mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	The following Kconfig constellations fail randconfig builds:
  CONFIG_ACPI_NFIT=y
  CONFIG_EDAC_DEBUG=y
  CONFIG_EDAC_SKX=m
  CONFIG_EDAC_I10NM=y
or
  CONFIG_ACPI_NFIT=y
  CONFIG_EDAC_DEBUG=y
  CONFIG_EDAC_SKX=y
  CONFIG_EDAC_I10NM=m
with:
  ...
  CC [M]  drivers/edac/skx_common.o
  ...
  .../skx_common.o:.../skx_common.c:672: undefined reference to `__this_module'
That is because if one of the two drivers - skx_edac or i10nm_edac - is
built-in and the other one is a module, the shared file skx_common.c
gets linked into a module object by kbuild. Therefore, when linking that
same file into vmlinux, the '__this_module' symbol used in debugfs isn't
defined, leading to the above error.
Fix it by moving all debugfs code from skx_common.c to both skx_base.c
and i10nm_base.c respectively. Thus, skx_common.c doesn't refer to the
'__this_module' symbol anymore.
Clarify skx_common.c's purpose at the top of the file for future
reference, while at it.
 [ bp: Make text more readable. ]
Fixes: d4dc89d069 ("EDAC, i10nm: Add a driver for Intel 10nm server processors")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: James Morse <james.morse@arm.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: https://lkml.kernel.org/r/20190321221339.GA32323@agluck-desk
		
	
			
		
			
				
	
	
		
			698 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			698 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * EDAC driver for Intel(R) Xeon(R) Skylake processors
 | 
						|
 * Copyright (c) 2016, Intel Corporation.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/processor.h>
 | 
						|
#include <asm/cpu_device_id.h>
 | 
						|
#include <asm/intel-family.h>
 | 
						|
#include <asm/mce.h>
 | 
						|
 | 
						|
#include "edac_module.h"
 | 
						|
#include "skx_common.h"
 | 
						|
 | 
						|
#define EDAC_MOD_STR    "skx_edac"
 | 
						|
 | 
						|
/*
 | 
						|
 * Debug macros
 | 
						|
 */
 | 
						|
#define skx_printk(level, fmt, arg...)			\
 | 
						|
	edac_printk(level, "skx", fmt, ##arg)
 | 
						|
 | 
						|
#define skx_mc_printk(mci, level, fmt, arg...)		\
 | 
						|
	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
 | 
						|
 | 
						|
static struct list_head *skx_edac_list;
 | 
						|
 | 
						|
static u64 skx_tolm, skx_tohm;
 | 
						|
static int skx_num_sockets;
 | 
						|
static unsigned int nvdimm_count;
 | 
						|
 | 
						|
#define	MASK26	0x3FFFFFF		/* Mask for 2^26 */
 | 
						|
#define MASK29	0x1FFFFFFF		/* Mask for 2^29 */
 | 
						|
 | 
						|
static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
 | 
						|
{
 | 
						|
	struct skx_dev *d;
 | 
						|
 | 
						|
	list_for_each_entry(d, skx_edac_list, list) {
 | 
						|
		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
 | 
						|
			return d;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
enum munittype {
 | 
						|
	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
 | 
						|
};
 | 
						|
 | 
						|
struct munit {
 | 
						|
	u16	did;
 | 
						|
	u16	devfn[SKX_NUM_IMC];
 | 
						|
	u8	busidx;
 | 
						|
	u8	per_socket;
 | 
						|
	enum munittype mtype;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * List of PCI device ids that we need together with some device
 | 
						|
 * number and function numbers to tell which memory controller the
 | 
						|
 * device belongs to.
