mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	When searching a present section, there are two boundaries:
    * __highest_present_section_nr
    * NR_MEM_SECTIONS
And it is known, __highest_present_section_nr is a more strict boundary
than NR_MEM_SECTIONS.  This means it would be necessary to check
__highest_present_section_nr only.
Link: http://lkml.kernel.org/r/20180326081956.75275-2-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			873 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			873 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * sparse memory mappings.
 | 
						|
 */
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/mmzone.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
 | 
						|
#include "internal.h"
 | 
						|
#include <asm/dma.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Permanent SPARSEMEM data:
 | 
						|
 *
 | 
						|
 * 1) mem_section	- memory sections, mem_map's for valid memory
 | 
						|
 */
 | 
						|
#ifdef CONFIG_SPARSEMEM_EXTREME
 | 
						|
struct mem_section **mem_section;
 | 
						|
#else
 | 
						|
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 | 
						|
	____cacheline_internodealigned_in_smp;
 | 
						|
#endif
 | 
						|
EXPORT_SYMBOL(mem_section);
 | 
						|
 | 
						|
#ifdef NODE_NOT_IN_PAGE_FLAGS
 | 
						|
/*
 | 
						|
 * If we did not store the node number in the page then we have to
 | 
						|
 * do a lookup in the section_to_node_table in order to find which
 | 
						|
 * node the page belongs to.
 | 
						|
 */
 | 
						|
#if MAX_NUMNODES <= 256
 | 
						|
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 | 
						|
#else
 | 
						|
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 | 
						|
#endif
 | 
						|
 | 
						|
int page_to_nid(const struct page *page)
 | 
						|
{
 | 
						|
	return section_to_node_table[page_to_section(page)];
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(page_to_nid);
 | 
						|
 | 
						|
static void set_section_nid(unsigned long section_nr, int nid)
 | 
						|
{
 | 
						|
	section_to_node_table[section_nr] = nid;
 | 
						|
}
 | 
						|
#else /* !NODE_NOT_IN_PAGE_FLAGS */
 | 
						|
static inline void set_section_nid(unsigned long section_nr, int nid)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SPARSEMEM_EXTREME
 | 
						|
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 | 
						|
{
 | 
						|
	struct mem_section *section = NULL;
 | 
						|
	unsigned long array_size = SECTIONS_PER_ROOT *
 | 
						|
				   sizeof(struct mem_section);
 | 
						|
 | 
						|
	if (slab_is_available())
 | 
						|
		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 | 
						|
	else
 | 
						|
		section = memblock_virt_alloc_node(array_size, nid);
 | 
						|
 | 
						|
	return section;
 | 
						|
}
 | 
						|
 | 
						|
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 | 
						|
{
 | 
						|
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 | 
						|
	struct mem_section *section;
 | 
						|
 | 
						|
	if (mem_section[root])
 | 
						|
		return -EEXIST;
 | 
						|
 | 
						|
	section = sparse_index_alloc(nid);
 | 
						|
	if (!section)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	mem_section[root] = section;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else /* !SPARSEMEM_EXTREME */
 | 
						|
static inline int sparse_index_init(unsigned long section_nr, int nid)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SPARSEMEM_EXTREME
 | 
						|
int __section_nr(struct mem_section* ms)
 | 
						|
{
 | 
						|
	unsigned long root_nr;
 | 
						|
	struct mem_section *root = NULL;
 | 
						|
 | 
						|
	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
 | 
						|
		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
 | 
						|
		if (!root)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
 | 
						|
		     break;
 | 
						|
	}
 | 
						|
 | 
						|
	VM_BUG_ON(!root);
 | 
						|
 | 
						|
	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
 | 
						|
}
 | 
						|
#else
 | 
						|
int __section_nr(struct mem_section* ms)
 | 
						|
{
 | 
						|
	return (int)(ms - mem_section[0]);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * During early boot, before section_mem_map is used for an actual
 | 
						|
 * mem_map, we use section_mem_map to store the section's NUMA
 | 
						|
 * node.  This keeps us from having to use another data structure.  The
 | 
						|
 * node information is cleared just before we store the real mem_map.
