mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 02:30:34 +02:00 
			
		
		
		
	module_alloc() is used everywhere as a mean to allocate memory for code. Beside being semantically wrong, this unnecessarily ties all subsystems that need to allocate code, such as ftrace, kprobes and BPF to modules and puts the burden of code allocation to the modules code. Several architectures override module_alloc() because of various constraints where the executable memory can be located and this causes additional obstacles for improvements of code allocation. Start splitting code allocation from modules by introducing execmem_alloc() and execmem_free() APIs. Initially, execmem_alloc() is a wrapper for module_alloc() and execmem_free() is a replacement of module_memfree() to allow updating all call sites to use the new APIs. Since architectures define different restrictions on placement, permissions, alignment and other parameters for memory that can be used by different subsystems that allocate executable memory, execmem_alloc() takes a type argument, that will be used to identify the calling subsystem and to allow architectures define parameters for ranges suitable for that subsystem. No functional changes. Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Song Liu <song@kernel.org> Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
		
			
				
	
	
		
			764 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			764 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
#include <linux/workqueue.h>
 | 
						|
#include <linux/netdevice.h>
 | 
						|
#include <linux/filter.h>
 | 
						|
#include <linux/cache.h>
 | 
						|
#include <linux/if_vlan.h>
 | 
						|
#include <linux/execmem.h>
 | 
						|
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <asm/ptrace.h>
 | 
						|
 | 
						|
#include "bpf_jit_32.h"
 | 
						|
 | 
						|
static inline bool is_simm13(unsigned int value)
 | 
						|
{
 | 
						|
	return value + 0x1000 < 0x2000;
 | 
						|
}
 | 
						|
 | 
						|
#define SEEN_DATAREF 1 /* might call external helpers */
 | 
						|
#define SEEN_XREG    2 /* ebx is used */
 | 
						|
#define SEEN_MEM     4 /* use mem[] for temporary storage */
 | 
						|
 | 
						|
#define S13(X)		((X) & 0x1fff)
 | 
						|
#define IMMED		0x00002000
 | 
						|
#define RD(X)		((X) << 25)
 | 
						|
#define RS1(X)		((X) << 14)
 | 
						|
#define RS2(X)		((X))
 | 
						|
#define OP(X)		((X) << 30)
 | 
						|
#define OP2(X)		((X) << 22)
 | 
						|
#define OP3(X)		((X) << 19)
 | 
						|
#define COND(X)		((X) << 25)
 | 
						|
#define F1(X)		OP(X)
 | 
						|
#define F2(X, Y)	(OP(X) | OP2(Y))
 | 
						|
#define F3(X, Y)	(OP(X) | OP3(Y))
 | 
						|
 | 
						|
#define CONDN		COND(0x0)
 | 
						|
#define CONDE		COND(0x1)
 | 
						|
#define CONDLE		COND(0x2)
 | 
						|
#define CONDL		COND(0x3)
 | 
						|
#define CONDLEU		COND(0x4)
 | 
						|
#define CONDCS		COND(0x5)
 | 
						|
#define CONDNEG		COND(0x6)
 | 
						|
#define CONDVC		COND(0x7)
 | 
						|
#define CONDA		COND(0x8)
 | 
						|
#define CONDNE		COND(0x9)
 | 
						|
#define CONDG		COND(0xa)
 | 
						|
#define CONDGE		COND(0xb)
 | 
						|
#define CONDGU		COND(0xc)
 | 
						|
#define CONDCC		COND(0xd)
 | 
						|
#define CONDPOS		COND(0xe)
 | 
						|
#define CONDVS		COND(0xf)
 | 
						|
 | 
						|