 | 
						|
 */
 | 
						|
static const struct munit skx_all_munits[] = {
 | 
						|
	{ 0x2054, { }, 1, 1, SAD_ALL },
 | 
						|
	{ 0x2055, { }, 1, 1, UTIL_ALL },
 | 
						|
	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
 | 
						|
	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
 | 
						|
	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
 | 
						|
	{ 0x208e, { }, 1, 0, SAD },
 | 
						|
	{ }
 | 
						|
};
 | 
						|
 | 
						|
static int get_all_munits(const struct munit *m)
 | 
						|
{
 | 
						|
	struct pci_dev *pdev, *prev;
 | 
						|
	struct skx_dev *d;
 | 
						|
	u32 reg;
 | 
						|
	int i = 0, ndev = 0;
 | 
						|
 | 
						|
	prev = NULL;
 | 
						|
	for (;;) {
 | 
						|
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
 | 
						|
		if (!pdev)
 | 
						|
			break;
 | 
						|
		ndev++;
 | 
						|
		if (m->per_socket == SKX_NUM_IMC) {
 | 
						|
			for (i = 0; i < SKX_NUM_IMC; i++)
 | 
						|
				if (m->devfn[i] == pdev->devfn)
 | 
						|
					break;
 | 
						|
			if (i == SKX_NUM_IMC)
 | 
						|
				goto fail;
 | 
						|
		}
 | 
						|
		d = get_skx_dev(pdev->bus, m->busidx);
 | 
						|
		if (!d)
 | 
						|
			goto fail;
 | 
						|
 | 
						|
		/* Be sure that the device is enabled */
 | 
						|
		if (unlikely(pci_enable_device(pdev) < 0)) {
 | 
						|
			skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
 | 
						|
				   PCI_VENDOR_ID_INTEL, m->did);
 | 
						|
			goto fail;
 | 
						|
		}
 | 
						|
 | 
						|
		switch (m->mtype) {
 | 
						|
		case CHAN0: case CHAN1: case CHAN2:
 | 
						|
			pci_dev_get(pdev);
 | 
						|
			d->imc[i].chan[m->mtype].cdev = pdev;
 | 
						|
			break;
 | 
						|
		case SAD_ALL:
 | 
						|
			pci_dev_get(pdev);
 | 
						|
			d->sad_all = pdev;
 | 
						|
			break;
 | 
						|
		case UTIL_ALL:
 | 
						|
			pci_dev_get(pdev);
 | 
						|
			d->util_all = pdev;
 | 
						|
			break;
 | 
						|
		case SAD:
 | 
						|
			/*
 | 
						|
			 * one of these devices per core, including cores
 | 
						|
			 * that don't exist on this SKU. Ignore any that
 | 
						|
			 * read a route table of zero, make sure all the
 | 
						|
			 * non-zero values match.
 | 
						|
			 */
 | 
						|
			pci_read_config_dword(pdev, 0xB4, ®);
 | 
						|
			if (reg != 0) {
 | 
						|
				if (d->mcroute == 0) {
 | 
						|
					d->mcroute = reg;
 | 
						|
				} else if (d->mcroute != reg) {
 | 
						|
					skx_printk(KERN_ERR, "mcroute mismatch\n");
 | 
						|
					goto fail;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			ndev--;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		prev = pdev;
 | 
						|
	}
 | 
						|
 | 
						|
	return ndev;
 | 
						|
fail:
 | 
						|
	pci_dev_put(pdev);
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
static const struct x86_cpu_id skx_cpuids[] = {
 | 
						|
	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
 | 
						|
	{ }
 | 
						|
};
 | 
						|
MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
 | 
						|
 | 
						|
#define SKX_GET_MTMTR(dev, reg) \
 | 
						|
	pci_read_config_dword((dev), 0x87c, &(reg))
 | 
						|
 | 
						|
static bool skx_check_ecc(struct pci_dev *pdev)
 | 
						|
{
 | 
						|
	u32 mtmtr;
 | 
						|
 | 
						|
	SKX_GET_MTMTR(pdev, mtmtr);
 | 
						|
 | 
						|
	return !!GET_BITFIELD(mtmtr, 2, 2);
 | 
						|
}
 | 
						|
 | 
						|
static int skx_get_dimm_config(struct mem_ctl_info *mci)
 | 
						|
{
 | 
						|
	struct skx_pvt *pvt = mci->pvt_info;
 | 
						|
	struct skx_imc *imc = pvt->imc;
 | 
						|
	u32 mtr, amap, mcddrtcfg;
 | 
						|
	struct dimm_info *dimm;
 | 
						|
	int i, j;
 | 
						|
	int ndimms;
 | 
						|
 | 
						|
	for (i = 0; i < SKX_NUM_CHANNELS; i++) {
 | 
						|
		ndimms = 0;
 | 
						|
		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
 | 
						|
		pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
 | 
						|