 | 
						|
 */
 | 
						|
static inline unsigned long sparse_encode_early_nid(int nid)
 | 
						|
{
 | 
						|
	return (nid << SECTION_NID_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
static inline int sparse_early_nid(struct mem_section *section)
 | 
						|
{
 | 
						|
	return (section->section_mem_map >> SECTION_NID_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
/* Validate the physical addressing limitations of the model */
 | 
						|
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
 | 
						|
						unsigned long *end_pfn)
 | 
						|
{
 | 
						|
	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Sanity checks - do not allow an architecture to pass
 | 
						|
	 * in larger pfns than the maximum scope of sparsemem:
 | 
						|
	 */
 | 
						|
	if (*start_pfn > max_sparsemem_pfn) {
 | 
						|
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 | 
						|
			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 | 
						|
			*start_pfn, *end_pfn, max_sparsemem_pfn);
 | 
						|
		WARN_ON_ONCE(1);
 | 
						|
		*start_pfn = max_sparsemem_pfn;
 | 
						|
		*end_pfn = max_sparsemem_pfn;
 | 
						|
	} else if (*end_pfn > max_sparsemem_pfn) {
 | 
						|
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 | 
						|
			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 | 
						|
			*start_pfn, *end_pfn, max_sparsemem_pfn);
 | 
						|
		WARN_ON_ONCE(1);
 | 
						|
		*end_pfn = max_sparsemem_pfn;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * There are a number of times that we loop over NR_MEM_SECTIONS,
 | 
						|
 * looking for section_present() on each.  But, when we have very
 | 
						|
 * large physical address spaces, NR_MEM_SECTIONS can also be
 | 
						|
 * very large which makes the loops quite long.
 | 
						|
 *
 | 
						|
 * Keeping track of this gives us an easy way to break out of
 | 
						|
 * those loops early.
 | 
						|
 */
 | 
						|
int __highest_present_section_nr;
 | 
						|
static void section_mark_present(struct mem_section *ms)
 | 
						|
{
 | 
						|
	int section_nr = __section_nr(ms);
 | 
						|
 | 
						|
	if (section_nr > __highest_present_section_nr)
 | 
						|
		__highest_present_section_nr = section_nr;
 | 
						|
 | 
						|
	ms->section_mem_map |= SECTION_MARKED_PRESENT;
 | 
						|
}
 | 
						|
 | 
						|
static inline int next_present_section_nr(int section_nr)
 | 
						|
{
 | 
						|
	do {
 | 
						|
		section_nr++;
 | 
						|
		if (present_section_nr(section_nr))
 | 
						|
			return section_nr;
 | 
						|
	} while ((section_nr <= __highest_present_section_nr));
 | 
						|
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
#define for_each_present_section_nr(start, section_nr)		\
 | 
						|
	for (section_nr = next_present_section_nr(start-1);	\
 | 
						|
	     ((section_nr >= 0) &&				\
 | 
						|
	      (section_nr <= __highest_present_section_nr));	\
 | 
						|
	     section_nr = next_present_section_nr(section_nr))
 | 
						|
 | 
						|
/* Record a memory area against a node. */
 | 
						|
void __init memory_present(int nid, unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	unsigned long pfn;
 | 
						|
 | 
						|
#ifdef CONFIG_SPARSEMEM_EXTREME
 | 
						|
	if (unlikely(!mem_section)) {
 | 
						|
		unsigned long size, align;
 | 
						|
 | 
						|
		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
 | 
						|
		align = 1 << (INTERNODE_CACHE_SHIFT);
 | 
						|
		mem_section = memblock_virt_alloc(size, align);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	start &= PAGE_SECTION_MASK;
 | 
						|
	mminit_validate_memmodel_limits(&start, &end);
 | 
						|
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
 | 
						|
		unsigned long section = pfn_to_section_nr(pfn);
 | 
						|
		struct mem_section *ms;
 | 
						|
 | 
						|
		sparse_index_init(section, nid);
 | 
						|
		set_section_nid(section, nid);
 | 
						|
 | 
						|
		ms = __nr_to_section(section);
 | 
						|
		if (!ms->section_mem_map) {
 | 
						|
			ms->section_mem_map = sparse_encode_early_nid(nid) |
 | 
						|
							SECTION_IS_ONLINE;
 | 
						|
			section_mark_present(ms);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Subtle, we encode the real pfn into the mem_map such that
 | 
						|
 * the identity pfn - section_mem_map will return the actual
 | 
						|
 * physical page frame number.
