mirror of
				https://github.com/torvalds/linux.git
				synced 2025-11-04 10:40:15 +02:00 
			
		
		
		
	In order to let all the APIs under <cpuid/api.h> have a shared "cpuid_" namespace, rename have_cpuid_p() to cpuid_feature(). Adjust all call-sites accordingly. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: x86-cpuid@lists.linux.dev Link: https://lore.kernel.org/r/20250508150240.172915-4-darwi@linutronix.de
		
			
				
	
	
		
			2574 lines
		
	
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2574 lines
		
	
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/* cpu_feature_enabled() cannot be used this early */
 | 
						|
#define USE_EARLY_PGTABLE_L5
 | 
						|
 | 
						|
#include <linux/memblock.h>
 | 
						|
#include <linux/linkage.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/ctype.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/sched/mm.h>
 | 
						|
#include <linux/sched/clock.h>
 | 
						|
#include <linux/sched/task.h>
 | 
						|
#include <linux/sched/smt.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/kprobes.h>
 | 
						|
#include <linux/kgdb.h>
 | 
						|
#include <linux/mem_encrypt.h>
 | 
						|
#include <linux/smp.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/io.h>
 | 
						|
#include <linux/syscore_ops.h>
 | 
						|
#include <linux/pgtable.h>
 | 
						|
#include <linux/stackprotector.h>
 | 
						|
#include <linux/utsname.h>
 | 
						|
 | 
						|
#include <asm/alternative.h>
 | 
						|
#include <asm/cmdline.h>
 | 
						|
#include <asm/cpuid/api.h>
 | 
						|
#include <asm/perf_event.h>
 | 
						|
#include <asm/mmu_context.h>
 | 
						|
#include <asm/doublefault.h>
 | 
						|
#include <asm/archrandom.h>
 | 
						|
#include <asm/hypervisor.h>
 | 
						|
#include <asm/processor.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/debugreg.h>
 | 
						|
#include <asm/sections.h>
 | 
						|
#include <asm/vsyscall.h>
 | 
						|
#include <linux/topology.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/atomic.h>
 | 
						|
#include <asm/proto.h>
 | 
						|
#include <asm/setup.h>
 | 
						|
#include <asm/apic.h>
 | 
						|
#include <asm/desc.h>
 | 
						|
#include <asm/fpu/api.h>
 | 
						|
#include <asm/mtrr.h>
 | 
						|
#include <asm/hwcap2.h>
 | 
						|
#include <linux/numa.h>
 | 
						|
#include <asm/numa.h>
 | 
						|
#include <asm/asm.h>
 | 
						|
#include <asm/bugs.h>
 | 
						|
#include <asm/cpu.h>
 | 
						|
#include <asm/mce.h>
 | 
						|
#include <asm/msr.h>
 | 
						|
#include <asm/cacheinfo.h>
 | 
						|
#include <asm/memtype.h>
 | 
						|
#include <asm/microcode.h>
 | 
						|
#include <asm/intel-family.h>
 | 
						|
#include <asm/cpu_device_id.h>
 | 
						|
#include <asm/fred.h>
 | 
						|
#include <asm/uv/uv.h>
 | 
						|
#include <asm/ia32.h>
 | 
						|
#include <asm/set_memory.h>
 | 
						|
#include <asm/traps.h>
 | 
						|
#include <asm/sev.h>
 | 
						|
#include <asm/tdx.h>
 | 
						|
#include <asm/posted_intr.h>
 | 
						|
#include <asm/runtime-const.h>
 | 
						|
 | 
						|
#include "cpu.h"
 | 
						|
 | 
						|
DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 | 
						|
EXPORT_PER_CPU_SYMBOL(cpu_info);
 | 
						|
 | 
						|
u32 elf_hwcap2 __read_mostly;
 | 
						|
 | 
						|
/* Number of siblings per CPU package */
 | 
						|
unsigned int __max_threads_per_core __ro_after_init = 1;
 | 
						|
EXPORT_SYMBOL(__max_threads_per_core);
 | 
						|
 | 
						|
unsigned int __max_dies_per_package __ro_after_init = 1;
 | 
						|
EXPORT_SYMBOL(__max_dies_per_package);
 | 
						|
 | 
						|
unsigned int __max_logical_packages __ro_after_init = 1;
 | 
						|
EXPORT_SYMBOL(__max_logical_packages);
 | 
						|
 | 
						|
unsigned int __num_cores_per_package __ro_after_init = 1;
 | 
						|
EXPORT_SYMBOL(__num_cores_per_package);
 | 
						|
 | 
						|
unsigned int __num_threads_per_package __ro_after_init = 1;
 | 
						|
EXPORT_SYMBOL(__num_threads_per_package);
 | 
						|
 | 
						|
static struct ppin_info {
 | 
						|
	int	feature;
 | 
						|
	int	msr_ppin_ctl;
 | 
						|
	int	msr_ppin;
 | 
						|
} ppin_info[] = {
 | 
						|
	[X86_VENDOR_INTEL] = {
 | 
						|
		.feature = X86_FEATURE_INTEL_PPIN,
 | 
						|
		.msr_ppin_ctl = MSR_PPIN_CTL,
 | 
						|
		.msr_ppin = MSR_PPIN
 | 
						|
	},
 | 
						|
	[X86_VENDOR_AMD] = {
 | 
						|
		.feature = X86_FEATURE_AMD_PPIN,
 | 
						|
		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
 | 
						|
		.msr_ppin = MSR_AMD_PPIN
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
static const struct x86_cpu_id ppin_cpuids[] = {
 | 
						|
	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
 | 
						|
	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
 | 
						|
	/* Legacy models without CPUID enumeration */
 | 
						|
	X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
	X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
	X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
	X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
	X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
	X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
	X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
	X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
	X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
 | 
						|
 | 
						|
	{}
 | 
						|
};
 | 
						|
 | 
						|
static void ppin_init(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	const struct x86_cpu_id *id;
 | 
						|
	unsigned long long val;
 | 
						|
	struct ppin_info *info;
 | 
						|
 | 
						|
	id = x86_match_cpu(ppin_cpuids);
 | 
						|
	if (!id)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Testing the presence of the MSR is not enough. Need to check
 | 
						|
	 * that the PPIN_CTL allows reading of the PPIN.
 | 
						|
	 */
 | 
						|
	info = (struct ppin_info *)id->driver_data;
 | 
						|
 | 
						|
	if (rdmsrq_safe(info->msr_ppin_ctl, &val))
 | 
						|
		goto clear_ppin;
 | 
						|
 | 
						|
	if ((val & 3UL) == 1UL) {
 | 
						|
		/* PPIN locked in disabled mode */
 | 
						|
		goto clear_ppin;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If PPIN is disabled, try to enable */
 | 
						|
	if (!(val & 2UL)) {
 | 
						|
		wrmsrq_safe(info->msr_ppin_ctl,  val | 2UL);
 | 
						|
		rdmsrq_safe(info->msr_ppin_ctl, &val);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Is the enable bit set? */
 | 
						|
	if (val & 2UL) {
 | 
						|
		c->ppin = native_rdmsrq(info->msr_ppin);
 | 
						|
		set_cpu_cap(c, info->feature);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
clear_ppin:
 | 
						|
	setup_clear_cpu_cap(info->feature);
 | 
						|
}
 | 
						|
 | 
						|
static void default_init(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
	cpu_detect_cache_sizes(c);
 | 
						|
#else
 | 
						|
	/* Not much we can do here... */
 | 
						|
	/* Check if at least it has cpuid */
 | 
						|
	if (c->cpuid_level == -1) {
 | 
						|
		/* No cpuid. It must be an ancient CPU */
 | 
						|
		if (c->x86 == 4)
 | 
						|
			strcpy(c->x86_model_id, "486");
 | 
						|
		else if (c->x86 == 3)
 | 
						|
			strcpy(c->x86_model_id, "386");
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static const struct cpu_dev default_cpu = {
 | 
						|
	.c_init		= default_init,
 | 
						|
	.c_vendor	= "Unknown",
 | 
						|
	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
 | 
						|
};
 | 
						|
 | 
						|
static const struct cpu_dev *this_cpu = &default_cpu;
 | 
						|
 | 
						|
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
	/*
 | 
						|
	 * We need valid kernel segments for data and code in long mode too
 | 
						|
	 * IRET will check the segment types  kkeil 2000/10/28
 | 
						|
	 * Also sysret mandates a special GDT layout
 | 
						|
	 *
 | 
						|
	 * TLS descriptors are currently at a different place compared to i386.
 | 
						|
	 * Hopefully nobody expects them at a fixed place (Wine?)
 | 
						|
	 */
 | 
						|
	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
 | 
						|
	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
 | 
						|
	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
 | 
						|
	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
 | 
						|
	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
 | 
						|
	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
 | 
						|
#else
 | 
						|
	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
 | 
						|
	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
 | 
						|
	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
 | 
						|
	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
 | 
						|
	/*
 | 
						|
	 * Segments used for calling PnP BIOS have byte granularity.
 | 
						|
	 * They code segments and data segments have fixed 64k limits,
 | 
						|
	 * the transfer segment sizes are set at run time.
 | 
						|
	 */
 | 
						|
	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
 | 
						|
	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
 | 
						|
	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
 | 
						|
	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
 | 
						|
	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
 | 
						|
	/*
 | 
						|
	 * The APM segments have byte granularity and their bases
 | 
						|
	 * are set at run time.  All have 64k limits.
