 | |
|  * there are no empty page blocks that contain a page with a suitable order
 | |
|  */
 | |
| static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
 | |
| 				unsigned int alloc_order)
 | |
| {
 | |
| 	int mt;
 | |
| 	unsigned long max_managed, flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
 | |
| 	 * Check is race-prone but harmless.
 | |
| 	 */
 | |
| 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
 | |
| 	if (zone->nr_reserved_highatomic >= max_managed)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lock, flags);
 | |
| 
 | |
| 	/* Recheck the nr_reserved_highatomic limit under the lock */
 | |
| 	if (zone->nr_reserved_highatomic >= max_managed)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* Yoink! */
 | |
| 	mt = get_pageblock_migratetype(page);
 | |
| 	if (mt != MIGRATE_HIGHATOMIC &&
 | |
| 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
 | |
| 		zone->nr_reserved_highatomic += pageblock_nr_pages;
 | |
| 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
 | |
| 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock_irqrestore(&zone->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used when an allocation is about to fail under memory pressure. This
 | |
|  * potentially hurts the reliability of high-order allocations when under
 | |
|  * intense memory pressure but failed atomic allocations should be easier
 | |
|  * to recover from than an OOM.
 | |
|  */
 | |
| static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
 | |
| {
 | |
| 	struct zonelist *zonelist = ac->zonelist;
 | |
| 	unsigned long flags;
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 	struct page *page;
 | |
| 	int order;
 | |
| 
 | |
| 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
 | |
| 								ac->nodemask) {
 | |
| 		/* Preserve at least one pageblock */
 | |
| 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		for (order = 0; order < MAX_ORDER; order++) {
 | |
| 			struct free_area *area = &(zone->free_area[order]);
 | |
| 
 | |
| 			page = list_first_entry_or_null(
 | |
| 					&area->free_list[MIGRATE_HIGHATOMIC],
 | |
| 					struct page, lru);
 | |
| 			if (!page)
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * It should never happen but changes to locking could
 | |
| 			 * inadvertently allow a per-cpu drain to add pages
 | |
| 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
 | |
| 			 * and watch for underflows.
 | |
| 			 */
 | |
| 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
 | |
| 				zone->nr_reserved_highatomic);
 | |
| 
 | |
| 			/*
 | |
| 			 * Convert to ac->migratetype and avoid the normal
 | |
| 			 * pageblock stealing heuristics. Minimally, the caller
 | |
| 			 * is doing the work and needs the pages. More
 | |
| 			 * importantly, if the block was always converted to
 | |
| 			 * MIGRATE_UNMOVABLE or another type then the number
 | |
| 			 * of pageblocks that cannot be completely freed
 | |
| 			 * may increase.
 | |
| 			 */
 | |
| 			set_pageblock_migratetype(page, ac->migratetype);
 | |
| 			move_freepages_block(zone, page, ac->migratetype);
 | |
| 			spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Remove an element from the buddy allocator from the fallback list */
 | |
| static inline struct page *
 | |
| __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
 | |
| {
 | |
| 	struct free_area *area;
 | |
| 	unsigned int current_order;
 | |
| 	struct page *page;
 | |
| 	int fallback_mt;
 | |
| 	bool can_steal;
 | |
| 
 | |
| 	/* Find the largest possible block of pages in the other list */
 | |
| 	for (current_order = MAX_ORDER-1;
 | |
| 				current_order >= order && current_order <= MAX_ORDER-1;
 | |
| 				--current_order) {
 | |
| 		area = &(zone->free_area[current_order]);
 | |
| 		fallback_mt = find_suitable_fallback(area, current_order,
 | |
| 				start_migratetype, false, &can_steal);
 | |
| 		if (fallback_mt == -1)
 | |
| 			continue;
 | |
| 
 | |
| 		page = list_first_entry(&area->free_list[fallback_mt],
 | |
| 						struct page, lru);
 | |
| 		if (can_steal)
 | |
| 			steal_suitable_fallback(zone, page, start_migratetype);
 | |
| 
 | |
| 		/* Remove the page from the freelists */
 | |
| 		area->nr_free--;
 | |
| 		list_del(&page->lru);
 | |
| 		rmv_page_order(page);
 | |
| 
 | |
| 		expand(zone, page, order, current_order, area,
 | |
| 					start_migratetype);
 | |
| 		/*
 | |
| 		 * The pcppage_migratetype may differ from pageblock's
 | |
| 		 * migratetype depending on the decisions in
 | |
| 		 * find_suitable_fallback(). This is OK as long as it does not
 | |
| 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
 | |
| 		 * fallback only via special __rmqueue_cma_fallback() function
 | |
| 		 */
 | |
| 		set_pcppage_migratetype(page, start_migratetype);
 | |
| 
 | |
| 		trace_mm_page_alloc_extfrag(page, order, current_order,
 | |
| 			start_migratetype, fallback_mt);
 | |
| 
 | |
| 		return page;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the hard work of removing an element from the buddy allocator.
 | |
|  * Call me with the zone->lock already held.
 | |
|  */
 | |
| static struct page *__rmqueue(struct zone *zone, unsigned int order,
 | |
| 				int migratetype)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = __rmqueue_smallest(zone, order, migratetype);
 | |
| 	if (unlikely(!page)) {
 | |
| 		if (migratetype == MIGRATE_MOVABLE)
 | |
| 			page = __rmqueue_cma_fallback(zone, order);
 | |
| 
 | |
| 		if (!page)
 | |
| 			page = __rmqueue_fallback(zone, order, migratetype);
 | |
| 	}
 | |
| 
 | |
| 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Obtain a specified number of elements from the buddy allocator, all under
 | |
|  * a single hold of the lock, for efficiency.  Add them to the supplied list.
 | |
|  * Returns the number of new pages which were placed at *list.
 | |
|  */
 | |
| static int rmqueue_bulk(struct zone *zone, unsigned int order,
 | |
| 			unsigned long count, struct list_head *list,
 | |
| 			int migratetype, bool cold)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock(&zone->lock);
 | |
| 	for (i = 0; i < count; ++i) {
 | |
| 		struct page *page = __rmqueue(zone, order, migratetype);
 | |
| 		if (unlikely(page == NULL))
 | |
| 			break;
 | |
| 
 | |
| 		if (unlikely(check_pcp_refill(page)))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Split buddy pages returned by expand() are received here
 | |
| 		 * in physical page order. The page is added to the callers and
 | |
| 		 * list and the list head then moves forward. From the callers
 | |
| 		 * perspective, the linked list is ordered by page number in
 | |
| 		 * some conditions. This is useful for IO devices that can
 | |
| 		 * merge IO requests if the physical pages are ordered
 | |
| 		 * properly.
 | |
| 		 */
 | |
| 		if (likely(!cold))
 | |
| 			list_add(&page->lru, list);
 | |
| 		else
 | |
| 			list_add_tail(&page->lru, list);
 | |
| 		list = &page->lru;
 | |
| 		if (is_migrate_cma(get_pcppage_migratetype(page)))
 | |
| 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
 | |
| 					      -(1 << order));
 | |
| 	}
 | |
| 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
 | |
| 	spin_unlock(&zone->lock);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Called from the vmstat counter updater to drain pagesets of this
 | |
|  * currently executing processor on remote nodes after they have
 | |
|  * expired.
 | |
|  *
 | |
|  * Note that this function must be called with the thread pinned to
 | |
|  * a single processor.
 | |
|  */
 | |
| void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int to_drain, batch;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	batch = READ_ONCE(pcp->batch);
 | |
| 	to_drain = min(pcp->count, batch);
 | |
| 	if (to_drain > 0) {
 | |
| 		free_pcppages_bulk(zone, to_drain, pcp);
 | |
| 		pcp->count -= to_drain;
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Drain pcplists of the indicated processor and zone.
 | |
|  *
 | |
|  * The processor must either be the current processor and the
 | |
|  * thread pinned to the current processor or a processor that
 | |
|  * is not online.
 | |
|  */
 | |
| static void drain_pages_zone(unsigned int cpu, struct zone *zone)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct per_cpu_pageset *pset;
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	pset = per_cpu_ptr(zone->pageset, cpu);
 | |
| 
 | |
| 	pcp = &pset->pcp;
 | |
| 	if (pcp->count) {
 | |
| 		free_pcppages_bulk(zone, pcp->count, pcp);
 | |
| 		pcp->count = 0;
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drain pcplists of all zones on the indicated processor.
 | |
|  *
 | |
|  * The processor must either be the current processor and the
 | |
|  * thread pinned to the current processor or a processor that
 | |
|  * is not online.
 | |
|  */
 | |
| static void drain_pages(unsigned int cpu)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		drain_pages_zone(cpu, zone);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 | |
|  *
 | |
|  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 | |
|  * the single zone's pages.
 | |
|  */
 | |
| void drain_local_pages(struct zone *zone)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	if (zone)
 | |
| 		drain_pages_zone(cpu, zone);
 | |
| 	else
 | |
| 		drain_pages(cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 | |
|  *
 | |
|  * When zone parameter is non-NULL, spill just the single zone's pages.
 | |
|  *
 | |
|  * Note that this code is protected against sending an IPI to an offline
 | |
|  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
 | |
|  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
 | |
|  * nothing keeps CPUs from showing up after we populated the cpumask and
 | |
|  * before the call to on_each_cpu_mask().
 | |
|  */
 | |
| void drain_all_pages(struct zone *zone)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate in the BSS so we wont require allocation in
 | |
| 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
 | |
| 	 */
 | |
| 	static cpumask_t cpus_with_pcps;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't care about racing with CPU hotplug event
 | |
| 	 * as offline notification will cause the notified
 | |
| 	 * cpu to drain that CPU pcps and on_each_cpu_mask
 | |
| 	 * disables preemption as part of its processing
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct per_cpu_pageset *pcp;
 | |
| 		struct zone *z;
 | |
| 		bool has_pcps = false;
 | |
| 
 | |
| 		if (zone) {
 | |
| 			pcp = per_cpu_ptr(zone->pageset, cpu);
 | |
| 			if (pcp->pcp.count)
 | |
| 				has_pcps = true;
 | |
| 		} else {
 | |
| 			for_each_populated_zone(z) {
 | |
| 				pcp = per_cpu_ptr(z->pageset, cpu);
 | |
| 				if (pcp->pcp.count) {
 | |
| 					has_pcps = true;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (has_pcps)
 | |
| 			cpumask_set_cpu(cpu, &cpus_with_pcps);
 | |
| 		else
 | |
| 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
 | |
| 	}
 | |
| 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
 | |
| 								zone, 1);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| 
 | |
| void mark_free_pages(struct zone *zone)
 | |
| {
 | |
| 	unsigned long pfn, max_zone_pfn;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int order, t;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (zone_is_empty(zone))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lock, flags);
 | |
| 
 | |
| 	max_zone_pfn = zone_end_pfn(zone);
 | |
| 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 | |
| 		if (pfn_valid(pfn)) {
 | |
| 			page = pfn_to_page(pfn);
 | |
| 
 | |
| 			if (page_zone(page) != zone)
 | |
| 				continue;
 | |
| 
 | |
| 			if (!swsusp_page_is_forbidden(page))
 | |
| 				swsusp_unset_page_free(page);
 | |
| 		}
 | |
| 
 | |
| 	for_each_migratetype_order(order, t) {
 | |
| 		list_for_each_entry(page,
 | |
| 				&zone->free_area[order].free_list[t], lru) {
 | |
| 			unsigned long i;
 | |
| 
 | |
| 			pfn = page_to_pfn(page);
 | |
| 			for (i = 0; i < (1UL << order); i++)
 | |
| 				swsusp_set_page_free(pfn_to_page(pfn + i));
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&zone->lock, flags);
 | |
| }
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| /*
 | |
|  * Free a 0-order page
 | |
|  * cold == true ? free a cold page : free a hot page
 | |
|  */
 | |
| void free_hot_cold_page(struct page *page, bool cold)
 | |
| {
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 	unsigned long flags;
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 	int migratetype;
 | |
| 
 | |
| 	if (!free_pcp_prepare(page))
 | |
| 		return;
 | |
| 
 | |
| 	migratetype = get_pfnblock_migratetype(page, pfn);
 | |
| 	set_pcppage_migratetype(page, migratetype);
 | |
| 	local_irq_save(flags);
 | |
| 	__count_vm_event(PGFREE);
 | |
| 
 | |
| 	/*
 | |
| 	 * We only track unmovable, reclaimable and movable on pcp lists.
 | |
| 	 * Free ISOLATE pages back to the allocator because they are being
 | |
| 	 * offlined but treat RESERVE as movable pages so we can get those
 | |
| 	 * areas back if necessary. Otherwise, we may have to free
 | |
| 	 * excessively into the page allocator
 | |
| 	 */
 | |
| 	if (migratetype >= MIGRATE_PCPTYPES) {
 | |
| 		if (unlikely(is_migrate_isolate(migratetype))) {
 | |
| 			free_one_page(zone, page, pfn, 0, migratetype);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		migratetype = MIGRATE_MOVABLE;
 | |
| 	}
 | |
| 
 | |
| 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
 | |
| 	if (!cold)
 | |
| 		list_add(&page->lru, &pcp->lists[migratetype]);
 | |
| 	else
 | |
| 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
 | |
| 	pcp->count++;
 | |
| 	if (pcp->count >= pcp->high) {
 | |
| 		unsigned long batch = READ_ONCE(pcp->batch);
 | |
| 		free_pcppages_bulk(zone, batch, pcp);
 | |
| 		pcp->count -= batch;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a list of 0-order pages
 | |
|  */
 | |
| void free_hot_cold_page_list(struct list_head *list, bool cold)
 | |
| {
 | |
| 	struct page *page, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(page, next, list, lru) {
 | |
| 		trace_mm_page_free_batched(page, cold);
 | |
| 		free_hot_cold_page(page, cold);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * split_page takes a non-compound higher-order page, and splits it into
 | |
|  * n (1<<order) sub-pages: page[0..n]
 | |
|  * Each sub-page must be freed individually.
 | |
|  *
 | |
|  * Note: this is probably too low level an operation for use in drivers.
 | |
|  * Please consult with lkml before using this in your driver.
 | |
|  */
 | |
| void split_page(struct page *page, unsigned int order)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(PageCompound(page), page);
 | |
| 	VM_BUG_ON_PAGE(!page_count(page), page);
 | |
| 
 | |
| #ifdef CONFIG_KMEMCHECK
 | |
| 	/*
 | |
| 	 * Split shadow pages too, because free(page[0]) would
 | |
| 	 * otherwise free the whole shadow.
 | |
| 	 */
 | |
| 	if (kmemcheck_page_is_tracked(page))
 | |
| 		split_page(virt_to_page(page[0].shadow), order);
 | |
| #endif
 | |
| 
 | |
| 	for (i = 1; i < (1 << order); i++)
 | |
| 		set_page_refcounted(page + i);
 | |
| 	split_page_owner(page, order);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(split_page);
 | |
| 
 | |
| int __isolate_free_page(struct page *page, unsigned int order)
 | |
| {
 | |
| 	unsigned long watermark;
 | |
| 	struct zone *zone;
 | |
| 	int mt;
 | |
| 
 | |
| 	BUG_ON(!PageBuddy(page));
 | |
| 
 | |
| 	zone = page_zone(page);
 | |
| 	mt = get_pageblock_migratetype(page);
 | |
| 
 | |
| 	if (!is_migrate_isolate(mt)) {
 | |
| 		/* Obey watermarks as if the page was being allocated */
 | |
| 		watermark = low_wmark_pages(zone) + (1 << order);
 | |
| 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 | |
| 			return 0;
 | |
| 
 | |
| 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
 | |
| 	}
 | |
| 
 | |
| 	/* Remove page from free list */
 | |
| 	list_del(&page->lru);
 | |
| 	zone->free_area[order].nr_free--;
 | |
| 	rmv_page_order(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the pageblock if the isolated page is at least half of a
 | |
| 	 * pageblock
 | |
| 	 */
 | |
| 	if (order >= pageblock_order - 1) {
 | |
| 		struct page *endpage = page + (1 << order) - 1;
 | |
| 		for (; page < endpage; page += pageblock_nr_pages) {
 | |
| 			int mt = get_pageblock_migratetype(page);
 | |
| 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
 | |
| 				set_pageblock_migratetype(page,
 | |
| 							  MIGRATE_MOVABLE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return 1UL << order;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update NUMA hit/miss statistics
 | |
|  *
 | |
|  * Must be called with interrupts disabled.
 | |
|  *
 | |
|  * When __GFP_OTHER_NODE is set assume the node of the preferred
 | |
|  * zone is the local node. This is useful for daemons who allocate
 | |
|  * memory on behalf of other processes.
 | |
|  */
 | |
| static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
 | |
| 								gfp_t flags)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	int local_nid = numa_node_id();
 | |
| 	enum zone_stat_item local_stat = NUMA_LOCAL;
 | |
| 
 | |
| 	if (unlikely(flags & __GFP_OTHER_NODE)) {
 | |
| 		local_stat = NUMA_OTHER;
 | |
| 		local_nid = preferred_zone->node;
 | |
| 	}
 | |
| 
 | |
| 	if (z->node == local_nid) {
 | |
| 		__inc_zone_state(z, NUMA_HIT);
 | |
| 		__inc_zone_state(z, local_stat);
 | |
| 	} else {
 | |
| 		__inc_zone_state(z, NUMA_MISS);
 | |
| 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
 | |
|  */
 | |
| static inline
 | |
| struct page *buffered_rmqueue(struct zone *preferred_zone,
 | |
| 			struct zone *zone, unsigned int order,
 | |
| 			gfp_t gfp_flags, unsigned int alloc_flags,
 | |
| 			int migratetype)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct page *page;
 | |
| 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
 | |
| 
 | |
| 	if (likely(order == 0)) {
 | |
| 		struct per_cpu_pages *pcp;
 | |
| 		struct list_head *list;
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		do {
 | |
| 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
 | |
| 			list = &pcp->lists[migratetype];
 | |
| 			if (list_empty(list)) {
 | |
| 				pcp->count += rmqueue_bulk(zone, 0,
 | |
| 						pcp->batch, list,
 | |
| 						migratetype, cold);
 | |
| 				if (unlikely(list_empty(list)))
 | |
| 					goto failed;
 | |
| 			}
 | |
| 
 | |
| 			if (cold)
 | |
| 				page = list_last_entry(list, struct page, lru);
 | |
| 			else
 | |
| 				page = list_first_entry(list, struct page, lru);
 | |
| 
 | |
| 			list_del(&page->lru);
 | |
| 			pcp->count--;
 | |
| 
 | |
| 		} while (check_new_pcp(page));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We most definitely don't want callers attempting to
 | |
| 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 
 | |
| 		do {
 | |
| 			page = NULL;
 | |
| 			if (alloc_flags & ALLOC_HARDER) {
 | |
| 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
 | |
| 				if (page)
 | |
| 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
 | |
| 			}
 | |
| 			if (!page)
 | |
| 				page = __rmqueue(zone, order, migratetype);
 | |
| 		} while (page && check_new_pages(page, order));
 | |
| 		spin_unlock(&zone->lock);
 | |
| 		if (!page)
 | |
| 			goto failed;
 | |
| 		__mod_zone_freepage_state(zone, -(1 << order),
 | |
| 					  get_pcppage_migratetype(page));
 | |
| 	}
 | |
| 
 | |
| 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
 | |
| 	zone_statistics(preferred_zone, zone, gfp_flags);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 | |
| 	return page;
 | |
| 
 | |
| failed:
 | |
| 	local_irq_restore(flags);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIL_PAGE_ALLOC
 | |
| 
 | |
| static struct {
 | |
| 	struct fault_attr attr;
 | |
| 
 | |
| 	bool ignore_gfp_highmem;
 | |
| 	bool ignore_gfp_reclaim;
 | |
| 	u32 min_order;
 | |
| } fail_page_alloc = {
 | |
| 	.attr = FAULT_ATTR_INITIALIZER,
 | |
| 	.ignore_gfp_reclaim = true,
 | |
| 	.ignore_gfp_highmem = true,
 | |
| 	.min_order = 1,
 | |
| };
 | |
| 
 | |
| static int __init setup_fail_page_alloc(char *str)
 | |
| {
 | |
| 	return setup_fault_attr(&fail_page_alloc.attr, str);
 | |
| }
 | |
| __setup("fail_page_alloc=", setup_fail_page_alloc);
 | |
| 
 | |
| static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	if (order < fail_page_alloc.min_order)
 | |
| 		return false;
 | |
| 	if (gfp_mask & __GFP_NOFAIL)
 | |
| 		return false;
 | |
| 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
 | |
| 		return false;
 | |
| 	if (fail_page_alloc.ignore_gfp_reclaim &&
 | |
| 			(gfp_mask & __GFP_DIRECT_RECLAIM))
 | |
| 		return false;
 | |
| 
 | |
| 	return should_fail(&fail_page_alloc.attr, 1 << order);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 | |
| 
 | |
| static int __init fail_page_alloc_debugfs(void)
 | |
| {
 | |
| 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 | |
| 	struct dentry *dir;
 | |
| 
 | |
| 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
 | |
| 					&fail_page_alloc.attr);
 | |
| 	if (IS_ERR(dir))
 | |
| 		return PTR_ERR(dir);
 | |
| 
 | |
| 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
 | |
| 				&fail_page_alloc.ignore_gfp_reclaim))
 | |
| 		goto fail;
 | |
| 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
 | |
| 				&fail_page_alloc.ignore_gfp_highmem))
 | |
| 		goto fail;
 | |
| 	if (!debugfs_create_u32("min-order", mode, dir,
 | |
| 				&fail_page_alloc.min_order))
 | |
| 		goto fail;
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	debugfs_remove_recursive(dir);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| late_initcall(fail_page_alloc_debugfs);
 | |
| 
 | |
| #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 | |
| 
 | |
| #else /* CONFIG_FAIL_PAGE_ALLOC */
 | |
| 
 | |
| static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_FAIL_PAGE_ALLOC */
 | |
| 
 | |
| /*
 | |
|  * Return true if free base pages are above 'mark'. For high-order checks it
 | |
|  * will return true of the order-0 watermark is reached and there is at least
 | |
|  * one free page of a suitable size. Checking now avoids taking the zone lock
 | |
|  * to check in the allocation paths if no pages are free.
 | |
|  */
 | |
| bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 | |
| 			 int classzone_idx, unsigned int alloc_flags,
 | |
| 			 long free_pages)
 | |
| {
 | |
| 	long min = mark;
 | |
| 	int o;
 | |
| 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
 | |
| 
 | |
| 	/* free_pages may go negative - that's OK */
 | |
| 	free_pages -= (1 << order) - 1;
 | |
| 
 | |
| 	if (alloc_flags & ALLOC_HIGH)
 | |
| 		min -= min / 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the caller does not have rights to ALLOC_HARDER then subtract
 | |
| 	 * the high-atomic reserves. This will over-estimate the size of the
 | |
| 	 * atomic reserve but it avoids a search.