 | 
						|
 */
 | 
						|
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
 | 
						|
{
 | 
						|
	unsigned long coded_mem_map =
 | 
						|
		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 | 
						|
	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
 | 
						|
	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
 | 
						|
	return coded_mem_map;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Decode mem_map from the coded memmap
 | 
						|
 */
 | 
						|
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
 | 
						|
{
 | 
						|
	/* mask off the extra low bits of information */
 | 
						|
	coded_mem_map &= SECTION_MAP_MASK;
 | 
						|
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
 | 
						|
}
 | 
						|
 | 
						|
static int __meminit sparse_init_one_section(struct mem_section *ms,
 | 
						|
		unsigned long pnum, struct page *mem_map,
 | 
						|
		unsigned long *pageblock_bitmap)
 | 
						|
{
 | 
						|
	if (!present_section(ms))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ms->section_mem_map &= ~SECTION_MAP_MASK;
 | 
						|
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
 | 
						|
							SECTION_HAS_MEM_MAP;
 | 
						|
 	ms->pageblock_flags = pageblock_bitmap;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long usemap_size(void)
 | 
						|
{
 | 
						|
	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTPLUG
 | 
						|
static unsigned long *__kmalloc_section_usemap(void)
 | 
						|
{
 | 
						|
	return kmalloc(usemap_size(), GFP_KERNEL);
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMORY_HOTPLUG */
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTREMOVE
 | 
						|
static unsigned long * __init
 | 
						|
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 | 
						|
					 unsigned long size)
 | 
						|
{
 | 
						|
	unsigned long goal, limit;
 | 
						|
	unsigned long *p;
 | 
						|
	int nid;
 | 
						|
	/*
 | 
						|
	 * A page may contain usemaps for other sections preventing the
 | 
						|
	 * page being freed and making a section unremovable while
 | 
						|
	 * other sections referencing the usemap remain active. Similarly,
 | 
						|
	 * a pgdat can prevent a section being removed. If section A
 | 
						|
	 * contains a pgdat and section B contains the usemap, both
 | 
						|
	 * sections become inter-dependent. This allocates usemaps
 | 
						|
	 * from the same section as the pgdat where possible to avoid
 | 
						|
	 * this problem.