		for (j = 0; j < SKX_NUM_DIMMS; j++) {
 | 
						|
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
 | 
						|
					     mci->n_layers, i, j, 0);
 | 
						|
			pci_read_config_dword(imc->chan[i].cdev,
 | 
						|
					      0x80 + 4 * j, &mtr);
 | 
						|
			if (IS_DIMM_PRESENT(mtr)) {
 | 
						|
				ndimms += skx_get_dimm_info(mtr, amap, dimm, imc, i, j);
 | 
						|
			} else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
 | 
						|
				ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
 | 
						|
							      EDAC_MOD_STR);
 | 
						|
				nvdimm_count++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
 | 
						|
			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
 | 
						|
			return -ENODEV;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define	SKX_MAX_SAD 24
 | 
						|
 | 
						|
#define SKX_GET_SAD(d, i, reg)	\
 | 
						|
	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
 | 
						|
#define SKX_GET_ILV(d, i, reg)	\
 | 
						|
	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
 | 
						|
 | 
						|
#define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31)
 | 
						|
#define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27)
 | 
						|
#define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
 | 
						|
#define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6)
 | 
						|
#define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4)
 | 
						|
#define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2)
 | 
						|
#define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0)
 | 
						|
 | 
						|
#define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0)
 | 
						|
#define SKX_ILV_TARGET(tgt)	((tgt) & 7)
 | 
						|
 | 
						|
static bool skx_sad_decode(struct decoded_addr *res)
 | 
						|
{
 | 
						|
	struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
 | 
						|
	u64 addr = res->addr;
 | 
						|
	int i, idx, tgt, lchan, shift;
 | 
						|
	u32 sad, ilv;
 | 
						|
	u64 limit, prev_limit;
 | 
						|
	int remote = 0;
 | 
						|
 | 
						|
	/* Simple sanity check for I/O space or out of range */
 | 
						|
	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
 | 
						|
		edac_dbg(0, "Address 0x%llx out of range\n", addr);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
restart:
 | 
						|
	prev_limit = 0;
 | 
						|
	for (i = 0; i < SKX_MAX_SAD; i++) {
 | 
						|
		SKX_GET_SAD(d, i, sad);
 | 
						|
		limit = SKX_SAD_LIMIT(sad);
 | 
						|
		if (SKX_SAD_ENABLE(sad)) {
 | 
						|
			if (addr >= prev_limit && addr <= limit)
 | 
						|
				goto sad_found;
 | 
						|
		}
 | 
						|
		prev_limit = limit + 1;
 | 
						|
	}
 | 
						|
	edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
 | 
						|
	return false;
 | 
						|
 | 
						|
sad_found:
 | 
						|
	SKX_GET_ILV(d, i, ilv);
 | 
						|
 | 
						|
	switch (SKX_SAD_INTERLEAVE(sad)) {
 | 
						|
	case 0:
 | 
						|
		idx = GET_BITFIELD(addr, 6, 8);
 | 
						|
		break;
 | 
						|
	case 1:
 | 
						|
		idx = GET_BITFIELD(addr, 8, 10);
 | 
						|
		break;
 | 
						|
	case 2:
 | 
						|
		idx = GET_BITFIELD(addr, 12, 14);
 | 
						|
		break;
 | 
						|
	case 3:
 | 
						|
		idx = GET_BITFIELD(addr, 30, 32);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
 | 
						|
 | 
						|
	/* If point to another node, find it and start over */
 | 
						|
	if (SKX_ILV_REMOTE(tgt)) {
 | 
						|
		if (remote) {
 | 
						|
			edac_dbg(0, "Double remote!\n");
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		remote = 1;
 | 
						|
		list_for_each_entry(d, skx_edac_list, list) {
 | 
						|
			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
 | 
						|
				goto restart;
 | 
						|
		}
 | 
						|
		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (SKX_SAD_MOD3(sad) == 0) {
 | 
						|
		lchan = SKX_ILV_TARGET(tgt);
 | 
						|
	} else {
 | 
						|
		switch (SKX_SAD_MOD3MODE(sad)) {