 | |
| 	 */
 | |
| 	if (likely(!alloc_harder))
 | |
| 		free_pages -= z->nr_reserved_highatomic;
 | |
| 	else
 | |
| 		min -= min / 4;
 | |
| 
 | |
| #ifdef CONFIG_CMA
 | |
| 	/* If allocation can't use CMA areas don't use free CMA pages */
 | |
| 	if (!(alloc_flags & ALLOC_CMA))
 | |
| 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Check watermarks for an order-0 allocation request. If these
 | |
| 	 * are not met, then a high-order request also cannot go ahead
 | |
| 	 * even if a suitable page happened to be free.
 | |
| 	 */
 | |
| 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
 | |
| 		return false;
 | |
| 
 | |
| 	/* If this is an order-0 request then the watermark is fine */
 | |
| 	if (!order)
 | |
| 		return true;
 | |
| 
 | |
| 	/* For a high-order request, check at least one suitable page is free */
 | |
| 	for (o = order; o < MAX_ORDER; o++) {
 | |
| 		struct free_area *area = &z->free_area[o];
 | |
| 		int mt;
 | |
| 
 | |
| 		if (!area->nr_free)
 | |
| 			continue;
 | |
| 
 | |
| 		if (alloc_harder)
 | |
| 			return true;
 | |
| 
 | |
| 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
 | |
| 			if (!list_empty(&area->free_list[mt]))
 | |
| 				return true;
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_CMA
 | |
| 		if ((alloc_flags & ALLOC_CMA) &&
 | |
| 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
 | |
| 			return true;
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 | |
| 		      int classzone_idx, unsigned int alloc_flags)
 | |
| {
 | |
| 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
 | |
| 					zone_page_state(z, NR_FREE_PAGES));
 | |
| }
 | |
| 
 | |
| static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
 | |
| 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
 | |
| {
 | |
| 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
 | |
| 	long cma_pages = 0;
 | |
| 
 | |
| #ifdef CONFIG_CMA
 | |
| 	/* If allocation can't use CMA areas don't use free CMA pages */
 | |
| 	if (!(alloc_flags & ALLOC_CMA))
 | |
| 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Fast check for order-0 only. If this fails then the reserves
 | |
| 	 * need to be calculated. There is a corner case where the check
 | |
| 	 * passes but only the high-order atomic reserve are free. If
 | |
| 	 * the caller is !atomic then it'll uselessly search the free
 | |
| 	 * list. That corner case is then slower but it is harmless.
 | |
| 	 */
 | |
| 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
 | |
| 		return true;
 | |
| 
 | |
| 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
 | |
| 					free_pages);
 | |
| }
 | |
| 
 | |
| bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 | |
| 			unsigned long mark, int classzone_idx)
 | |
| {
 | |
| 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
 | |
| 
 | |
| 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
 | |
| 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
 | |
| 
 | |
| 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
 | |
| 								free_pages);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 | |
| {
 | |
| 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
 | |
| 				RECLAIM_DISTANCE;
 | |
| }
 | |
| #else	/* CONFIG_NUMA */
 | |
| static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 
 | |
| /*
 | |
|  * get_page_from_freelist goes through the zonelist trying to allocate
 | |
|  * a page.
 | |
|  */
 | |
| static struct page *
 | |
| get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
 | |
| 						const struct alloc_context *ac)
 | |
| {
 | |
| 	struct zoneref *z = ac->preferred_zoneref;
 | |
| 	struct zone *zone;
 | |
| 	struct pglist_data *last_pgdat_dirty_limit = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Scan zonelist, looking for a zone with enough free.
 | |
| 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
 | |
| 	 */
 | |
| 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
 | |
| 								ac->nodemask) {
 | |
| 		struct page *page;
 | |
| 		unsigned long mark;
 | |
| 
 | |
| 		if (cpusets_enabled() &&
 | |
| 			(alloc_flags & ALLOC_CPUSET) &&
 | |
| 			!__cpuset_zone_allowed(zone, gfp_mask))
 | |
| 				continue;
 | |
| 		/*
 | |
| 		 * When allocating a page cache page for writing, we
 | |
| 		 * want to get it from a node that is within its dirty
 | |
| 		 * limit, such that no single node holds more than its
 | |
| 		 * proportional share of globally allowed dirty pages.
 | |
| 		 * The dirty limits take into account the node's
 | |
| 		 * lowmem reserves and high watermark so that kswapd
 | |
| 		 * should be able to balance it without having to
 | |
| 		 * write pages from its LRU list.
 | |
| 		 *
 | |
| 		 * XXX: For now, allow allocations to potentially
 | |
| 		 * exceed the per-node dirty limit in the slowpath
 | |
| 		 * (spread_dirty_pages unset) before going into reclaim,
 | |
| 		 * which is important when on a NUMA setup the allowed
 | |
| 		 * nodes are together not big enough to reach the
 | |
| 		 * global limit.  The proper fix for these situations
 | |
| 		 * will require awareness of nodes in the
 | |
| 		 * dirty-throttling and the flusher threads.
 | |
| 		 */
 | |
| 		if (ac->spread_dirty_pages) {
 | |
| 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
 | |
| 				continue;
 | |
| 
 | |
| 			if (!node_dirty_ok(zone->zone_pgdat)) {
 | |
| 				last_pgdat_dirty_limit = zone->zone_pgdat;
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
 | |
| 		if (!zone_watermark_fast(zone, order, mark,
 | |
| 				       ac_classzone_idx(ac), alloc_flags)) {
 | |
| 			int ret;
 | |
| 
 | |
| 			/* Checked here to keep the fast path fast */
 | |
| 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
 | |
| 			if (alloc_flags & ALLOC_NO_WATERMARKS)
 | |
| 				goto try_this_zone;
 | |
| 
 | |
| 			if (node_reclaim_mode == 0 ||
 | |
| 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
 | |
| 				continue;
 | |
| 
 | |
| 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
 | |
| 			switch (ret) {
 | |
| 			case NODE_RECLAIM_NOSCAN:
 | |
| 				/* did not scan */
 | |
| 				continue;
 | |
| 			case NODE_RECLAIM_FULL:
 | |
| 				/* scanned but unreclaimable */
 | |
| 				continue;
 | |
| 			default:
 | |
| 				/* did we reclaim enough */
 | |
| 				if (zone_watermark_ok(zone, order, mark,
 | |
| 						ac_classzone_idx(ac), alloc_flags))
 | |
| 					goto try_this_zone;
 | |
| 
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| try_this_zone:
 | |
| 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
 | |
| 				gfp_mask, alloc_flags, ac->migratetype);
 | |
| 		if (page) {
 | |
| 			prep_new_page(page, order, gfp_mask, alloc_flags);
 | |
| 
 | |
| 			/*
 | |
| 			 * If this is a high-order atomic allocation then check
 | |
| 			 * if the pageblock should be reserved for the future
 | |
| 			 */
 | |
| 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
 | |
| 				reserve_highatomic_pageblock(page, zone, order);
 | |
| 
 | |
| 			return page;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Large machines with many possible nodes should not always dump per-node
 | |
|  * meminfo in irq context.
 | |
|  */
 | |
| static inline bool should_suppress_show_mem(void)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 
 | |
| #if NODES_SHIFT > 8
 | |
| 	ret = in_interrupt();
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static DEFINE_RATELIMIT_STATE(nopage_rs,
 | |
| 		DEFAULT_RATELIMIT_INTERVAL,
 | |
| 		DEFAULT_RATELIMIT_BURST);
 | |
| 
 | |
| void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
 | |
| {
 | |
| 	unsigned int filter = SHOW_MEM_FILTER_NODES;
 | |
| 
 | |
| 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
 | |
| 	    debug_guardpage_minorder() > 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This documents exceptions given to allocations in certain
 | |
| 	 * contexts that are allowed to allocate outside current's set
 | |
| 	 * of allowed nodes.
 | |
| 	 */
 | |
| 	if (!(gfp_mask & __GFP_NOMEMALLOC))
 | |
| 		if (test_thread_flag(TIF_MEMDIE) ||
 | |
| 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
 | |
| 			filter &= ~SHOW_MEM_FILTER_NODES;
 | |
| 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
 | |
| 		filter &= ~SHOW_MEM_FILTER_NODES;
 | |
| 
 | |
| 	if (fmt) {
 | |
| 		struct va_format vaf;
 | |
| 		va_list args;
 | |
| 
 | |
| 		va_start(args, fmt);
 | |
| 
 | |
| 		vaf.fmt = fmt;
 | |
| 		vaf.va = &args;
 | |
| 
 | |
| 		pr_warn("%pV", &vaf);
 | |
| 
 | |
| 		va_end(args);
 | |
| 	}
 | |
| 
 | |
| 	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
 | |
| 		current->comm, order, gfp_mask, &gfp_mask);
 | |
| 	dump_stack();
 | |
| 	if (!should_suppress_show_mem())
 | |
| 		show_mem(filter);
 | |
| }
 | |
| 
 | |
| static inline struct page *
 | |
| __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
 | |
| 	const struct alloc_context *ac, unsigned long *did_some_progress)
 | |
| {
 | |
| 	struct oom_control oc = {
 | |
| 		.zonelist = ac->zonelist,
 | |
| 		.nodemask = ac->nodemask,
 | |
| 		.memcg = NULL,
 | |
| 		.gfp_mask = gfp_mask,
 | |
| 		.order = order,
 | |
| 	};
 | |
| 	struct page *page;
 | |
| 
 | |
| 	*did_some_progress = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Acquire the oom lock.  If that fails, somebody else is
 | |
| 	 * making progress for us.
 | |
| 	 */
 | |
| 	if (!mutex_trylock(&oom_lock)) {
 | |
| 		*did_some_progress = 1;
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Go through the zonelist yet one more time, keep very high watermark
 | |
| 	 * here, this is only to catch a parallel oom killing, we must fail if
 | |
| 	 * we're still under heavy pressure.
 | |
| 	 */
 | |
| 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
 | |
| 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
 | |
| 	if (page)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!(gfp_mask & __GFP_NOFAIL)) {
 | |
| 		/* Coredumps can quickly deplete all memory reserves */
 | |
| 		if (current->flags & PF_DUMPCORE)
 | |
| 			goto out;
 | |
| 		/* The OOM killer will not help higher order allocs */
 | |
| 		if (order > PAGE_ALLOC_COSTLY_ORDER)
 | |
| 			goto out;
 | |
| 		/* The OOM killer does not needlessly kill tasks for lowmem */
 | |
| 		if (ac->high_zoneidx < ZONE_NORMAL)
 | |
| 			goto out;
 | |
| 		if (pm_suspended_storage())
 | |
| 			goto out;
 | |
| 		/*
 | |
| 		 * XXX: GFP_NOFS allocations should rather fail than rely on
 | |
| 		 * other request to make a forward progress.
 | |
| 		 * We are in an unfortunate situation where out_of_memory cannot
 | |
| 		 * do much for this context but let's try it to at least get
 | |
| 		 * access to memory reserved if the current task is killed (see
 | |
| 		 * out_of_memory). Once filesystems are ready to handle allocation
 | |
| 		 * failures more gracefully we should just bail out here.
 | |
| 		 */
 | |
| 
 | |
| 		/* The OOM killer may not free memory on a specific node */
 | |
| 		if (gfp_mask & __GFP_THISNODE)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	/* Exhausted what can be done so it's blamo time */
 | |
| 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
 | |
| 		*did_some_progress = 1;
 | |
| 
 | |
| 		if (gfp_mask & __GFP_NOFAIL) {
 | |
| 			page = get_page_from_freelist(gfp_mask, order,
 | |
| 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
 | |
| 			/*
 | |
| 			 * fallback to ignore cpuset restriction if our nodes
 | |
| 			 * are depleted
 | |
| 			 */
 | |
| 			if (!page)
 | |
| 				page = get_page_from_freelist(gfp_mask, order,
 | |
| 					ALLOC_NO_WATERMARKS, ac);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&oom_lock);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Maximum number of compaction retries wit a progress before OOM
 | |
|  * killer is consider as the only way to move forward.
 | |
|  */
 | |
| #define MAX_COMPACT_RETRIES 16
 | |
| 
 | |
| #ifdef CONFIG_COMPACTION
 | |
| /* Try memory compaction for high-order allocations before reclaim */
 | |
| static struct page *
 | |
| __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
 | |
| 		unsigned int alloc_flags, const struct alloc_context *ac,
 | |
| 		enum compact_priority prio, enum compact_result *compact_result)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!order)
 | |
| 		return NULL;
 | |
| 
 | |
| 	current->flags |= PF_MEMALLOC;
 | |
| 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
 | |
| 									prio);
 | |
| 	current->flags &= ~PF_MEMALLOC;
 | |
| 
 | |
| 	if (*compact_result <= COMPACT_INACTIVE)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * At least in one zone compaction wasn't deferred or skipped, so let's
 | |
| 	 * count a compaction stall
 | |
| 	 */
 | |
| 	count_vm_event(COMPACTSTALL);
 | |
| 
 | |
| 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 | |
| 
 | |
| 	if (page) {
 | |
| 		struct zone *zone = page_zone(page);
 | |
| 
 | |
| 		zone->compact_blockskip_flush = false;
 | |
| 		compaction_defer_reset(zone, order, true);
 | |
| 		count_vm_event(COMPACTSUCCESS);
 | |
| 		return page;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's bad if compaction run occurs and fails. The most likely reason
 | |
| 	 * is that pages exist, but not enough to satisfy watermarks.
 | |
| 	 */
 | |
| 	count_vm_event(COMPACTFAIL);
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline struct page *
 | |
| __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
 | |
| 		unsigned int alloc_flags, const struct alloc_context *ac,
 | |
| 		enum compact_priority prio, enum compact_result *compact_result)
 | |
| {
 | |
| 	*compact_result = COMPACT_SKIPPED;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_COMPACTION */
 | |
| 
 | |
| static inline bool
 | |
| should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
 | |
| 		     enum compact_result compact_result,
 | |
| 		     enum compact_priority *compact_priority,
 | |
| 		     int compaction_retries)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	struct zoneref *z;
 | |
| 
 | |
| 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * There are setups with compaction disabled which would prefer to loop
 | |
| 	 * inside the allocator rather than hit the oom killer prematurely.
 | |
| 	 * Let's give them a good hope and keep retrying while the order-0
 | |
| 	 * watermarks are OK.
 | |
| 	 */
 | |
| 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
 | |
| 					ac->nodemask) {
 | |
| 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
 | |
| 					ac_classzone_idx(ac), alloc_flags))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Perform direct synchronous page reclaim */
 | |
| static int
 | |
| __perform_reclaim(gfp_t gfp_mask, unsigned int order,
 | |
| 					const struct alloc_context *ac)
 | |
| {
 | |
| 	struct reclaim_state reclaim_state;
 | |
| 	int progress;
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	/* We now go into synchronous reclaim */
 | |
| 	cpuset_memory_pressure_bump();
 | |
| 	current->flags |= PF_MEMALLOC;
 | |
| 	lockdep_set_current_reclaim_state(gfp_mask);
 | |
| 	reclaim_state.reclaimed_slab = 0;
 | |
| 	current->reclaim_state = &reclaim_state;
 | |
| 
 | |
| 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
 | |
| 								ac->nodemask);
 | |
| 
 | |
| 	current->reclaim_state = NULL;
 | |
| 	lockdep_clear_current_reclaim_state();
 | |
| 	current->flags &= ~PF_MEMALLOC;
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	return progress;
 | |
| }
 | |
| 
 | |
| /* The really slow allocator path where we enter direct reclaim */
 | |
| static inline struct page *
 | |
| __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
 | |
| 		unsigned int alloc_flags, const struct alloc_context *ac,
 | |
| 		unsigned long *did_some_progress)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	bool drained = false;
 | |
| 
 | |
| 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
 | |
| 	if (unlikely(!(*did_some_progress)))
 | |
| 		return NULL;
 | |
| 
 | |
| retry:
 | |
| 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 | |
| 
 | |
| 	/*
 | |
| 	 * If an allocation failed after direct reclaim, it could be because
 | |
| 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
 | |
| 	 * Shrink them them and try again
 | |
| 	 */
 | |
| 	if (!page && !drained) {
 | |
| 		unreserve_highatomic_pageblock(ac);
 | |
| 		drain_all_pages(NULL);
 | |
| 		drained = true;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
 | |
| {
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 	pg_data_t *last_pgdat = NULL;
 | |
| 
 | |
| 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
 | |
| 					ac->high_zoneidx, ac->nodemask) {
 | |
| 		if (last_pgdat != zone->zone_pgdat)
 | |
| 			wakeup_kswapd(zone, order, ac->high_zoneidx);
 | |
| 		last_pgdat = zone->zone_pgdat;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline unsigned int
 | |
| gfp_to_alloc_flags(gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
 | |
| 
 | |
| 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
 | |
| 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 | |
| 
 | |
| 	/*
 | |
| 	 * The caller may dip into page reserves a bit more if the caller
 | |
| 	 * cannot run direct reclaim, or if the caller has realtime scheduling
 | |
| 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
 | |
| 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
 | |
| 	 */
 | |
| 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 | |
| 
 | |
| 	if (gfp_mask & __GFP_ATOMIC) {
 | |
| 		/*
 | |
| 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
 | |
| 		 * if it can't schedule.
 | |
| 		 */
 | |
| 		if (!(gfp_mask & __GFP_NOMEMALLOC))
 | |
| 			alloc_flags |= ALLOC_HARDER;
 | |
| 		/*
 | |
| 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
 | |
| 		 * comment for __cpuset_node_allowed().
 | |
| 		 */
 | |
| 		alloc_flags &= ~ALLOC_CPUSET;
 | |
| 	} else if (unlikely(rt_task(current)) && !in_interrupt())
 | |
| 		alloc_flags |= ALLOC_HARDER;
 | |
| 
 | |
| #ifdef CONFIG_CMA
 | |
| 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
 | |
| 		alloc_flags |= ALLOC_CMA;
 | |
| #endif
 | |
| 	return alloc_flags;
 | |
| }
 | |
| 
 | |
| bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
 | |
| {
 | |
| 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
 | |
| 		return false;
 | |
| 
 | |
| 	if (gfp_mask & __GFP_MEMALLOC)
 | |
| 		return true;
 | |
| 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
 | |
| 		return true;
 | |
| 	if (!in_interrupt() &&
 | |
| 			((current->flags & PF_MEMALLOC) ||
 | |
| 			 unlikely(test_thread_flag(TIF_MEMDIE))))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Maximum number of reclaim retries without any progress before OOM killer
 | |
|  * is consider as the only way to move forward.
 | |
|  */
 | |
| #define MAX_RECLAIM_RETRIES 16
 | |
| 
 | |
| /*
 | |
|  * Checks whether it makes sense to retry the reclaim to make a forward progress
 | |
|  * for the given allocation request.
 | |
|  * The reclaim feedback represented by did_some_progress (any progress during
 | |
|  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
 | |
|  * any progress in a row) is considered as well as the reclaimable pages on the
 | |
|  * applicable zone list (with a backoff mechanism which is a function of
 | |
|  * no_progress_loops).
 | |
|  *
 | |
|  * Returns true if a retry is viable or false to enter the oom path.
 | |
|  */
 | |
| static inline bool
 | |
| should_reclaim_retry(gfp_t gfp_mask, unsigned order,
 | |
| 		     struct alloc_context *ac, int alloc_flags,
 | |
| 		     bool did_some_progress, int no_progress_loops)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	struct zoneref *z;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we converge to OOM if we cannot make any progress
 | |
| 	 * several times in the row.
 | |
| 	 */
 | |
| 	if (no_progress_loops > MAX_RECLAIM_RETRIES)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep reclaiming pages while there is a chance this will lead
 | |
| 	 * somewhere.  If none of the target zones can satisfy our allocation
 | |
| 	 * request even if all reclaimable pages are considered then we are
 | |
| 	 * screwed and have to go OOM.
 | |
| 	 */
 | |
| 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
 | |
| 					ac->nodemask) {
 | |
| 		unsigned long available;
 | |
| 		unsigned long reclaimable;
 | |
| 
 | |
| 		available = reclaimable = zone_reclaimable_pages(zone);
 | |
| 		available -= DIV_ROUND_UP(no_progress_loops * available,
 | |
| 					  MAX_RECLAIM_RETRIES);
 | |
| 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
 | |
| 
 | |
| 		/*
 | |
| 		 * Would the allocation succeed if we reclaimed the whole
 | |
| 		 * available?
 | |
| 		 */
 | |
| 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
 | |
| 				ac_classzone_idx(ac), alloc_flags, available)) {
 | |
| 			/*
 | |
| 			 * If we didn't make any progress and have a lot of
 | |
| 			 * dirty + writeback pages then we should wait for
 | |
| 			 * an IO to complete to slow down the reclaim and
 | |
| 			 * prevent from pre mature OOM
 | |
| 			 */
 | |
| 			if (!did_some_progress) {
 | |
| 				unsigned long write_pending;
 | |
| 
 | |
| 				write_pending = zone_page_state_snapshot(zone,
 | |
| 							NR_ZONE_WRITE_PENDING);
 | |
| 
 | |
| 				if (2 * write_pending > reclaimable) {
 | |
| 					congestion_wait(BLK_RW_ASYNC, HZ/10);
 | |
| 					return true;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Memory allocation/reclaim might be called from a WQ
 | |
| 			 * context and the current implementation of the WQ
 | |
| 			 * concurrency control doesn't recognize that
 | |
| 			 * a particular WQ is congested if the worker thread is
 | |
| 			 * looping without ever sleeping. Therefore we have to
 | |
| 			 * do a short sleep here rather than calling
 | |
| 			 * cond_resched().
 | |
| 			 */
 | |
| 			if (current->flags & PF_WQ_WORKER)
 | |
| 				schedule_timeout_uninterruptible(1);
 | |
| 			else
 | |
| 				cond_resched();
 | |
| 
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline struct page *
 | |
| __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
 | |
| 						struct alloc_context *ac)
 | |
| {
 | |
| 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
 | |
| 	struct page *page = NULL;
 | |
| 	unsigned int alloc_flags;
 | |
| 	unsigned long did_some_progress;
 | |
| 	enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
 | |
| 	enum compact_result compact_result;
 | |
| 	int compaction_retries = 0;
 | |
| 	int no_progress_loops = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the slowpath, we sanity check order to avoid ever trying to
 | |
| 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
 | |
| 	 * be using allocators in order of preference for an area that is
 | |
| 	 * too large.
 | |
| 	 */
 | |
| 	if (order >= MAX_ORDER) {
 | |
| 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We also sanity check to catch abuse of atomic reserves being used by
 | |
| 	 * callers that are not in atomic context.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
 | |
| 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
 | |
| 		gfp_mask &= ~__GFP_ATOMIC;
 | |
| 
 | |
| 	/*
 | |
| 	 * The fast path uses conservative alloc_flags to succeed only until
 | |
| 	 * kswapd needs to be woken up, and to avoid the cost of setting up
 | |
| 	 * alloc_flags precisely. So we do that now.