 | 
						|
	 */
 | 
						|
	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
 | 
						|
	limit = goal + (1UL << PA_SECTION_SHIFT);
 | 
						|
	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
 | 
						|
again:
 | 
						|
	p = memblock_virt_alloc_try_nid_nopanic(size,
 | 
						|
						SMP_CACHE_BYTES, goal, limit,
 | 
						|
						nid);
 | 
						|
	if (!p && limit) {
 | 
						|
		limit = 0;
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 | 
						|
{
 | 
						|
	unsigned long usemap_snr, pgdat_snr;
 | 
						|
	static unsigned long old_usemap_snr;
 | 
						|
	static unsigned long old_pgdat_snr;
 | 
						|
	struct pglist_data *pgdat = NODE_DATA(nid);
 | 
						|
	int usemap_nid;
 | 
						|
 | 
						|
	/* First call */
 | 
						|
	if (!old_usemap_snr) {
 | 
						|
		old_usemap_snr = NR_MEM_SECTIONS;
 | 
						|
		old_pgdat_snr = NR_MEM_SECTIONS;
 | 
						|
	}
 | 
						|
 | 
						|
	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
 | 
						|
	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
 | 
						|
	if (usemap_snr == pgdat_snr)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
 | 
						|
		/* skip redundant message */
 | 
						|
		return;
 | 
						|
 | 
						|
	old_usemap_snr = usemap_snr;
 | 
						|
	old_pgdat_snr = pgdat_snr;
 | 
						|
 | 
						|
	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
 | 
						|
	if (usemap_nid != nid) {
 | 
						|
		pr_info("node %d must be removed before remove section %ld\n",
 | 
						|
			nid, usemap_snr);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * There is a circular dependency.
 | 
						|
	 * Some platforms allow un-removable section because they will just
 | 
						|
	 * gather other removable sections for dynamic partitioning.
 | 
						|
	 * Just notify un-removable section's number here.
 | 
						|
	 */
 | 
						|
	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
 | 
						|
		usemap_snr, pgdat_snr, nid);
 | 
						|
}
 | 
						|
#else
 | 
						|
static unsigned long * __init
 | 
						|
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 | 
						|
					 unsigned long size)
 | 
						|
{
 | 
						|
	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
 | 
						|
}
 | 
						|
 | 
						|
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMORY_HOTREMOVE */
 | 
						|
 | 
						|
static void __init sparse_early_usemaps_alloc_node(void *data,
 | 
						|
				 unsigned long pnum_begin,
 | 
						|
				 unsigned long pnum_end,
 | 
						|
				 unsigned long usemap_count, int nodeid)
 | 
						|
{
 | 
						|
	void *usemap;
 | 
						|
	unsigned long pnum;
 | 
						|
	unsigned long **usemap_map = (unsigned long **)data;
 | 
						|
	int size = usemap_size();
 | 
						|
 | 
						|
	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
 | 
						|
							  size * usemap_count);
 | 
						|
	if (!usemap) {
 | 
						|
		pr_warn("%s: allocation failed\n", __func__);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 | 
						|
		if (!present_section_nr(pnum))
 | 
						|
			continue;
 | 
						|
		usemap_map[pnum] = usemap;
 | 
						|
		usemap += size;
 | 
						|
		check_usemap_section_nr(nodeid, usemap_map[pnum]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_SPARSEMEM_VMEMMAP
 | 
						|
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
 | 
						|
		struct vmem_altmap *altmap)
 | 
						|
{
 | 
						|
	struct page *map;
 | 
						|
	unsigned long size;
 | 
						|
 | 
						|
	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 | 
						|
	map = memblock_virt_alloc_try_nid(size,
 | 
						|
					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 | 
						|
					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
 | 
						|
	return map;
 | 
						|
}
 | 
						|
void __init sparse_mem_maps_populate_node(struct page **map_map,
 | 
						|
					  unsigned long pnum_begin,
 | 
						|
					  unsigned long pnum_end,
 | 
						|
					  unsigned long map_count, int nodeid)
 | 
						|
{
 | 
						|
	void *map;
 | 
						|
	unsigned long pnum;
 | 
						|
	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
 | 
						|
 | 
						|
	size = PAGE_ALIGN(size);
 | 
						|
	map = memblock_virt_alloc_try_nid_raw(size * map_count,
 | 
						|
					      PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 | 
						|
					      BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
 | 
						|
	if (map) {
 | 
						|
		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 | 
						|