 | 
						|
	 */
 | 
						|
	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
 | 
						|
	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
 | 
						|
	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
 | 
						|
 | 
						|
	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
 | 
						|
	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
 | 
						|
#endif
 | 
						|
} };
 | 
						|
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 | 
						|
SYM_PIC_ALIAS(gdt_page);
 | 
						|
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
static int __init x86_nopcid_setup(char *s)
 | 
						|
{
 | 
						|
	/* nopcid doesn't accept parameters */
 | 
						|
	if (s)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* do not emit a message if the feature is not present */
 | 
						|
	if (!boot_cpu_has(X86_FEATURE_PCID))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	setup_clear_cpu_cap(X86_FEATURE_PCID);
 | 
						|
	pr_info("nopcid: PCID feature disabled\n");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("nopcid", x86_nopcid_setup);
 | 
						|
#endif
 | 
						|
 | 
						|
static int __init x86_noinvpcid_setup(char *s)
 | 
						|
{
 | 
						|
	/* noinvpcid doesn't accept parameters */
 | 
						|
	if (s)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* do not emit a message if the feature is not present */
 | 
						|
	if (!boot_cpu_has(X86_FEATURE_INVPCID))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
 | 
						|
	pr_info("noinvpcid: INVPCID feature disabled\n");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("noinvpcid", x86_noinvpcid_setup);
 | 
						|
 | 
						|
/* Standard macro to see if a specific flag is changeable */
 | 
						|
static inline bool flag_is_changeable_p(unsigned long flag)
 | 
						|
{
 | 
						|
	unsigned long f1, f2;
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_X86_32))
 | 
						|
		return true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Cyrix and IDT cpus allow disabling of CPUID
 | 
						|
	 * so the code below may return different results
 | 
						|
	 * when it is executed before and after enabling
 | 
						|
	 * the CPUID. Add "volatile" to not allow gcc to
 | 
						|
	 * optimize the subsequent calls to this function.
 | 
						|
	 */
 | 
						|
	asm volatile ("pushfl		\n\t"
 | 
						|
		      "pushfl		\n\t"
 | 
						|
		      "popl %0		\n\t"
 | 
						|
		      "movl %0, %1	\n\t"
 | 
						|
		      "xorl %2, %0	\n\t"
 | 
						|
		      "pushl %0		\n\t"
 | 
						|
		      "popfl		\n\t"
 | 
						|
		      "pushfl		\n\t"
 | 
						|
		      "popl %0		\n\t"
 | 
						|
		      "popfl		\n\t"
 | 
						|
 | 
						|
		      : "=&r" (f1), "=&r" (f2)
 | 
						|
		      : "ir" (flag));
 | 
						|
 | 
						|
	return (f1 ^ f2) & flag;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
static int cachesize_override = -1;
 | 
						|
static int disable_x86_serial_nr = 1;
 | 
						|
 | 
						|
static int __init cachesize_setup(char *str)
 | 
						|
{
 | 
						|
	get_option(&str, &cachesize_override);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("cachesize=", cachesize_setup);
 | 
						|
 | 
						|
/* Probe for the CPUID instruction */
 | 
						|
bool cpuid_feature(void)
 | 
						|
{
 | 
						|
	return flag_is_changeable_p(X86_EFLAGS_ID);
 | 
						|
}
 | 
						|
 | 
						|
static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	unsigned long lo, hi;
 | 
						|
 | 
						|
	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Disable processor serial number: */
 | 
						|
 | 
						|
	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 | 
						|
	lo |= 0x200000;
 | 
						|
	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 | 
						|
 | 
						|
	pr_notice("CPU serial number disabled.\n");
 | 
						|
	clear_cpu_cap(c, X86_FEATURE_PN);
 | 
						|
 | 
						|
	/* Disabling the serial number may affect the cpuid level */
 | 
						|
	c->cpuid_level = cpuid_eax(0);
 | 
						|
}
 | 
						|
 | 
						|
static int __init x86_serial_nr_setup(char *s)
 | 
						|
{
 | 
						|
	disable_x86_serial_nr = 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("serialnumber", x86_serial_nr_setup);
 | 
						|
#else
 | 
						|
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	if (cpu_has(c, X86_FEATURE_SMEP))
 | 
						|
		cr4_set_bits(X86_CR4_SMEP);
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	unsigned long eflags = native_save_fl();
 | 
						|
 | 
						|
	/* This should have been cleared long ago */
 | 
						|
	BUG_ON(eflags & X86_EFLAGS_AC);
 | 
						|
 | 
						|
	if (cpu_has(c, X86_FEATURE_SMAP))
 | 
						|
		cr4_set_bits(X86_CR4_SMAP);
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline void setup_umip(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	/* Check the boot processor, plus build option for UMIP. */
 | 
						|
	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Check the current processor's cpuid bits. */
 | 
						|
	if (!cpu_has(c, X86_FEATURE_UMIP))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	cr4_set_bits(X86_CR4_UMIP);
 | 
						|
 | 
						|
	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
 | 
						|
 | 
						|
	return;
 | 
						|
 | 
						|
out:
 | 
						|
	/*
 | 
						|
	 * Make sure UMIP is disabled in case it was enabled in a
 | 
						|
	 * previous boot (e.g., via kexec).
 | 
						|
	 */
 | 
						|
	cr4_clear_bits(X86_CR4_UMIP);
 | 
						|
}
 | 
						|
 | 
						|
/* These bits should not change their value after CPU init is finished. */
 | 
						|
static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
 | 
						|
					     X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
 | 
						|
static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
 | 
						|
static unsigned long cr4_pinned_bits __ro_after_init;
 | 
						|
 | 
						|
void native_write_cr0(unsigned long val)
 | 
						|
{
 | 
						|
	unsigned long bits_missing = 0;
 | 
						|
 | 
						|
set_register:
 | 
						|
	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
 | 
						|
 | 
						|
	if (static_branch_likely(&cr_pinning)) {
 | 
						|
		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
 | 
						|
			bits_missing = X86_CR0_WP;
 | 
						|
			val |= bits_missing;
 | 
						|
			goto set_register;
 | 
						|
		}
 | 
						|
		/* Warn after we've set the missing bits. */
 | 
						|
		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(native_write_cr0);
 | 
						|
 | 
						|
void __no_profile native_write_cr4(unsigned long val)
 | 
						|
{
 | 
						|
	unsigned long bits_changed = 0;
 | 
						|
 | 
						|
set_register:
 | 
						|
	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
 | 
						|
 | 
						|
	if (static_branch_likely(&cr_pinning)) {
 | 
						|
		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
 | 
						|
			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
 | 
						|
			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
 | 
						|
			goto set_register;
 | 
						|
		}
 | 
						|
		/* Warn after we've corrected the changed bits. */
 | 
						|
		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
 | 
						|
			  bits_changed);
 | 
						|
	}
 | 
						|
}
 | 
						|
#if IS_MODULE(CONFIG_LKDTM)
 | 
						|
EXPORT_SYMBOL_GPL(native_write_cr4);
 | 
						|
#endif
 | 
						|
 | 
						|
void cr4_update_irqsoff(unsigned long set, unsigned long clear)
 | 
						|
{
 | 
						|
	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 | 
						|
 | 
						|
	lockdep_assert_irqs_disabled();
 | 
						|
 | 
						|
	newval = (cr4 & ~clear) | set;
 | 
						|
	if (newval != cr4) {
 | 
						|
		this_cpu_write(cpu_tlbstate.cr4, newval);
 | 
						|
		__write_cr4(newval);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(cr4_update_irqsoff);
 | 
						|
 | 
						|
/* Read the CR4 shadow. */
 | 
						|
unsigned long cr4_read_shadow(void)
 | 
						|
{
 | 
						|
	return this_cpu_read(cpu_tlbstate.cr4);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(cr4_read_shadow);
 | 
						|
 | 
						|
void cr4_init(void)
 | 
						|
{
 | 
						|
	unsigned long cr4 = __read_cr4();
 | 
						|
 | 
						|
	if (boot_cpu_has(X86_FEATURE_PCID))
 | 
						|
		cr4 |= X86_CR4_PCIDE;
 | 
						|
	if (static_branch_likely(&cr_pinning))
 | 
						|
		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
 | 
						|
 | 
						|
	__write_cr4(cr4);
 | 
						|
 | 
						|
	/* Initialize cr4 shadow for this CPU. */
 | 
						|
	this_cpu_write(cpu_tlbstate.cr4, cr4);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Once CPU feature detection is finished (and boot params have been
 | 
						|
 * parsed), record any of the sensitive CR bits that are set, and
 | 
						|
 * enable CR pinning.
 | 
						|
 */
 | 
						|
static void __init setup_cr_pinning(void)
 | 
						|
{
 | 
						|
	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
 | 
						|
	static_key_enable(&cr_pinning.key);
 | 
						|
}
 | 
						|
 | 
						|
static __init int x86_nofsgsbase_setup(char *arg)
 | 
						|
{
 | 
						|
	/* Require an exact match without trailing characters. */
 | 
						|
	if (strlen(arg))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Do not emit a message if the feature is not present. */
 | 
						|
	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
 | 
						|
	pr_info("FSGSBASE disabled via kernel command line\n");
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("nofsgsbase", x86_nofsgsbase_setup);
 | 
						|
 | 
						|
/*
 | 
						|
 * Protection Keys are not available in 32-bit mode.
 | 
						|
 */
 | 
						|
static bool pku_disabled;
 | 
						|
 | 
						|
static __always_inline void setup_pku(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	if (c == &boot_cpu_data) {
 | 
						|
		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
 | 
						|
			return;
 | 
						|
		/*
 | 
						|
		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
 | 
						|
		 * bit to be set.  Enforce it.
 | 
						|
		 */
 | 
						|
		setup_force_cpu_cap(X86_FEATURE_OSPKE);
 | 
						|
 | 
						|
	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	cr4_set_bits(X86_CR4_PKE);
 | 
						|
	/* Load the default PKRU value */
 | 
						|
	pkru_write_default();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 | 
						|
static __init int setup_disable_pku(char *arg)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Do not clear the X86_FEATURE_PKU bit.  All of the
 | 
						|
	 * runtime checks are against OSPKE so clearing the
 | 
						|
	 * bit does nothing.
 | 
						|
	 *
 | 
						|
	 * This way, we will see "pku" in cpuinfo, but not
 | 
						|
	 * "ospke", which is exactly what we want.  It shows
 | 
						|
	 * that the CPU has PKU, but the OS has not enabled it.