 | |
| 	 */
 | |
| 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
 | |
| 
 | |
| 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
 | |
| 		wake_all_kswapds(order, ac);
 | |
| 
 | |
| 	/*
 | |
| 	 * The adjusted alloc_flags might result in immediate success, so try
 | |
| 	 * that first
 | |
| 	 */
 | |
| 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	/*
 | |
| 	 * For costly allocations, try direct compaction first, as it's likely
 | |
| 	 * that we have enough base pages and don't need to reclaim. Don't try
 | |
| 	 * that for allocations that are allowed to ignore watermarks, as the
 | |
| 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
 | |
| 	 */
 | |
| 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
 | |
| 		!gfp_pfmemalloc_allowed(gfp_mask)) {
 | |
| 		page = __alloc_pages_direct_compact(gfp_mask, order,
 | |
| 						alloc_flags, ac,
 | |
| 						INIT_COMPACT_PRIORITY,
 | |
| 						&compact_result);
 | |
| 		if (page)
 | |
| 			goto got_pg;
 | |
| 
 | |
| 		/*
 | |
| 		 * Checks for costly allocations with __GFP_NORETRY, which
 | |
| 		 * includes THP page fault allocations
 | |
| 		 */
 | |
| 		if (gfp_mask & __GFP_NORETRY) {
 | |
| 			/*
 | |
| 			 * If compaction is deferred for high-order allocations,
 | |
| 			 * it is because sync compaction recently failed. If
 | |
| 			 * this is the case and the caller requested a THP
 | |
| 			 * allocation, we do not want to heavily disrupt the
 | |
| 			 * system, so we fail the allocation instead of entering
 | |
| 			 * direct reclaim.
 | |
| 			 */
 | |
| 			if (compact_result == COMPACT_DEFERRED)
 | |
| 				goto nopage;
 | |
| 
 | |
| 			/*
 | |
| 			 * Looks like reclaim/compaction is worth trying, but
 | |
| 			 * sync compaction could be very expensive, so keep
 | |
| 			 * using async compaction.
 | |
| 			 */
 | |
| 			compact_priority = INIT_COMPACT_PRIORITY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
 | |
| 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
 | |
| 		wake_all_kswapds(order, ac);
 | |
| 
 | |
| 	if (gfp_pfmemalloc_allowed(gfp_mask))
 | |
| 		alloc_flags = ALLOC_NO_WATERMARKS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset the zonelist iterators if memory policies can be ignored.
 | |
| 	 * These allocations are high priority and system rather than user
 | |
| 	 * orientated.
 | |
| 	 */
 | |
| 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
 | |
| 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
 | |
| 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
 | |
| 					ac->high_zoneidx, ac->nodemask);
 | |
| 	}
 | |
| 
 | |
| 	/* Attempt with potentially adjusted zonelist and alloc_flags */
 | |
| 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	/* Caller is not willing to reclaim, we can't balance anything */
 | |
| 	if (!can_direct_reclaim) {
 | |
| 		/*
 | |
| 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
 | |
| 		 * of any new users that actually allow this type of allocation
 | |
| 		 * to fail.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
 | |
| 		goto nopage;
 | |
| 	}
 | |
| 
 | |
| 	/* Avoid recursion of direct reclaim */
 | |
| 	if (current->flags & PF_MEMALLOC) {
 | |
| 		/*
 | |
| 		 * __GFP_NOFAIL request from this context is rather bizarre
 | |
| 		 * because we cannot reclaim anything and only can loop waiting
 | |
| 		 * for somebody to do a work for us.
 | |
| 		 */
 | |
| 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
 | |
| 			cond_resched();
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		goto nopage;
 | |
| 	}
 | |
| 
 | |
| 	/* Avoid allocations with no watermarks from looping endlessly */
 | |
| 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
 | |
| 		goto nopage;
 | |
| 
 | |
| 
 | |
| 	/* Try direct reclaim and then allocating */
 | |
| 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
 | |
| 							&did_some_progress);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	/* Try direct compaction and then allocating */
 | |
| 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
 | |
| 					compact_priority, &compact_result);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	if (order && compaction_made_progress(compact_result))
 | |
| 		compaction_retries++;
 | |
| 
 | |
| 	/* Do not loop if specifically requested */
 | |
| 	if (gfp_mask & __GFP_NORETRY)
 | |
| 		goto nopage;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not retry costly high order allocations unless they are
 | |
| 	 * __GFP_REPEAT
 | |
| 	 */
 | |
| 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
 | |
| 		goto nopage;
 | |
| 
 | |
| 	/*
 | |
| 	 * Costly allocations might have made a progress but this doesn't mean
 | |
| 	 * their order will become available due to high fragmentation so
 | |
| 	 * always increment the no progress counter for them
 | |
| 	 */
 | |
| 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
 | |
| 		no_progress_loops = 0;
 | |
| 	else
 | |
| 		no_progress_loops++;
 | |
| 
 | |
| 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
 | |
| 				 did_some_progress > 0, no_progress_loops))
 | |
| 		goto retry;
 | |
| 
 | |
| 	/*
 | |
| 	 * It doesn't make any sense to retry for the compaction if the order-0
 | |
| 	 * reclaim is not able to make any progress because the current
 | |
| 	 * implementation of the compaction depends on the sufficient amount
 | |
| 	 * of free memory (see __compaction_suitable)
 | |
| 	 */
 | |
| 	if (did_some_progress > 0 &&
 | |
| 			should_compact_retry(ac, order, alloc_flags,
 | |
| 				compact_result, &compact_priority,
 | |
| 				compaction_retries))
 | |
| 		goto retry;
 | |
| 
 | |
| 	/* Reclaim has failed us, start killing things */
 | |
| 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
 | |
| 	if (page)
 | |
| 		goto got_pg;
 | |
| 
 | |
| 	/* Retry as long as the OOM killer is making progress */
 | |
| 	if (did_some_progress) {
 | |
| 		no_progress_loops = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| nopage:
 | |
| 	warn_alloc_failed(gfp_mask, order, NULL);
 | |
| got_pg:
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the 'heart' of the zoned buddy allocator.
 | |
|  */
 | |
| struct page *
 | |
| __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
 | |
| 			struct zonelist *zonelist, nodemask_t *nodemask)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
 | |
| 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
 | |
| 	struct alloc_context ac = {
 | |
| 		.high_zoneidx = gfp_zone(gfp_mask),
 | |
| 		.zonelist = zonelist,
 | |
| 		.nodemask = nodemask,
 | |
| 		.migratetype = gfpflags_to_migratetype(gfp_mask),
 | |
| 	};
 | |
| 
 | |
| 	if (cpusets_enabled()) {
 | |
| 		alloc_mask |= __GFP_HARDWALL;
 | |
| 		alloc_flags |= ALLOC_CPUSET;
 | |
| 		if (!ac.nodemask)
 | |
| 			ac.nodemask = &cpuset_current_mems_allowed;
 | |
| 	}
 | |
| 
 | |
| 	gfp_mask &= gfp_allowed_mask;
 | |
| 
 | |
| 	lockdep_trace_alloc(gfp_mask);
 | |
| 
 | |
| 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
 | |
| 
 | |
| 	if (should_fail_alloc_page(gfp_mask, order))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check the zones suitable for the gfp_mask contain at least one
 | |
| 	 * valid zone. It's possible to have an empty zonelist as a result
 | |
| 	 * of __GFP_THISNODE and a memoryless node
 | |
| 	 */
 | |
| 	if (unlikely(!zonelist->_zonerefs->zone))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
 | |
| 		alloc_flags |= ALLOC_CMA;
 | |
| 
 | |
| retry_cpuset:
 | |
| 	cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 
 | |
| 	/* Dirty zone balancing only done in the fast path */
 | |
| 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
 | |
| 
 | |
| 	/*
 | |
| 	 * The preferred zone is used for statistics but crucially it is
 | |
| 	 * also used as the starting point for the zonelist iterator. It
 | |
| 	 * may get reset for allocations that ignore memory policies.
 | |
| 	 */
 | |
| 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
 | |
| 					ac.high_zoneidx, ac.nodemask);
 | |
| 	if (!ac.preferred_zoneref) {
 | |
| 		page = NULL;
 | |
| 		goto no_zone;
 | |
| 	}
 | |
| 
 | |
| 	/* First allocation attempt */
 | |
| 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
 | |
| 	if (likely(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Runtime PM, block IO and its error handling path can deadlock
 | |
| 	 * because I/O on the device might not complete.
 | |
| 	 */
 | |
| 	alloc_mask = memalloc_noio_flags(gfp_mask);
 | |
| 	ac.spread_dirty_pages = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore the original nodemask if it was potentially replaced with
 | |
| 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
 | |
| 	 */
 | |
| 	if (cpusets_enabled())
 | |
| 		ac.nodemask = nodemask;
 | |
| 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
 | |
| 
 | |
| no_zone:
 | |
| 	/*
 | |
| 	 * When updating a task's mems_allowed, it is possible to race with
 | |
| 	 * parallel threads in such a way that an allocation can fail while
 | |
| 	 * the mask is being updated. If a page allocation is about to fail,
 | |
| 	 * check if the cpuset changed during allocation and if so, retry.
 | |
| 	 */
 | |
| 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
 | |
| 		alloc_mask = gfp_mask;
 | |
| 		goto retry_cpuset;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
 | |
| 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
 | |
| 		__free_pages(page, order);
 | |
| 		page = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (kmemcheck_enabled && page)
 | |
| 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
 | |
| 
 | |
| 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(__alloc_pages_nodemask);
 | |
| 
 | |
| /*
 | |
|  * Common helper functions.
 | |
|  */
 | |
| unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/*
 | |
| 	 * __get_free_pages() returns a 32-bit address, which cannot represent
 | |
| 	 * a highmem page
 | |
| 	 */
 | |
| 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
 | |
| 
 | |
| 	page = alloc_pages(gfp_mask, order);
 | |
| 	if (!page)
 | |
| 		return 0;
 | |
| 	return (unsigned long) page_address(page);
 | |
| }
 | |
| EXPORT_SYMBOL(__get_free_pages);
 | |
| 
 | |
| unsigned long get_zeroed_page(gfp_t gfp_mask)
 | |
| {
 | |
| 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(get_zeroed_page);
 | |
| 
 | |
| void __free_pages(struct page *page, unsigned int order)
 | |
| {
 | |
| 	if (put_page_testzero(page)) {
 | |
| 		if (order == 0)
 | |
| 			free_hot_cold_page(page, false);
 | |
| 		else
 | |
| 			__free_pages_ok(page, order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__free_pages);
 | |
| 
 | |
| void free_pages(unsigned long addr, unsigned int order)
 | |
| {
 | |
| 	if (addr != 0) {
 | |
| 		VM_BUG_ON(!virt_addr_valid((void *)addr));
 | |
| 		__free_pages(virt_to_page((void *)addr), order);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(free_pages);
 | |
| 
 | |
| /*
 | |
|  * Page Fragment:
 | |
|  *  An arbitrary-length arbitrary-offset area of memory which resides
 | |
|  *  within a 0 or higher order page.  Multiple fragments within that page
 | |
|  *  are individually refcounted, in the page's reference counter.
 | |
|  *
 | |
|  * The page_frag functions below provide a simple allocation framework for
 | |
|  * page fragments.  This is used by the network stack and network device
 | |
|  * drivers to provide a backing region of memory for use as either an
 | |
|  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 | |
|  */
 | |
| static struct page *__page_frag_refill(struct page_frag_cache *nc,
 | |
| 				       gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	gfp_t gfp = gfp_mask;
 | |
| 
 | |
| #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 | |
| 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
 | |
| 		    __GFP_NOMEMALLOC;
 | |
| 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
 | |
| 				PAGE_FRAG_CACHE_MAX_ORDER);
 | |
| 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
 | |
| #endif
 | |
| 	if (unlikely(!page))
 | |
| 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
 | |
| 
 | |
| 	nc->va = page ? page_address(page) : NULL;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| void *__alloc_page_frag(struct page_frag_cache *nc,
 | |
| 			unsigned int fragsz, gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned int size = PAGE_SIZE;
 | |
| 	struct page *page;
 | |
| 	int offset;
 | |
| 
 | |
| 	if (unlikely(!nc->va)) {
 | |
| refill:
 | |
| 		page = __page_frag_refill(nc, gfp_mask);
 | |
| 		if (!page)
 | |
| 			return NULL;
 | |
| 
 | |
| #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 | |
| 		/* if size can vary use size else just use PAGE_SIZE */
 | |
| 		size = nc->size;
 | |
| #endif
 | |
| 		/* Even if we own the page, we do not use atomic_set().
 | |
| 		 * This would break get_page_unless_zero() users.
 | |
| 		 */
 | |
| 		page_ref_add(page, size - 1);
 | |
| 
 | |
| 		/* reset page count bias and offset to start of new frag */
 | |
| 		nc->pfmemalloc = page_is_pfmemalloc(page);
 | |
| 		nc->pagecnt_bias = size;
 | |
| 		nc->offset = size;
 | |
| 	}
 | |
| 
 | |
| 	offset = nc->offset - fragsz;
 | |
| 	if (unlikely(offset < 0)) {
 | |
| 		page = virt_to_page(nc->va);
 | |
| 
 | |
| 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
 | |
| 			goto refill;
 | |
| 
 | |
| #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 | |
| 		/* if size can vary use size else just use PAGE_SIZE */
 | |
| 		size = nc->size;
 | |
| #endif
 | |
| 		/* OK, page count is 0, we can safely set it */
 | |
| 		set_page_count(page, size);
 | |
| 
 | |
| 		/* reset page count bias and offset to start of new frag */
 | |
| 		nc->pagecnt_bias = size;
 | |
| 		offset = size - fragsz;
 | |
| 	}
 | |
| 
 | |
| 	nc->pagecnt_bias--;
 | |
| 	nc->offset = offset;
 | |
| 
 | |
| 	return nc->va + offset;
 | |
| }
 | |
| EXPORT_SYMBOL(__alloc_page_frag);
 | |
| 
 | |
| /*
 | |
|  * Frees a page fragment allocated out of either a compound or order 0 page.
 | |
|  */
 | |
| void __free_page_frag(void *addr)
 | |
| {
 | |
| 	struct page *page = virt_to_head_page(addr);
 | |
| 
 | |
| 	if (unlikely(put_page_testzero(page)))
 | |
| 		__free_pages_ok(page, compound_order(page));
 | |
| }
 | |
| EXPORT_SYMBOL(__free_page_frag);
 | |
| 
 | |
| static void *make_alloc_exact(unsigned long addr, unsigned int order,
 | |
| 		size_t size)
 | |
| {
 | |
| 	if (addr) {
 | |
| 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
 | |
| 		unsigned long used = addr + PAGE_ALIGN(size);
 | |
| 
 | |
| 		split_page(virt_to_page((void *)addr), order);
 | |
| 		while (used < alloc_end) {
 | |
| 			free_page(used);
 | |
| 			used += PAGE_SIZE;
 | |
| 		}
 | |
| 	}
 | |
| 	return (void *)addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 | |
|  * @size: the number of bytes to allocate
 | |
|  * @gfp_mask: GFP flags for the allocation
 | |
|  *
 | |
|  * This function is similar to alloc_pages(), except that it allocates the
 | |
|  * minimum number of pages to satisfy the request.  alloc_pages() can only
 | |
|  * allocate memory in power-of-two pages.
 | |
|  *
 | |
|  * This function is also limited by MAX_ORDER.
 | |
|  *
 | |
|  * Memory allocated by this function must be released by free_pages_exact().
 | |
|  */
 | |
| void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned int order = get_order(size);
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	addr = __get_free_pages(gfp_mask, order);
 | |
| 	return make_alloc_exact(addr, order, size);
 | |
| }
 | |
| EXPORT_SYMBOL(alloc_pages_exact);
 | |
| 
 | |
| /**
 | |
|  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 | |
|  *			   pages on a node.
 | |
|  * @nid: the preferred node ID where memory should be allocated
 | |
|  * @size: the number of bytes to allocate
 | |
|  * @gfp_mask: GFP flags for the allocation
 | |
|  *
 | |
|  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 | |
|  * back.
 | |
|  */
 | |
| void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned int order = get_order(size);
 | |
| 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 | |
| 	if (!p)
 | |
| 		return NULL;
 | |
| 	return make_alloc_exact((unsigned long)page_address(p), order, size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_pages_exact - release memory allocated via alloc_pages_exact()
 | |
|  * @virt: the value returned by alloc_pages_exact.
 | |
|  * @size: size of allocation, same value as passed to alloc_pages_exact().
 | |
|  *
 | |
|  * Release the memory allocated by a previous call to alloc_pages_exact.
 | |
|  */
 | |
| void free_pages_exact(void *virt, size_t size)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)virt;
 | |
| 	unsigned long end = addr + PAGE_ALIGN(size);
 | |
| 
 | |
| 	while (addr < end) {
 | |
| 		free_page(addr);
 | |
| 		addr += PAGE_SIZE;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(free_pages_exact);
 | |
| 
 | |
| /**
 | |
|  * nr_free_zone_pages - count number of pages beyond high watermark
 | |
|  * @offset: The zone index of the highest zone
 | |
|  *
 | |
|  * nr_free_zone_pages() counts the number of counts pages which are beyond the
 | |
|  * high watermark within all zones at or below a given zone index.  For each
 | |
|  * zone, the number of pages is calculated as:
 | |
|  *     managed_pages - high_pages
 | |
|  */
 | |
| static unsigned long nr_free_zone_pages(int offset)
 | |
| {
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	/* Just pick one node, since fallback list is circular */
 | |
| 	unsigned long sum = 0;
 | |
| 
 | |
| 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
 | |
| 
 | |
| 	for_each_zone_zonelist(zone, z, zonelist, offset) {
 | |
| 		unsigned long size = zone->managed_pages;
 | |
| 		unsigned long high = high_wmark_pages(zone);
 | |
| 		if (size > high)
 | |
| 			sum += size - high;
 | |
| 	}
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nr_free_buffer_pages - count number of pages beyond high watermark
 | |
|  *
 | |
|  * nr_free_buffer_pages() counts the number of pages which are beyond the high
 | |
|  * watermark within ZONE_DMA and ZONE_NORMAL.
 | |
|  */
 | |
| unsigned long nr_free_buffer_pages(void)
 | |
| {
 | |
| 	return nr_free_zone_pages(gfp_zone(GFP_USER));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
 | |
| 
 | |
| /**
 | |
|  * nr_free_pagecache_pages - count number of pages beyond high watermark
 | |
|  *
 | |
|  * nr_free_pagecache_pages() counts the number of pages which are beyond the
 | |
|  * high watermark within all zones.
 | |
|  */
 | |
| unsigned long nr_free_pagecache_pages(void)
 | |
| {
 | |
| 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
 | |
| }
 | |
| 
 | |
| static inline void show_node(struct zone *zone)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_NUMA))
 | |
| 		printk("Node %d ", zone_to_nid(zone));
 | |
| }
 | |
| 
 | |
| long si_mem_available(void)
 | |
| {
 | |
| 	long available;
 | |
| 	unsigned long pagecache;
 | |
| 	unsigned long wmark_low = 0;
 | |
| 	unsigned long pages[NR_LRU_LISTS];
 | |
| 	struct zone *zone;
 | |
| 	int lru;
 | |
| 
 | |
| 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
 | |
| 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
 | |
| 
 | |
| 	for_each_zone(zone)
 | |
| 		wmark_low += zone->watermark[WMARK_LOW];
 | |
| 
 | |
| 	/*
 | |
| 	 * Estimate the amount of memory available for userspace allocations,
 | |
| 	 * without causing swapping.
 | |
| 	 */
 | |
| 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Not all the page cache can be freed, otherwise the system will
 | |
| 	 * start swapping. Assume at least half of the page cache, or the
 | |
| 	 * low watermark worth of cache, needs to stay.
 | |
| 	 */
 | |
| 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
 | |
| 	pagecache -= min(pagecache / 2, wmark_low);
 | |
| 	available += pagecache;
 | |
| 
 | |
| 	/*
 | |
| 	 * Part of the reclaimable slab consists of items that are in use,
 | |
| 	 * and cannot be freed. Cap this estimate at the low watermark.
 | |
| 	 */
 | |
| 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
 | |
| 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
 | |
| 
 | |
| 	if (available < 0)
 | |
| 		available = 0;
 | |
| 	return available;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(si_mem_available);
 | |
| 
 | |
| void si_meminfo(struct sysinfo *val)
 | |
| {
 | |
| 	val->totalram = totalram_pages;
 | |
| 	val->sharedram = global_node_page_state(NR_SHMEM);
 | |
| 	val->freeram = global_page_state(NR_FREE_PAGES);
 | |
| 	val->bufferram = nr_blockdev_pages();
 | |
| 	val->totalhigh = totalhigh_pages;
 | |
| 	val->freehigh = nr_free_highpages();
 | |
| 	val->mem_unit = PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(si_meminfo);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| void si_meminfo_node(struct sysinfo *val, int nid)
 | |
| {
 | |
| 	int zone_type;		/* needs to be signed */
 | |
| 	unsigned long managed_pages = 0;
 | |
| 	unsigned long managed_highpages = 0;
 | |
| 	unsigned long free_highpages = 0;
 | |
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 
 | |
| 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
 | |
| 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
 | |
| 	val->totalram = managed_pages;
 | |
| 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
 | |
| 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
 | |
| 		struct zone *zone = &pgdat->node_zones[zone_type];
 | |
| 
 | |
| 		if (is_highmem(zone)) {
 | |
| 			managed_highpages += zone->managed_pages;
 | |
| 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
 | |
| 		}
 | |
| 	}
 | |
| 	val->totalhigh = managed_highpages;
 | |
| 	val->freehigh = free_highpages;
 | |
| #else
 | |
| 	val->totalhigh = managed_highpages;
 | |
| 	val->freehigh = free_highpages;
 | |
| #endif
 | |
| 	val->mem_unit = PAGE_SIZE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Determine whether the node should be displayed or not, depending on whether
 | |
|  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
 | |
|  */
 | |
| bool skip_free_areas_node(unsigned int flags, int nid)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 	unsigned int cpuset_mems_cookie;
 | |
| 
 | |
| 	if (!(flags & SHOW_MEM_FILTER_NODES))
 | |
| 		goto out;
 | |
| 
 | |
| 	do {
 | |
| 		cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 		ret = !node_isset(nid, cpuset_current_mems_allowed);
 | |
| 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define K(x) ((x) << (PAGE_SHIFT-10))
 | |
| 
 | |
| static void show_migration_types(unsigned char type)
 | |
| {
 | |
| 	static const char types[MIGRATE_TYPES] = {
 | |
| 		[MIGRATE_UNMOVABLE]	= 'U',
 | |
| 		[MIGRATE_MOVABLE]	= 'M',
 | |
| 		[MIGRATE_RECLAIMABLE]	= 'E',
 | |
| 		[MIGRATE_HIGHATOMIC]	= 'H',
 | |
| #ifdef CONFIG_CMA
 | |
| 		[MIGRATE_CMA]		= 'C',
 | |
| #endif
 | |
| #ifdef CONFIG_MEMORY_ISOLATION
 | |
| 		[MIGRATE_ISOLATE]	= 'I',
 | |
| #endif
 | |
| 	};
 | |
| 	char tmp[MIGRATE_TYPES + 1];
 | |
| 	char *p = tmp;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MIGRATE_TYPES; i++) {
 | |
| 		if (type & (1 << i))
 | |
| 			*p++ = types[i];
 | |
| 	}
 | |
| 
 | |
| 	*p = '\0';
 | |
| 	printk("(%s) ", tmp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Show free area list (used inside shift_scroll-lock stuff)
 | |
|  * We also calculate the percentage fragmentation. We do this by counting the
 | |
|  * memory on each free list with the exception of the first item on the list.