			if (!present_section_nr(pnum))
 | 
						|
				continue;
 | 
						|
			map_map[pnum] = map;
 | 
						|
			map += size;
 | 
						|
		}
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* fallback */
 | 
						|
	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 | 
						|
		struct mem_section *ms;
 | 
						|
 | 
						|
		if (!present_section_nr(pnum))
 | 
						|
			continue;
 | 
						|
		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
 | 
						|
		if (map_map[pnum])
 | 
						|
			continue;
 | 
						|
		ms = __nr_to_section(pnum);
 | 
						|
		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
 | 
						|
		       __func__);
 | 
						|
		ms->section_mem_map = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 | 
						|
 | 
						|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 | 
						|
static void __init sparse_early_mem_maps_alloc_node(void *data,
 | 
						|
				 unsigned long pnum_begin,
 | 
						|
				 unsigned long pnum_end,
 | 
						|
				 unsigned long map_count, int nodeid)
 | 
						|
{
 | 
						|
	struct page **map_map = (struct page **)data;
 | 
						|
	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
 | 
						|
					 map_count, nodeid);
 | 
						|
}
 | 
						|
#else
 | 
						|
static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
 | 
						|
{
 | 
						|
	struct page *map;
 | 
						|
	struct mem_section *ms = __nr_to_section(pnum);
 | 
						|
	int nid = sparse_early_nid(ms);
 | 
						|
 | 
						|
	map = sparse_mem_map_populate(pnum, nid, NULL);
 | 
						|
	if (map)
 | 
						|
		return map;
 | 
						|
 | 
						|
	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
 | 
						|
	       __func__);
 | 
						|
	ms->section_mem_map = 0;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void __weak __meminit vmemmap_populate_print_last(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
 | 
						|
 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
 | 
						|
 */
 | 
						|
static void __init alloc_usemap_and_memmap(void (*alloc_func)
 | 
						|
					(void *, unsigned long, unsigned long,
 | 
						|
					unsigned long, int), void *data)
 | 
						|
{
 | 
						|
	unsigned long pnum;
 | 
						|
	unsigned long map_count;
 | 
						|
	int nodeid_begin = 0;
 | 
						|
	unsigned long pnum_begin = 0;
 | 
						|
 | 
						|
	for_each_present_section_nr(0, pnum) {
 | 
						|
		struct mem_section *ms;
 | 
						|
 | 
						|
		ms = __nr_to_section(pnum);
 | 
						|
		nodeid_begin = sparse_early_nid(ms);
 | 
						|
		pnum_begin = pnum;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	map_count = 1;
 | 
						|
	for_each_present_section_nr(pnum_begin + 1, pnum) {
 | 
						|
		struct mem_section *ms;
 | 
						|
		int nodeid;
 | 
						|
 | 
						|
		ms = __nr_to_section(pnum);
 | 
						|
		nodeid = sparse_early_nid(ms);
 | 
						|
		if (nodeid == nodeid_begin) {
 | 
						|
			map_count++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
 | 
						|
		alloc_func(data, pnum_begin, pnum,
 | 
						|
						map_count, nodeid_begin);
 | 
						|
		/* new start, update count etc*/
 | 
						|
		nodeid_begin = nodeid;
 | 
						|
		pnum_begin = pnum;
 | 
						|
		map_count = 1;
 | 
						|
	}
 | 
						|
	/* ok, last chunk */
 | 
						|
	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
 | 
						|
						map_count, nodeid_begin);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate the accumulated non-linear sections, allocate a mem_map
 | 
						|
 * for each and record the physical to section mapping.
 | 
						|
 */
 | 
						|
void __init sparse_init(void)
 | 
						|
{
 | 
						|
	unsigned long pnum;
 | 
						|
	struct page *map;
 | 
						|
	unsigned long *usemap;
 | 
						|
	unsigned long **usemap_map;
 | 
						|
	int size;
 | 
						|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 | 
						|
	int size2;
 | 
						|
	struct page **map_map;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* see include/linux/mmzone.h 'struct mem_section' definition */
 | 
						|
	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
 | 
						|
 | 
						|
	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
 | 
						|
	set_pageblock_order();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * map is using big page (aka 2M in x86 64 bit)
 | 
						|
	 * usemap is less one page (aka 24 bytes)
 | 
						|
	 * so alloc 2M (with 2M align) and 24 bytes in turn will
 | 
						|
	 * make next 2M slip to one more 2M later.