 | 
						|
		case 0:
 | 
						|
			shift = 6;
 | 
						|
			break;
 | 
						|
		case 1:
 | 
						|
			shift = 8;
 | 
						|
			break;
 | 
						|
		case 2:
 | 
						|
			shift = 12;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			edac_dbg(0, "illegal mod3mode\n");
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		switch (SKX_SAD_MOD3ASMOD2(sad)) {
 | 
						|
		case 0:
 | 
						|
			lchan = (addr >> shift) % 3;
 | 
						|
			break;
 | 
						|
		case 1:
 | 
						|
			lchan = (addr >> shift) % 2;
 | 
						|
			break;
 | 
						|
		case 2:
 | 
						|
			lchan = (addr >> shift) % 2;
 | 
						|
			lchan = (lchan << 1) | !lchan;
 | 
						|
			break;
 | 
						|
		case 3:
 | 
						|
			lchan = ((addr >> shift) % 2) << 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
 | 
						|
	}
 | 
						|
 | 
						|
	res->dev = d;
 | 
						|
	res->socket = d->imc[0].src_id;
 | 
						|
	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
 | 
						|
	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
 | 
						|
 | 
						|
	edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
 | 
						|
		 res->addr, res->socket, res->imc, res->channel);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
#define	SKX_MAX_TAD 8
 | 
						|
 | 
						|
#define SKX_GET_TADBASE(d, mc, i, reg)			\
 | 
						|
	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
 | 
						|
#define SKX_GET_TADWAYNESS(d, mc, i, reg)		\
 | 
						|
	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
 | 
						|
#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\
 | 
						|
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
 | 
						|
 | 
						|
#define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26)
 | 
						|
#define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5)
 | 
						|
#define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7)
 | 
						|
#define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
 | 
						|
#define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26)
 | 
						|
#define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11))
 | 
						|
#define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1)
 | 
						|
 | 
						|
/* which bit used for both socket and channel interleave */
 | 
						|
static int skx_granularity[] = { 6, 8, 12, 30 };
 | 
						|
 | 
						|
static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
 | 
						|
{
 | 
						|
	addr >>= shift;
 | 
						|
	addr /= ways;
 | 
						|
	addr <<= shift;
 | 
						|
 | 
						|
	return addr | (lowbits & ((1ull << shift) - 1));
 | 
						|
}
 | 
						|
 | 
						|
static bool skx_tad_decode(struct decoded_addr *res)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	u32 base, wayness, chnilvoffset;
 | 
						|
	int skt_interleave_bit, chn_interleave_bit;
 | 
						|
	u64 channel_addr;
 | 
						|
 | 
						|
	for (i = 0; i < SKX_MAX_TAD; i++) {
 | 
						|
		SKX_GET_TADBASE(res->dev, res->imc, i, base);
 | 
						|
		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
 | 
						|
		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
 | 
						|
			goto tad_found;
 | 
						|
	}
 | 
						|
	edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
 | 
						|
	return false;
 | 
						|
 | 
						|
tad_found:
 | 
						|
	res->sktways = SKX_TAD_SKTWAYS(wayness);
 | 
						|
	res->chanways = SKX_TAD_CHNWAYS(wayness);
 | 
						|
	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
 | 
						|
	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
 | 
						|
 | 
						|
	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
 | 
						|
	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
 | 
						|
 | 
						|
	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
 | 
						|
		/* Must handle channel first, then socket */
 | 
						|
		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
 | 
						|
						 res->chanways, channel_addr);