#define CONDGEU		CONDCC
 | 
						|
#define CONDLU		CONDCS
 | 
						|
 | 
						|
#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
 | 
						|
 | 
						|
#define BA		(F2(0, 2) | CONDA)
 | 
						|
#define BGU		(F2(0, 2) | CONDGU)
 | 
						|
#define BLEU		(F2(0, 2) | CONDLEU)
 | 
						|
#define BGEU		(F2(0, 2) | CONDGEU)
 | 
						|
#define BLU		(F2(0, 2) | CONDLU)
 | 
						|
#define BE		(F2(0, 2) | CONDE)
 | 
						|
#define BNE		(F2(0, 2) | CONDNE)
 | 
						|
 | 
						|
#define BE_PTR		BE
 | 
						|
 | 
						|
#define SETHI(K, REG)	\
 | 
						|
	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
 | 
						|
#define OR_LO(K, REG)	\
 | 
						|
	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
 | 
						|
 | 
						|
#define ADD		F3(2, 0x00)
 | 
						|
#define AND		F3(2, 0x01)
 | 
						|
#define ANDCC		F3(2, 0x11)
 | 
						|
#define OR		F3(2, 0x02)
 | 
						|
#define XOR		F3(2, 0x03)
 | 
						|
#define SUB		F3(2, 0x04)
 | 
						|
#define SUBCC		F3(2, 0x14)
 | 
						|
#define MUL		F3(2, 0x0a)	/* umul */
 | 
						|
#define DIV		F3(2, 0x0e)	/* udiv */
 | 
						|
#define SLL		F3(2, 0x25)
 | 
						|
#define SRL		F3(2, 0x26)
 | 
						|
#define JMPL		F3(2, 0x38)
 | 
						|
#define CALL		F1(1)
 | 
						|
#define BR		F2(0, 0x01)
 | 
						|
#define RD_Y		F3(2, 0x28)
 | 
						|
#define WR_Y		F3(2, 0x30)
 | 
						|
 | 
						|
#define LD32		F3(3, 0x00)
 | 
						|
#define LD8		F3(3, 0x01)
 | 
						|
#define LD16		F3(3, 0x02)
 | 
						|
#define LD64		F3(3, 0x0b)
 | 
						|
#define ST32		F3(3, 0x04)
 | 
						|
 | 
						|
#define LDPTR		LD32
 | 
						|
#define BASE_STACKFRAME	96
 | 
						|
 | 
						|
#define LD32I		(LD32 | IMMED)
 | 
						|
#define LD8I		(LD8 | IMMED)
 | 
						|
#define LD16I		(LD16 | IMMED)
 | 
						|
#define LD64I		(LD64 | IMMED)
 | 
						|
#define LDPTRI		(LDPTR | IMMED)
 | 
						|
#define ST32I		(ST32 | IMMED)
 | 
						|
 | 
						|
#define emit_nop()		\
 | 
						|
do {				\
 | 
						|
	*prog++ = SETHI(0, G0);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_neg()					\
 | 
						|
do {	/* sub %g0, r_A, r_A */				\
 | 
						|
	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_reg_move(FROM, TO)				\
 | 
						|
do {	/* or %g0, FROM, TO */				\
 | 
						|
	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_clear(REG)					\
 | 
						|
do {	/* or %g0, %g0, REG */				\
 | 
						|
	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_set_const(K, REG)					\
 | 
						|
do {	/* sethi %hi(K), REG */					\
 | 
						|
	*prog++ = SETHI(K, REG);				\
 | 
						|
	/* or REG, %lo(K), REG */				\
 | 
						|
	*prog++ = OR_LO(K, REG);				\
 | 
						|
} while (0)
 | 
						|
 | 
						|
	/* Emit
 | 
						|
	 *
 | 
						|
	 *	OP	r_A, r_X, r_A
 | 
						|
	 */
 | 
						|
#define emit_alu_X(OPCODE)					\
 | 
						|
do {								\
 | 
						|
	seen |= SEEN_XREG;					\
 | 
						|
	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
	/* Emit either:
 | 
						|
	 *
 | 
						|
	 *	OP	r_A, K, r_A
 | 
						|
	 *
 | 
						|
	 * or
 | 
						|
	 *
 | 
						|
	 *	sethi	%hi(K), r_TMP
 | 
						|
	 *	or	r_TMP, %lo(K), r_TMP
 | 
						|
	 *	OP	r_A, r_TMP, r_A
 | 
						|
	 *
 | 
						|
	 * depending upon whether K fits in a signed 13-bit
 | 
						|
	 * immediate instruction field.  Emit nothing if K
 | 
						|
	 * is zero.