 | 
						|
	 * This happens to be exactly how a system would look
 | 
						|
	 * if we disabled the config option.
 | 
						|
	 */
 | 
						|
	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
 | 
						|
	pku_disabled = true;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("nopku", setup_disable_pku);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_X86_KERNEL_IBT
 | 
						|
 | 
						|
__noendbr u64 ibt_save(bool disable)
 | 
						|
{
 | 
						|
	u64 msr = 0;
 | 
						|
 | 
						|
	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
 | 
						|
		rdmsrq(MSR_IA32_S_CET, msr);
 | 
						|
		if (disable)
 | 
						|
			wrmsrq(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
 | 
						|
	}
 | 
						|
 | 
						|
	return msr;
 | 
						|
}
 | 
						|
 | 
						|
__noendbr void ibt_restore(u64 save)
 | 
						|
{
 | 
						|
	u64 msr;
 | 
						|
 | 
						|
	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
 | 
						|
		rdmsrq(MSR_IA32_S_CET, msr);
 | 
						|
		msr &= ~CET_ENDBR_EN;
 | 
						|
		msr |= (save & CET_ENDBR_EN);
 | 
						|
		wrmsrq(MSR_IA32_S_CET, msr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static __always_inline void setup_cet(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	bool user_shstk, kernel_ibt;
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_X86_CET))
 | 
						|
		return;
 | 
						|
 | 
						|
	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
 | 
						|
	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
 | 
						|
		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
 | 
						|
 | 
						|
	if (!kernel_ibt && !user_shstk)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (user_shstk)
 | 
						|
		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
 | 
						|
 | 
						|
	if (kernel_ibt)
 | 
						|
		wrmsrq(MSR_IA32_S_CET, CET_ENDBR_EN);
 | 
						|
	else
 | 
						|
		wrmsrq(MSR_IA32_S_CET, 0);
 | 
						|
 | 
						|
	cr4_set_bits(X86_CR4_CET);
 | 
						|
 | 
						|
	if (kernel_ibt && ibt_selftest()) {
 | 
						|
		pr_err("IBT selftest: Failed!\n");
 | 
						|
		wrmsrq(MSR_IA32_S_CET, 0);
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_IBT);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
__noendbr void cet_disable(void)
 | 
						|
{
 | 
						|
	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
 | 
						|
	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
 | 
						|
		return;
 | 
						|
 | 
						|
	wrmsrq(MSR_IA32_S_CET, 0);
 | 
						|
	wrmsrq(MSR_IA32_U_CET, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Some CPU features depend on higher CPUID levels, which may not always
 | 
						|
 * be available due to CPUID level capping or broken virtualization
 | 
						|
 * software.  Add those features to this table to auto-disable them.
 | 
						|
 */
 | 
						|
struct cpuid_dependent_feature {
 | 
						|
	u32 feature;
 | 
						|
	u32 level;
 | 
						|
};
 | 
						|
 | 
						|
static const struct cpuid_dependent_feature
 | 
						|
cpuid_dependent_features[] = {
 | 
						|
	{ X86_FEATURE_MWAIT,		CPUID_LEAF_MWAIT },
 | 
						|
	{ X86_FEATURE_DCA,		CPUID_LEAF_DCA },
 | 
						|
	{ X86_FEATURE_XSAVE,		CPUID_LEAF_XSTATE },
 | 
						|
	{ 0, 0 }
 | 
						|
};
 | 
						|
 | 
						|
static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 | 
						|
{
 | 
						|
	const struct cpuid_dependent_feature *df;
 | 
						|
 | 
						|
	for (df = cpuid_dependent_features; df->feature; df++) {
 | 
						|
 | 
						|
		if (!cpu_has(c, df->feature))
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * Note: cpuid_level is set to -1 if unavailable, but
 | 
						|
		 * extended_extended_level is set to 0 if unavailable
 | 
						|
		 * and the legitimate extended levels are all negative
 | 
						|
		 * when signed; hence the weird messing around with
 | 
						|
		 * signs here...
 | 
						|
		 */
 | 
						|
		if (!((s32)df->level < 0 ?
 | 
						|
		     (u32)df->level > (u32)c->extended_cpuid_level :
 | 
						|
		     (s32)df->level > (s32)c->cpuid_level))
 | 
						|
			continue;
 | 
						|
 | 
						|
		clear_cpu_cap(c, df->feature);
 | 
						|
		if (!warn)
 | 
						|
			continue;
 | 
						|
 | 
						|
		pr_warn("CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
 | 
						|
			x86_cap_flags[df->feature], df->level);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Naming convention should be: <Name> [(<Codename>)]
 | 
						|
 * This table only is used unless init_<vendor>() below doesn't set it;
 | 
						|
 * in particular, if CPUID levels 0x80000002..4 are supported, this
 | 
						|
 * isn't used
 | 
						|
 */
 | 
						|
 | 
						|
/* Look up CPU names by table lookup. */
 | 
						|
static const char *table_lookup_model(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	const struct legacy_cpu_model_info *info;
 | 
						|
 | 
						|
	if (c->x86_model >= 16)
 | 
						|
		return NULL;	/* Range check */
 | 
						|
 | 
						|
	if (!this_cpu)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	info = this_cpu->legacy_models;
 | 
						|
 | 
						|
	while (info->family) {
 | 
						|
		if (info->family == c->x86)
 | 
						|
			return info->model_names[c->x86_model];
 | 
						|
		info++;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	return NULL;		/* Not found */
 | 
						|
}
 | 
						|
 | 
						|
/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
 | 
						|
__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
 | 
						|
__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
/* The 32-bit entry code needs to find cpu_entry_area. */
 | 
						|
DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
 | 
						|
#endif
 | 
						|
 | 
						|
/* Load the original GDT from the per-cpu structure */
 | 
						|
void load_direct_gdt(int cpu)
 | 
						|
{
 | 
						|
	struct desc_ptr gdt_descr;
 | 
						|
 | 
						|
	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
 | 
						|
	gdt_descr.size = GDT_SIZE - 1;
 | 
						|
	load_gdt(&gdt_descr);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(load_direct_gdt);
 | 
						|
 | 
						|
/* Load a fixmap remapping of the per-cpu GDT */
 | 
						|
void load_fixmap_gdt(int cpu)
 | 
						|
{
 | 
						|
	struct desc_ptr gdt_descr;
 | 
						|
 | 
						|
	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
 | 
						|
	gdt_descr.size = GDT_SIZE - 1;
 | 
						|
	load_gdt(&gdt_descr);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(load_fixmap_gdt);
 | 
						|
 | 
						|
/**
 | 
						|
 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
 | 
						|
 * @cpu:	The CPU number for which this is invoked
 | 
						|
 *
 | 
						|
 * Invoked during early boot to switch from early GDT and early per CPU to
 | 
						|
 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
 | 
						|
 * switch is implicit by loading the direct GDT. On 64bit this requires
 | 
						|
 * to update GSBASE.
 | 
						|
 */
 | 
						|
void __init switch_gdt_and_percpu_base(int cpu)
 | 
						|
{
 | 
						|
	load_direct_gdt(cpu);
 | 
						|
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
	/*
 | 
						|
	 * No need to load %gs. It is already correct.
 | 
						|
	 *
 | 
						|
	 * Writing %gs on 64bit would zero GSBASE which would make any per
 | 
						|
	 * CPU operation up to the point of the wrmsrq() fault.
 | 
						|
	 *
 | 
						|
	 * Set GSBASE to the new offset. Until the wrmsrq() happens the
 | 
						|
	 * early mapping is still valid. That means the GSBASE update will
 | 
						|
	 * lose any prior per CPU data which was not copied over in
 | 
						|
	 * setup_per_cpu_areas().
 | 
						|
	 *
 | 
						|
	 * This works even with stackprotector enabled because the
 | 
						|
	 * per CPU stack canary is 0 in both per CPU areas.
 | 
						|
	 */
 | 
						|
	wrmsrq(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
 | 
						|
#else
 | 
						|
	/*
 | 
						|
	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
 | 
						|
	 * it is required to load FS again so that the 'hidden' part is
 | 
						|
	 * updated from the new GDT. Up to this point the early per CPU
 | 
						|
	 * translation is active. Any content of the early per CPU data
 | 
						|
	 * which was not copied over in setup_per_cpu_areas() is lost.