 | 
						|
		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
 | 
						|
						 res->sktways, channel_addr);
 | 
						|
	} else {
 | 
						|
		/* Handle socket then channel. Preserve low bits from original address */
 | 
						|
		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
 | 
						|
						 res->sktways, res->addr);
 | 
						|
		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
 | 
						|
						 res->chanways, res->addr);
 | 
						|
	}
 | 
						|
 | 
						|
	res->chan_addr = channel_addr;
 | 
						|
 | 
						|
	edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
 | 
						|
		 res->addr, res->chan_addr, res->sktways, res->chanways);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
#define SKX_MAX_RIR 4
 | 
						|
 | 
						|
#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\
 | 
						|
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
 | 
						|
			      0x108 + 4 * (i), &(reg))
 | 
						|
#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\
 | 
						|
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
 | 
						|
			      0x120 + 16 * (idx) + 4 * (i), &(reg))
 | 
						|
 | 
						|
#define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
 | 
						|
#define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
 | 
						|
#define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
 | 
						|
#define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
 | 
						|
#define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
 | 
						|
 | 
						|
static bool skx_rir_decode(struct decoded_addr *res)
 | 
						|
{
 | 
						|
	int i, idx, chan_rank;
 | 
						|
	int shift;
 | 
						|
	u32 rirway, rirlv;
 | 
						|
	u64 rank_addr, prev_limit = 0, limit;
 | 
						|
 | 
						|
	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
 | 
						|
		shift = 6;
 | 
						|
	else
 | 
						|
		shift = 13;
 | 
						|
 | 
						|
	for (i = 0; i < SKX_MAX_RIR; i++) {
 | 
						|
		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
 | 
						|
		limit = SKX_RIR_LIMIT(rirway);
 | 
						|
		if (SKX_RIR_VALID(rirway)) {
 | 
						|
			if (prev_limit <= res->chan_addr &&
 | 
						|
			    res->chan_addr <= limit)
 | 
						|
				goto rir_found;
 | 
						|
		}
 | 
						|
		prev_limit = limit;
 | 
						|
	}
 | 
						|
	edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
 | 
						|
	return false;
 | 
						|
 | 
						|
rir_found:
 | 
						|
	rank_addr = res->chan_addr >> shift;
 | 
						|
	rank_addr /= SKX_RIR_WAYS(rirway);
 | 
						|
	rank_addr <<= shift;
 | 
						|
	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
 | 
						|
 | 
						|
	res->rank_address = rank_addr;
 | 
						|
	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
 | 
						|
 | 
						|
	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
 | 
						|
	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
 | 
						|
	chan_rank = SKX_RIR_CHAN_RANK(rirlv);
 | 
						|
	res->channel_rank = chan_rank;
 | 
						|
	res->dimm = chan_rank / 4;
 | 
						|
	res->rank = chan_rank % 4;
 | 
						|
 | 
						|
	edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
 | 
						|
		 res->addr, res->dimm, res->rank,
 | 
						|
		 res->channel_rank, res->rank_address);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static u8 skx_close_row[] = {
 | 
						|
	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
 | 
						|
};
 | 
						|
 | 
						|
static u8 skx_close_column[] = {
 | 
						|
	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
 | 
						|
};
 | 
						|
 | 
						|
static u8 skx_open_row[] = {
 | 
						|
	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
 | 
						|
};
 | 
						|
 | 
						|
static u8 skx_open_column[] = {
 | 
						|
	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
 | 
						|
};
 | 
						|
 | 
						|
static u8 skx_open_fine_column[] = {
 | 
						|