 | 
						|
	 */
 | 
						|
#define emit_alu_K(OPCODE, K)					\
 | 
						|
do {								\
 | 
						|
	if (K || OPCODE == AND || OPCODE == MUL) {		\
 | 
						|
		unsigned int _insn = OPCODE;			\
 | 
						|
		_insn |= RS1(r_A) | RD(r_A);			\
 | 
						|
		if (is_simm13(K)) {				\
 | 
						|
			*prog++ = _insn | IMMED | S13(K);	\
 | 
						|
		} else {					\
 | 
						|
			emit_set_const(K, r_TMP);		\
 | 
						|
			*prog++ = _insn | RS2(r_TMP);		\
 | 
						|
		}						\
 | 
						|
	}							\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_loadimm(K, DEST)						\
 | 
						|
do {									\
 | 
						|
	if (is_simm13(K)) {						\
 | 
						|
		/* or %g0, K, DEST */					\
 | 
						|
		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
 | 
						|
	} else {							\
 | 
						|
		emit_set_const(K, DEST);				\
 | 
						|
	}								\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
 | 
						|
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
 | 
						|
	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(void *));	\
 | 
						|
	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_load32(BASE, STRUCT, FIELD, DEST)				\
 | 
						|
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
 | 
						|
	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u32));	\
 | 
						|
	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_load16(BASE, STRUCT, FIELD, DEST)				\
 | 
						|
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
 | 
						|
	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u16));	\
 | 
						|
	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
 | 
						|
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
 | 
						|
	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_load8(BASE, STRUCT, FIELD, DEST)				\
 | 
						|
do {	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u8));	\
 | 
						|
	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define BIAS (-4)
 | 
						|
 | 
						|
#define emit_ldmem(OFF, DEST)						\
 | 
						|
do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_stmem(OFF, SRC)						\
 | 
						|
do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
#define emit_load_cpu(REG)						\
 | 
						|
	emit_load32(G6, struct thread_info, cpu, REG)
 | 
						|
#else
 | 
						|
#define emit_load_cpu(REG)	emit_clear(REG)
 | 
						|
#endif
 | 
						|
 | 
						|
#define emit_skb_loadptr(FIELD, DEST) \
 | 
						|
	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
 | 
						|
#define emit_skb_load32(FIELD, DEST) \
 | 
						|
	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
 | 
						|
#define emit_skb_load16(FIELD, DEST) \
 | 
						|
	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
 | 
						|
#define __emit_skb_load8(FIELD, DEST) \
 | 
						|
	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
 | 
						|
#define emit_skb_load8(FIELD, DEST) \
 | 
						|
	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
 | 
						|
 | 
						|
#define emit_jmpl(BASE, IMM_OFF, LREG) \
 | 
						|
	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
 | 
						|
 | 
						|
#define emit_call(FUNC)					\
 | 
						|
do {	void *_here = image + addrs[i] - 8;		\
 | 
						|
	unsigned int _off = (void *)(FUNC) - _here;	\
 | 
						|
	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
 | 
						|
	emit_nop();					\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_branch(BR_OPC, DEST)			\
 | 
						|
do {	unsigned int _here = addrs[i] - 8;		\
 | 
						|
	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_branch_off(BR_OPC, OFF)			\
 | 
						|
do {	*prog++ = BR_OPC | WDISP22(OFF);		\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define emit_jump(DEST)		emit_branch(BA, DEST)
 | 
						|
 | 
						|
#define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
 | 
						|
#define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
 | 
						|
 | 
						|
#define emit_cmp(R1, R2) \
 | 
						|
	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
 | 
						|
 | 
						|
#define emit_cmpi(R1, IMM) \
 | 
						|
	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
 | 
						|
 | 
						|
#define emit_btst(R1, R2) \
 | 
						|
	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
 | 
						|
 | 
						|
#define emit_btsti(R1, IMM) \
 | 
						|
	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
 | 
						|
 | 
						|
#define emit_sub(R1, R2, R3) \
 | 
						|
	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
 | 
						|
 | 
						|
#define emit_subi(R1, IMM, R3) \
 | 
						|
	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 | 
						|
 | 
						|
#define emit_add(R1, R2, R3) \
 | 
						|
	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
 | 
						|
 | 
						|
#define emit_addi(R1, IMM, R3) \
 | 
						|
	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 | 
						|
 | 
						|
#define emit_and(R1, R2, R3) \
 | 
						|
	*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
 | 
						|
 | 
						|
#define emit_andi(R1, IMM, R3) \
 | 
						|
	*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 | 
						|
 | 
						|
#define emit_alloc_stack(SZ) \
 | 
						|
	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
 | 
						|
 | 
						|
#define emit_release_stack(SZ) \
 | 
						|
	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
 | 
						|
 | 
						|
/* A note about branch offset calculations.  The addrs[] array,
 | 
						|
 * indexed by BPF instruction, records the address after all the
 | 
						|
 * sparc instructions emitted for that BPF instruction.