 | 
						|
	 */
 | 
						|
	loadsegment(fs, __KERNEL_PERCPU);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 | 
						|
 | 
						|
static void get_model_name(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	unsigned int *v;
 | 
						|
	char *p, *q, *s;
 | 
						|
 | 
						|
	if (c->extended_cpuid_level < 0x80000004)
 | 
						|
		return;
 | 
						|
 | 
						|
	v = (unsigned int *)c->x86_model_id;
 | 
						|
	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 | 
						|
	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 | 
						|
	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 | 
						|
	c->x86_model_id[48] = 0;
 | 
						|
 | 
						|
	/* Trim whitespace */
 | 
						|
	p = q = s = &c->x86_model_id[0];
 | 
						|
 | 
						|
	while (*p == ' ')
 | 
						|
		p++;
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		/* Note the last non-whitespace index */
 | 
						|
		if (!isspace(*p))
 | 
						|
			s = q;
 | 
						|
 | 
						|
		*q++ = *p++;
 | 
						|
	}
 | 
						|
 | 
						|
	*(s + 1) = '\0';
 | 
						|
}
 | 
						|
 | 
						|
void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	unsigned int n, dummy, ebx, ecx, edx, l2size;
 | 
						|
 | 
						|
	n = c->extended_cpuid_level;
 | 
						|
 | 
						|
	if (n >= 0x80000005) {
 | 
						|
		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 | 
						|
		c->x86_cache_size = (ecx>>24) + (edx>>24);
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
		/* On K8 L1 TLB is inclusive, so don't count it */
 | 
						|
		c->x86_tlbsize = 0;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	if (n < 0x80000006)	/* Some chips just has a large L1. */
 | 
						|
		return;
 | 
						|
 | 
						|
	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 | 
						|
	l2size = ecx >> 16;
 | 
						|
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 | 
						|
#else
 | 
						|
	/* do processor-specific cache resizing */
 | 
						|
	if (this_cpu->legacy_cache_size)
 | 
						|
		l2size = this_cpu->legacy_cache_size(c, l2size);
 | 
						|
 | 
						|
	/* Allow user to override all this if necessary. */
 | 
						|
	if (cachesize_override != -1)
 | 
						|
		l2size = cachesize_override;
 | 
						|
 | 
						|
	if (l2size == 0)
 | 
						|
		return;		/* Again, no L2 cache is possible */
 | 
						|
#endif
 | 
						|
 | 
						|
	c->x86_cache_size = l2size;
 | 
						|
}
 | 
						|
 | 
						|
u16 __read_mostly tlb_lli_4k;
 | 
						|
u16 __read_mostly tlb_lli_2m;
 | 
						|
u16 __read_mostly tlb_lli_4m;
 | 
						|
u16 __read_mostly tlb_lld_4k;
 | 
						|
u16 __read_mostly tlb_lld_2m;
 | 
						|
u16 __read_mostly tlb_lld_4m;
 | 
						|
u16 __read_mostly tlb_lld_1g;
 | 
						|
 | 
						|
static void cpu_detect_tlb(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	if (this_cpu->c_detect_tlb)
 | 
						|
		this_cpu->c_detect_tlb(c);
 | 
						|
 | 
						|
	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
 | 
						|
		tlb_lli_4k, tlb_lli_2m, tlb_lli_4m);
 | 
						|
 | 
						|
	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
 | 
						|
		tlb_lld_4k, tlb_lld_2m, tlb_lld_4m, tlb_lld_1g);
 | 
						|
}
 | 
						|
 | 
						|
void get_cpu_vendor(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	char *v = c->x86_vendor_id;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < X86_VENDOR_NUM; i++) {
 | 
						|
		if (!cpu_devs[i])
 | 
						|
			break;
 | 
						|
 | 
						|
		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 | 
						|
		    (cpu_devs[i]->c_ident[1] &&
 | 
						|
		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 | 
						|
 | 
						|
			this_cpu = cpu_devs[i];
 | 
						|
			c->x86_vendor = this_cpu->c_x86_vendor;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
 | 
						|
		    "CPU: Your system may be unstable.\n", v);
 | 
						|
 | 
						|
	c->x86_vendor = X86_VENDOR_UNKNOWN;
 | 
						|
	this_cpu = &default_cpu;
 | 
						|
}
 | 
						|
 | 
						|
void cpu_detect(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	/* Get vendor name */
 | 
						|
	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 | 
						|
	      (unsigned int *)&c->x86_vendor_id[0],
 | 
						|
	      (unsigned int *)&c->x86_vendor_id[8],
 | 
						|
	      (unsigned int *)&c->x86_vendor_id[4]);
 | 
						|
 | 
						|
	c->x86 = 4;
 | 
						|
	/* Intel-defined flags: level 0x00000001 */
 | 
						|
	if (c->cpuid_level >= 0x00000001) {
 | 
						|
		u32 junk, tfms, cap0, misc;
 | 
						|
 | 
						|
		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 | 
						|
		c->x86		= x86_family(tfms);
 | 
						|
		c->x86_model	= x86_model(tfms);
 | 
						|
		c->x86_stepping	= x86_stepping(tfms);
 | 
						|
 | 
						|
		if (cap0 & (1<<19)) {
 | 
						|
			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 | 
						|
			c->x86_cache_alignment = c->x86_clflush_size;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void apply_forced_caps(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
 | 
						|
		c->x86_capability[i] &= ~cpu_caps_cleared[i];
 | 
						|
		c->x86_capability[i] |= cpu_caps_set[i];
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void init_speculation_control(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
 | 
						|
	 * and they also have a different bit for STIBP support. Also,
 | 
						|
	 * a hypervisor might have set the individual AMD bits even on
 | 
						|
	 * Intel CPUs, for finer-grained selection of what's available.
 | 
						|
	 */
 | 
						|
	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
 | 
						|
		set_cpu_cap(c, X86_FEATURE_IBRS);
 | 
						|
		set_cpu_cap(c, X86_FEATURE_IBPB);
 | 
						|
		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 | 
						|
	}
 | 
						|
 | 
						|
	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
 | 
						|
		set_cpu_cap(c, X86_FEATURE_STIBP);
 | 
						|
 | 
						|
	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
 | 
						|
	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
 | 
						|
		set_cpu_cap(c, X86_FEATURE_SSBD);
 | 
						|
 | 
						|
	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
 | 
						|
		set_cpu_cap(c, X86_FEATURE_IBRS);
 | 
						|
		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 | 
						|
	}
 | 
						|
 | 
						|
	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
 | 
						|
		set_cpu_cap(c, X86_FEATURE_IBPB);
 | 
						|
 | 
						|
	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
 | 
						|
		set_cpu_cap(c, X86_FEATURE_STIBP);
 | 
						|
		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 | 
						|
	}
 | 
						|
 | 
						|
	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
 | 
						|
		set_cpu_cap(c, X86_FEATURE_SSBD);
 | 
						|
		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 | 
						|
		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void get_cpu_cap(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	u32 eax, ebx, ecx, edx;
 | 
						|
 | 
						|
	/* Intel-defined flags: level 0x00000001 */
 | 
						|
	if (c->cpuid_level >= 0x00000001) {
 | 
						|
		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 | 
						|
 | 
						|
		c->x86_capability[CPUID_1_ECX] = ecx;
 | 
						|
		c->x86_capability[CPUID_1_EDX] = edx;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
 | 
						|
	if (c->cpuid_level >= 0x00000006)
 | 
						|
		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
 | 
						|
 | 
						|
	/* Additional Intel-defined flags: level 0x00000007 */
 | 
						|
	if (c->cpuid_level >= 0x00000007) {
 | 
						|
		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 | 
						|
		c->x86_capability[CPUID_7_0_EBX] = ebx;
 | 
						|
		c->x86_capability[CPUID_7_ECX] = ecx;
 | 
						|
		c->x86_capability[CPUID_7_EDX] = edx;
 | 
						|
 | 
						|
		/* Check valid sub-leaf index before accessing it */
 | 
						|
		if (eax >= 1) {
 | 
						|
			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
 | 
						|
			c->x86_capability[CPUID_7_1_EAX] = eax;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Extended state features: level 0x0000000d */
 | 
						|
	if (c->cpuid_level >= 0x0000000d) {
 | 
						|
		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
 | 
						|
 | 
						|
		c->x86_capability[CPUID_D_1_EAX] = eax;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check if extended CPUID leaves are implemented: Max extended
 | 
						|
	 * CPUID leaf must be in the 0x80000001-0x8000ffff range.
 | 
						|
	 */
 | 
						|
	eax = cpuid_eax(0x80000000);
 | 
						|
	c->extended_cpuid_level = ((eax & 0xffff0000) == 0x80000000) ? eax : 0;
 | 
						|
 | 
						|
	if (c->extended_cpuid_level >= 0x80000001) {
 | 
						|
		cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
 | 
						|
 | 
						|
		c->x86_capability[CPUID_8000_0001_ECX] = ecx;
 | 
						|
		c->x86_capability[CPUID_8000_0001_EDX] = edx;
 | 
						|
	}
 | 
						|
 | 
						|
	if (c->extended_cpuid_level >= 0x80000007) {
 | 
						|
		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
 | 
						|
 | 
						|
		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
 | 
						|
		c->x86_power = edx;
 | 
						|
	}
 | 
						|
 | 
						|
	if (c->extended_cpuid_level >= 0x80000008) {
 | 
						|
		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 | 
						|
		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
 | 
						|
	}
 | 
						|
 | 
						|
	if (c->extended_cpuid_level >= 0x8000000a)
 | 
						|
		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
 | 
						|
 | 
						|
	if (c->extended_cpuid_level >= 0x8000001f)
 | 
						|
		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
 | 
						|
 | 
						|
	if (c->extended_cpuid_level >= 0x80000021)
 | 
						|
		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
 | 
						|
 | 
						|
	init_scattered_cpuid_features(c);
 | 
						|
	init_speculation_control(c);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clear/Set all flags overridden by options, after probe.
 | 
						|
	 * This needs to happen each time we re-probe, which may happen
 | 
						|
	 * several times during CPU initialization.