 | 
						|
	 * then in big system, the memory will have a lot of holes...
 | 
						|
	 * here try to allocate 2M pages continuously.
 | 
						|
	 *
 | 
						|
	 * powerpc need to call sparse_init_one_section right after each
 | 
						|
	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
 | 
						|
	 */
 | 
						|
	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
 | 
						|
	usemap_map = memblock_virt_alloc(size, 0);
 | 
						|
	if (!usemap_map)
 | 
						|
		panic("can not allocate usemap_map\n");
 | 
						|
	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
 | 
						|
							(void *)usemap_map);
 | 
						|
 | 
						|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 | 
						|
	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
 | 
						|
	map_map = memblock_virt_alloc(size2, 0);
 | 
						|
	if (!map_map)
 | 
						|
		panic("can not allocate map_map\n");
 | 
						|
	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
 | 
						|
							(void *)map_map);
 | 
						|
#endif
 | 
						|
 | 
						|
	for_each_present_section_nr(0, pnum) {
 | 
						|
		usemap = usemap_map[pnum];
 | 
						|
		if (!usemap)
 | 
						|
			continue;
 | 
						|
 | 
						|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 | 
						|
		map = map_map[pnum];
 | 
						|
#else
 | 
						|
		map = sparse_early_mem_map_alloc(pnum);
 | 
						|
#endif
 | 
						|
		if (!map)
 | 
						|
			continue;
 | 
						|
 | 
						|
		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
 | 
						|
								usemap);
 | 
						|
	}
 | 
						|
 | 
						|
	vmemmap_populate_print_last();
 | 
						|
 | 
						|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 | 
						|
	memblock_free_early(__pa(map_map), size2);
 | 
						|
#endif
 | 
						|
	memblock_free_early(__pa(usemap_map), size);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTPLUG
 | 
						|
 | 
						|
/* Mark all memory sections within the pfn range as online */
 | 
						|
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
 | 
						|
{
 | 
						|
	unsigned long pfn;
 | 
						|
 | 
						|
	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 | 
						|
		unsigned long section_nr = pfn_to_section_nr(pfn);
 | 
						|
		struct mem_section *ms;
 | 
						|
 | 
						|
		/* onlining code should never touch invalid ranges */
 | 
						|
		if (WARN_ON(!valid_section_nr(section_nr)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		ms = __nr_to_section(section_nr);
 | 
						|
		ms->section_mem_map |= SECTION_IS_ONLINE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTREMOVE
 | 
						|
/* Mark all memory sections within the pfn range as online */
 | 
						|
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
 | 
						|
{
 | 
						|
	unsigned long pfn;
 | 
						|
 | 
						|
	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 | 
						|
		unsigned long section_nr = pfn_to_section_nr(pfn);
 | 
						|
		struct mem_section *ms;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * TODO this needs some double checking. Offlining code makes
 | 
						|
		 * sure to check pfn_valid but those checks might be just bogus
 | 
						|
		 */
 | 
						|
		if (WARN_ON(!valid_section_nr(section_nr)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		ms = __nr_to_section(section_nr);
 | 
						|
		ms->section_mem_map &= ~SECTION_IS_ONLINE;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
 | 
						|
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
 | 
						|
		struct vmem_altmap *altmap)
 | 
						|