 | |
|  *
 | |
|  * Bits in @filter:
 | |
|  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 | |
|  *   cpuset.
 | |
|  */
 | |
| void show_free_areas(unsigned int filter)
 | |
| {
 | |
| 	unsigned long free_pcp = 0;
 | |
| 	int cpu;
 | |
| 	struct zone *zone;
 | |
| 	pg_data_t *pgdat;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
 | |
| 			continue;
 | |
| 
 | |
| 		for_each_online_cpu(cpu)
 | |
| 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
 | |
| 	}
 | |
| 
 | |
| 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
 | |
| 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
 | |
| 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
 | |
| 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
 | |
| 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
 | |
| 		" free:%lu free_pcp:%lu free_cma:%lu\n",
 | |
| 		global_node_page_state(NR_ACTIVE_ANON),
 | |
| 		global_node_page_state(NR_INACTIVE_ANON),
 | |
| 		global_node_page_state(NR_ISOLATED_ANON),
 | |
| 		global_node_page_state(NR_ACTIVE_FILE),
 | |
| 		global_node_page_state(NR_INACTIVE_FILE),
 | |
| 		global_node_page_state(NR_ISOLATED_FILE),
 | |
| 		global_node_page_state(NR_UNEVICTABLE),
 | |
| 		global_node_page_state(NR_FILE_DIRTY),
 | |
| 		global_node_page_state(NR_WRITEBACK),
 | |
| 		global_node_page_state(NR_UNSTABLE_NFS),
 | |
| 		global_page_state(NR_SLAB_RECLAIMABLE),
 | |
| 		global_page_state(NR_SLAB_UNRECLAIMABLE),
 | |
| 		global_node_page_state(NR_FILE_MAPPED),
 | |
| 		global_node_page_state(NR_SHMEM),
 | |
| 		global_page_state(NR_PAGETABLE),
 | |
| 		global_page_state(NR_BOUNCE),
 | |
| 		global_page_state(NR_FREE_PAGES),
 | |
| 		free_pcp,
 | |
| 		global_page_state(NR_FREE_CMA_PAGES));
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		printk("Node %d"
 | |
| 			" active_anon:%lukB"
 | |
| 			" inactive_anon:%lukB"
 | |
| 			" active_file:%lukB"
 | |
| 			" inactive_file:%lukB"
 | |
| 			" unevictable:%lukB"
 | |
| 			" isolated(anon):%lukB"
 | |
| 			" isolated(file):%lukB"
 | |
| 			" mapped:%lukB"
 | |
| 			" dirty:%lukB"
 | |
| 			" writeback:%lukB"
 | |
| 			" shmem:%lukB"
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 			" shmem_thp: %lukB"
 | |
| 			" shmem_pmdmapped: %lukB"
 | |
| 			" anon_thp: %lukB"
 | |
| #endif
 | |
| 			" writeback_tmp:%lukB"
 | |
| 			" unstable:%lukB"
 | |
| 			" pages_scanned:%lu"
 | |
| 			" all_unreclaimable? %s"
 | |
| 			"\n",
 | |
| 			pgdat->node_id,
 | |
| 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
 | |
| 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
 | |
| 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
 | |
| 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
 | |
| 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
 | |
| 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
 | |
| 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
 | |
| 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
 | |
| 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
 | |
| 			K(node_page_state(pgdat, NR_WRITEBACK)),
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
 | |
| 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
 | |
| 					* HPAGE_PMD_NR),
 | |
| 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
 | |
| #endif
 | |
| 			K(node_page_state(pgdat, NR_SHMEM)),
 | |
| 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
 | |
| 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
 | |
| 			node_page_state(pgdat, NR_PAGES_SCANNED),
 | |
| 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
 | |
| 	}
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
 | |
| 			continue;
 | |
| 
 | |
| 		free_pcp = 0;
 | |
| 		for_each_online_cpu(cpu)
 | |
| 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
 | |
| 
 | |
| 		show_node(zone);
 | |
| 		printk("%s"
 | |
| 			" free:%lukB"
 | |
| 			" min:%lukB"
 | |
| 			" low:%lukB"
 | |
| 			" high:%lukB"
 | |
| 			" active_anon:%lukB"
 | |
| 			" inactive_anon:%lukB"
 | |
| 			" active_file:%lukB"
 | |
| 			" inactive_file:%lukB"
 | |
| 			" unevictable:%lukB"
 | |
| 			" writepending:%lukB"
 | |
| 			" present:%lukB"
 | |
| 			" managed:%lukB"
 | |
| 			" mlocked:%lukB"
 | |
| 			" slab_reclaimable:%lukB"
 | |
| 			" slab_unreclaimable:%lukB"
 | |
| 			" kernel_stack:%lukB"
 | |
| 			" pagetables:%lukB"
 | |
| 			" bounce:%lukB"
 | |
| 			" free_pcp:%lukB"
 | |
| 			" local_pcp:%ukB"
 | |
| 			" free_cma:%lukB"
 | |
| 			"\n",
 | |
| 			zone->name,
 | |
| 			K(zone_page_state(zone, NR_FREE_PAGES)),
 | |
| 			K(min_wmark_pages(zone)),
 | |
| 			K(low_wmark_pages(zone)),
 | |
| 			K(high_wmark_pages(zone)),
 | |
| 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
 | |
| 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
 | |
| 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
 | |
| 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
 | |
| 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
 | |
| 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
 | |
| 			K(zone->present_pages),
 | |
| 			K(zone->managed_pages),
 | |
| 			K(zone_page_state(zone, NR_MLOCK)),
 | |
| 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
 | |
| 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
 | |
| 			zone_page_state(zone, NR_KERNEL_STACK_KB),
 | |
| 			K(zone_page_state(zone, NR_PAGETABLE)),
 | |
| 			K(zone_page_state(zone, NR_BOUNCE)),
 | |
| 			K(free_pcp),
 | |
| 			K(this_cpu_read(zone->pageset->pcp.count)),
 | |
| 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
 | |
| 		printk("lowmem_reserve[]:");
 | |
| 		for (i = 0; i < MAX_NR_ZONES; i++)
 | |
| 			printk(" %ld", zone->lowmem_reserve[i]);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		unsigned int order;
 | |
| 		unsigned long nr[MAX_ORDER], flags, total = 0;
 | |
| 		unsigned char types[MAX_ORDER];
 | |
| 
 | |
| 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
 | |
| 			continue;
 | |
| 		show_node(zone);
 | |
| 		printk("%s: ", zone->name);
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		for (order = 0; order < MAX_ORDER; order++) {
 | |
| 			struct free_area *area = &zone->free_area[order];
 | |
| 			int type;
 | |
| 
 | |
| 			nr[order] = area->nr_free;
 | |
| 			total += nr[order] << order;
 | |
| 
 | |
| 			types[order] = 0;
 | |
| 			for (type = 0; type < MIGRATE_TYPES; type++) {
 | |
| 				if (!list_empty(&area->free_list[type]))
 | |
| 					types[order] |= 1 << type;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 		for (order = 0; order < MAX_ORDER; order++) {
 | |
| 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
 | |
| 			if (nr[order])
 | |
| 				show_migration_types(types[order]);
 | |
| 		}
 | |
| 		printk("= %lukB\n", K(total));
 | |
| 	}
 | |
| 
 | |
| 	hugetlb_show_meminfo();
 | |
| 
 | |
| 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
 | |
| 
 | |
| 	show_swap_cache_info();
 | |
| }
 | |
| 
 | |
| static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
 | |
| {
 | |
| 	zoneref->zone = zone;
 | |
| 	zoneref->zone_idx = zone_idx(zone);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Builds allocation fallback zone lists.
 | |
|  *
 | |
|  * Add all populated zones of a node to the zonelist.
 | |
|  */
 | |
| static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
 | |
| 				int nr_zones)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	enum zone_type zone_type = MAX_NR_ZONES;
 | |
| 
 | |
| 	do {
 | |
| 		zone_type--;
 | |
| 		zone = pgdat->node_zones + zone_type;
 | |
| 		if (managed_zone(zone)) {
 | |
| 			zoneref_set_zone(zone,
 | |
| 				&zonelist->_zonerefs[nr_zones++]);
 | |
| 			check_highest_zone(zone_type);
 | |
| 		}
 | |
| 	} while (zone_type);
 | |
| 
 | |
| 	return nr_zones;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  zonelist_order:
 | |
|  *  0 = automatic detection of better ordering.
 | |
|  *  1 = order by ([node] distance, -zonetype)
 | |
|  *  2 = order by (-zonetype, [node] distance)
 | |
|  *
 | |
|  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 | |
|  *  the same zonelist. So only NUMA can configure this param.
 | |
|  */
 | |
| #define ZONELIST_ORDER_DEFAULT  0
 | |
| #define ZONELIST_ORDER_NODE     1
 | |
| #define ZONELIST_ORDER_ZONE     2
 | |
| 
 | |
| /* zonelist order in the kernel.
 | |
|  * set_zonelist_order() will set this to NODE or ZONE.
 | |
|  */
 | |
| static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | |
| static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /* The value user specified ....changed by config */
 | |
| static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | |
| /* string for sysctl */
 | |
| #define NUMA_ZONELIST_ORDER_LEN	16
 | |
| char numa_zonelist_order[16] = "default";
 | |
| 
 | |
| /*
 | |
|  * interface for configure zonelist ordering.
 | |
|  * command line option "numa_zonelist_order"
 | |
|  *	= "[dD]efault	- default, automatic configuration.
 | |
|  *	= "[nN]ode 	- order by node locality, then by zone within node
 | |
|  *	= "[zZ]one      - order by zone, then by locality within zone
 | |
|  */
 | |
| 
 | |
| static int __parse_numa_zonelist_order(char *s)
 | |
| {
 | |
| 	if (*s == 'd' || *s == 'D') {
 | |
| 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
 | |
| 	} else if (*s == 'n' || *s == 'N') {
 | |
| 		user_zonelist_order = ZONELIST_ORDER_NODE;
 | |
| 	} else if (*s == 'z' || *s == 'Z') {
 | |
| 		user_zonelist_order = ZONELIST_ORDER_ZONE;
 | |
| 	} else {
 | |
| 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __init int setup_numa_zonelist_order(char *s)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!s)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = __parse_numa_zonelist_order(s);
 | |
| 	if (ret == 0)
 | |
| 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| early_param("numa_zonelist_order", setup_numa_zonelist_order);
 | |
| 
 | |
| /*
 | |
|  * sysctl handler for numa_zonelist_order
 | |
|  */
 | |
| int numa_zonelist_order_handler(struct ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *length,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
 | |
| 	int ret;
 | |
| 	static DEFINE_MUTEX(zl_order_mutex);
 | |
| 
 | |
| 	mutex_lock(&zl_order_mutex);
 | |
| 	if (write) {
 | |
| 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		strcpy(saved_string, (char *)table->data);
 | |
| 	}
 | |
| 	ret = proc_dostring(table, write, buffer, length, ppos);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	if (write) {
 | |
| 		int oldval = user_zonelist_order;
 | |
| 
 | |
| 		ret = __parse_numa_zonelist_order((char *)table->data);
 | |
| 		if (ret) {
 | |
| 			/*
 | |
| 			 * bogus value.  restore saved string
 | |
| 			 */
 | |
| 			strncpy((char *)table->data, saved_string,
 | |
| 				NUMA_ZONELIST_ORDER_LEN);
 | |
| 			user_zonelist_order = oldval;
 | |
| 		} else if (oldval != user_zonelist_order) {
 | |
| 			mutex_lock(&zonelists_mutex);
 | |
| 			build_all_zonelists(NULL, NULL);
 | |
| 			mutex_unlock(&zonelists_mutex);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&zl_order_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define MAX_NODE_LOAD (nr_online_nodes)
 | |
| static int node_load[MAX_NUMNODES];
 | |
| 
 | |
| /**
 | |
|  * find_next_best_node - find the next node that should appear in a given node's fallback list
 | |
|  * @node: node whose fallback list we're appending
 | |
|  * @used_node_mask: nodemask_t of already used nodes
 | |
|  *
 | |
|  * We use a number of factors to determine which is the next node that should
 | |
|  * appear on a given node's fallback list.  The node should not have appeared
 | |
|  * already in @node's fallback list, and it should be the next closest node
 | |
|  * according to the distance array (which contains arbitrary distance values
 | |
|  * from each node to each node in the system), and should also prefer nodes
 | |
|  * with no CPUs, since presumably they'll have very little allocation pressure
 | |
|  * on them otherwise.
 | |
|  * It returns -1 if no node is found.
 | |
|  */
 | |
| static int find_next_best_node(int node, nodemask_t *used_node_mask)
 | |
| {
 | |
| 	int n, val;
 | |
| 	int min_val = INT_MAX;
 | |
| 	int best_node = NUMA_NO_NODE;
 | |
| 	const struct cpumask *tmp = cpumask_of_node(0);
 | |
| 
 | |
| 	/* Use the local node if we haven't already */
 | |
| 	if (!node_isset(node, *used_node_mask)) {
 | |
| 		node_set(node, *used_node_mask);
 | |
| 		return node;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node_state(n, N_MEMORY) {
 | |
| 
 | |
| 		/* Don't want a node to appear more than once */
 | |
| 		if (node_isset(n, *used_node_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Use the distance array to find the distance */
 | |
| 		val = node_distance(node, n);
 | |
| 
 | |
| 		/* Penalize nodes under us ("prefer the next node") */
 | |
| 		val += (n < node);
 | |
| 
 | |
| 		/* Give preference to headless and unused nodes */
 | |
| 		tmp = cpumask_of_node(n);
 | |
| 		if (!cpumask_empty(tmp))
 | |
| 			val += PENALTY_FOR_NODE_WITH_CPUS;
 | |
| 
 | |
| 		/* Slight preference for less loaded node */
 | |
| 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
 | |
| 		val += node_load[n];
 | |
| 
 | |
| 		if (val < min_val) {
 | |
| 			min_val = val;
 | |
| 			best_node = n;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (best_node >= 0)
 | |
| 		node_set(best_node, *used_node_mask);
 | |
| 
 | |
| 	return best_node;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Build zonelists ordered by node and zones within node.
 | |
|  * This results in maximum locality--normal zone overflows into local
 | |
|  * DMA zone, if any--but risks exhausting DMA zone.
 | |
|  */
 | |
| static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
 | |
| {
 | |
| 	int j;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	zonelist = &pgdat->node_zonelists[0];
 | |
| 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
 | |
| 		;
 | |
| 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 | |
| 	zonelist->_zonerefs[j].zone = NULL;
 | |
| 	zonelist->_zonerefs[j].zone_idx = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build gfp_thisnode zonelists
 | |
|  */
 | |
| static void build_thisnode_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	int j;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	zonelist = &pgdat->node_zonelists[1];
 | |
| 	j = build_zonelists_node(pgdat, zonelist, 0);
 | |
| 	zonelist->_zonerefs[j].zone = NULL;
 | |
| 	zonelist->_zonerefs[j].zone_idx = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build zonelists ordered by zone and nodes within zones.
 | |
|  * This results in conserving DMA zone[s] until all Normal memory is
 | |
|  * exhausted, but results in overflowing to remote node while memory
 | |
|  * may still exist in local DMA zone.
 | |
|  */
 | |
| static int node_order[MAX_NUMNODES];
 | |
| 
 | |
| static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
 | |
| {
 | |
| 	int pos, j, node;
 | |
| 	int zone_type;		/* needs to be signed */
 | |
| 	struct zone *z;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	zonelist = &pgdat->node_zonelists[0];
 | |
| 	pos = 0;
 | |
| 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
 | |
| 		for (j = 0; j < nr_nodes; j++) {
 | |
| 			node = node_order[j];
 | |
| 			z = &NODE_DATA(node)->node_zones[zone_type];
 | |
| 			if (managed_zone(z)) {
 | |
| 				zoneref_set_zone(z,
 | |
| 					&zonelist->_zonerefs[pos++]);
 | |
| 				check_highest_zone(zone_type);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	zonelist->_zonerefs[pos].zone = NULL;
 | |
| 	zonelist->_zonerefs[pos].zone_idx = 0;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_64BIT)
 | |
| /*
 | |
|  * Devices that require DMA32/DMA are relatively rare and do not justify a
 | |
|  * penalty to every machine in case the specialised case applies. Default
 | |
|  * to Node-ordering on 64-bit NUMA machines
 | |
|  */
 | |
| static int default_zonelist_order(void)
 | |
| {
 | |
| 	return ZONELIST_ORDER_NODE;
 | |
| }
 | |
| #else
 | |
| /*
 | |
|  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
 | |
|  * by the kernel. If processes running on node 0 deplete the low memory zone
 | |
|  * then reclaim will occur more frequency increasing stalls and potentially
 | |
|  * be easier to OOM if a large percentage of the zone is under writeback or
 | |
|  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
 | |
|  * Hence, default to zone ordering on 32-bit.
 | |
|  */
 | |
| static int default_zonelist_order(void)
 | |
| {
 | |
| 	return ZONELIST_ORDER_ZONE;
 | |
| }
 | |
| #endif /* CONFIG_64BIT */
 | |
| 
 | |
| static void set_zonelist_order(void)
 | |
| {
 | |
| 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
 | |
| 		current_zonelist_order = default_zonelist_order();
 | |
| 	else
 | |
| 		current_zonelist_order = user_zonelist_order;
 | |
| }
 | |
| 
 | |
| static void build_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	int i, node, load;
 | |
| 	nodemask_t used_mask;
 | |
| 	int local_node, prev_node;
 | |
| 	struct zonelist *zonelist;
 | |
| 	unsigned int order = current_zonelist_order;
 | |
| 
 | |
| 	/* initialize zonelists */
 | |
| 	for (i = 0; i < MAX_ZONELISTS; i++) {
 | |
| 		zonelist = pgdat->node_zonelists + i;
 | |
| 		zonelist->_zonerefs[0].zone = NULL;
 | |
| 		zonelist->_zonerefs[0].zone_idx = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* NUMA-aware ordering of nodes */
 | |
| 	local_node = pgdat->node_id;
 | |
| 	load = nr_online_nodes;
 | |
| 	prev_node = local_node;
 | |
| 	nodes_clear(used_mask);
 | |
| 
 | |
| 	memset(node_order, 0, sizeof(node_order));
 | |
| 	i = 0;
 | |
| 
 | |
| 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
 | |
| 		/*
 | |
| 		 * We don't want to pressure a particular node.
 | |
| 		 * So adding penalty to the first node in same
 | |
| 		 * distance group to make it round-robin.
 | |
| 		 */
 | |
| 		if (node_distance(local_node, node) !=
 | |
| 		    node_distance(local_node, prev_node))
 | |
| 			node_load[node] = load;
 | |
| 
 | |
| 		prev_node = node;
 | |
| 		load--;
 | |
| 		if (order == ZONELIST_ORDER_NODE)
 | |
| 			build_zonelists_in_node_order(pgdat, node);
 | |
| 		else
 | |
| 			node_order[i++] = node;	/* remember order */
 | |
| 	}
 | |
| 
 | |
| 	if (order == ZONELIST_ORDER_ZONE) {
 | |
| 		/* calculate node order -- i.e., DMA last! */
 | |
| 		build_zonelists_in_zone_order(pgdat, i);
 | |
| 	}
 | |
| 
 | |
| 	build_thisnode_zonelists(pgdat);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES
 | |
| /*
 | |
|  * Return node id of node used for "local" allocations.
 | |
|  * I.e., first node id of first zone in arg node's generic zonelist.
 | |
|  * Used for initializing percpu 'numa_mem', which is used primarily
 | |
|  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 | |
|  */
 | |
| int local_memory_node(int node)
 | |
| {
 | |
| 	struct zoneref *z;
 | |
| 
 | |
| 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
 | |
| 				   gfp_zone(GFP_KERNEL),
 | |
| 				   NULL);
 | |
| 	return z->zone->node;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void setup_min_unmapped_ratio(void);
 | |
| static void setup_min_slab_ratio(void);
 | |
| #else	/* CONFIG_NUMA */
 | |
| 
 | |
| static void set_zonelist_order(void)
 | |
| {
 | |
| 	current_zonelist_order = ZONELIST_ORDER_ZONE;
 | |
| }
 | |
| 
 | |
| static void build_zonelists(pg_data_t *pgdat)
 | |
| {
 | |
| 	int node, local_node;
 | |
| 	enum zone_type j;
 | |
| 	struct zonelist *zonelist;
 | |
| 
 | |
| 	local_node = pgdat->node_id;
 | |
| 
 | |
| 	zonelist = &pgdat->node_zonelists[0];
 | |
| 	j = build_zonelists_node(pgdat, zonelist, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we build the zonelist so that it contains the zones
 | |
| 	 * of all the other nodes.
 | |
| 	 * We don't want to pressure a particular node, so when
 | |
| 	 * building the zones for node N, we make sure that the
 | |
| 	 * zones coming right after the local ones are those from
 | |
| 	 * node N+1 (modulo N)
 | |
| 	 */
 | |
| 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
 | |
| 		if (!node_online(node))
 | |
| 			continue;
 | |
| 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 | |
| 	}
 | |
| 	for (node = 0; node < local_node; node++) {
 | |
| 		if (!node_online(node))
 | |
| 			continue;
 | |
| 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 | |
| 	}
 | |
| 
 | |
| 	zonelist->_zonerefs[j].zone = NULL;
 | |
| 	zonelist->_zonerefs[j].zone_idx = 0;
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_NUMA */
 | |
| 
 | |
| /*
 | |
|  * Boot pageset table. One per cpu which is going to be used for all
 | |
|  * zones and all nodes. The parameters will be set in such a way
 | |
|  * that an item put on a list will immediately be handed over to
 | |
|  * the buddy list. This is safe since pageset manipulation is done
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * The boot_pagesets must be kept even after bootup is complete for
 | |
|  * unused processors and/or zones. They do play a role for bootstrapping
 | |
|  * hotplugged processors.
 | |
|  *
 | |
|  * zoneinfo_show() and maybe other functions do
 | |
|  * not check if the processor is online before following the pageset pointer.
 | |
|  * Other parts of the kernel may not check if the zone is available.
 | |
|  */
 | |
| static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
 | |
| static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
 | |
| static void setup_zone_pageset(struct zone *zone);
 | |
| 
 | |
| /*
 | |
|  * Global mutex to protect against size modification of zonelists
 | |
|  * as well as to serialize pageset setup for the new populated zone.
 | |
|  */
 | |
| DEFINE_MUTEX(zonelists_mutex);
 | |
| 
 | |
| /* return values int ....just for stop_machine() */
 | |
| static int __build_all_zonelists(void *data)
 | |
| {
 | |
| 	int nid;
 | |
| 	int cpu;
 | |
| 	pg_data_t *self = data;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	memset(node_load, 0, sizeof(node_load));
 | |
| #endif
 | |
| 
 | |
| 	if (self && !node_online(self->node_id)) {
 | |
| 		build_zonelists(self);
 | |
| 	}
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 
 | |
| 		build_zonelists(pgdat);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the boot_pagesets that are going to be used
 | |
| 	 * for bootstrapping processors. The real pagesets for
 | |
| 	 * each zone will be allocated later when the per cpu
 | |
| 	 * allocator is available.
 | |
| 	 *
 | |
| 	 * boot_pagesets are used also for bootstrapping offline
 | |
| 	 * cpus if the system is already booted because the pagesets
 | |
| 	 * are needed to initialize allocators on a specific cpu too.
 | |
| 	 * F.e. the percpu allocator needs the page allocator which
 | |
| 	 * needs the percpu allocator in order to allocate its pagesets
 | |
| 	 * (a chicken-egg dilemma).