 | 
						|
	 */
 | 
						|
	apply_forced_caps(c);
 | 
						|
}
 | 
						|
 | 
						|
void get_cpu_address_sizes(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	u32 eax, ebx, ecx, edx;
 | 
						|
 | 
						|
	if (!cpu_has(c, X86_FEATURE_CPUID) ||
 | 
						|
	    (c->extended_cpuid_level < 0x80000008)) {
 | 
						|
		if (IS_ENABLED(CONFIG_X86_64)) {
 | 
						|
			c->x86_clflush_size = 64;
 | 
						|
			c->x86_phys_bits = 36;
 | 
						|
			c->x86_virt_bits = 48;
 | 
						|
		} else {
 | 
						|
			c->x86_clflush_size = 32;
 | 
						|
			c->x86_virt_bits = 32;
 | 
						|
			c->x86_phys_bits = 32;
 | 
						|
 | 
						|
			if (cpu_has(c, X86_FEATURE_PAE) ||
 | 
						|
			    cpu_has(c, X86_FEATURE_PSE36))
 | 
						|
				c->x86_phys_bits = 36;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 | 
						|
 | 
						|
		c->x86_virt_bits = (eax >> 8) & 0xff;
 | 
						|
		c->x86_phys_bits = eax & 0xff;
 | 
						|
 | 
						|
		/* Provide a sane default if not enumerated: */
 | 
						|
		if (!c->x86_clflush_size)
 | 
						|
			c->x86_clflush_size = 32;
 | 
						|
	}
 | 
						|
 | 
						|
	c->x86_cache_bits = c->x86_phys_bits;
 | 
						|
	c->x86_cache_alignment = c->x86_clflush_size;
 | 
						|
}
 | 
						|
 | 
						|
static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First of all, decide if this is a 486 or higher
 | 
						|
	 * It's a 486 if we can modify the AC flag
 | 
						|
	 */
 | 
						|
	if (flag_is_changeable_p(X86_EFLAGS_AC))
 | 
						|
		c->x86 = 4;
 | 
						|
	else
 | 
						|
		c->x86 = 3;
 | 
						|
 | 
						|
	for (i = 0; i < X86_VENDOR_NUM; i++)
 | 
						|
		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
 | 
						|
			c->x86_vendor_id[0] = 0;
 | 
						|
			cpu_devs[i]->c_identify(c);
 | 
						|
			if (c->x86_vendor_id[0]) {
 | 
						|
				get_cpu_vendor(c);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
}
 | 
						|
 | 
						|
#define NO_SPECULATION		BIT(0)
 | 
						|
#define NO_MELTDOWN		BIT(1)
 | 
						|
#define NO_SSB			BIT(2)
 | 
						|
#define NO_L1TF			BIT(3)
 | 
						|
#define NO_MDS			BIT(4)
 | 
						|
#define MSBDS_ONLY		BIT(5)
 | 
						|
#define NO_SWAPGS		BIT(6)
 | 
						|
#define NO_ITLB_MULTIHIT	BIT(7)
 | 
						|
#define NO_SPECTRE_V2		BIT(8)
 | 
						|
#define NO_MMIO			BIT(9)
 | 
						|
#define NO_EIBRS_PBRSB		BIT(10)
 | 
						|
#define NO_BHI			BIT(11)
 | 
						|
 | 
						|
#define VULNWL(vendor, family, model, whitelist)	\
 | 
						|
	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
 | 
						|
 | 
						|
#define VULNWL_INTEL(vfm, whitelist)		\
 | 
						|
	X86_MATCH_VFM(vfm, whitelist)
 | 
						|
 | 
						|
#define VULNWL_AMD(family, whitelist)		\
 | 
						|
	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
 | 
						|
 | 
						|
#define VULNWL_HYGON(family, whitelist)		\
 | 
						|
	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
 | 
						|
 | 
						|
static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
 | 
						|
	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
 | 
						|
	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
 | 
						|
	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
 | 
						|
	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
 | 
						|
	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
 | 
						|
	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
 | 
						|
 | 
						|
	/* Intel Family 6 */
 | 
						|
	VULNWL_INTEL(INTEL_TIGERLAKE,		NO_MMIO),
 | 
						|
	VULNWL_INTEL(INTEL_TIGERLAKE_L,		NO_MMIO),
 | 
						|
	VULNWL_INTEL(INTEL_ALDERLAKE,		NO_MMIO),
 | 
						|
	VULNWL_INTEL(INTEL_ALDERLAKE_L,		NO_MMIO),
 | 
						|
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_SALTWELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_BONNELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_BONNELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
 | 
						|
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_SILVERMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_AIRMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 | 
						|
	VULNWL_INTEL(INTEL_XEON_PHI_KNL,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 | 
						|
	VULNWL_INTEL(INTEL_XEON_PHI_KNM,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
 | 
						|
 | 
						|
	VULNWL_INTEL(INTEL_CORE_YONAH,		NO_SSB),
 | 
						|
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID2,NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP,	NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
 | 
						|
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_GOLDMONT,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Technically, swapgs isn't serializing on AMD (despite it previously
 | 
						|
	 * being documented as such in the APM).  But according to AMD, %gs is
 | 
						|
	 * updated non-speculatively, and the issuing of %gs-relative memory
 | 
						|
	 * operands will be blocked until the %gs update completes, which is
 | 
						|
	 * good enough for our purposes.
 | 
						|
	 */
 | 
						|
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_TREMONT,	NO_EIBRS_PBRSB),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_TREMONT_L,	NO_EIBRS_PBRSB),
 | 
						|
	VULNWL_INTEL(INTEL_ATOM_TREMONT_D,	NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
 | 
						|
 | 
						|
	/* AMD Family 0xf - 0x12 */
 | 
						|
	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
 | 
						|
	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
 | 
						|
	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
 | 
						|
	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
 | 
						|
 | 
						|
	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
 | 
						|
	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
 | 
						|
	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
 | 
						|
 | 
						|
	/* Zhaoxin Family 7 */
 | 
						|
	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
 | 
						|
	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
 | 
						|
	{}
 | 
						|
};
 | 
						|
 | 
						|
#define VULNBL(vendor, family, model, blacklist)	\
 | 
						|
	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
 | 
						|
 | 
						|
#define VULNBL_INTEL_STEPS(vfm, max_stepping, issues)		   \
 | 
						|
	X86_MATCH_VFM_STEPS(vfm, X86_STEP_MIN, max_stepping, issues)
 | 
						|
 | 
						|
#define VULNBL_INTEL_TYPE(vfm, cpu_type, issues)	\
 | 
						|
	X86_MATCH_VFM_CPU_TYPE(vfm, INTEL_CPU_TYPE_##cpu_type, issues)
 | 
						|
 | 
						|
#define VULNBL_AMD(family, blacklist)		\
 | 
						|
	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
 | 
						|
 | 
						|
#define VULNBL_HYGON(family, blacklist)		\
 | 
						|
	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
 | 
						|
 | 
						|
#define SRBDS		BIT(0)
 | 
						|
/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
 | 
						|
#define MMIO		BIT(1)
 | 
						|
/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
 | 
						|
#define MMIO_SBDS	BIT(2)
 | 
						|
/* CPU is affected by RETbleed, speculating where you would not expect it */
 | 
						|
#define RETBLEED	BIT(3)
 | 
						|
/* CPU is affected by SMT (cross-thread) return predictions */
 | 
						|
#define SMT_RSB		BIT(4)
 | 
						|
/* CPU is affected by SRSO */
 | 
						|
#define SRSO		BIT(5)
 | 
						|
/* CPU is affected by GDS */
 | 
						|
#define GDS		BIT(6)
 | 
						|
/* CPU is affected by Register File Data Sampling */
 | 
						|
#define RFDS		BIT(7)
 | 
						|
/* CPU is affected by Indirect Target Selection */
 | 
						|
#define ITS		BIT(8)
 | 
						|
/* CPU is affected by Indirect Target Selection, but guest-host isolation is not affected */
 | 
						|
#define ITS_NATIVE_ONLY	BIT(9)
 | 
						|
 | 
						|
static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE,	     X86_STEP_MAX,	SRBDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_HASWELL,	     X86_STEP_MAX,	SRBDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_HASWELL_L,	     X86_STEP_MAX,	SRBDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_HASWELL_G,	     X86_STEP_MAX,	SRBDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_HASWELL_X,	     X86_STEP_MAX,	MMIO),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_BROADWELL_D,	     X86_STEP_MAX,	MMIO),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_BROADWELL_G,	     X86_STEP_MAX,	SRBDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_BROADWELL_X,	     X86_STEP_MAX,	MMIO),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_BROADWELL,	     X86_STEP_MAX,	SRBDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X,		      0x5,	MMIO | RETBLEED | GDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | ITS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_L,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_SKYLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L,		      0xb,	MMIO | RETBLEED | GDS | SRBDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS | ITS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_KABYLAKE,		      0xc,	MMIO | RETBLEED | GDS | SRBDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_KABYLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS | ITS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_CANNONLAKE_L,	     X86_STEP_MAX,	RETBLEED),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ICELAKE_L,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ICELAKE_D,	     X86_STEP_MAX,	MMIO | GDS | ITS | ITS_NATIVE_ONLY),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ICELAKE_X,	     X86_STEP_MAX,	MMIO | GDS | ITS | ITS_NATIVE_ONLY),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_COMETLAKE,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L,		      0x0,	MMIO | RETBLEED | ITS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_TIGERLAKE_L,	     X86_STEP_MAX,	GDS | ITS | ITS_NATIVE_ONLY),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_TIGERLAKE,	     X86_STEP_MAX,	GDS | ITS | ITS_NATIVE_ONLY),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_LAKEFIELD,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ROCKETLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
 | 
						|
	VULNBL_INTEL_TYPE(INTEL_ALDERLAKE,		     ATOM,	RFDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ALDERLAKE_L,	     X86_STEP_MAX,	RFDS),
 | 
						|
	VULNBL_INTEL_TYPE(INTEL_RAPTORLAKE,		     ATOM,	RFDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_P,	     X86_STEP_MAX,	RFDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_S,	     X86_STEP_MAX,	RFDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ATOM_GRACEMONT,     X86_STEP_MAX,	RFDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RFDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_D,     X86_STEP_MAX,	MMIO | RFDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_L,     X86_STEP_MAX,	MMIO | MMIO_SBDS | RFDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT,      X86_STEP_MAX,	RFDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_D,    X86_STEP_MAX,	RFDS),
 | 
						|
	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEP_MAX,	RFDS),
 | 
						|
 | 
						|
	VULNBL_AMD(0x15, RETBLEED),
 | 
						|
	VULNBL_AMD(0x16, RETBLEED),
 | 
						|
	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
 | 
						|
	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
 | 
						|
	VULNBL_AMD(0x19, SRSO),
 | 
						|
	VULNBL_AMD(0x1a, SRSO),
 | 
						|
	{}
 | 
						|
};
 | 
						|
 | 
						|
static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
 | 
						|
{
 | 
						|
	const struct x86_cpu_id *m = x86_match_cpu(table);
 | 
						|
 | 
						|
	return m && !!(m->driver_data & which);
 | 
						|
}
 | 
						|
 | 
						|
u64 x86_read_arch_cap_msr(void)
 | 
						|
{
 | 
						|
	u64 x86_arch_cap_msr = 0;
 | 
						|
 | 
						|
	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
 | 
						|
		rdmsrq(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
 | 
						|
 | 
						|
	return x86_arch_cap_msr;
 | 
						|
}
 | 
						|
 | 
						|
static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
 | 
						|
{
 | 
						|
	return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
 | 
						|
		x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
 | 
						|
		x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
 | 
						|
}
 | 
						|
 | 
						|
static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
 | 
						|
{
 | 
						|
	/* The "immunity" bit trumps everything else: */
 | 
						|
	if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
 | 
						|
	 * indicate that mitigation is needed because guest is running on a
 | 
						|
	 * vulnerable hardware or may migrate to such hardware:
 | 
						|
	 */
 | 
						|
	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
 | 
						|
		return true;
 | 
						|
 | 
						|
	/* Only consult the blacklist when there is no enumeration: */
 | 
						|
	return cpu_matches(cpu_vuln_blacklist, RFDS);
 | 
						|
}
 | 
						|
 | 
						|
static bool __init vulnerable_to_its(u64 x86_arch_cap_msr)
 | 
						|
{
 | 
						|
	/* The "immunity" bit trumps everything else: */
 | 
						|
	if (x86_arch_cap_msr & ARCH_CAP_ITS_NO)
 | 
						|
		return false;
 | 
						|
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* None of the affected CPUs have BHI_CTRL */
 | 
						|
	if (boot_cpu_has(X86_FEATURE_BHI_CTRL))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If a VMM did not expose ITS_NO, assume that a guest could
 | 
						|
	 * be running on a vulnerable hardware or may migrate to such
 | 
						|
	 * hardware.