{
 | 
						|
	/* This will make the necessary allocations eventually. */
 | 
						|
	return sparse_mem_map_populate(pnum, nid, altmap);
 | 
						|
}
 | 
						|
static void __kfree_section_memmap(struct page *memmap,
 | 
						|
		struct vmem_altmap *altmap)
 | 
						|
{
 | 
						|
	unsigned long start = (unsigned long)memmap;
 | 
						|
	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 | 
						|
 | 
						|
	vmemmap_free(start, end, altmap);
 | 
						|
}
 | 
						|
#ifdef CONFIG_MEMORY_HOTREMOVE
 | 
						|
static void free_map_bootmem(struct page *memmap)
 | 
						|
{
 | 
						|
	unsigned long start = (unsigned long)memmap;
 | 
						|
	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 | 
						|
 | 
						|
	vmemmap_free(start, end, NULL);
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMORY_HOTREMOVE */
 | 
						|
#else
 | 
						|
static struct page *__kmalloc_section_memmap(void)
 | 
						|
{
 | 
						|
	struct page *page, *ret;
 | 
						|
	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
 | 
						|
 | 
						|
	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
 | 
						|
	if (page)
 | 
						|
		goto got_map_page;
 | 
						|
 | 
						|
	ret = vmalloc(memmap_size);
 | 
						|
	if (ret)
 | 
						|
		goto got_map_ptr;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
got_map_page:
 | 
						|
	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
 | 
						|
got_map_ptr:
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
 | 
						|
		struct vmem_altmap *altmap)
 | 
						|
{
 | 
						|
	return __kmalloc_section_memmap();
 | 
						|
}
 | 
						|
 | 
						|
static void __kfree_section_memmap(struct page *memmap,
 | 
						|
		struct vmem_altmap *altmap)
 | 
						|
{
 | 
						|
	if (is_vmalloc_addr(memmap))
 | 
						|
		vfree(memmap);
 | 
						|
	else
 | 
						|
		free_pages((unsigned long)memmap,
 | 
						|
			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTREMOVE
 | 
						|
static void free_map_bootmem(struct page *memmap)
 | 
						|
{
 | 
						|
	unsigned long maps_section_nr, removing_section_nr, i;
 | 
						|
	unsigned long magic, nr_pages;
 | 
						|
	struct page *page = virt_to_page(memmap);
 | 
						|
 | 
						|
	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
 | 
						|
		>> PAGE_SHIFT;
 | 
						|
 | 
						|
	for (i = 0; i < nr_pages; i++, page++) {
 | 
						|
		magic = (unsigned long) page->freelist;
 | 
						|
 | 
						|
		BUG_ON(magic == NODE_INFO);
 | 
						|
 | 
						|
		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
 | 
						|
		removing_section_nr = page_private(page);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * When this function is called, the removing section is
 | 
						|
		 * logical offlined state. This means all pages are isolated
 | 
						|
		 * from page allocator. If removing section's memmap is placed
 | 
						|
		 * on the same section, it must not be freed.
 | 
						|
		 * If it is freed, page allocator may allocate it which will
 | 
						|
		 * be removed physically soon.
 | 
						|
		 */
 | 
						|
		if (maps_section_nr != removing_section_nr)
 | 
						|
			put_page_bootmem(page);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMORY_HOTREMOVE */
 | 
						|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 | 
						|
 | 
						|
/*
 | 
						|
 * returns the number of sections whose mem_maps were properly
 | 
						|
 * set.  If this is <=0, then that means that the passed-in
 | 
						|
 * map was not consumed and must be freed.