	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
 | 
						|
};
 | 
						|
 | 
						|
static int skx_bits(u64 addr, int nbits, u8 *bits)
 | 
						|
{
 | 
						|
	int i, res = 0;
 | 
						|
 | 
						|
	for (i = 0; i < nbits; i++)
 | 
						|
		res |= ((addr >> bits[i]) & 1) << i;
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
 | 
						|
{
 | 
						|
	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
 | 
						|
 | 
						|
	if (do_xor)
 | 
						|
		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool skx_mad_decode(struct decoded_addr *r)
 | 
						|
{
 | 
						|
	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
 | 
						|
	int bg0 = dimm->fine_grain_bank ? 6 : 13;
 | 
						|
 | 
						|
	if (dimm->close_pg) {
 | 
						|
		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
 | 
						|
		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
 | 
						|
		r->column |= 0x400; /* C10 is autoprecharge, always set */
 | 
						|
		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
 | 
						|
		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
 | 
						|
	} else {
 | 
						|
		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
 | 
						|
		if (dimm->fine_grain_bank)
 | 
						|
			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
 | 
						|
		else
 | 
						|
			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
 | 
						|
		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
 | 
						|
		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
 | 
						|
	}
 | 
						|
	r->row &= (1u << dimm->rowbits) - 1;
 | 
						|
 | 
						|
	edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
 | 
						|
		 r->addr, r->row, r->column, r->bank_address,
 | 
						|
		 r->bank_group);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool skx_decode(struct decoded_addr *res)
 | 
						|
{
 | 
						|
	return skx_sad_decode(res) && skx_tad_decode(res) &&
 | 
						|
		skx_rir_decode(res) && skx_mad_decode(res);
 | 
						|
}
 | 
						|
 | 
						|
static struct notifier_block skx_mce_dec = {
 | 
						|
	.notifier_call	= skx_mce_check_error,
 | 
						|
	.priority	= MCE_PRIO_EDAC,
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_EDAC_DEBUG
 | 
						|
/*
 | 
						|
 * Debug feature.
 | 
						|
 * Exercise the address decode logic by writing an address to
 | 
						|
 * /sys/kernel/debug/edac/skx_test/addr.
 | 
						|
 */
 | 
						|
static struct dentry *skx_test;
 | 
						|
 | 
						|
static int debugfs_u64_set(void *data, u64 val)
 | 
						|
{
 | 
						|
	struct mce m;
 | 
						|
 | 
						|
	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
 | 
						|
 | 
						|
	memset(&m, 0, sizeof(m));
 | 
						|
	/* ADDRV + MemRd + Unknown channel */
 | 
						|
	m.status = MCI_STATUS_ADDRV + 0x90;
 | 
						|
	/* One corrected error */
 | 
						|
	m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
 | 
						|
	m.addr = val;
 | 
						|
	skx_mce_check_error(NULL, 0, &m);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
 | 
						|
 | 
						|
static void setup_skx_debug(void)
 | 
						|
{
 | 
						|
	skx_test = edac_debugfs_create_dir("skx_test");
 | 
						|
	if (!skx_test)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!edac_debugfs_create_file("addr", 0200, skx_test,
 | 
						|
				      NULL, &fops_u64_wo)) {
 | 
						|
		debugfs_remove(skx_test);
 | 
						|
		skx_test = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void teardown_skx_debug(void)
 | 
						|
{
 | 
						|
	debugfs_remove_recursive(skx_test);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void setup_skx_debug(void) {}
 | 
						|
static inline void teardown_skx_debug(void) {}
 | 
						|
#endif /*CONFIG_EDAC_DEBUG*/
 | 
						|
 | 
						|
/*
 | 
						|
 * skx_init:
 | 
						|
 *	make sure we are running on the correct cpu model
 | 
						|
 *	search for all the devices we need
 | 
						|
 *	check which DIMMs are present.