 | 
						|
	 */
 | 
						|
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 | 
						|
		return true;
 | 
						|
 | 
						|
	if (cpu_matches(cpu_vuln_blacklist, ITS))
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static struct x86_cpu_id cpu_latest_microcode[] = {
 | 
						|
#include "microcode/intel-ucode-defs.h"
 | 
						|
	{}
 | 
						|
};
 | 
						|
 | 
						|
static bool __init cpu_has_old_microcode(void)
 | 
						|
{
 | 
						|
	const struct x86_cpu_id *m = x86_match_cpu(cpu_latest_microcode);
 | 
						|
 | 
						|
	/* Give unknown CPUs a pass: */
 | 
						|
	if (!m) {
 | 
						|
		/* Intel CPUs should be in the list. Warn if not: */
 | 
						|
		if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
 | 
						|
			pr_info("x86/CPU: Model not found in latest microcode list\n");
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Hosts usually lie to guests with a super high microcode
 | 
						|
	 * version. Just ignore what hosts tell guests:
 | 
						|
	 */
 | 
						|
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Consider all debug microcode to be old: */
 | 
						|
	if (boot_cpu_data.microcode & BIT(31))
 | 
						|
		return true;
 | 
						|
 | 
						|
	/* Give new microcode a pass: */
 | 
						|
	if (boot_cpu_data.microcode >= m->driver_data)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Uh oh, too old: */
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
 | 
						|
 | 
						|
	if (cpu_has_old_microcode()) {
 | 
						|
		pr_warn("x86/CPU: Running old microcode\n");
 | 
						|
		setup_force_cpu_bug(X86_BUG_OLD_MICROCODE);
 | 
						|
		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
 | 
						|
	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
 | 
						|
	    !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
 | 
						|
		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
 | 
						|
 | 
						|
	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
 | 
						|
		return;
 | 
						|
 | 
						|
	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
 | 
						|
 | 
						|
	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) {
 | 
						|
		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
 | 
						|
		setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
 | 
						|
	    !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
 | 
						|
	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
 | 
						|
		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
 | 
						|
	 * flag and protect from vendor-specific bugs via the whitelist.
 | 
						|
	 *
 | 
						|
	 * Don't use AutoIBRS when SNP is enabled because it degrades host
 | 
						|
	 * userspace indirect branch performance.
 | 
						|
	 */
 | 
						|
	if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
 | 
						|
	    (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
 | 
						|
	     !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
 | 
						|
		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
 | 
						|
		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
 | 
						|
		    !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
 | 
						|
			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
 | 
						|
	    !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
 | 
						|
		setup_force_cpu_bug(X86_BUG_MDS);
 | 
						|
		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
 | 
						|
			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
 | 
						|
		setup_force_cpu_bug(X86_BUG_SWAPGS);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
 | 
						|
	 *	- TSX is supported or
 | 
						|
	 *	- TSX_CTRL is present
 | 
						|
	 *
 | 
						|
	 * TSX_CTRL check is needed for cases when TSX could be disabled before
 | 
						|
	 * the kernel boot e.g. kexec.
 | 
						|
	 * TSX_CTRL check alone is not sufficient for cases when the microcode
 | 
						|
	 * update is not present or running as guest that don't get TSX_CTRL.
 | 
						|
	 */
 | 
						|
	if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
 | 
						|
	    (cpu_has(c, X86_FEATURE_RTM) ||
 | 
						|
	     (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
 | 
						|
		setup_force_cpu_bug(X86_BUG_TAA);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
 | 
						|
	 * in the vulnerability blacklist.
 | 
						|
	 *
 | 
						|
	 * Some of the implications and mitigation of Shared Buffers Data
 | 
						|
	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
 | 
						|
	 * SRBDS.
 | 
						|
	 */
 | 
						|
	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
 | 
						|
	     cpu_has(c, X86_FEATURE_RDSEED)) &&
 | 
						|
	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
 | 
						|
		    setup_force_cpu_bug(X86_BUG_SRBDS);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Processor MMIO Stale Data bug enumeration
 | 
						|
	 *
 | 
						|
	 * Affected CPU list is generally enough to enumerate the vulnerability,
 | 
						|
	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
 | 
						|
	 * not want the guest to enumerate the bug.
 | 
						|
	 */
 | 
						|
	if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
 | 
						|
		if (cpu_matches(cpu_vuln_blacklist, MMIO))
 | 
						|
			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
 | 
						|
		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
 | 
						|
			setup_force_cpu_bug(X86_BUG_RETBLEED);
 | 
						|
	}
 | 
						|
 | 
						|
	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
 | 
						|
		setup_force_cpu_bug(X86_BUG_SMT_RSB);
 | 
						|
 | 
						|
	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
 | 
						|
		if (cpu_matches(cpu_vuln_blacklist, SRSO))
 | 
						|
			setup_force_cpu_bug(X86_BUG_SRSO);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
 | 
						|
	 * an affected processor, the VMM may have disabled the use of GATHER by
 | 
						|
	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
 | 
						|
	 * which means that AVX will be disabled.
 | 
						|
	 */
 | 
						|
	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
 | 
						|
	    boot_cpu_has(X86_FEATURE_AVX))
 | 
						|
		setup_force_cpu_bug(X86_BUG_GDS);
 | 
						|
 | 
						|
	if (vulnerable_to_rfds(x86_arch_cap_msr))
 | 
						|
		setup_force_cpu_bug(X86_BUG_RFDS);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Intel parts with eIBRS are vulnerable to BHI attacks. Parts with
 | 
						|
	 * BHI_NO still need to use the BHI mitigation to prevent Intra-mode
 | 
						|
	 * attacks.  When virtualized, eIBRS could be hidden, assume vulnerable.
 | 
						|
	 */
 | 
						|
	if (!cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
 | 
						|
	    (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
 | 
						|
	     boot_cpu_has(X86_FEATURE_HYPERVISOR)))
 | 
						|
		setup_force_cpu_bug(X86_BUG_BHI);
 | 
						|
 | 
						|
	if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
 | 
						|
		setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
 | 
						|
 | 
						|
	if (vulnerable_to_its(x86_arch_cap_msr)) {
 | 
						|
		setup_force_cpu_bug(X86_BUG_ITS);
 | 
						|
		if (cpu_matches(cpu_vuln_blacklist, ITS_NATIVE_ONLY))
 | 
						|
			setup_force_cpu_bug(X86_BUG_ITS_NATIVE_ONLY);
 | 
						|
	}
 | 
						|
 | 
						|
	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Rogue Data Cache Load? No! */
 | 
						|
	if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
 | 
						|
		return;
 | 
						|
 | 
						|
	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
 | 
						|
 | 
						|
	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
 | 
						|
		return;
 | 
						|
 | 
						|
	setup_force_cpu_bug(X86_BUG_L1TF);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
 | 
						|
 * unfortunately, that's not true in practice because of early VIA
 | 
						|
 * chips and (more importantly) broken virtualizers that are not easy
 | 
						|
 * to detect. In the latter case it doesn't even *fail* reliably, so
 | 
						|
 * probing for it doesn't even work. Disable it completely on 32-bit
 | 
						|
 * unless we can find a reliable way to detect all the broken cases.
 | 
						|
 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
 | 
						|
 */
 | 
						|
static void detect_nopl(void)
 | 
						|
{
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	setup_clear_cpu_cap(X86_FEATURE_NOPL);
 | 
						|
#else
 | 
						|
	setup_force_cpu_cap(X86_FEATURE_NOPL);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static inline bool parse_set_clear_cpuid(char *arg, bool set)
 | 
						|
{
 | 
						|
	char *opt;
 | 
						|
	int taint = 0;
 | 
						|
 | 
						|
	while (arg) {
 | 
						|
		bool found __maybe_unused = false;
 | 
						|
		unsigned int bit;
 | 
						|
 | 
						|
		opt = strsep(&arg, ",");
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Handle naked numbers first for feature flags which don't
 | 
						|
		 * have names. It doesn't make sense for a bug not to have a
 | 
						|
		 * name so don't handle bug flags here.