 | 
						|
 *
 | 
						|
 * The most common case is to emit a branch at the end of such
 | 
						|
 * a code sequence.  So this would be two instructions, the
 | 
						|
 * branch and its delay slot.
 | 
						|
 *
 | 
						|
 * Therefore by default the branch emitters calculate the branch
 | 
						|
 * offset field as:
 | 
						|
 *
 | 
						|
 *	destination - (addrs[i] - 8)
 | 
						|
 *
 | 
						|
 * This "addrs[i] - 8" is the address of the branch itself or
 | 
						|
 * what "." would be in assembler notation.  The "8" part is
 | 
						|
 * how we take into consideration the branch and its delay
 | 
						|
 * slot mentioned above.
 | 
						|
 *
 | 
						|
 * Sometimes we need to emit a branch earlier in the code
 | 
						|
 * sequence.  And in these situations we adjust "destination"
 | 
						|
 * to accommodate this difference.  For example, if we needed
 | 
						|
 * to emit a branch (and its delay slot) right before the
 | 
						|
 * final instruction emitted for a BPF opcode, we'd use
 | 
						|
 * "destination + 4" instead of just plain "destination" above.
 | 
						|
 *
 | 
						|
 * This is why you see all of these funny emit_branch() and
 | 
						|
 * emit_jump() calls with adjusted offsets.
 | 
						|
 */
 | 
						|
 | 
						|
void bpf_jit_compile(struct bpf_prog *fp)
 | 
						|
{
 | 
						|
	unsigned int cleanup_addr, proglen, oldproglen = 0;
 | 
						|
	u32 temp[8], *prog, *func, seen = 0, pass;
 | 
						|
	const struct sock_filter *filter = fp->insns;
 | 
						|
	int i, flen = fp->len, pc_ret0 = -1;
 | 
						|
	unsigned int *addrs;
 | 
						|
	void *image;
 | 
						|
 | 
						|
	if (!bpf_jit_enable)
 | 
						|
		return;
 | 
						|
 | 
						|
	addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL);
 | 
						|
	if (addrs == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Before first pass, make a rough estimation of addrs[]
 | 
						|
	 * each bpf instruction is translated to less than 64 bytes
 | 
						|
	 */
 | 
						|
	for (proglen = 0, i = 0; i < flen; i++) {
 | 
						|
		proglen += 64;
 | 
						|
		addrs[i] = proglen;
 | 
						|
	}
 | 
						|
	cleanup_addr = proglen; /* epilogue address */
 | 
						|
	image = NULL;
 | 
						|
	for (pass = 0; pass < 10; pass++) {
 | 
						|
		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
 | 
						|
 | 
						|
		/* no prologue/epilogue for trivial filters (RET something) */
 | 
						|
		proglen = 0;
 | 
						|
		prog = temp;
 | 
						|
 | 
						|
		/* Prologue */
 | 
						|
		if (seen_or_pass0) {
 | 
						|
			if (seen_or_pass0 & SEEN_MEM) {
 | 
						|
				unsigned int sz = BASE_STACKFRAME;
 | 
						|
				sz += BPF_MEMWORDS * sizeof(u32);
 | 
						|
				emit_alloc_stack(sz);
 | 
						|
			}
 | 
						|
 | 
						|
			/* Make sure we dont leek kernel memory. */
 | 
						|
			if (seen_or_pass0 & SEEN_XREG)
 | 
						|
				emit_clear(r_X);
 | 
						|
 | 
						|
			/* If this filter needs to access skb data,
 | 
						|
			 * load %o4 and %o5 with:
 | 
						|
			 *  %o4 = skb->len - skb->data_len
 | 
						|
			 *  %o5 = skb->data
 | 
						|
			 * And also back up %o7 into r_saved_O7 so we can
 | 
						|
			 * invoke the stubs using 'call'.