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES
 | |
| 		/*
 | |
| 		 * We now know the "local memory node" for each node--
 | |
| 		 * i.e., the node of the first zone in the generic zonelist.
 | |
| 		 * Set up numa_mem percpu variable for on-line cpus.  During
 | |
| 		 * boot, only the boot cpu should be on-line;  we'll init the
 | |
| 		 * secondary cpus' numa_mem as they come on-line.  During
 | |
| 		 * node/memory hotplug, we'll fixup all on-line cpus.
 | |
| 		 */
 | |
| 		if (cpu_online(cpu))
 | |
| 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline void __init
 | |
| build_all_zonelists_init(void)
 | |
| {
 | |
| 	__build_all_zonelists(NULL);
 | |
| 	mminit_verify_zonelist();
 | |
| 	cpuset_init_current_mems_allowed();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with zonelists_mutex held always
 | |
|  * unless system_state == SYSTEM_BOOTING.
 | |
|  *
 | |
|  * __ref due to (1) call of __meminit annotated setup_zone_pageset
 | |
|  * [we're only called with non-NULL zone through __meminit paths] and
 | |
|  * (2) call of __init annotated helper build_all_zonelists_init
 | |
|  * [protected by SYSTEM_BOOTING].
 | |
|  */
 | |
| void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
 | |
| {
 | |
| 	set_zonelist_order();
 | |
| 
 | |
| 	if (system_state == SYSTEM_BOOTING) {
 | |
| 		build_all_zonelists_init();
 | |
| 	} else {
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| 		if (zone)
 | |
| 			setup_zone_pageset(zone);
 | |
| #endif
 | |
| 		/* we have to stop all cpus to guarantee there is no user
 | |
| 		   of zonelist */
 | |
| 		stop_machine(__build_all_zonelists, pgdat, NULL);
 | |
| 		/* cpuset refresh routine should be here */
 | |
| 	}
 | |
| 	vm_total_pages = nr_free_pagecache_pages();
 | |
| 	/*
 | |
| 	 * Disable grouping by mobility if the number of pages in the
 | |
| 	 * system is too low to allow the mechanism to work. It would be
 | |
| 	 * more accurate, but expensive to check per-zone. This check is
 | |
| 	 * made on memory-hotadd so a system can start with mobility
 | |
| 	 * disabled and enable it later
 | |
| 	 */
 | |
| 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
 | |
| 		page_group_by_mobility_disabled = 1;
 | |
| 	else
 | |
| 		page_group_by_mobility_disabled = 0;
 | |
| 
 | |
| 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
 | |
| 		nr_online_nodes,
 | |
| 		zonelist_order_name[current_zonelist_order],
 | |
| 		page_group_by_mobility_disabled ? "off" : "on",
 | |
| 		vm_total_pages);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper functions to size the waitqueue hash table.
 | |
|  * Essentially these want to choose hash table sizes sufficiently
 | |
|  * large so that collisions trying to wait on pages are rare.
 | |
|  * But in fact, the number of active page waitqueues on typical
 | |
|  * systems is ridiculously low, less than 200. So this is even
 | |
|  * conservative, even though it seems large.
 | |
|  *
 | |
|  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
 | |
|  * waitqueues, i.e. the size of the waitq table given the number of pages.
 | |
|  */
 | |
| #define PAGES_PER_WAITQUEUE	256
 | |
| 
 | |
| #ifndef CONFIG_MEMORY_HOTPLUG
 | |
| static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
 | |
| {
 | |
| 	unsigned long size = 1;
 | |
| 
 | |
| 	pages /= PAGES_PER_WAITQUEUE;
 | |
| 
 | |
| 	while (size < pages)
 | |
| 		size <<= 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once we have dozens or even hundreds of threads sleeping
 | |
| 	 * on IO we've got bigger problems than wait queue collision.
 | |
| 	 * Limit the size of the wait table to a reasonable size.
 | |
| 	 */
 | |
| 	size = min(size, 4096UL);
 | |
| 
 | |
| 	return max(size, 4UL);
 | |
| }
 | |
| #else
 | |
| /*
 | |
|  * A zone's size might be changed by hot-add, so it is not possible to determine
 | |
|  * a suitable size for its wait_table.  So we use the maximum size now.
 | |
|  *
 | |
|  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
 | |
|  *
 | |
|  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
 | |
|  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
 | |
|  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
 | |
|  *
 | |
|  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
 | |
|  * or more by the traditional way. (See above).  It equals:
 | |
|  *
 | |
|  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
 | |
|  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
 | |
|  *    powerpc (64K page size)             : =  (32G +16M)byte.
 | |
|  */
 | |
| static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
 | |
| {
 | |
| 	return 4096UL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This is an integer logarithm so that shifts can be used later
 | |
|  * to extract the more random high bits from the multiplicative
 | |
|  * hash function before the remainder is taken.
 | |
|  */
 | |
| static inline unsigned long wait_table_bits(unsigned long size)
 | |
| {
 | |
| 	return ffz(~size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initially all pages are reserved - free ones are freed
 | |
|  * up by free_all_bootmem() once the early boot process is
 | |
|  * done. Non-atomic initialization, single-pass.
 | |
|  */
 | |
| void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
 | |
| 		unsigned long start_pfn, enum memmap_context context)
 | |
| {
 | |
| 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
 | |
| 	unsigned long end_pfn = start_pfn + size;
 | |
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 	unsigned long pfn;
 | |
| 	unsigned long nr_initialised = 0;
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| 	struct memblock_region *r = NULL, *tmp;
 | |
| #endif
 | |
| 
 | |
| 	if (highest_memmap_pfn < end_pfn - 1)
 | |
| 		highest_memmap_pfn = end_pfn - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Honor reservation requested by the driver for this ZONE_DEVICE
 | |
| 	 * memory
 | |
| 	 */
 | |
| 	if (altmap && start_pfn == altmap->base_pfn)
 | |
| 		start_pfn += altmap->reserve;
 | |
| 
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 | |
| 		/*
 | |
| 		 * There can be holes in boot-time mem_map[]s handed to this
 | |
| 		 * function.  They do not exist on hotplugged memory.
 | |
| 		 */
 | |
| 		if (context != MEMMAP_EARLY)
 | |
| 			goto not_early;
 | |
| 
 | |
| 		if (!early_pfn_valid(pfn))
 | |
| 			continue;
 | |
| 		if (!early_pfn_in_nid(pfn, nid))
 | |
| 			continue;
 | |
| 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
 | |
| 			break;
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| 		/*
 | |
| 		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
 | |
| 		 * from zone_movable_pfn[nid] to end of each node should be
 | |
| 		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
 | |
| 		 */
 | |
| 		if (!mirrored_kernelcore && zone_movable_pfn[nid])
 | |
| 			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
 | |
| 				continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check given memblock attribute by firmware which can affect
 | |
| 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
 | |
| 		 * mirrored, it's an overlapped memmap init. skip it.
 | |
| 		 */
 | |
| 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
 | |
| 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
 | |
| 				for_each_memblock(memory, tmp)
 | |
| 					if (pfn < memblock_region_memory_end_pfn(tmp))
 | |
| 						break;
 | |
| 				r = tmp;
 | |
| 			}
 | |
| 			if (pfn >= memblock_region_memory_base_pfn(r) &&
 | |
| 			    memblock_is_mirror(r)) {
 | |
| 				/* already initialized as NORMAL */
 | |
| 				pfn = memblock_region_memory_end_pfn(r);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| not_early:
 | |
| 		/*
 | |
| 		 * Mark the block movable so that blocks are reserved for
 | |
| 		 * movable at startup. This will force kernel allocations
 | |
| 		 * to reserve their blocks rather than leaking throughout
 | |
| 		 * the address space during boot when many long-lived
 | |
| 		 * kernel allocations are made.
 | |
| 		 *
 | |
| 		 * bitmap is created for zone's valid pfn range. but memmap
 | |
| 		 * can be created for invalid pages (for alignment)
 | |
| 		 * check here not to call set_pageblock_migratetype() against
 | |
| 		 * pfn out of zone.
 | |
| 		 */
 | |
| 		if (!(pfn & (pageblock_nr_pages - 1))) {
 | |
| 			struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 			__init_single_page(page, pfn, zone, nid);
 | |
| 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
 | |
| 		} else {
 | |
| 			__init_single_pfn(pfn, zone, nid);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __meminit zone_init_free_lists(struct zone *zone)
 | |
| {
 | |
| 	unsigned int order, t;
 | |
| 	for_each_migratetype_order(order, t) {
 | |
| 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
 | |
| 		zone->free_area[order].nr_free = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef __HAVE_ARCH_MEMMAP_INIT
 | |
| #define memmap_init(size, nid, zone, start_pfn) \
 | |
| 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
 | |
| #endif
 | |
| 
 | |
| static int zone_batchsize(struct zone *zone)
 | |
| {
 | |
| #ifdef CONFIG_MMU
 | |
| 	int batch;
 | |
| 
 | |
| 	/*
 | |
| 	 * The per-cpu-pages pools are set to around 1000th of the
 | |
| 	 * size of the zone.  But no more than 1/2 of a meg.
 | |
| 	 *
 | |
| 	 * OK, so we don't know how big the cache is.  So guess.
 | |
| 	 */
 | |
| 	batch = zone->managed_pages / 1024;
 | |
| 	if (batch * PAGE_SIZE > 512 * 1024)
 | |
| 		batch = (512 * 1024) / PAGE_SIZE;
 | |
| 	batch /= 4;		/* We effectively *= 4 below */
 | |
| 	if (batch < 1)
 | |
| 		batch = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clamp the batch to a 2^n - 1 value. Having a power
 | |
| 	 * of 2 value was found to be more likely to have
 | |
| 	 * suboptimal cache aliasing properties in some cases.
 | |
| 	 *
 | |
| 	 * For example if 2 tasks are alternately allocating
 | |
| 	 * batches of pages, one task can end up with a lot
 | |
| 	 * of pages of one half of the possible page colors
 | |
| 	 * and the other with pages of the other colors.
 | |
| 	 */
 | |
| 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
 | |
| 
 | |
| 	return batch;
 | |
| 
 | |
| #else
 | |
| 	/* The deferral and batching of frees should be suppressed under NOMMU
 | |
| 	 * conditions.
 | |
| 	 *
 | |
| 	 * The problem is that NOMMU needs to be able to allocate large chunks
 | |
| 	 * of contiguous memory as there's no hardware page translation to
 | |
| 	 * assemble apparent contiguous memory from discontiguous pages.
 | |
| 	 *
 | |
| 	 * Queueing large contiguous runs of pages for batching, however,
 | |
| 	 * causes the pages to actually be freed in smaller chunks.  As there
 | |
| 	 * can be a significant delay between the individual batches being
 | |
| 	 * recycled, this leads to the once large chunks of space being
 | |
| 	 * fragmented and becoming unavailable for high-order allocations.
 | |
| 	 */
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pcp->high and pcp->batch values are related and dependent on one another:
 | |
|  * ->batch must never be higher then ->high.
 | |
|  * The following function updates them in a safe manner without read side
 | |
|  * locking.
 | |
|  *
 | |
|  * Any new users of pcp->batch and pcp->high should ensure they can cope with
 | |
|  * those fields changing asynchronously (acording the the above rule).
 | |
|  *
 | |
|  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 | |
|  * outside of boot time (or some other assurance that no concurrent updaters
 | |
|  * exist).
 | |
|  */
 | |
| static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
 | |
| 		unsigned long batch)
 | |
| {
 | |
|        /* start with a fail safe value for batch */
 | |
| 	pcp->batch = 1;
 | |
| 	smp_wmb();
 | |
| 
 | |
|        /* Update high, then batch, in order */
 | |
| 	pcp->high = high;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	pcp->batch = batch;
 | |
| }
 | |
| 
 | |
| /* a companion to pageset_set_high() */
 | |
| static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
 | |
| {
 | |
| 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
 | |
| }
 | |
| 
 | |
| static void pageset_init(struct per_cpu_pageset *p)
 | |
| {
 | |
| 	struct per_cpu_pages *pcp;
 | |
| 	int migratetype;
 | |
| 
 | |
| 	memset(p, 0, sizeof(*p));
 | |
| 
 | |
| 	pcp = &p->pcp;
 | |
| 	pcp->count = 0;
 | |
| 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
 | |
| 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
 | |
| }
 | |
| 
 | |
| static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
 | |
| {
 | |
| 	pageset_init(p);
 | |
| 	pageset_set_batch(p, batch);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
 | |
|  * to the value high for the pageset p.
 | |
|  */
 | |
| static void pageset_set_high(struct per_cpu_pageset *p,
 | |
| 				unsigned long high)
 | |
| {
 | |
| 	unsigned long batch = max(1UL, high / 4);
 | |
| 	if ((high / 4) > (PAGE_SHIFT * 8))
 | |
| 		batch = PAGE_SHIFT * 8;
 | |
| 
 | |
| 	pageset_update(&p->pcp, high, batch);
 | |
| }
 | |
| 
 | |
| static void pageset_set_high_and_batch(struct zone *zone,
 | |
| 				       struct per_cpu_pageset *pcp)
 | |
| {
 | |
| 	if (percpu_pagelist_fraction)
 | |
| 		pageset_set_high(pcp,
 | |
| 			(zone->managed_pages /
 | |
| 				percpu_pagelist_fraction));
 | |
| 	else
 | |
| 		pageset_set_batch(pcp, zone_batchsize(zone));
 | |
| }
 | |
| 
 | |
| static void __meminit zone_pageset_init(struct zone *zone, int cpu)
 | |
| {
 | |
| 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
 | |
| 
 | |
| 	pageset_init(pcp);
 | |
| 	pageset_set_high_and_batch(zone, pcp);
 | |
| }
 | |
| 
 | |
| static void __meminit setup_zone_pageset(struct zone *zone)
 | |
| {
 | |
| 	int cpu;
 | |
| 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		zone_pageset_init(zone, cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate per cpu pagesets and initialize them.
 | |
|  * Before this call only boot pagesets were available.
 | |
|  */
 | |
| void __init setup_per_cpu_pageset(void)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_populated_zone(zone)
 | |
| 		setup_zone_pageset(zone);
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat)
 | |
| 		pgdat->per_cpu_nodestats =
 | |
| 			alloc_percpu(struct per_cpu_nodestat);
 | |
| }
 | |
| 
 | |
| static noinline __ref
 | |
| int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
 | |
| {
 | |
| 	int i;
 | |
| 	size_t alloc_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * The per-page waitqueue mechanism uses hashed waitqueues
 | |
| 	 * per zone.
 | |
| 	 */
 | |
| 	zone->wait_table_hash_nr_entries =
 | |
| 		 wait_table_hash_nr_entries(zone_size_pages);
 | |
| 	zone->wait_table_bits =
 | |
| 		wait_table_bits(zone->wait_table_hash_nr_entries);
 | |
| 	alloc_size = zone->wait_table_hash_nr_entries
 | |
| 					* sizeof(wait_queue_head_t);
 | |
| 
 | |
| 	if (!slab_is_available()) {
 | |
| 		zone->wait_table = (wait_queue_head_t *)
 | |
| 			memblock_virt_alloc_node_nopanic(
 | |
| 				alloc_size, zone->zone_pgdat->node_id);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * This case means that a zone whose size was 0 gets new memory
 | |
| 		 * via memory hot-add.
 | |
| 		 * But it may be the case that a new node was hot-added.  In
 | |
| 		 * this case vmalloc() will not be able to use this new node's
 | |
| 		 * memory - this wait_table must be initialized to use this new
 | |
| 		 * node itself as well.
 | |
| 		 * To use this new node's memory, further consideration will be
 | |
| 		 * necessary.
 | |
| 		 */
 | |
| 		zone->wait_table = vmalloc(alloc_size);
 | |
| 	}
 | |
| 	if (!zone->wait_table)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
 | |
| 		init_waitqueue_head(zone->wait_table + i);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __meminit void zone_pcp_init(struct zone *zone)
 | |
| {
 | |
| 	/*
 | |
| 	 * per cpu subsystem is not up at this point. The following code
 | |
| 	 * relies on the ability of the linker to provide the
 | |
| 	 * offset of a (static) per cpu variable into the per cpu area.
 | |
| 	 */
 | |
| 	zone->pageset = &boot_pageset;
 | |
| 
 | |
| 	if (populated_zone(zone))
 | |
| 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
 | |
| 			zone->name, zone->present_pages,
 | |
| 					 zone_batchsize(zone));
 | |
| }
 | |
| 
 | |
| int __meminit init_currently_empty_zone(struct zone *zone,
 | |
| 					unsigned long zone_start_pfn,
 | |
| 					unsigned long size)
 | |
| {
 | |
| 	struct pglist_data *pgdat = zone->zone_pgdat;
 | |
| 	int ret;
 | |
| 	ret = zone_wait_table_init(zone, size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	pgdat->nr_zones = zone_idx(zone) + 1;
 | |
| 
 | |
| 	zone->zone_start_pfn = zone_start_pfn;
 | |
| 
 | |
| 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
 | |
| 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
 | |
| 			pgdat->node_id,
 | |
| 			(unsigned long)zone_idx(zone),
 | |
| 			zone_start_pfn, (zone_start_pfn + size));
 | |
| 
 | |
| 	zone_init_free_lists(zone);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
 | |
| 
 | |
| /*
 | |
|  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 | |
|  */
 | |
| int __meminit __early_pfn_to_nid(unsigned long pfn,
 | |
| 					struct mminit_pfnnid_cache *state)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int nid;
 | |
| 
 | |
| 	if (state->last_start <= pfn && pfn < state->last_end)
 | |
| 		return state->last_nid;
 | |
| 
 | |
| 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
 | |
| 	if (nid != -1) {
 | |
| 		state->last_start = start_pfn;
 | |
| 		state->last_end = end_pfn;
 | |
| 		state->last_nid = nid;
 | |
| 	}
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
 | |
| 
 | |
| /**
 | |
|  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
 | |
|  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
 | |
|  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
 | |
|  *
 | |
|  * If an architecture guarantees that all ranges registered contain no holes
 | |
|  * and may be freed, this this function may be used instead of calling
 | |
|  * memblock_free_early_nid() manually.
 | |
|  */
 | |
| void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, this_nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
 | |
| 		start_pfn = min(start_pfn, max_low_pfn);
 | |
| 		end_pfn = min(end_pfn, max_low_pfn);
 | |
| 
 | |
| 		if (start_pfn < end_pfn)
 | |
| 			memblock_free_early_nid(PFN_PHYS(start_pfn),
 | |
| 					(end_pfn - start_pfn) << PAGE_SHIFT,
 | |
| 					this_nid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sparse_memory_present_with_active_regions - Call memory_present for each active range
 | |
|  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
 | |
|  *
 | |
|  * If an architecture guarantees that all ranges registered contain no holes and may
 | |
|  * be freed, this function may be used instead of calling memory_present() manually.
 | |
|  */
 | |
| void __init sparse_memory_present_with_active_regions(int nid)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, this_nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
 | |
| 		memory_present(this_nid, start_pfn, end_pfn);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_pfn_range_for_nid - Return the start and end page frames for a node
 | |
|  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 | |
|  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 | |
|  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
 | |
|  *
 | |
|  * It returns the start and end page frame of a node based on information
 | |
|  * provided by memblock_set_node(). If called for a node
 | |
|  * with no available memory, a warning is printed and the start and end
 | |
|  * PFNs will be 0.
 | |
|  */
 | |
| void __meminit get_pfn_range_for_nid(unsigned int nid,
 | |
| 			unsigned long *start_pfn, unsigned long *end_pfn)
 | |
| {
 | |
| 	unsigned long this_start_pfn, this_end_pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	*start_pfn = -1UL;
 | |
| 	*end_pfn = 0;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
 | |
| 		*start_pfn = min(*start_pfn, this_start_pfn);
 | |
| 		*end_pfn = max(*end_pfn, this_end_pfn);
 | |
| 	}
 | |
| 
 | |
| 	if (*start_pfn == -1UL)
 | |
| 		*start_pfn = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This finds a zone that can be used for ZONE_MOVABLE pages. The
 | |
|  * assumption is made that zones within a node are ordered in monotonic
 | |
|  * increasing memory addresses so that the "highest" populated zone is used
 | |
|  */
 | |
| static void __init find_usable_zone_for_movable(void)
 | |
| {
 | |
| 	int zone_index;
 | |
| 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
 | |
| 		if (zone_index == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (arch_zone_highest_possible_pfn[zone_index] >
 | |
| 				arch_zone_lowest_possible_pfn[zone_index])
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON(zone_index == -1);
 | |
| 	movable_zone = zone_index;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
 | |
|  * because it is sized independent of architecture. Unlike the other zones,
 | |
|  * the starting point for ZONE_MOVABLE is not fixed. It may be different
 | |
|  * in each node depending on the size of each node and how evenly kernelcore
 | |
|  * is distributed. This helper function adjusts the zone ranges
 | |
|  * provided by the architecture for a given node by using the end of the
 | |
|  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 | |
|  * zones within a node are in order of monotonic increases memory addresses
 | |
|  */
 | |
| static void __meminit adjust_zone_range_for_zone_movable(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_start_pfn,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *zone_start_pfn,
 | |
| 					unsigned long *zone_end_pfn)
 | |
| {
 | |
| 	/* Only adjust if ZONE_MOVABLE is on this node */
 | |
| 	if (zone_movable_pfn[nid]) {
 | |
| 		/* Size ZONE_MOVABLE */
 | |
| 		if (zone_type == ZONE_MOVABLE) {
 | |
| 			*zone_start_pfn = zone_movable_pfn[nid];
 | |
| 			*zone_end_pfn = min(node_end_pfn,
 | |
| 				arch_zone_highest_possible_pfn[movable_zone]);
 | |
| 
 | |
| 		/* Check if this whole range is within ZONE_MOVABLE */
 | |
| 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
 | |
| 			*zone_start_pfn = *zone_end_pfn;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of pages a zone spans in a node, including holes
 | |
|  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 | |
|  */
 | |
| static unsigned long __meminit zone_spanned_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_start_pfn,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *zone_start_pfn,
 | |
| 					unsigned long *zone_end_pfn,
 | |
| 					unsigned long *ignored)
 | |
| {
 | |
| 	/* When hotadd a new node from cpu_up(), the node should be empty */
 | |
| 	if (!node_start_pfn && !node_end_pfn)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Get the start and end of the zone */
 | |
| 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
 | |
| 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
 | |
| 	adjust_zone_range_for_zone_movable(nid, zone_type,
 | |
| 				node_start_pfn, node_end_pfn,
 | |
| 				zone_start_pfn, zone_end_pfn);
 | |
| 
 | |
| 	/* Check that this node has pages within the zone's required range */
 | |
| 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Move the zone boundaries inside the node if necessary */
 | |
| 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
 | |
| 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
 | |
| 
 | |
| 	/* Return the spanned pages */
 | |
| 	return *zone_end_pfn - *zone_start_pfn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
 | |
|  * then all holes in the requested range will be accounted for.