 | 
						|
		 */
 | 
						|
		if (!kstrtouint(opt, 10, &bit)) {
 | 
						|
			if (bit < NCAPINTS * 32) {
 | 
						|
 | 
						|
				if (set) {
 | 
						|
					pr_warn("setcpuid: force-enabling CPU feature flag:");
 | 
						|
					setup_force_cpu_cap(bit);
 | 
						|
				} else {
 | 
						|
					pr_warn("clearcpuid: force-disabling CPU feature flag:");
 | 
						|
					setup_clear_cpu_cap(bit);
 | 
						|
				}
 | 
						|
				/* empty-string, i.e., ""-defined feature flags */
 | 
						|
				if (!x86_cap_flags[bit])
 | 
						|
					pr_cont(" %d:%d\n", bit >> 5, bit & 31);
 | 
						|
				else
 | 
						|
					pr_cont(" %s\n", x86_cap_flags[bit]);
 | 
						|
 | 
						|
				taint++;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * The assumption is that there are no feature names with only
 | 
						|
			 * numbers in the name thus go to the next argument.
 | 
						|
			 */
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		for (bit = 0; bit < 32 * (NCAPINTS + NBUGINTS); bit++) {
 | 
						|
			const char *flag;
 | 
						|
			const char *kind;
 | 
						|
 | 
						|
			if (bit < 32 * NCAPINTS) {
 | 
						|
				flag = x86_cap_flags[bit];
 | 
						|
				kind = "feature";
 | 
						|
			} else {
 | 
						|
				kind = "bug";
 | 
						|
				flag = x86_bug_flags[bit - (32 * NCAPINTS)];
 | 
						|
			}
 | 
						|
 | 
						|
			if (!flag)
 | 
						|
				continue;
 | 
						|
 | 
						|
			if (strcmp(flag, opt))
 | 
						|
				continue;
 | 
						|
 | 
						|
			if (set) {
 | 
						|
				pr_warn("setcpuid: force-enabling CPU %s flag: %s\n",
 | 
						|
					kind, flag);
 | 
						|
				setup_force_cpu_cap(bit);
 | 
						|
			} else {
 | 
						|
				pr_warn("clearcpuid: force-disabling CPU %s flag: %s\n",
 | 
						|
					kind, flag);
 | 
						|
				setup_clear_cpu_cap(bit);
 | 
						|
			}
 | 
						|
			taint++;
 | 
						|
			found = true;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!found)
 | 
						|
			pr_warn("%s: unknown CPU flag: %s", set ? "setcpuid" : "clearcpuid", opt);
 | 
						|
	}
 | 
						|
 | 
						|
	return taint;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * We parse cpu parameters early because fpu__init_system() is executed
 | 
						|
 * before parse_early_param().
 | 
						|
 */
 | 
						|
static void __init cpu_parse_early_param(void)
 | 
						|
{
 | 
						|
	bool cpuid_taint = false;
 | 
						|
	char arg[128];
 | 
						|
	int arglen;
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	if (cmdline_find_option_bool(boot_command_line, "no387"))
 | 
						|
#ifdef CONFIG_MATH_EMULATION
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_FPU);
 | 
						|
#else
 | 
						|
		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
 | 
						|
#endif
 | 
						|
 | 
						|
	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_FXSR);
 | 
						|
#endif
 | 
						|
 | 
						|
	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 | 
						|
 | 
						|
	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 | 
						|
 | 
						|
	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
 | 
						|
 | 
						|
	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
 | 
						|
 | 
						|
	/* Minimize the gap between FRED is available and available but disabled. */
 | 
						|
	arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
 | 
						|
	if (arglen != 2 || strncmp(arg, "on", 2))
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_FRED);
 | 
						|
 | 
						|
	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
 | 
						|
	if (arglen > 0)
 | 
						|
		cpuid_taint |= parse_set_clear_cpuid(arg, false);
 | 
						|
 | 
						|
	arglen = cmdline_find_option(boot_command_line, "setcpuid", arg, sizeof(arg));
 | 
						|
	if (arglen > 0)
 | 
						|
		cpuid_taint |= parse_set_clear_cpuid(arg, true);
 | 
						|
 | 
						|
	if (cpuid_taint) {
 | 
						|
		pr_warn("!!! setcpuid=/clearcpuid= in use, this is for TESTING ONLY, may break things horribly. Tainting kernel.\n");
 | 
						|
		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Do minimum CPU detection early.
 | 
						|
 * Fields really needed: vendor, cpuid_level, family, model, mask,
 | 
						|
 * cache alignment.
 | 
						|
 * The others are not touched to avoid unwanted side effects.
 | 
						|
 *
 | 
						|
 * WARNING: this function is only called on the boot CPU.  Don't add code
 | 
						|
 * here that is supposed to run on all CPUs.
 | 
						|
 */
 | 
						|
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
 | 
						|
	c->extended_cpuid_level = 0;
 | 
						|
 | 
						|
	if (!cpuid_feature())
 | 
						|
		identify_cpu_without_cpuid(c);
 | 
						|
 | 
						|
	/* cyrix could have cpuid enabled via c_identify()*/
 | 
						|
	if (cpuid_feature()) {
 | 
						|
		cpu_detect(c);
 | 
						|
		get_cpu_vendor(c);
 | 
						|
		intel_unlock_cpuid_leafs(c);
 | 
						|
		get_cpu_cap(c);
 | 
						|
		setup_force_cpu_cap(X86_FEATURE_CPUID);
 | 
						|
		get_cpu_address_sizes(c);
 | 
						|
		cpu_parse_early_param();
 | 
						|
 | 
						|
		cpu_init_topology(c);
 | 
						|
 | 
						|
		if (this_cpu->c_early_init)
 | 
						|
			this_cpu->c_early_init(c);
 | 
						|
 | 
						|
		c->cpu_index = 0;
 | 
						|
		filter_cpuid_features(c, false);
 | 
						|
		check_cpufeature_deps(c);
 | 
						|
 | 
						|
		if (this_cpu->c_bsp_init)
 | 
						|
			this_cpu->c_bsp_init(c);
 | 
						|
	} else {
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_CPUID);
 | 
						|
		get_cpu_address_sizes(c);
 | 
						|
		cpu_init_topology(c);
 | 
						|
	}
 | 
						|
 | 
						|
	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
 | 
						|
 | 
						|
	cpu_set_bug_bits(c);
 | 
						|
 | 
						|
	sld_setup(c);
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	/*
 | 
						|
	 * Regardless of whether PCID is enumerated, the SDM says
 | 
						|
	 * that it can't be enabled in 32-bit mode.
 | 
						|
	 */
 | 
						|
	setup_clear_cpu_cap(X86_FEATURE_PCID);
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Later in the boot process pgtable_l5_enabled() relies on
 | 
						|
	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
 | 
						|
	 * enabled by this point we need to clear the feature bit to avoid
 | 
						|
	 * false-positives at the later stage.
 | 
						|
	 *
 | 
						|
	 * pgtable_l5_enabled() can be false here for several reasons:
 | 
						|
	 *  - 5-level paging is disabled compile-time;
 | 
						|
	 *  - it's 32-bit kernel;
 | 
						|
	 *  - machine doesn't support 5-level paging;
 | 
						|
	 *  - user specified 'no5lvl' in kernel command line.
 | 
						|
	 */
 | 
						|
	if (!pgtable_l5_enabled())
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_LA57);
 | 
						|
 | 
						|
	detect_nopl();
 | 
						|
}
 | 
						|
 | 
						|
void __init init_cpu_devs(void)
 | 
						|
{
 | 
						|
	const struct cpu_dev *const *cdev;
 | 
						|
	int count = 0;
 | 
						|
 | 
						|
	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
 | 
						|
		const struct cpu_dev *cpudev = *cdev;
 | 
						|
 | 
						|
		if (count >= X86_VENDOR_NUM)
 | 
						|
			break;
 | 
						|
		cpu_devs[count] = cpudev;
 | 
						|
		count++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init early_cpu_init(void)
 | 
						|
{
 | 
						|
#ifdef CONFIG_PROCESSOR_SELECT
 | 
						|
	unsigned int i, j;
 | 
						|
 | 
						|
	pr_info("KERNEL supported cpus:\n");
 | 
						|
#endif
 | 
						|
 | 
						|
	init_cpu_devs();
 | 
						|
 | 
						|
#ifdef CONFIG_PROCESSOR_SELECT
 | 
						|
	for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) {
 | 
						|
		for (j = 0; j < 2; j++) {
 | 
						|
			if (!cpu_devs[i]->c_ident[j])
 | 
						|
				continue;
 | 
						|
			pr_info("  %s %s\n", cpu_devs[i]->c_vendor,
 | 
						|
				cpu_devs[i]->c_ident[j]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	early_identify_cpu(&boot_cpu_data);
 | 
						|
}
 | 
						|
 | 
						|
static bool detect_null_seg_behavior(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Empirically, writing zero to a segment selector on AMD does
 | 
						|
	 * not clear the base, whereas writing zero to a segment
 | 
						|
	 * selector on Intel does clear the base.  Intel's behavior
 | 
						|
	 * allows slightly faster context switches in the common case
 | 
						|
	 * where GS is unused by the prev and next threads.
 | 
						|
	 *
 | 
						|
	 * Since neither vendor documents this anywhere that I can see,
 | 
						|
	 * detect it directly instead of hard-coding the choice by
 | 
						|
	 * vendor.
 | 
						|
	 *
 | 
						|
	 * I've designated AMD's behavior as the "bug" because it's
 | 
						|
	 * counterintuitive and less friendly.
 | 
						|
	 */
 | 
						|
 | 
						|
	unsigned long old_base, tmp;
 | 
						|
	rdmsrq(MSR_FS_BASE, old_base);
 | 
						|
	wrmsrq(MSR_FS_BASE, 1);
 | 
						|
	loadsegment(fs, 0);
 | 
						|
	rdmsrq(MSR_FS_BASE, tmp);
 | 
						|
	wrmsrq(MSR_FS_BASE, old_base);
 | 
						|
	return tmp == 0;
 | 
						|
}
 | 
						|
 | 
						|
void check_null_seg_clears_base(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	/* BUG_NULL_SEG is only relevant with 64bit userspace */
 | 
						|
	if (!IS_ENABLED(CONFIG_X86_64))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * CPUID bit above wasn't set. If this kernel is still running
 | 
						|
	 * as a HV guest, then the HV has decided not to advertize
 | 
						|
	 * that CPUID bit for whatever reason.	For example, one
 | 
						|
	 * member of the migration pool might be vulnerable.  Which
 | 
						|
	 * means, the bug is present: set the BUG flag and return.