 | 
						|
			 */
 | 
						|
			if (seen_or_pass0 & SEEN_DATAREF) {
 | 
						|
				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
 | 
						|
				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
 | 
						|
				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
 | 
						|
				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		emit_reg_move(O7, r_saved_O7);
 | 
						|
 | 
						|
		/* Make sure we dont leak kernel information to the user. */
 | 
						|
		if (bpf_needs_clear_a(&filter[0]))
 | 
						|
			emit_clear(r_A); /* A = 0 */
 | 
						|
 | 
						|
		for (i = 0; i < flen; i++) {
 | 
						|
			unsigned int K = filter[i].k;
 | 
						|
			unsigned int t_offset;
 | 
						|
			unsigned int f_offset;
 | 
						|
			u32 t_op, f_op;
 | 
						|
			u16 code = bpf_anc_helper(&filter[i]);
 | 
						|
			int ilen;
 | 
						|
 | 
						|
			switch (code) {
 | 
						|
			case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */
 | 
						|
				emit_alu_X(ADD);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */
 | 
						|
				emit_alu_K(ADD, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */
 | 
						|
				emit_alu_X(SUB);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */
 | 
						|
				emit_alu_K(SUB, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */
 | 
						|
				emit_alu_X(AND);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */
 | 
						|
				emit_alu_K(AND, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */
 | 
						|
				emit_alu_X(OR);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */
 | 
						|
				emit_alu_K(OR, K);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
 | 
						|
			case BPF_ALU | BPF_XOR | BPF_X:
 | 
						|
				emit_alu_X(XOR);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */
 | 
						|
				emit_alu_K(XOR, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */
 | 
						|
				emit_alu_X(SLL);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */
 | 
						|
				emit_alu_K(SLL, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */
 | 
						|
				emit_alu_X(SRL);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */
 | 
						|
				emit_alu_K(SRL, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */
 | 
						|
				emit_alu_X(MUL);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */
 | 
						|
				emit_alu_K(MUL, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/
 | 
						|
				if (K == 1)
 | 
						|
					break;
 | 
						|
				emit_write_y(G0);
 | 
						|
				/* The Sparc v8 architecture requires
 | 
						|
				 * three instructions between a %y
 | 
						|
				 * register write and the first use.
 | 
						|
				 */
 | 
						|
				emit_nop();
 | 
						|
				emit_nop();
 | 
						|
				emit_nop();
 | 
						|
				emit_alu_K(DIV, K);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */
 | 
						|
				emit_cmpi(r_X, 0);
 | 
						|
				if (pc_ret0 > 0) {
 | 
						|
					t_offset = addrs[pc_ret0 - 1];
 | 
						|
					emit_branch(BE, t_offset + 20);
 | 
						|
					emit_nop(); /* delay slot */
 | 
						|
				} else {
 | 
						|
					emit_branch_off(BNE, 16);
 | 
						|
					emit_nop();
 | 
						|
					emit_jump(cleanup_addr + 20);
 | 
						|
					emit_clear(r_A);
 | 
						|
				}
 | 
						|
				emit_write_y(G0);
 | 
						|
				/* The Sparc v8 architecture requires
 | 
						|
				 * three instructions between a %y
 | 
						|
				 * register write and the first use.