 | |
|  */
 | |
| unsigned long __meminit __absent_pages_in_range(int nid,
 | |
| 				unsigned long range_start_pfn,
 | |
| 				unsigned long range_end_pfn)
 | |
| {
 | |
| 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
 | |
| 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
 | |
| 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
 | |
| 		nr_absent -= end_pfn - start_pfn;
 | |
| 	}
 | |
| 	return nr_absent;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * absent_pages_in_range - Return number of page frames in holes within a range
 | |
|  * @start_pfn: The start PFN to start searching for holes
 | |
|  * @end_pfn: The end PFN to stop searching for holes
 | |
|  *
 | |
|  * It returns the number of pages frames in memory holes within a range.
 | |
|  */
 | |
| unsigned long __init absent_pages_in_range(unsigned long start_pfn,
 | |
| 							unsigned long end_pfn)
 | |
| {
 | |
| 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
 | |
| }
 | |
| 
 | |
| /* Return the number of page frames in holes in a zone on a node */
 | |
| static unsigned long __meminit zone_absent_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_start_pfn,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *ignored)
 | |
| {
 | |
| 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
 | |
| 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
 | |
| 	unsigned long zone_start_pfn, zone_end_pfn;
 | |
| 	unsigned long nr_absent;
 | |
| 
 | |
| 	/* When hotadd a new node from cpu_up(), the node should be empty */
 | |
| 	if (!node_start_pfn && !node_end_pfn)
 | |
| 		return 0;
 | |
| 
 | |
| 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
 | |
| 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
 | |
| 
 | |
| 	adjust_zone_range_for_zone_movable(nid, zone_type,
 | |
| 			node_start_pfn, node_end_pfn,
 | |
| 			&zone_start_pfn, &zone_end_pfn);
 | |
| 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
 | |
| 
 | |
| 	/*
 | |
| 	 * ZONE_MOVABLE handling.
 | |
| 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
 | |
| 	 * and vice versa.
 | |
| 	 */
 | |
| 	if (zone_movable_pfn[nid]) {
 | |
| 		if (mirrored_kernelcore) {
 | |
| 			unsigned long start_pfn, end_pfn;
 | |
| 			struct memblock_region *r;
 | |
| 
 | |
| 			for_each_memblock(memory, r) {
 | |
| 				start_pfn = clamp(memblock_region_memory_base_pfn(r),
 | |
| 						  zone_start_pfn, zone_end_pfn);
 | |
| 				end_pfn = clamp(memblock_region_memory_end_pfn(r),
 | |
| 						zone_start_pfn, zone_end_pfn);
 | |
| 
 | |
| 				if (zone_type == ZONE_MOVABLE &&
 | |
| 				    memblock_is_mirror(r))
 | |
| 					nr_absent += end_pfn - start_pfn;
 | |
| 
 | |
| 				if (zone_type == ZONE_NORMAL &&
 | |
| 				    !memblock_is_mirror(r))
 | |
| 					nr_absent += end_pfn - start_pfn;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (zone_type == ZONE_NORMAL)
 | |
| 				nr_absent += node_end_pfn - zone_movable_pfn[nid];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return nr_absent;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
 | |
| 					unsigned long zone_type,
 | |
| 					unsigned long node_start_pfn,
 | |
| 					unsigned long node_end_pfn,
 | |
| 					unsigned long *zone_start_pfn,
 | |
| 					unsigned long *zone_end_pfn,
 | |
| 					unsigned long *zones_size)
 | |
| {
 | |
| 	unsigned int zone;
 | |
| 
 | |
| 	*zone_start_pfn = node_start_pfn;
 | |
| 	for (zone = 0; zone < zone_type; zone++)
 | |
| 		*zone_start_pfn += zones_size[zone];
 | |
| 
 | |
| 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
 | |
| 
 | |
| 	return zones_size[zone_type];
 | |
| }
 | |
| 
 | |
| static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
 | |
| 						unsigned long zone_type,
 | |
| 						unsigned long node_start_pfn,
 | |
| 						unsigned long node_end_pfn,
 | |
| 						unsigned long *zholes_size)
 | |
| {
 | |
| 	if (!zholes_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	return zholes_size[zone_type];
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| 
 | |
| static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
 | |
| 						unsigned long node_start_pfn,
 | |
| 						unsigned long node_end_pfn,
 | |
| 						unsigned long *zones_size,
 | |
| 						unsigned long *zholes_size)
 | |
| {
 | |
| 	unsigned long realtotalpages = 0, totalpages = 0;
 | |
| 	enum zone_type i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		struct zone *zone = pgdat->node_zones + i;
 | |
| 		unsigned long zone_start_pfn, zone_end_pfn;
 | |
| 		unsigned long size, real_size;
 | |
| 
 | |
| 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
 | |
| 						  node_start_pfn,
 | |
| 						  node_end_pfn,
 | |
| 						  &zone_start_pfn,
 | |
| 						  &zone_end_pfn,
 | |
| 						  zones_size);
 | |
| 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
 | |
| 						  node_start_pfn, node_end_pfn,
 | |
| 						  zholes_size);
 | |
| 		if (size)
 | |
| 			zone->zone_start_pfn = zone_start_pfn;
 | |
| 		else
 | |
| 			zone->zone_start_pfn = 0;
 | |
| 		zone->spanned_pages = size;
 | |
| 		zone->present_pages = real_size;
 | |
| 
 | |
| 		totalpages += size;
 | |
| 		realtotalpages += real_size;
 | |
| 	}
 | |
| 
 | |
| 	pgdat->node_spanned_pages = totalpages;
 | |
| 	pgdat->node_present_pages = realtotalpages;
 | |
| 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
 | |
| 							realtotalpages);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPARSEMEM
 | |
| /*
 | |
|  * Calculate the size of the zone->blockflags rounded to an unsigned long
 | |
|  * Start by making sure zonesize is a multiple of pageblock_order by rounding
 | |
|  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
 | |
|  * round what is now in bits to nearest long in bits, then return it in
 | |
|  * bytes.
 | |
|  */
 | |
| static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
 | |
| {
 | |
| 	unsigned long usemapsize;
 | |
| 
 | |
| 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
 | |
| 	usemapsize = roundup(zonesize, pageblock_nr_pages);
 | |
| 	usemapsize = usemapsize >> pageblock_order;
 | |
| 	usemapsize *= NR_PAGEBLOCK_BITS;
 | |
| 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
 | |
| 
 | |
| 	return usemapsize / 8;
 | |
| }
 | |
| 
 | |
| static void __init setup_usemap(struct pglist_data *pgdat,
 | |
| 				struct zone *zone,
 | |
| 				unsigned long zone_start_pfn,
 | |
| 				unsigned long zonesize)
 | |
| {
 | |
| 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
 | |
| 	zone->pageblock_flags = NULL;
 | |
| 	if (usemapsize)
 | |
| 		zone->pageblock_flags =
 | |
| 			memblock_virt_alloc_node_nopanic(usemapsize,
 | |
| 							 pgdat->node_id);
 | |
| }
 | |
| #else
 | |
| static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
 | |
| 				unsigned long zone_start_pfn, unsigned long zonesize) {}
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 | |
| 
 | |
| /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
 | |
| void __paginginit set_pageblock_order(void)
 | |
| {
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	/* Check that pageblock_nr_pages has not already been setup */
 | |
| 	if (pageblock_order)
 | |
| 		return;
 | |
| 
 | |
| 	if (HPAGE_SHIFT > PAGE_SHIFT)
 | |
| 		order = HUGETLB_PAGE_ORDER;
 | |
| 	else
 | |
| 		order = MAX_ORDER - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume the largest contiguous order of interest is a huge page.
 | |
| 	 * This value may be variable depending on boot parameters on IA64 and
 | |
| 	 * powerpc.
 | |
| 	 */
 | |
| 	pageblock_order = order;
 | |
| }
 | |
| #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
 | |
| 
 | |
| /*
 | |
|  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
 | |
|  * is unused as pageblock_order is set at compile-time. See
 | |
|  * include/linux/pageblock-flags.h for the values of pageblock_order based on
 | |
|  * the kernel config
 | |
|  */
 | |
| void __paginginit set_pageblock_order(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
 | |
| 
 | |
| static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
 | |
| 						   unsigned long present_pages)
 | |
| {
 | |
| 	unsigned long pages = spanned_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Provide a more accurate estimation if there are holes within
 | |
| 	 * the zone and SPARSEMEM is in use. If there are holes within the
 | |
| 	 * zone, each populated memory region may cost us one or two extra
 | |
| 	 * memmap pages due to alignment because memmap pages for each
 | |
| 	 * populated regions may not naturally algined on page boundary.
 | |
| 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
 | |
| 	 */
 | |
| 	if (spanned_pages > present_pages + (present_pages >> 4) &&
 | |
| 	    IS_ENABLED(CONFIG_SPARSEMEM))
 | |
| 		pages = present_pages;
 | |
| 
 | |
| 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up the zone data structures:
 | |
|  *   - mark all pages reserved
 | |
|  *   - mark all memory queues empty
 | |
|  *   - clear the memory bitmaps
 | |
|  *
 | |
|  * NOTE: pgdat should get zeroed by caller.
 | |
|  */
 | |
| static void __paginginit free_area_init_core(struct pglist_data *pgdat)
 | |
| {
 | |
| 	enum zone_type j;
 | |
| 	int nid = pgdat->node_id;
 | |
| 	int ret;
 | |
| 
 | |
| 	pgdat_resize_init(pgdat);
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
 | |
| 	pgdat->numabalancing_migrate_nr_pages = 0;
 | |
| 	pgdat->numabalancing_migrate_next_window = jiffies;
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	spin_lock_init(&pgdat->split_queue_lock);
 | |
| 	INIT_LIST_HEAD(&pgdat->split_queue);
 | |
| 	pgdat->split_queue_len = 0;
 | |
| #endif
 | |
| 	init_waitqueue_head(&pgdat->kswapd_wait);
 | |
| 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
 | |
| #ifdef CONFIG_COMPACTION
 | |
| 	init_waitqueue_head(&pgdat->kcompactd_wait);
 | |
| #endif
 | |
| 	pgdat_page_ext_init(pgdat);
 | |
| 	spin_lock_init(&pgdat->lru_lock);
 | |
| 	lruvec_init(node_lruvec(pgdat));
 | |
| 
 | |
| 	for (j = 0; j < MAX_NR_ZONES; j++) {
 | |
| 		struct zone *zone = pgdat->node_zones + j;
 | |
| 		unsigned long size, realsize, freesize, memmap_pages;
 | |
| 		unsigned long zone_start_pfn = zone->zone_start_pfn;
 | |
| 
 | |
| 		size = zone->spanned_pages;
 | |
| 		realsize = freesize = zone->present_pages;
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust freesize so that it accounts for how much memory
 | |
| 		 * is used by this zone for memmap. This affects the watermark
 | |
| 		 * and per-cpu initialisations
 | |
| 		 */
 | |
| 		memmap_pages = calc_memmap_size(size, realsize);
 | |
| 		if (!is_highmem_idx(j)) {
 | |
| 			if (freesize >= memmap_pages) {
 | |
| 				freesize -= memmap_pages;
 | |
| 				if (memmap_pages)
 | |
| 					printk(KERN_DEBUG
 | |
| 					       "  %s zone: %lu pages used for memmap\n",
 | |
| 					       zone_names[j], memmap_pages);
 | |
| 			} else
 | |
| 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
 | |
| 					zone_names[j], memmap_pages, freesize);
 | |
| 		}
 | |
| 
 | |
| 		/* Account for reserved pages */
 | |
| 		if (j == 0 && freesize > dma_reserve) {
 | |
| 			freesize -= dma_reserve;
 | |
| 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
 | |
| 					zone_names[0], dma_reserve);
 | |
| 		}
 | |
| 
 | |
| 		if (!is_highmem_idx(j))
 | |
| 			nr_kernel_pages += freesize;
 | |
| 		/* Charge for highmem memmap if there are enough kernel pages */
 | |
| 		else if (nr_kernel_pages > memmap_pages * 2)
 | |
| 			nr_kernel_pages -= memmap_pages;
 | |
| 		nr_all_pages += freesize;
 | |
| 
 | |
| 		/*
 | |
| 		 * Set an approximate value for lowmem here, it will be adjusted
 | |
| 		 * when the bootmem allocator frees pages into the buddy system.
 | |
| 		 * And all highmem pages will be managed by the buddy system.
 | |
| 		 */
 | |
| 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
 | |
| #ifdef CONFIG_NUMA
 | |
| 		zone->node = nid;
 | |
| #endif
 | |
| 		zone->name = zone_names[j];
 | |
| 		zone->zone_pgdat = pgdat;
 | |
| 		spin_lock_init(&zone->lock);
 | |
| 		zone_seqlock_init(zone);
 | |
| 		zone_pcp_init(zone);
 | |
| 
 | |
| 		if (!size)
 | |
| 			continue;
 | |
| 
 | |
| 		set_pageblock_order();
 | |
| 		setup_usemap(pgdat, zone, zone_start_pfn, size);
 | |
| 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
 | |
| 		BUG_ON(ret);
 | |
| 		memmap_init(size, nid, j, zone_start_pfn);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
 | |
| {
 | |
| 	unsigned long __maybe_unused start = 0;
 | |
| 	unsigned long __maybe_unused offset = 0;
 | |
| 
 | |
| 	/* Skip empty nodes */
 | |
| 	if (!pgdat->node_spanned_pages)
 | |
| 		return;
 | |
| 
 | |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP
 | |
| 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
 | |
| 	offset = pgdat->node_start_pfn - start;
 | |
| 	/* ia64 gets its own node_mem_map, before this, without bootmem */
 | |
| 	if (!pgdat->node_mem_map) {
 | |
| 		unsigned long size, end;
 | |
| 		struct page *map;
 | |
| 
 | |
| 		/*
 | |
| 		 * The zone's endpoints aren't required to be MAX_ORDER
 | |
| 		 * aligned but the node_mem_map endpoints must be in order
 | |
| 		 * for the buddy allocator to function correctly.
 | |
| 		 */
 | |
| 		end = pgdat_end_pfn(pgdat);
 | |
| 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
 | |
| 		size =  (end - start) * sizeof(struct page);
 | |
| 		map = alloc_remap(pgdat->node_id, size);
 | |
| 		if (!map)
 | |
| 			map = memblock_virt_alloc_node_nopanic(size,
 | |
| 							       pgdat->node_id);
 | |
| 		pgdat->node_mem_map = map + offset;
 | |
| 	}
 | |
| #ifndef CONFIG_NEED_MULTIPLE_NODES
 | |
| 	/*
 | |
| 	 * With no DISCONTIG, the global mem_map is just set as node 0's
 | |
| 	 */
 | |
| 	if (pgdat == NODE_DATA(0)) {
 | |
| 		mem_map = NODE_DATA(0)->node_mem_map;
 | |
| #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
 | |
| 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
 | |
| 			mem_map -= offset;
 | |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| 	}
 | |
| #endif
 | |
| #endif /* CONFIG_FLAT_NODE_MEM_MAP */
 | |
| }
 | |
| 
 | |
| void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
 | |
| 		unsigned long node_start_pfn, unsigned long *zholes_size)
 | |
| {
 | |
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 	unsigned long start_pfn = 0;
 | |
| 	unsigned long end_pfn = 0;
 | |
| 
 | |
| 	/* pg_data_t should be reset to zero when it's allocated */
 | |
| 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
 | |
| 
 | |
| 	reset_deferred_meminit(pgdat);
 | |
| 	pgdat->node_id = nid;
 | |
| 	pgdat->node_start_pfn = node_start_pfn;
 | |
| 	pgdat->per_cpu_nodestats = NULL;
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | |
| 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
 | |
| 		(u64)start_pfn << PAGE_SHIFT,
 | |
| 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
 | |
| #else
 | |
| 	start_pfn = node_start_pfn;
 | |
| #endif
 | |
| 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
 | |
| 				  zones_size, zholes_size);
 | |
| 
 | |
| 	alloc_node_mem_map(pgdat);
 | |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP
 | |
| 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
 | |
| 		nid, (unsigned long)pgdat,
 | |
| 		(unsigned long)pgdat->node_mem_map);
 | |
| #endif
 | |
| 
 | |
| 	free_area_init_core(pgdat);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| 
 | |
| #if MAX_NUMNODES > 1
 | |
| /*
 | |
|  * Figure out the number of possible node ids.
 | |
|  */
 | |
| void __init setup_nr_node_ids(void)
 | |
| {
 | |
| 	unsigned int highest;
 | |
| 
 | |
| 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
 | |
| 	nr_node_ids = highest + 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * node_map_pfn_alignment - determine the maximum internode alignment
 | |
|  *
 | |
|  * This function should be called after node map is populated and sorted.
 | |
|  * It calculates the maximum power of two alignment which can distinguish
 | |
|  * all the nodes.
 | |
|  *
 | |
|  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 | |
|  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 | |
|  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 | |
|  * shifted, 1GiB is enough and this function will indicate so.
 | |
|  *
 | |
|  * This is used to test whether pfn -> nid mapping of the chosen memory
 | |
|  * model has fine enough granularity to avoid incorrect mapping for the
 | |
|  * populated node map.
 | |
|  *
 | |
|  * Returns the determined alignment in pfn's.  0 if there is no alignment
 | |
|  * requirement (single node).
 | |
|  */
 | |
| unsigned long __init node_map_pfn_alignment(void)
 | |
| {
 | |
| 	unsigned long accl_mask = 0, last_end = 0;
 | |
| 	unsigned long start, end, mask;
 | |
| 	int last_nid = -1;
 | |
| 	int i, nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
 | |
| 		if (!start || last_nid < 0 || last_nid == nid) {
 | |
| 			last_nid = nid;
 | |
| 			last_end = end;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Start with a mask granular enough to pin-point to the
 | |
| 		 * start pfn and tick off bits one-by-one until it becomes
 | |
| 		 * too coarse to separate the current node from the last.
 | |
| 		 */
 | |
| 		mask = ~((1 << __ffs(start)) - 1);
 | |
| 		while (mask && last_end <= (start & (mask << 1)))
 | |
| 			mask <<= 1;
 | |
| 
 | |
| 		/* accumulate all internode masks */
 | |
| 		accl_mask |= mask;
 | |
| 	}
 | |
| 
 | |
| 	/* convert mask to number of pages */
 | |
| 	return ~accl_mask + 1;
 | |
| }
 | |
| 
 | |
| /* Find the lowest pfn for a node */
 | |
| static unsigned long __init find_min_pfn_for_node(int nid)
 | |
| {
 | |
| 	unsigned long min_pfn = ULONG_MAX;
 | |
| 	unsigned long start_pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
 | |
| 		min_pfn = min(min_pfn, start_pfn);
 | |
| 
 | |
| 	if (min_pfn == ULONG_MAX) {
 | |
| 		pr_warn("Could not find start_pfn for node %d\n", nid);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return min_pfn;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_min_pfn_with_active_regions - Find the minimum PFN registered
 | |
|  *
 | |
|  * It returns the minimum PFN based on information provided via
 | |
|  * memblock_set_node().
 | |
|  */
 | |
| unsigned long __init find_min_pfn_with_active_regions(void)
 | |
| {
 | |
| 	return find_min_pfn_for_node(MAX_NUMNODES);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * early_calculate_totalpages()
 | |
|  * Sum pages in active regions for movable zone.
 | |
|  * Populate N_MEMORY for calculating usable_nodes.
 | |
|  */
 | |
| static unsigned long __init early_calculate_totalpages(void)
 | |
| {
 | |
| 	unsigned long totalpages = 0;
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, nid;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 | |
| 		unsigned long pages = end_pfn - start_pfn;
 | |
| 
 | |
| 		totalpages += pages;
 | |
| 		if (pages)
 | |
| 			node_set_state(nid, N_MEMORY);
 | |
| 	}
 | |
| 	return totalpages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the PFN the Movable zone begins in each node. Kernel memory
 | |
|  * is spread evenly between nodes as long as the nodes have enough
 | |
|  * memory. When they don't, some nodes will have more kernelcore than
 | |
|  * others
 | |
|  */
 | |
| static void __init find_zone_movable_pfns_for_nodes(void)
 | |
| {
 | |
| 	int i, nid;
 | |
| 	unsigned long usable_startpfn;
 | |
| 	unsigned long kernelcore_node, kernelcore_remaining;
 | |
| 	/* save the state before borrow the nodemask */
 | |
| 	nodemask_t saved_node_state = node_states[N_MEMORY];
 | |
| 	unsigned long totalpages = early_calculate_totalpages();
 | |
| 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
 | |
| 	struct memblock_region *r;
 | |
| 
 | |
| 	/* Need to find movable_zone earlier when movable_node is specified. */
 | |
| 	find_usable_zone_for_movable();
 | |
| 
 | |
| 	/*
 | |
| 	 * If movable_node is specified, ignore kernelcore and movablecore
 | |
| 	 * options.