 | 
						|
 */
 | 
						|
int __meminit sparse_add_one_section(struct pglist_data *pgdat,
 | 
						|
		unsigned long start_pfn, struct vmem_altmap *altmap)
 | 
						|
{
 | 
						|
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
 | 
						|
	struct mem_section *ms;
 | 
						|
	struct page *memmap;
 | 
						|
	unsigned long *usemap;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * no locking for this, because it does its own
 | 
						|
	 * plus, it does a kmalloc
 | 
						|
	 */
 | 
						|
	ret = sparse_index_init(section_nr, pgdat->node_id);
 | 
						|
	if (ret < 0 && ret != -EEXIST)
 | 
						|
		return ret;
 | 
						|
	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
 | 
						|
	if (!memmap)
 | 
						|
		return -ENOMEM;
 | 
						|
	usemap = __kmalloc_section_usemap();
 | 
						|
	if (!usemap) {
 | 
						|
		__kfree_section_memmap(memmap, altmap);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	pgdat_resize_lock(pgdat, &flags);
 | 
						|
 | 
						|
	ms = __pfn_to_section(start_pfn);
 | 
						|
	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
 | 
						|
		ret = -EEXIST;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
	/*
 | 
						|
	 * Poison uninitialized struct pages in order to catch invalid flags
 | 
						|
	 * combinations.
 | 
						|
	 */
 | 
						|
	memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
 | 
						|
#endif
 | 
						|
 | 
						|
	section_mark_present(ms);
 | 
						|
 | 
						|
	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
 | 
						|
 | 
						|
out:
 | 
						|
	pgdat_resize_unlock(pgdat, &flags);
 | 
						|
	if (ret <= 0) {
 | 
						|
		kfree(usemap);
 | 
						|
		__kfree_section_memmap(memmap, altmap);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTREMOVE
 | 
						|
#ifdef CONFIG_MEMORY_FAILURE
 | 
						|
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!memmap)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (i = 0; i < nr_pages; i++) {
 | 
						|
		if (PageHWPoison(&memmap[i])) {
 | 
						|
			atomic_long_sub(1, &num_poisoned_pages);
 | 
						|
			ClearPageHWPoison(&memmap[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void free_section_usemap(struct page *memmap, unsigned long *usemap,
 | 
						|
		struct vmem_altmap *altmap)
 | 
						|
{
 | 
						|
	struct page *usemap_page;
 | 
						|
 | 
						|
	if (!usemap)
 | 
						|
		return;
 | 
						|
 | 
						|
	usemap_page = virt_to_page(usemap);
 | 
						|
	/*
 | 
						|
	 * Check to see if allocation came from hot-plug-add
 | 
						|
	 */
 | 
						|
	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
 | 
						|
		kfree(usemap);
 | 
						|
		if (memmap)
 | 
						|
			__kfree_section_memmap(memmap, altmap);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The usemap came from bootmem. This is packed with other usemaps
 | 
						|
	 * on the section which has pgdat at boot time. Just keep it as is now.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (memmap)
 | 
						|
		free_map_bootmem(memmap);
 | 
						|
}
 | 
						|
 | 
						|
void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
 | 
						|
		unsigned long map_offset, struct vmem_altmap *altmap)
 | 
						|
{
 | 
						|
	struct page *memmap = NULL;
 | 
						|
	unsigned long *usemap = NULL, flags;
 | 
						|
	struct pglist_data *pgdat = zone->zone_pgdat;
 | 
						|
 | 
						|
	pgdat_resize_lock(pgdat, &flags);
 | 
						|
	if (ms->section_mem_map) {
 | 
						|
		usemap = ms->pageblock_flags;
 | 
						|
		memmap = sparse_decode_mem_map(ms->section_mem_map,
 | 
						|
						__section_nr(ms));
 | 
						|
		ms->section_mem_map = 0;
 | 
						|
		ms->pageblock_flags = NULL;
 | 
						|
	}
 | 
						|
	pgdat_resize_unlock(pgdat, &flags);
 | 
						|
 | 
						|
	clear_hwpoisoned_pages(memmap + map_offset,
 | 
						|
			PAGES_PER_SECTION - map_offset);
 | 
						|
	free_section_usemap(memmap, usemap, altmap);
 | 
						|
}
 | 
						|
#endif /* CONFIG_MEMORY_HOTREMOVE */
 | 
						|
#endif /* CONFIG_MEMORY_HOTPLUG */
 |