 | 
						|
				 */
 | 
						|
				emit_nop();
 | 
						|
				emit_nop();
 | 
						|
				emit_nop();
 | 
						|
				emit_alu_X(DIV);
 | 
						|
				break;
 | 
						|
			case BPF_ALU | BPF_NEG:
 | 
						|
				emit_neg();
 | 
						|
				break;
 | 
						|
			case BPF_RET | BPF_K:
 | 
						|
				if (!K) {
 | 
						|
					if (pc_ret0 == -1)
 | 
						|
						pc_ret0 = i;
 | 
						|
					emit_clear(r_A);
 | 
						|
				} else {
 | 
						|
					emit_loadimm(K, r_A);
 | 
						|
				}
 | 
						|
				fallthrough;
 | 
						|
			case BPF_RET | BPF_A:
 | 
						|
				if (seen_or_pass0) {
 | 
						|
					if (i != flen - 1) {
 | 
						|
						emit_jump(cleanup_addr);
 | 
						|
						emit_nop();
 | 
						|
						break;
 | 
						|
					}
 | 
						|
					if (seen_or_pass0 & SEEN_MEM) {
 | 
						|
						unsigned int sz = BASE_STACKFRAME;
 | 
						|
						sz += BPF_MEMWORDS * sizeof(u32);
 | 
						|
						emit_release_stack(sz);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				/* jmpl %r_saved_O7 + 8, %g0 */
 | 
						|
				emit_jmpl(r_saved_O7, 8, G0);
 | 
						|
				emit_reg_move(r_A, O0); /* delay slot */
 | 
						|
				break;
 | 
						|
			case BPF_MISC | BPF_TAX:
 | 
						|
				seen |= SEEN_XREG;
 | 
						|
				emit_reg_move(r_A, r_X);
 | 
						|
				break;
 | 
						|
			case BPF_MISC | BPF_TXA:
 | 
						|
				seen |= SEEN_XREG;
 | 
						|
				emit_reg_move(r_X, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_CPU:
 | 
						|
				emit_load_cpu(r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_PROTOCOL:
 | 
						|
				emit_skb_load16(protocol, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_PKTTYPE:
 | 
						|
				__emit_skb_load8(__pkt_type_offset, r_A);
 | 
						|
				emit_andi(r_A, PKT_TYPE_MAX, r_A);
 | 
						|
				emit_alu_K(SRL, 5);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_IFINDEX:
 | 
						|
				emit_skb_loadptr(dev, r_A);
 | 
						|
				emit_cmpi(r_A, 0);
 | 
						|
				emit_branch(BE_PTR, cleanup_addr + 4);
 | 
						|
				emit_nop();
 | 
						|
				emit_load32(r_A, struct net_device, ifindex, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_MARK:
 | 
						|
				emit_skb_load32(mark, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_QUEUE:
 | 
						|
				emit_skb_load16(queue_mapping, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_HATYPE:
 | 
						|
				emit_skb_loadptr(dev, r_A);
 | 
						|
				emit_cmpi(r_A, 0);
 | 
						|
				emit_branch(BE_PTR, cleanup_addr + 4);
 | 
						|
				emit_nop();
 | 
						|
				emit_load16(r_A, struct net_device, type, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_RXHASH:
 | 
						|
				emit_skb_load32(hash, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_VLAN_TAG:
 | 
						|
				emit_skb_load16(vlan_tci, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
 | 
						|
				emit_skb_load32(vlan_all, r_A);
 | 
						|
				emit_cmpi(r_A, 0);
 | 
						|
				emit_branch_off(BE, 12);
 | 
						|
				emit_nop();
 | 
						|
				emit_loadimm(1, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_LD | BPF_W | BPF_LEN:
 | 
						|
				emit_skb_load32(len, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_LDX | BPF_W | BPF_LEN:
 | 
						|
				emit_skb_load32(len, r_X);
 | 
						|
				break;
 | 
						|
			case BPF_LD | BPF_IMM:
 | 
						|