 | |
| 	 */
 | |
| 	if (movable_node_is_enabled()) {
 | |
| 		for_each_memblock(memory, r) {
 | |
| 			if (!memblock_is_hotpluggable(r))
 | |
| 				continue;
 | |
| 
 | |
| 			nid = r->nid;
 | |
| 
 | |
| 			usable_startpfn = PFN_DOWN(r->base);
 | |
| 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
 | |
| 				min(usable_startpfn, zone_movable_pfn[nid]) :
 | |
| 				usable_startpfn;
 | |
| 		}
 | |
| 
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If kernelcore=mirror is specified, ignore movablecore option
 | |
| 	 */
 | |
| 	if (mirrored_kernelcore) {
 | |
| 		bool mem_below_4gb_not_mirrored = false;
 | |
| 
 | |
| 		for_each_memblock(memory, r) {
 | |
| 			if (memblock_is_mirror(r))
 | |
| 				continue;
 | |
| 
 | |
| 			nid = r->nid;
 | |
| 
 | |
| 			usable_startpfn = memblock_region_memory_base_pfn(r);
 | |
| 
 | |
| 			if (usable_startpfn < 0x100000) {
 | |
| 				mem_below_4gb_not_mirrored = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
 | |
| 				min(usable_startpfn, zone_movable_pfn[nid]) :
 | |
| 				usable_startpfn;
 | |
| 		}
 | |
| 
 | |
| 		if (mem_below_4gb_not_mirrored)
 | |
| 			pr_warn("This configuration results in unmirrored kernel memory.");
 | |
| 
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If movablecore=nn[KMG] was specified, calculate what size of
 | |
| 	 * kernelcore that corresponds so that memory usable for
 | |
| 	 * any allocation type is evenly spread. If both kernelcore
 | |
| 	 * and movablecore are specified, then the value of kernelcore
 | |
| 	 * will be used for required_kernelcore if it's greater than
 | |
| 	 * what movablecore would have allowed.
 | |
| 	 */
 | |
| 	if (required_movablecore) {
 | |
| 		unsigned long corepages;
 | |
| 
 | |
| 		/*
 | |
| 		 * Round-up so that ZONE_MOVABLE is at least as large as what
 | |
| 		 * was requested by the user
 | |
| 		 */
 | |
| 		required_movablecore =
 | |
| 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
 | |
| 		required_movablecore = min(totalpages, required_movablecore);
 | |
| 		corepages = totalpages - required_movablecore;
 | |
| 
 | |
| 		required_kernelcore = max(required_kernelcore, corepages);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If kernelcore was not specified or kernelcore size is larger
 | |
| 	 * than totalpages, there is no ZONE_MOVABLE.
 | |
| 	 */
 | |
| 	if (!required_kernelcore || required_kernelcore >= totalpages)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
 | |
| 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
 | |
| 
 | |
| restart:
 | |
| 	/* Spread kernelcore memory as evenly as possible throughout nodes */
 | |
| 	kernelcore_node = required_kernelcore / usable_nodes;
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		unsigned long start_pfn, end_pfn;
 | |
| 
 | |
| 		/*
 | |
| 		 * Recalculate kernelcore_node if the division per node
 | |
| 		 * now exceeds what is necessary to satisfy the requested
 | |
| 		 * amount of memory for the kernel
 | |
| 		 */
 | |
| 		if (required_kernelcore < kernelcore_node)
 | |
| 			kernelcore_node = required_kernelcore / usable_nodes;
 | |
| 
 | |
| 		/*
 | |
| 		 * As the map is walked, we track how much memory is usable
 | |
| 		 * by the kernel using kernelcore_remaining. When it is
 | |
| 		 * 0, the rest of the node is usable by ZONE_MOVABLE
 | |
| 		 */
 | |
| 		kernelcore_remaining = kernelcore_node;
 | |
| 
 | |
| 		/* Go through each range of PFNs within this node */
 | |
| 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
 | |
| 			unsigned long size_pages;
 | |
| 
 | |
| 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
 | |
| 			if (start_pfn >= end_pfn)
 | |
| 				continue;
 | |
| 
 | |
| 			/* Account for what is only usable for kernelcore */
 | |
| 			if (start_pfn < usable_startpfn) {
 | |
| 				unsigned long kernel_pages;
 | |
| 				kernel_pages = min(end_pfn, usable_startpfn)
 | |
| 								- start_pfn;
 | |
| 
 | |
| 				kernelcore_remaining -= min(kernel_pages,
 | |
| 							kernelcore_remaining);
 | |
| 				required_kernelcore -= min(kernel_pages,
 | |
| 							required_kernelcore);
 | |
| 
 | |
| 				/* Continue if range is now fully accounted */
 | |
| 				if (end_pfn <= usable_startpfn) {
 | |
| 
 | |
| 					/*
 | |
| 					 * Push zone_movable_pfn to the end so
 | |
| 					 * that if we have to rebalance
 | |
| 					 * kernelcore across nodes, we will
 | |
| 					 * not double account here
 | |
| 					 */
 | |
| 					zone_movable_pfn[nid] = end_pfn;
 | |
| 					continue;
 | |
| 				}
 | |
| 				start_pfn = usable_startpfn;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * The usable PFN range for ZONE_MOVABLE is from
 | |
| 			 * start_pfn->end_pfn. Calculate size_pages as the
 | |
| 			 * number of pages used as kernelcore
 | |
| 			 */
 | |
| 			size_pages = end_pfn - start_pfn;
 | |
| 			if (size_pages > kernelcore_remaining)
 | |
| 				size_pages = kernelcore_remaining;
 | |
| 			zone_movable_pfn[nid] = start_pfn + size_pages;
 | |
| 
 | |
| 			/*
 | |
| 			 * Some kernelcore has been met, update counts and
 | |
| 			 * break if the kernelcore for this node has been
 | |
| 			 * satisfied
 | |
| 			 */
 | |
| 			required_kernelcore -= min(required_kernelcore,
 | |
| 								size_pages);
 | |
| 			kernelcore_remaining -= size_pages;
 | |
| 			if (!kernelcore_remaining)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is still required_kernelcore, we do another pass with one
 | |
| 	 * less node in the count. This will push zone_movable_pfn[nid] further
 | |
| 	 * along on the nodes that still have memory until kernelcore is
 | |
| 	 * satisfied
 | |
| 	 */
 | |
| 	usable_nodes--;
 | |
| 	if (usable_nodes && required_kernelcore > usable_nodes)
 | |
| 		goto restart;
 | |
| 
 | |
| out2:
 | |
| 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
 | |
| 	for (nid = 0; nid < MAX_NUMNODES; nid++)
 | |
| 		zone_movable_pfn[nid] =
 | |
| 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
 | |
| 
 | |
| out:
 | |
| 	/* restore the node_state */
 | |
| 	node_states[N_MEMORY] = saved_node_state;
 | |
| }
 | |
| 
 | |
| /* Any regular or high memory on that node ? */
 | |
| static void check_for_memory(pg_data_t *pgdat, int nid)
 | |
| {
 | |
| 	enum zone_type zone_type;
 | |
| 
 | |
| 	if (N_MEMORY == N_NORMAL_MEMORY)
 | |
| 		return;
 | |
| 
 | |
| 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
 | |
| 		struct zone *zone = &pgdat->node_zones[zone_type];
 | |
| 		if (populated_zone(zone)) {
 | |
| 			node_set_state(nid, N_HIGH_MEMORY);
 | |
| 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
 | |
| 			    zone_type <= ZONE_NORMAL)
 | |
| 				node_set_state(nid, N_NORMAL_MEMORY);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_area_init_nodes - Initialise all pg_data_t and zone data
 | |
|  * @max_zone_pfn: an array of max PFNs for each zone
 | |
|  *
 | |
|  * This will call free_area_init_node() for each active node in the system.
 | |
|  * Using the page ranges provided by memblock_set_node(), the size of each
 | |
|  * zone in each node and their holes is calculated. If the maximum PFN
 | |
|  * between two adjacent zones match, it is assumed that the zone is empty.
 | |
|  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 | |
|  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 | |
|  * starts where the previous one ended. For example, ZONE_DMA32 starts
 | |
|  * at arch_max_dma_pfn.
 | |
|  */
 | |
| void __init free_area_init_nodes(unsigned long *max_zone_pfn)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	int i, nid;
 | |
| 
 | |
| 	/* Record where the zone boundaries are */
 | |
| 	memset(arch_zone_lowest_possible_pfn, 0,
 | |
| 				sizeof(arch_zone_lowest_possible_pfn));
 | |
| 	memset(arch_zone_highest_possible_pfn, 0,
 | |
| 				sizeof(arch_zone_highest_possible_pfn));
 | |
| 
 | |
| 	start_pfn = find_min_pfn_with_active_regions();
 | |
| 
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		if (i == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 
 | |
| 		end_pfn = max(max_zone_pfn[i], start_pfn);
 | |
| 		arch_zone_lowest_possible_pfn[i] = start_pfn;
 | |
| 		arch_zone_highest_possible_pfn[i] = end_pfn;
 | |
| 
 | |
| 		start_pfn = end_pfn;
 | |
| 	}
 | |
| 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
 | |
| 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
 | |
| 
 | |
| 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
 | |
| 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
 | |
| 	find_zone_movable_pfns_for_nodes();
 | |
| 
 | |
| 	/* Print out the zone ranges */
 | |
| 	pr_info("Zone ranges:\n");
 | |
| 	for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 		if (i == ZONE_MOVABLE)
 | |
| 			continue;
 | |
| 		pr_info("  %-8s ", zone_names[i]);
 | |
| 		if (arch_zone_lowest_possible_pfn[i] ==
 | |
| 				arch_zone_highest_possible_pfn[i])
 | |
| 			pr_cont("empty\n");
 | |
| 		else
 | |
| 			pr_cont("[mem %#018Lx-%#018Lx]\n",
 | |
| 				(u64)arch_zone_lowest_possible_pfn[i]
 | |
| 					<< PAGE_SHIFT,
 | |
| 				((u64)arch_zone_highest_possible_pfn[i]
 | |
| 					<< PAGE_SHIFT) - 1);
 | |
| 	}
 | |
| 
 | |
| 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
 | |
| 	pr_info("Movable zone start for each node\n");
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		if (zone_movable_pfn[i])
 | |
| 			pr_info("  Node %d: %#018Lx\n", i,
 | |
| 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	/* Print out the early node map */
 | |
| 	pr_info("Early memory node ranges\n");
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
 | |
| 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
 | |
| 			(u64)start_pfn << PAGE_SHIFT,
 | |
| 			((u64)end_pfn << PAGE_SHIFT) - 1);
 | |
| 
 | |
| 	/* Initialise every node */
 | |
| 	mminit_verify_pageflags_layout();
 | |
| 	setup_nr_node_ids();
 | |
| 	for_each_online_node(nid) {
 | |
| 		pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 		free_area_init_node(nid, NULL,
 | |
| 				find_min_pfn_for_node(nid), NULL);
 | |
| 
 | |
| 		/* Any memory on that node */
 | |
| 		if (pgdat->node_present_pages)
 | |
| 			node_set_state(nid, N_MEMORY);
 | |
| 		check_for_memory(pgdat, nid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init cmdline_parse_core(char *p, unsigned long *core)
 | |
| {
 | |
| 	unsigned long long coremem;
 | |
| 	if (!p)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	coremem = memparse(p, &p);
 | |
| 	*core = coremem >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* Paranoid check that UL is enough for the coremem value */
 | |
| 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kernelcore=size sets the amount of memory for use for allocations that
 | |
|  * cannot be reclaimed or migrated.
 | |
|  */
 | |
| static int __init cmdline_parse_kernelcore(char *p)
 | |
| {
 | |
| 	/* parse kernelcore=mirror */
 | |
| 	if (parse_option_str(p, "mirror")) {
 | |
| 		mirrored_kernelcore = true;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return cmdline_parse_core(p, &required_kernelcore);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * movablecore=size sets the amount of memory for use for allocations that
 | |
|  * can be reclaimed or migrated.
 | |
|  */
 | |
| static int __init cmdline_parse_movablecore(char *p)
 | |
| {
 | |
| 	return cmdline_parse_core(p, &required_movablecore);
 | |
| }
 | |
| 
 | |
| early_param("kernelcore", cmdline_parse_kernelcore);
 | |
| early_param("movablecore", cmdline_parse_movablecore);
 | |
| 
 | |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| 
 | |
| void adjust_managed_page_count(struct page *page, long count)
 | |
| {
 | |
| 	spin_lock(&managed_page_count_lock);
 | |
| 	page_zone(page)->managed_pages += count;
 | |
| 	totalram_pages += count;
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	if (PageHighMem(page))
 | |
| 		totalhigh_pages += count;
 | |
| #endif
 | |
| 	spin_unlock(&managed_page_count_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(adjust_managed_page_count);
 | |
| 
 | |
| unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
 | |
| {
 | |
| 	void *pos;
 | |
| 	unsigned long pages = 0;
 | |
| 
 | |
| 	start = (void *)PAGE_ALIGN((unsigned long)start);
 | |
| 	end = (void *)((unsigned long)end & PAGE_MASK);
 | |
| 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
 | |
| 		if ((unsigned int)poison <= 0xFF)
 | |
| 			memset(pos, poison, PAGE_SIZE);
 | |
| 		free_reserved_page(virt_to_page(pos));
 | |
| 	}
 | |
| 
 | |
| 	if (pages && s)
 | |
| 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
 | |
| 			s, pages << (PAGE_SHIFT - 10), start, end);
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| EXPORT_SYMBOL(free_reserved_area);
 | |
| 
 | |
| #ifdef	CONFIG_HIGHMEM
 | |
| void free_highmem_page(struct page *page)
 | |
| {
 | |
| 	__free_reserved_page(page);
 | |
| 	totalram_pages++;
 | |
| 	page_zone(page)->managed_pages++;
 | |
| 	totalhigh_pages++;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| void __init mem_init_print_info(const char *str)
 | |
| {
 | |
| 	unsigned long physpages, codesize, datasize, rosize, bss_size;
 | |
| 	unsigned long init_code_size, init_data_size;
 | |
| 
 | |
| 	physpages = get_num_physpages();
 | |
| 	codesize = _etext - _stext;
 | |
| 	datasize = _edata - _sdata;
 | |
| 	rosize = __end_rodata - __start_rodata;
 | |
| 	bss_size = __bss_stop - __bss_start;
 | |
| 	init_data_size = __init_end - __init_begin;
 | |
| 	init_code_size = _einittext - _sinittext;
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect special cases and adjust section sizes accordingly:
 | |
| 	 * 1) .init.* may be embedded into .data sections
 | |
| 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
 | |
| 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
 | |
| 	 * 3) .rodata.* may be embedded into .text or .data sections.
 | |
| 	 */
 | |
| #define adj_init_size(start, end, size, pos, adj) \
 | |
| 	do { \
 | |
| 		if (start <= pos && pos < end && size > adj) \
 | |
| 			size -= adj; \
 | |
| 	} while (0)
 | |
| 
 | |
| 	adj_init_size(__init_begin, __init_end, init_data_size,
 | |
| 		     _sinittext, init_code_size);
 | |
| 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
 | |
| 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
 | |
| 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
 | |
| 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
 | |
| 
 | |
| #undef	adj_init_size
 | |
| 
 | |
| 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
 | |
| #ifdef	CONFIG_HIGHMEM
 | |
| 		", %luK highmem"
 | |
| #endif
 | |
| 		"%s%s)\n",
 | |
| 		nr_free_pages() << (PAGE_SHIFT - 10),
 | |
| 		physpages << (PAGE_SHIFT - 10),
 | |
| 		codesize >> 10, datasize >> 10, rosize >> 10,
 | |
| 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
 | |
| 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
 | |
| 		totalcma_pages << (PAGE_SHIFT - 10),
 | |
| #ifdef	CONFIG_HIGHMEM
 | |
| 		totalhigh_pages << (PAGE_SHIFT - 10),
 | |
| #endif
 | |
| 		str ? ", " : "", str ? str : "");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_dma_reserve - set the specified number of pages reserved in the first zone
 | |
|  * @new_dma_reserve: The number of pages to mark reserved
 | |
|  *
 | |
|  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
 | |
|  * In the DMA zone, a significant percentage may be consumed by kernel image
 | |
|  * and other unfreeable allocations which can skew the watermarks badly. This
 | |
|  * function may optionally be used to account for unfreeable pages in the
 | |
|  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 | |
|  * smaller per-cpu batchsize.
 | |
|  */
 | |
| void __init set_dma_reserve(unsigned long new_dma_reserve)
 | |
| {
 | |
| 	dma_reserve = new_dma_reserve;
 | |
| }
 | |
| 
 | |
| void __init free_area_init(unsigned long *zones_size)
 | |
| {
 | |
| 	free_area_init_node(0, zones_size,
 | |
| 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
 | |
| }
 | |
| 
 | |
| static int page_alloc_cpu_notify(struct notifier_block *self,
 | |
| 				 unsigned long action, void *hcpu)
 | |
| {
 | |
| 	int cpu = (unsigned long)hcpu;
 | |
| 
 | |
| 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
 | |
| 		lru_add_drain_cpu(cpu);
 | |
| 		drain_pages(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Spill the event counters of the dead processor
 | |
| 		 * into the current processors event counters.
 | |
| 		 * This artificially elevates the count of the current
 | |
| 		 * processor.
 | |
| 		 */
 | |
| 		vm_events_fold_cpu(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Zero the differential counters of the dead processor
 | |
| 		 * so that the vm statistics are consistent.
 | |
| 		 *
 | |
| 		 * This is only okay since the processor is dead and cannot
 | |
| 		 * race with what we are doing.
 | |
| 		 */
 | |
| 		cpu_vm_stats_fold(cpu);
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| void __init page_alloc_init(void)
 | |
| {
 | |
| 	hotcpu_notifier(page_alloc_cpu_notify, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
 | |
|  *	or min_free_kbytes changes.
 | |
|  */
 | |
| static void calculate_totalreserve_pages(void)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 	unsigned long reserve_pages = 0;
 | |
| 	enum zone_type i, j;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 
 | |
| 		pgdat->totalreserve_pages = 0;
 | |
| 
 | |
| 		for (i = 0; i < MAX_NR_ZONES; i++) {
 | |
| 			struct zone *zone = pgdat->node_zones + i;
 | |
| 			long max = 0;
 | |
| 
 | |
| 			/* Find valid and maximum lowmem_reserve in the zone */
 | |
| 			for (j = i; j < MAX_NR_ZONES; j++) {
 | |
| 				if (zone->lowmem_reserve[j] > max)
 | |
| 					max = zone->lowmem_reserve[j];
 | |
| 			}
 | |
| 
 | |
| 			/* we treat the high watermark as reserved pages. */
 | |
| 			max += high_wmark_pages(zone);
 | |
| 
 | |
| 			if (max > zone->managed_pages)
 | |
| 				max = zone->managed_pages;
 | |
| 
 | |
| 			pgdat->totalreserve_pages += max;
 | |
| 
 | |
| 			reserve_pages += max;
 | |
| 		}
 | |
| 	}
 | |
| 	totalreserve_pages = reserve_pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_per_zone_lowmem_reserve - called whenever
 | |
|  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
 | |
|  *	has a correct pages reserved value, so an adequate number of
 | |
|  *	pages are left in the zone after a successful __alloc_pages().
 | |
|  */
 | |
| static void setup_per_zone_lowmem_reserve(void)
 | |
| {
 | |
| 	struct pglist_data *pgdat;
 | |
| 	enum zone_type j, idx;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		for (j = 0; j < MAX_NR_ZONES; j++) {
 | |
| 			struct zone *zone = pgdat->node_zones + j;
 | |
| 			unsigned long managed_pages = zone->managed_pages;
 | |
| 
 | |
| 			zone->lowmem_reserve[j] = 0;
 | |
| 
 | |
| 			idx = j;
 | |
| 			while (idx) {
 | |
| 				struct zone *lower_zone;
 | |
| 
 | |
| 				idx--;
 | |
| 
 | |
| 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
 | |
| 					sysctl_lowmem_reserve_ratio[idx] = 1;
 | |
| 
 | |
| 				lower_zone = pgdat->node_zones + idx;
 | |
| 				lower_zone->lowmem_reserve[j] = managed_pages /
 | |
| 					sysctl_lowmem_reserve_ratio[idx];
 | |
| 				managed_pages += lower_zone->managed_pages;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* update totalreserve_pages */
 | |
| 	calculate_totalreserve_pages();
 | |
| }
 | |
| 
 | |
| static void __setup_per_zone_wmarks(void)
 | |
| {
 | |
| 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
 | |
| 	unsigned long lowmem_pages = 0;
 | |
| 	struct zone *zone;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Calculate total number of !ZONE_HIGHMEM pages */
 | |
| 	for_each_zone(zone) {
 | |
| 		if (!is_highmem(zone))
 | |
| 			lowmem_pages += zone->managed_pages;
 | |
| 	}
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		u64 tmp;
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lock, flags);
 | |
| 		tmp = (u64)pages_min * zone->managed_pages;
 | |
| 		do_div(tmp, lowmem_pages);
 | |
| 		if (is_highmem(zone)) {
 | |
| 			/*
 | |
| 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
 | |
| 			 * need highmem pages, so cap pages_min to a small
 | |
| 			 * value here.
 | |
| 			 *
 | |
| 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
 | |
| 			 * deltas control asynch page reclaim, and so should
 | |
| 			 * not be capped for highmem.
 | |
| 			 */
 | |
| 			unsigned long min_pages;
 | |
| 
 | |
| 			min_pages = zone->managed_pages / 1024;
 | |
| 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
 | |
| 			zone->watermark[WMARK_MIN] = min_pages;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * If it's a lowmem zone, reserve a number of pages
 | |
| 			 * proportionate to the zone's size.
 | |
| 			 */
 | |
| 			zone->watermark[WMARK_MIN] = tmp;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Set the kswapd watermarks distance according to the
 | |
| 		 * scale factor in proportion to available memory, but
 | |
| 		 * ensure a minimum size on small systems.
 | |
| 		 */
 | |
| 		tmp = max_t(u64, tmp >> 2,
 | |
| 			    mult_frac(zone->managed_pages,
 | |
| 				      watermark_scale_factor, 10000));
 | |
| 
 | |
| 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
 | |
| 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
 | |
| 
 | |
| 		spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* update totalreserve_pages */
 | |
| 	calculate_totalreserve_pages();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * setup_per_zone_wmarks - called when min_free_kbytes changes
 | |
|  * or when memory is hot-{added|removed}
 | |
|  *
 | |
|  * Ensures that the watermark[min,low,high] values for each zone are set
 | |
|  * correctly with respect to min_free_kbytes.
 | |
|  */
 | |
| void setup_per_zone_wmarks(void)
 | |
| {
 | |
| 	mutex_lock(&zonelists_mutex);
 | |
| 	__setup_per_zone_wmarks();
 | |
| 	mutex_unlock(&zonelists_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialise min_free_kbytes.