 | 
						|
 */
 | 
						|
static int __init skx_init(void)
 | 
						|
{
 | 
						|
	const struct x86_cpu_id *id;
 | 
						|
	const struct munit *m;
 | 
						|
	const char *owner;
 | 
						|
	int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
 | 
						|
	u8 mc = 0, src_id, node_id;
 | 
						|
	struct skx_dev *d;
 | 
						|
 | 
						|
	edac_dbg(2, "\n");
 | 
						|
 | 
						|
	owner = edac_get_owner();
 | 
						|
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	id = x86_match_cpu(skx_cpuids);
 | 
						|
	if (!id)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
 | 
						|
	if (rc)
 | 
						|
		return rc;
 | 
						|
 | 
						|
	rc = skx_get_all_bus_mappings(0x2016, 0xcc, SKX, &skx_edac_list);
 | 
						|
	if (rc < 0)
 | 
						|
		goto fail;
 | 
						|
	if (rc == 0) {
 | 
						|
		edac_dbg(2, "No memory controllers found\n");
 | 
						|
		return -ENODEV;
 | 
						|
	}
 | 
						|
	skx_num_sockets = rc;
 | 
						|
 | 
						|
	for (m = skx_all_munits; m->did; m++) {
 | 
						|
		rc = get_all_munits(m);
 | 
						|
		if (rc < 0)
 | 
						|
			goto fail;
 | 
						|
		if (rc != m->per_socket * skx_num_sockets) {
 | 
						|
			edac_dbg(2, "Expected %d, got %d of 0x%x\n",
 | 
						|
				 m->per_socket * skx_num_sockets, rc, m->did);
 | 
						|
			rc = -ENODEV;
 | 
						|
			goto fail;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	list_for_each_entry(d, skx_edac_list, list) {
 | 
						|
		rc = skx_get_src_id(d, &src_id);
 | 
						|
		if (rc < 0)
 | 
						|
			goto fail;
 | 
						|
		rc = skx_get_node_id(d, &node_id);
 | 
						|
		if (rc < 0)
 | 
						|
			goto fail;
 | 
						|
		edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
 | 
						|
		for (i = 0; i < SKX_NUM_IMC; i++) {
 | 
						|
			d->imc[i].mc = mc++;
 | 
						|
			d->imc[i].lmc = i;
 | 
						|
			d->imc[i].src_id = src_id;
 | 
						|
			d->imc[i].node_id = node_id;
 | 
						|
			rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
 | 
						|
					      "Skylake Socket", EDAC_MOD_STR,
 | 
						|
					      skx_get_dimm_config);
 | 
						|
			if (rc < 0)
 | 
						|
				goto fail;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	skx_set_decode(skx_decode);
 | 
						|
 | 
						|
	if (nvdimm_count && skx_adxl_get() == -ENODEV)
 | 
						|
		skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
 | 
						|
 | 
						|
	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
 | 
						|
	opstate_init();
 | 
						|
 | 
						|
	setup_skx_debug();
 | 
						|
 | 
						|
	mce_register_decode_chain(&skx_mce_dec);
 | 
						|
 | 
						|
	return 0;
 | 
						|
fail:
 | 
						|
	skx_remove();
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit skx_exit(void)
 | 
						|
{
 | 
						|
	edac_dbg(2, "\n");
 | 
						|
	mce_unregister_decode_chain(&skx_mce_dec);
 | 
						|
	teardown_skx_debug();
 | 
						|
	if (nvdimm_count)
 | 
						|
		skx_adxl_put();
 | 
						|
	skx_remove();
 | 
						|
}
 | 
						|
 | 
						|
module_init(skx_init);
 | 
						|
module_exit(skx_exit);
 | 
						|
 | 
						|
module_param(edac_op_state, int, 0444);
 | 
						|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
 | 
						|
 | 
						|
MODULE_LICENSE("GPL v2");
 | 
						|
MODULE_AUTHOR("Tony Luck");
 | 
						|
MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
 |