				emit_loadimm(K, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_LDX | BPF_IMM:
 | 
						|
				emit_loadimm(K, r_X);
 | 
						|
				break;
 | 
						|
			case BPF_LD | BPF_MEM:
 | 
						|
				seen |= SEEN_MEM;
 | 
						|
				emit_ldmem(K * 4, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_LDX | BPF_MEM:
 | 
						|
				seen |= SEEN_MEM | SEEN_XREG;
 | 
						|
				emit_ldmem(K * 4, r_X);
 | 
						|
				break;
 | 
						|
			case BPF_ST:
 | 
						|
				seen |= SEEN_MEM;
 | 
						|
				emit_stmem(K * 4, r_A);
 | 
						|
				break;
 | 
						|
			case BPF_STX:
 | 
						|
				seen |= SEEN_MEM | SEEN_XREG;
 | 
						|
				emit_stmem(K * 4, r_X);
 | 
						|
				break;
 | 
						|
 | 
						|
#define CHOOSE_LOAD_FUNC(K, func) \
 | 
						|
	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 | 
						|
 | 
						|
			case BPF_LD | BPF_W | BPF_ABS:
 | 
						|
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
 | 
						|
common_load:			seen |= SEEN_DATAREF;
 | 
						|
				emit_loadimm(K, r_OFF);
 | 
						|
				emit_call(func);
 | 
						|
				break;
 | 
						|
			case BPF_LD | BPF_H | BPF_ABS:
 | 
						|
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
 | 
						|
				goto common_load;
 | 
						|
			case BPF_LD | BPF_B | BPF_ABS:
 | 
						|
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
 | 
						|
				goto common_load;
 | 
						|
			case BPF_LDX | BPF_B | BPF_MSH:
 | 
						|
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
 | 
						|
				goto common_load;
 | 
						|
			case BPF_LD | BPF_W | BPF_IND:
 | 
						|
				func = bpf_jit_load_word;
 | 
						|
common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
 | 
						|
				if (K) {
 | 
						|
					if (is_simm13(K)) {
 | 
						|
						emit_addi(r_X, K, r_OFF);
 | 
						|
					} else {
 | 
						|
						emit_loadimm(K, r_TMP);
 | 
						|
						emit_add(r_X, r_TMP, r_OFF);
 | 
						|
					}
 | 
						|
				} else {
 | 
						|
					emit_reg_move(r_X, r_OFF);
 | 
						|
				}
 | 
						|
				emit_call(func);
 | 
						|
				break;
 | 
						|
			case BPF_LD | BPF_H | BPF_IND:
 | 
						|
				func = bpf_jit_load_half;
 | 
						|
				goto common_load_ind;
 | 
						|
			case BPF_LD | BPF_B | BPF_IND:
 | 
						|
				func = bpf_jit_load_byte;
 | 
						|
				goto common_load_ind;
 | 
						|
			case BPF_JMP | BPF_JA:
 | 
						|
				emit_jump(addrs[i + K]);
 | 
						|
				emit_nop();
 | 
						|
				break;
 | 
						|
 | 
						|
#define COND_SEL(CODE, TOP, FOP)	\
 | 
						|
	case CODE:			\
 | 
						|
		t_op = TOP;		\
 | 
						|
		f_op = FOP;		\
 | 
						|
		goto cond_branch
 | 
						|
 | 
						|
			COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
 | 
						|
			COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
 | 
						|
 | 
						|
cond_branch:			f_offset = addrs[i + filter[i].jf];
 | 
						|
				t_offset = addrs[i + filter[i].jt];
 | 
						|
 | 
						|
				/* same targets, can avoid doing the test :) */
 | 
						|
				if (filter[i].jt == filter[i].jf) {
 | 
						|
					emit_jump(t_offset);
 | 
						|
					emit_nop();
 | 
						|
					break;
 | 
						|
				}
 | 
						|
 | 
						|
				switch (code) {
 | 
						|
				case BPF_JMP | BPF_JGT | BPF_X:
 | 
						|
				case BPF_JMP | BPF_JGE | BPF_X:
 | 
						|
				case BPF_JMP | BPF_JEQ | BPF_X:
 | 
						|
					seen |= SEEN_XREG;
 | 
						|
					emit_cmp(r_A, r_X);
 | 
						|
					break;
 | 
						|
				case BPF_JMP | BPF_JSET | BPF_X:
 | 
						|
					seen |= SEEN_XREG;
 | 
						|
					emit_btst(r_A, r_X);
 | 
						|
					break;
 | 
						|
				case BPF_JMP | BPF_JEQ | BPF_K:
 | 
						|
				case BPF_JMP | BPF_JGT | BPF_K:
 | 
						|
				case BPF_JMP | BPF_JGE | BPF_K:
 | 
						|
					if (is_simm13(K)) {
 | 
						|
						emit_cmpi(r_A, K);
 | 
						|
					} else {
 | 
						|
						emit_loadimm(K, r_TMP);
 | 
						|
						emit_cmp(r_A, r_TMP);
 | 
						|
					}
 | 
						|
					break;
 | 
						|
				case BPF_JMP | BPF_JSET | BPF_K:
 | 
						|
					if (is_simm13(K)) {
 | 
						|
						emit_btsti(r_A, K);
 | 
						|
					} else {
 | 
						|
						emit_loadimm(K, r_TMP);
 | 
						|
						emit_btst(r_A, r_TMP);
 | 
						|
					}
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				if (filter[i].jt != 0) {
 | 
						|
					if (filter[i].jf)
 | 
						|
						t_offset += 8;
 | 
						|
					emit_branch(t_op, t_offset);
 | 
						|
					emit_nop(); /* delay slot */
 | 
						|
					if (filter[i].jf) {
 | 
						|
						emit_jump(f_offset);
 | 
						|
						emit_nop();
 | 
						|
					}
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				emit_branch(f_op, f_offset);
 | 
						|
				emit_nop(); /* delay slot */
 | 
						|
				break;
 | 
						|
 | 
						|
			default:
 | 
						|
				/* hmm, too complex filter, give up with jit compiler */
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			ilen = (void *) prog - (void *) temp;
 | 
						|
			if (image) {
 | 
						|
				if (unlikely(proglen + ilen > oldproglen)) {
 | 
						|
					pr_err("bpb_jit_compile fatal error\n");
 | 
						|
					kfree(addrs);
 | 
						|
					execmem_free(image);
 | 
						|
					return;
 | 
						|
				}
 | 
						|
				memcpy(image + proglen, temp, ilen);
 | 
						|
			}
 | 
						|
			proglen += ilen;
 | 
						|
			addrs[i] = proglen;
 | 
						|
			prog = temp;
 | 
						|
		}
 | 
						|
		/* last bpf instruction is always a RET :
 | 
						|
		 * use it to give the cleanup instruction(s) addr
 | 
						|
		 */
 | 
						|
		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
 | 
						|
		if (seen_or_pass0 & SEEN_MEM)
 | 
						|
			cleanup_addr -= 4; /* add %sp, X, %sp; */
 | 
						|
 | 
						|
		if (image) {
 | 
						|
			if (proglen != oldproglen)
 | 
						|
				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
 | 
						|
				       proglen, oldproglen);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (proglen == oldproglen) {
 | 
						|
			image = execmem_alloc(EXECMEM_BPF, proglen);
 | 
						|
			if (!image)
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
		oldproglen = proglen;
 | 
						|
	}
 | 
						|
 | 
						|
	if (bpf_jit_enable > 1)
 | 
						|
		bpf_jit_dump(flen, proglen, pass + 1, image);
 | 
						|
 | 
						|
	if (image) {
 | 
						|
		fp->bpf_func = (void *)image;
 | 
						|
		fp->jited = 1;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	kfree(addrs);
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
void bpf_jit_free(struct bpf_prog *fp)
 | 
						|
{
 | 
						|
	if (fp->jited)
 | 
						|
		execmem_free(fp->bpf_func);
 | 
						|
 | 
						|
	bpf_prog_unlock_free(fp);
 | 
						|
}
 |