 | |
|  *
 | |
|  * For small machines we want it small (128k min).  For large machines
 | |
|  * we want it large (64MB max).  But it is not linear, because network
 | |
|  * bandwidth does not increase linearly with machine size.  We use
 | |
|  *
 | |
|  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
 | |
|  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 | |
|  *
 | |
|  * which yields
 | |
|  *
 | |
|  * 16MB:	512k
 | |
|  * 32MB:	724k
 | |
|  * 64MB:	1024k
 | |
|  * 128MB:	1448k
 | |
|  * 256MB:	2048k
 | |
|  * 512MB:	2896k
 | |
|  * 1024MB:	4096k
 | |
|  * 2048MB:	5792k
 | |
|  * 4096MB:	8192k
 | |
|  * 8192MB:	11584k
 | |
|  * 16384MB:	16384k
 | |
|  */
 | |
| int __meminit init_per_zone_wmark_min(void)
 | |
| {
 | |
| 	unsigned long lowmem_kbytes;
 | |
| 	int new_min_free_kbytes;
 | |
| 
 | |
| 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
 | |
| 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
 | |
| 
 | |
| 	if (new_min_free_kbytes > user_min_free_kbytes) {
 | |
| 		min_free_kbytes = new_min_free_kbytes;
 | |
| 		if (min_free_kbytes < 128)
 | |
| 			min_free_kbytes = 128;
 | |
| 		if (min_free_kbytes > 65536)
 | |
| 			min_free_kbytes = 65536;
 | |
| 	} else {
 | |
| 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
 | |
| 				new_min_free_kbytes, user_min_free_kbytes);
 | |
| 	}
 | |
| 	setup_per_zone_wmarks();
 | |
| 	refresh_zone_stat_thresholds();
 | |
| 	setup_per_zone_lowmem_reserve();
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	setup_min_unmapped_ratio();
 | |
| 	setup_min_slab_ratio();
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(init_per_zone_wmark_min)
 | |
| 
 | |
| /*
 | |
|  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
 | |
|  *	that we can call two helper functions whenever min_free_kbytes
 | |
|  *	changes.
 | |
|  */
 | |
| int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (write) {
 | |
| 		user_min_free_kbytes = min_free_kbytes;
 | |
| 		setup_per_zone_wmarks();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (write)
 | |
| 		setup_per_zone_wmarks();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static void setup_min_unmapped_ratio(void)
 | |
| {
 | |
| 	pg_data_t *pgdat;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat)
 | |
| 		pgdat->min_unmapped_pages = 0;
 | |
| 
 | |
| 	for_each_zone(zone)
 | |
| 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
 | |
| 				sysctl_min_unmapped_ratio) / 100;
 | |
| }
 | |
| 
 | |
| 
 | |
| int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	setup_min_unmapped_ratio();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void setup_min_slab_ratio(void)
 | |
| {
 | |
| 	pg_data_t *pgdat;
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat)
 | |
| 		pgdat->min_slab_pages = 0;
 | |
| 
 | |
| 	for_each_zone(zone)
 | |
| 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
 | |
| 				sysctl_min_slab_ratio) / 100;
 | |
| }
 | |
| 
 | |
| int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	setup_min_slab_ratio();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 | |
|  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 | |
|  *	whenever sysctl_lowmem_reserve_ratio changes.
 | |
|  *
 | |
|  * The reserve ratio obviously has absolutely no relation with the
 | |
|  * minimum watermarks. The lowmem reserve ratio can only make sense
 | |
|  * if in function of the boot time zone sizes.
 | |
|  */
 | |
| int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	proc_dointvec_minmax(table, write, buffer, length, ppos);
 | |
| 	setup_per_zone_lowmem_reserve();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
 | |
|  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 | |
|  * pagelist can have before it gets flushed back to buddy allocator.
 | |
|  */
 | |
| int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
 | |
| 	void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	int old_percpu_pagelist_fraction;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&pcp_batch_high_lock);
 | |
| 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
 | |
| 
 | |
| 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 | |
| 	if (!write || ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Sanity checking to avoid pcp imbalance */
 | |
| 	if (percpu_pagelist_fraction &&
 | |
| 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
 | |
| 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* No change? */
 | |
| 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
 | |
| 		goto out;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		unsigned int cpu;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			pageset_set_high_and_batch(zone,
 | |
| 					per_cpu_ptr(zone->pageset, cpu));
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&pcp_batch_high_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| int hashdist = HASHDIST_DEFAULT;
 | |
| 
 | |
| static int __init set_hashdist(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 	hashdist = simple_strtoul(str, &str, 0);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("hashdist=", set_hashdist);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * allocate a large system hash table from bootmem
 | |
|  * - it is assumed that the hash table must contain an exact power-of-2
 | |
|  *   quantity of entries
 | |
|  * - limit is the number of hash buckets, not the total allocation size
 | |
|  */
 | |
| void *__init alloc_large_system_hash(const char *tablename,
 | |
| 				     unsigned long bucketsize,
 | |
| 				     unsigned long numentries,
 | |
| 				     int scale,
 | |
| 				     int flags,
 | |
| 				     unsigned int *_hash_shift,
 | |
| 				     unsigned int *_hash_mask,
 | |
| 				     unsigned long low_limit,
 | |
| 				     unsigned long high_limit)
 | |
| {
 | |
| 	unsigned long long max = high_limit;
 | |
| 	unsigned long log2qty, size;
 | |
| 	void *table = NULL;
 | |
| 
 | |
| 	/* allow the kernel cmdline to have a say */
 | |
| 	if (!numentries) {
 | |
| 		/* round applicable memory size up to nearest megabyte */
 | |
| 		numentries = nr_kernel_pages;
 | |
| 
 | |
| 		/* It isn't necessary when PAGE_SIZE >= 1MB */
 | |
| 		if (PAGE_SHIFT < 20)
 | |
| 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
 | |
| 
 | |
| 		/* limit to 1 bucket per 2^scale bytes of low memory */
 | |
| 		if (scale > PAGE_SHIFT)
 | |
| 			numentries >>= (scale - PAGE_SHIFT);
 | |
| 		else
 | |
| 			numentries <<= (PAGE_SHIFT - scale);
 | |
| 
 | |
| 		/* Make sure we've got at least a 0-order allocation.. */
 | |
| 		if (unlikely(flags & HASH_SMALL)) {
 | |
| 			/* Makes no sense without HASH_EARLY */
 | |
| 			WARN_ON(!(flags & HASH_EARLY));
 | |
| 			if (!(numentries >> *_hash_shift)) {
 | |
| 				numentries = 1UL << *_hash_shift;
 | |
| 				BUG_ON(!numentries);
 | |
| 			}
 | |
| 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
 | |
| 			numentries = PAGE_SIZE / bucketsize;
 | |
| 	}
 | |
| 	numentries = roundup_pow_of_two(numentries);
 | |
| 
 | |
| 	/* limit allocation size to 1/16 total memory by default */
 | |
| 	if (max == 0) {
 | |
| 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
 | |
| 		do_div(max, bucketsize);
 | |
| 	}
 | |
| 	max = min(max, 0x80000000ULL);
 | |
| 
 | |
| 	if (numentries < low_limit)
 | |
| 		numentries = low_limit;
 | |
| 	if (numentries > max)
 | |
| 		numentries = max;
 | |
| 
 | |
| 	log2qty = ilog2(numentries);
 | |
| 
 | |
| 	do {
 | |
| 		size = bucketsize << log2qty;
 | |
| 		if (flags & HASH_EARLY)
 | |
| 			table = memblock_virt_alloc_nopanic(size, 0);
 | |
| 		else if (hashdist)
 | |
| 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * If bucketsize is not a power-of-two, we may free
 | |
| 			 * some pages at the end of hash table which
 | |
| 			 * alloc_pages_exact() automatically does
 | |
| 			 */
 | |
| 			if (get_order(size) < MAX_ORDER) {
 | |
| 				table = alloc_pages_exact(size, GFP_ATOMIC);
 | |
| 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
 | |
| 			}
 | |
| 		}
 | |
| 	} while (!table && size > PAGE_SIZE && --log2qty);
 | |
| 
 | |
| 	if (!table)
 | |
| 		panic("Failed to allocate %s hash table\n", tablename);
 | |
| 
 | |
| 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
 | |
| 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
 | |
| 
 | |
| 	if (_hash_shift)
 | |
| 		*_hash_shift = log2qty;
 | |
| 	if (_hash_mask)
 | |
| 		*_hash_mask = (1 << log2qty) - 1;
 | |
| 
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function checks whether pageblock includes unmovable pages or not.
 | |
|  * If @count is not zero, it is okay to include less @count unmovable pages
 | |
|  *
 | |
|  * PageLRU check without isolation or lru_lock could race so that
 | |
|  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
 | |
|  * expect this function should be exact.
 | |
|  */
 | |
| bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
 | |
| 			 bool skip_hwpoisoned_pages)
 | |
| {
 | |
| 	unsigned long pfn, iter, found;
 | |
| 	int mt;
 | |
| 
 | |
| 	/*
 | |
| 	 * For avoiding noise data, lru_add_drain_all() should be called
 | |
| 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
 | |
| 	 */
 | |
| 	if (zone_idx(zone) == ZONE_MOVABLE)
 | |
| 		return false;
 | |
| 	mt = get_pageblock_migratetype(page);
 | |
| 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
 | |
| 		return false;
 | |
| 
 | |
| 	pfn = page_to_pfn(page);
 | |
| 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
 | |
| 		unsigned long check = pfn + iter;
 | |
| 
 | |
| 		if (!pfn_valid_within(check))
 | |
| 			continue;
 | |
| 
 | |
| 		page = pfn_to_page(check);
 | |
| 
 | |
| 		/*
 | |
| 		 * Hugepages are not in LRU lists, but they're movable.
 | |
| 		 * We need not scan over tail pages bacause we don't
 | |
| 		 * handle each tail page individually in migration.
 | |
| 		 */
 | |
| 		if (PageHuge(page)) {
 | |
| 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We can't use page_count without pin a page
 | |
| 		 * because another CPU can free compound page.
 | |
| 		 * This check already skips compound tails of THP
 | |
| 		 * because their page->_refcount is zero at all time.
 | |
| 		 */
 | |
| 		if (!page_ref_count(page)) {
 | |
| 			if (PageBuddy(page))
 | |
| 				iter += (1 << page_order(page)) - 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The HWPoisoned page may be not in buddy system, and
 | |
| 		 * page_count() is not 0.
 | |
| 		 */
 | |
| 		if (skip_hwpoisoned_pages && PageHWPoison(page))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!PageLRU(page))
 | |
| 			found++;
 | |
| 		/*
 | |
| 		 * If there are RECLAIMABLE pages, we need to check
 | |
| 		 * it.  But now, memory offline itself doesn't call
 | |
| 		 * shrink_node_slabs() and it still to be fixed.
 | |
| 		 */
 | |
| 		/*
 | |
| 		 * If the page is not RAM, page_count()should be 0.
 | |
| 		 * we don't need more check. This is an _used_ not-movable page.
 | |
| 		 *
 | |
| 		 * The problematic thing here is PG_reserved pages. PG_reserved
 | |
| 		 * is set to both of a memory hole page and a _used_ kernel
 | |
| 		 * page at boot.
 | |
| 		 */
 | |
| 		if (found > count)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool is_pageblock_removable_nolock(struct page *page)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to be careful here because we are iterating over memory
 | |
| 	 * sections which are not zone aware so we might end up outside of
 | |
| 	 * the zone but still within the section.
 | |
| 	 * We have to take care about the node as well. If the node is offline
 | |
| 	 * its NODE_DATA will be NULL - see page_zone.
 | |
| 	 */
 | |
| 	if (!node_online(page_to_nid(page)))
 | |
| 		return false;
 | |
| 
 | |
| 	zone = page_zone(page);
 | |
| 	pfn = page_to_pfn(page);
 | |
| 	if (!zone_spans_pfn(zone, pfn))
 | |
| 		return false;
 | |
| 
 | |
| 	return !has_unmovable_pages(zone, page, 0, true);
 | |
| }
 | |
| 
 | |
| #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
 | |
| 
 | |
| static unsigned long pfn_max_align_down(unsigned long pfn)
 | |
| {
 | |
| 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
 | |
| 			     pageblock_nr_pages) - 1);
 | |
| }
 | |
| 
 | |
| static unsigned long pfn_max_align_up(unsigned long pfn)
 | |
| {
 | |
| 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
 | |
| 				pageblock_nr_pages));
 | |
| }
 | |
| 
 | |
| /* [start, end) must belong to a single zone. */
 | |
| static int __alloc_contig_migrate_range(struct compact_control *cc,
 | |
| 					unsigned long start, unsigned long end)
 | |
| {
 | |
| 	/* This function is based on compact_zone() from compaction.c. */
 | |
| 	unsigned long nr_reclaimed;
 | |
| 	unsigned long pfn = start;
 | |
| 	unsigned int tries = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	migrate_prep();
 | |
| 
 | |
| 	while (pfn < end || !list_empty(&cc->migratepages)) {
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (list_empty(&cc->migratepages)) {
 | |
| 			cc->nr_migratepages = 0;
 | |
| 			pfn = isolate_migratepages_range(cc, pfn, end);
 | |
| 			if (!pfn) {
 | |
| 				ret = -EINTR;
 | |
| 				break;
 | |
| 			}
 | |
| 			tries = 0;
 | |
| 		} else if (++tries == 5) {
 | |
| 			ret = ret < 0 ? ret : -EBUSY;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
 | |
| 							&cc->migratepages);
 | |
| 		cc->nr_migratepages -= nr_reclaimed;
 | |
| 
 | |
| 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
 | |
| 				    NULL, 0, cc->mode, MR_CMA);
 | |
| 	}
 | |
| 	if (ret < 0) {
 | |
| 		putback_movable_pages(&cc->migratepages);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_contig_range() -- tries to allocate given range of pages
 | |
|  * @start:	start PFN to allocate
 | |
|  * @end:	one-past-the-last PFN to allocate
 | |
|  * @migratetype:	migratetype of the underlaying pageblocks (either
 | |
|  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 | |
|  *			in range must have the same migratetype and it must
 | |
|  *			be either of the two.
 | |
|  *
 | |
|  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 | |
|  * aligned, however it's the caller's responsibility to guarantee that
 | |
|  * we are the only thread that changes migrate type of pageblocks the
 | |
|  * pages fall in.
 | |
|  *
 | |
|  * The PFN range must belong to a single zone.
 | |
|  *
 | |
|  * Returns zero on success or negative error code.  On success all
 | |
|  * pages which PFN is in [start, end) are allocated for the caller and
 | |
|  * need to be freed with free_contig_range().
 | |
|  */
 | |
| int alloc_contig_range(unsigned long start, unsigned long end,
 | |
| 		       unsigned migratetype)
 | |
| {
 | |
| 	unsigned long outer_start, outer_end;
 | |
| 	unsigned int order;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	struct compact_control cc = {
 | |
| 		.nr_migratepages = 0,
 | |
| 		.order = -1,
 | |
| 		.zone = page_zone(pfn_to_page(start)),
 | |
| 		.mode = MIGRATE_SYNC,
 | |
| 		.ignore_skip_hint = true,
 | |
| 	};
 | |
| 	INIT_LIST_HEAD(&cc.migratepages);
 | |
| 
 | |
| 	/*
 | |
| 	 * What we do here is we mark all pageblocks in range as
 | |
| 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
 | |
| 	 * have different sizes, and due to the way page allocator
 | |
| 	 * work, we align the range to biggest of the two pages so
 | |
| 	 * that page allocator won't try to merge buddies from
 | |
| 	 * different pageblocks and change MIGRATE_ISOLATE to some
 | |
| 	 * other migration type.
 | |
| 	 *
 | |
| 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
 | |
| 	 * migrate the pages from an unaligned range (ie. pages that
 | |
| 	 * we are interested in).  This will put all the pages in
 | |
| 	 * range back to page allocator as MIGRATE_ISOLATE.
 | |
| 	 *
 | |
| 	 * When this is done, we take the pages in range from page
 | |
| 	 * allocator removing them from the buddy system.  This way
 | |
| 	 * page allocator will never consider using them.
 | |
| 	 *
 | |
| 	 * This lets us mark the pageblocks back as
 | |
| 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
 | |
| 	 * aligned range but not in the unaligned, original range are
 | |
| 	 * put back to page allocator so that buddy can use them.
 | |
| 	 */
 | |
| 
 | |
| 	ret = start_isolate_page_range(pfn_max_align_down(start),
 | |
| 				       pfn_max_align_up(end), migratetype,
 | |
| 				       false);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of -EBUSY, we'd like to know which page causes problem.
 | |
| 	 * So, just fall through. We will check it in test_pages_isolated().
 | |
| 	 */
 | |
| 	ret = __alloc_contig_migrate_range(&cc, start, end);
 | |
| 	if (ret && ret != -EBUSY)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
 | |
| 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
 | |
| 	 * more, all pages in [start, end) are free in page allocator.
 | |
| 	 * What we are going to do is to allocate all pages from
 | |
| 	 * [start, end) (that is remove them from page allocator).
 | |
| 	 *
 | |
| 	 * The only problem is that pages at the beginning and at the
 | |
| 	 * end of interesting range may be not aligned with pages that
 | |
| 	 * page allocator holds, ie. they can be part of higher order
 | |
| 	 * pages.  Because of this, we reserve the bigger range and
 | |
| 	 * once this is done free the pages we are not interested in.
 | |
| 	 *
 | |
| 	 * We don't have to hold zone->lock here because the pages are
 | |
| 	 * isolated thus they won't get removed from buddy.
 | |
| 	 */
 | |
| 
 | |
| 	lru_add_drain_all();
 | |
| 	drain_all_pages(cc.zone);
 | |
| 
 | |
| 	order = 0;
 | |
| 	outer_start = start;
 | |
| 	while (!PageBuddy(pfn_to_page(outer_start))) {
 | |
| 		if (++order >= MAX_ORDER) {
 | |
| 			outer_start = start;
 | |
| 			break;
 | |
| 		}
 | |
| 		outer_start &= ~0UL << order;
 | |
| 	}
 | |
| 
 | |
| 	if (outer_start != start) {
 | |
| 		order = page_order(pfn_to_page(outer_start));
 | |
| 
 | |
| 		/*
 | |
| 		 * outer_start page could be small order buddy page and
 | |
| 		 * it doesn't include start page. Adjust outer_start
 | |
| 		 * in this case to report failed page properly
 | |
| 		 * on tracepoint in test_pages_isolated()
 | |
| 		 */
 | |
| 		if (outer_start + (1UL << order) <= start)
 | |
| 			outer_start = start;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure the range is really isolated. */
 | |
| 	if (test_pages_isolated(outer_start, end, false)) {
 | |
| 		pr_info("%s: [%lx, %lx) PFNs busy\n",
 | |
| 			__func__, outer_start, end);
 | |
| 		ret = -EBUSY;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Grab isolated pages from freelists. */
 | |
| 	outer_end = isolate_freepages_range(&cc, outer_start, end);
 | |
| 	if (!outer_end) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Free head and tail (if any) */
 | |
| 	if (start != outer_start)
 | |
| 		free_contig_range(outer_start, start - outer_start);
 | |
| 	if (end != outer_end)
 | |
| 		free_contig_range(end, outer_end - end);
 | |
| 
 | |
| done:
 | |
| 	undo_isolate_page_range(pfn_max_align_down(start),
 | |
| 				pfn_max_align_up(end), migratetype);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void free_contig_range(unsigned long pfn, unsigned nr_pages)
 | |
| {
 | |
| 	unsigned int count = 0;
 | |
| 
 | |
| 	for (; nr_pages--; pfn++) {
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		count += page_count(page) != 1;
 | |
| 		__free_page(page);
 | |
| 	}
 | |
| 	WARN(count != 0, "%d pages are still in use!\n", count);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| /*
 | |
|  * The zone indicated has a new number of managed_pages; batch sizes and percpu
 | |
|  * page high values need to be recalulated.
 | |
|  */
 | |
| void __meminit zone_pcp_update(struct zone *zone)
 | |
| {
 | |
| 	unsigned cpu;
 | |
| 	mutex_lock(&pcp_batch_high_lock);
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		pageset_set_high_and_batch(zone,
 | |
| 				per_cpu_ptr(zone->pageset, cpu));
 | |
| 	mutex_unlock(&pcp_batch_high_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void zone_pcp_reset(struct zone *zone)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int cpu;
 | |
| 	struct per_cpu_pageset *pset;
 | |
| 
 | |
| 	/* avoid races with drain_pages()  */
 | |
| 	local_irq_save(flags);
 | |
| 	if (zone->pageset != &boot_pageset) {
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			pset = per_cpu_ptr(zone->pageset, cpu);
 | |
| 			drain_zonestat(zone, pset);
 | |
| 		}
 | |
| 		free_percpu(zone->pageset);
 | |
| 		zone->pageset = &boot_pageset;
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| /*
 | |
|  * All pages in the range must be in a single zone and isolated
 | |
|  * before calling this.
 | |
|  */
 | |
| void
 | |
| __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct zone *zone;
 | |
| 	unsigned int order, i;
 | |
| 	unsigned long pfn;
 | |
| 	unsigned long flags;
 | |
| 	/* find the first valid pfn */
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
 | |
| 		if (pfn_valid(pfn))
 | |
| 			break;
 | |
| 	if (pfn == end_pfn)
 | |
| 		return;
 | |
| 	zone = page_zone(pfn_to_page(pfn));
 | |
| 	spin_lock_irqsave(&zone->lock, flags);
 | |
| 	pfn = start_pfn;
 | |
| 	while (pfn < end_pfn) {
 | |
| 		if (!pfn_valid(pfn)) {
 | |
| 			pfn++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		page = pfn_to_page(pfn);
 | |
| 		/*
 | |
| 		 * The HWPoisoned page may be not in buddy system, and
 | |
| 		 * page_count() is not 0.
 | |
| 		 */
 | |
| 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
 | |
| 			pfn++;
 | |
| 			SetPageReserved(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(page_count(page));
 | |
| 		BUG_ON(!PageBuddy(page));
 | |
| 		order = page_order(page);
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 		pr_info("remove from free list %lx %d %lx\n",
 | |
| 			pfn, 1 << order, end_pfn);
 | |
| #endif
 | |
| 		list_del(&page->lru);
 | |
| 		rmv_page_order(page);
 | |
| 		zone->free_area[order].nr_free--;
 | |
| 		for (i = 0; i < (1 << order); i++)
 | |
| 			SetPageReserved((page+i));
 | |
| 		pfn += (1 << order);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&zone->lock, flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool is_free_buddy_page(struct page *page)
 | |
| {
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 	unsigned long flags;
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lock, flags);
 | |
| 	for (order = 0; order < MAX_ORDER; order++) {
 | |
| 		struct page *page_head = page - (pfn & ((1 << order) - 1));
 | |
| 
 | |
| 		if (PageBuddy(page_head) && page_order(page_head) >= order)
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&zone->lock, flags);
 | |
| 
 | |
| 	return order < MAX_ORDER;
 | |
| }
 |