 | 
						|
	 */
 | 
						|
	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
 | 
						|
		set_cpu_bug(c, X86_BUG_NULL_SEG);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
 | 
						|
	 * 0x18 is the respective family for Hygon.
 | 
						|
	 */
 | 
						|
	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
 | 
						|
	    detect_null_seg_behavior())
 | 
						|
		return;
 | 
						|
 | 
						|
	/* All the remaining ones are affected */
 | 
						|
	set_cpu_bug(c, X86_BUG_NULL_SEG);
 | 
						|
}
 | 
						|
 | 
						|
static void generic_identify(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	c->extended_cpuid_level = 0;
 | 
						|
 | 
						|
	if (!cpuid_feature())
 | 
						|
		identify_cpu_without_cpuid(c);
 | 
						|
 | 
						|
	/* cyrix could have cpuid enabled via c_identify()*/
 | 
						|
	if (!cpuid_feature())
 | 
						|
		return;
 | 
						|
 | 
						|
	cpu_detect(c);
 | 
						|
 | 
						|
	get_cpu_vendor(c);
 | 
						|
	intel_unlock_cpuid_leafs(c);
 | 
						|
	get_cpu_cap(c);
 | 
						|
 | 
						|
	get_cpu_address_sizes(c);
 | 
						|
 | 
						|
	get_model_name(c); /* Default name */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
 | 
						|
	 * systems that run Linux at CPL > 0 may or may not have the
 | 
						|
	 * issue, but, even if they have the issue, there's absolutely
 | 
						|
	 * nothing we can do about it because we can't use the real IRET
 | 
						|
	 * instruction.
 | 
						|
	 *
 | 
						|
	 * NB: For the time being, only 32-bit kernels support
 | 
						|
	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
 | 
						|
	 * whether to apply espfix using paravirt hooks.  If any
 | 
						|
	 * non-paravirt system ever shows up that does *not* have the
 | 
						|
	 * ESPFIX issue, we can change this.
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	set_cpu_bug(c, X86_BUG_ESPFIX);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This does the hard work of actually picking apart the CPU stuff...
 | 
						|
 */
 | 
						|
static void identify_cpu(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	c->loops_per_jiffy = loops_per_jiffy;
 | 
						|
	c->x86_cache_size = 0;
 | 
						|
	c->x86_vendor = X86_VENDOR_UNKNOWN;
 | 
						|
	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
 | 
						|
	c->x86_vendor_id[0] = '\0'; /* Unset */
 | 
						|
	c->x86_model_id[0] = '\0';  /* Unset */
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
	c->x86_clflush_size = 64;
 | 
						|
	c->x86_phys_bits = 36;
 | 
						|
	c->x86_virt_bits = 48;
 | 
						|
#else
 | 
						|
	c->cpuid_level = -1;	/* CPUID not detected */
 | 
						|
	c->x86_clflush_size = 32;
 | 
						|
	c->x86_phys_bits = 32;
 | 
						|
	c->x86_virt_bits = 32;
 | 
						|
#endif
 | 
						|
	c->x86_cache_alignment = c->x86_clflush_size;
 | 
						|
	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
 | 
						|
#ifdef CONFIG_X86_VMX_FEATURE_NAMES
 | 
						|
	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
 | 
						|
#endif
 | 
						|
 | 
						|
	generic_identify(c);
 | 
						|
 | 
						|
	cpu_parse_topology(c);
 | 
						|
 | 
						|
	if (this_cpu->c_identify)
 | 
						|
		this_cpu->c_identify(c);
 | 
						|
 | 
						|
	/* Clear/Set all flags overridden by options, after probe */
 | 
						|
	apply_forced_caps(c);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
 | 
						|
	 * Hygon will clear it in ->c_init() below.
 | 
						|
	 */
 | 
						|
	set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Vendor-specific initialization.  In this section we
 | 
						|
	 * canonicalize the feature flags, meaning if there are
 | 
						|
	 * features a certain CPU supports which CPUID doesn't
 | 
						|
	 * tell us, CPUID claiming incorrect flags, or other bugs,
 | 
						|
	 * we handle them here.
 | 
						|
	 *
 | 
						|
	 * At the end of this section, c->x86_capability better
 | 
						|
	 * indicate the features this CPU genuinely supports!
 | 
						|
	 */
 | 
						|
	if (this_cpu->c_init)
 | 
						|
		this_cpu->c_init(c);
 | 
						|
 | 
						|
	bus_lock_init();
 | 
						|
 | 
						|
	/* Disable the PN if appropriate */
 | 
						|
	squash_the_stupid_serial_number(c);
 | 
						|
 | 
						|
	/* Set up SMEP/SMAP/UMIP */
 | 
						|
	setup_smep(c);
 | 
						|
	setup_smap(c);
 | 
						|
	setup_umip(c);
 | 
						|
 | 
						|
	/* Enable FSGSBASE instructions if available. */
 | 
						|
	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
 | 
						|
		cr4_set_bits(X86_CR4_FSGSBASE);
 | 
						|
		elf_hwcap2 |= HWCAP2_FSGSBASE;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The vendor-specific functions might have changed features.
 | 
						|
	 * Now we do "generic changes."
 | 
						|
	 */
 | 
						|
 | 
						|
	/* Filter out anything that depends on CPUID levels we don't have */
 | 
						|
	filter_cpuid_features(c, true);
 | 
						|
 | 
						|
	/* Check for unmet dependencies based on the CPUID dependency table */
 | 
						|
	check_cpufeature_deps(c);
 | 
						|
 | 
						|
	/* If the model name is still unset, do table lookup. */
 | 
						|
	if (!c->x86_model_id[0]) {
 | 
						|
		const char *p;
 | 
						|
		p = table_lookup_model(c);
 | 
						|
		if (p)
 | 
						|
			strcpy(c->x86_model_id, p);
 | 
						|
		else
 | 
						|
			/* Last resort... */
 | 
						|
			sprintf(c->x86_model_id, "%02x/%02x",
 | 
						|
				c->x86, c->x86_model);
 | 
						|
	}
 | 
						|
 | 
						|
	x86_init_rdrand(c);
 | 
						|
	setup_pku(c);
 | 
						|
	setup_cet(c);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clear/Set all flags overridden by options, need do it
 | 
						|
	 * before following smp all cpus cap AND.
 | 
						|
	 */
 | 
						|
	apply_forced_caps(c);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On SMP, boot_cpu_data holds the common feature set between
 | 
						|
	 * all CPUs; so make sure that we indicate which features are
 | 
						|
	 * common between the CPUs.  The first time this routine gets
 | 
						|
	 * executed, c == &boot_cpu_data.
 | 
						|
	 */
 | 
						|
	if (c != &boot_cpu_data) {
 | 
						|
		/* AND the already accumulated flags with these */
 | 
						|
		for (i = 0; i < NCAPINTS; i++)
 | 
						|
			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
 | 
						|
 | 
						|
		/* OR, i.e. replicate the bug flags */
 | 
						|
		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
 | 
						|
			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
 | 
						|
	}
 | 
						|
 | 
						|
	ppin_init(c);
 | 
						|
 | 
						|
	/* Init Machine Check Exception if available. */
 | 
						|
	mcheck_cpu_init(c);
 | 
						|
 | 
						|
	numa_add_cpu(smp_processor_id());
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
 | 
						|
 * on 32-bit kernels:
 | 
						|
 */
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
void enable_sep_cpu(void)
 | 
						|
{
 | 
						|
	struct tss_struct *tss;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	if (!boot_cpu_has(X86_FEATURE_SEP))
 | 
						|
		return;
 | 
						|
 | 
						|
	cpu = get_cpu();
 | 
						|
	tss = &per_cpu(cpu_tss_rw, cpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
 | 
						|
	 * see the big comment in struct x86_hw_tss's definition.
 | 
						|
	 */
 | 
						|
 | 
						|
	tss->x86_tss.ss1 = __KERNEL_CS;
 | 
						|
	wrmsrq(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1);
 | 
						|
	wrmsrq(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
 | 
						|
	wrmsrq(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32);
 | 
						|
 | 
						|
	put_cpu();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static __init void identify_boot_cpu(void)
 | 
						|
{
 | 
						|
	identify_cpu(&boot_cpu_data);
 | 
						|
	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
 | 
						|
		pr_info("CET detected: Indirect Branch Tracking enabled\n");
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	enable_sep_cpu();
 | 
						|
#endif
 | 
						|
	cpu_detect_tlb(&boot_cpu_data);
 | 
						|
	setup_cr_pinning();
 | 
						|
 | 
						|
	tsx_init();
 | 
						|
	tdx_init();
 | 
						|
	lkgs_init();
 | 
						|
}
 | 
						|
 | 
						|
void identify_secondary_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct cpuinfo_x86 *c = &cpu_data(cpu);
 | 
						|
 | 
						|
	/* Copy boot_cpu_data only on the first bringup */
 | 
						|
	if (!c->initialized)
 | 
						|
		*c = boot_cpu_data;
 | 
						|
	c->cpu_index = cpu;
 | 
						|
 | 
						|
	identify_cpu(c);
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	enable_sep_cpu();
 | 
						|
#endif
 | 
						|
	x86_spec_ctrl_setup_ap();
 | 
						|
	update_srbds_msr();
 | 
						|
	if (boot_cpu_has_bug(X86_BUG_GDS))
 | 
						|
		update_gds_msr();
 | 
						|
 | 
						|
	tsx_ap_init();
 | 
						|
	c->initialized = true;
 | 
						|
}
 | 
						|
 | 
						|
void print_cpu_info(struct cpuinfo_x86 *c)
 | 
						|
{
 | 
						|
	const char *vendor = NULL;
 | 
						|
 | 
						|
	if (c->x86_vendor < X86_VENDOR_NUM) {
 | 
						|
		vendor = this_cpu->c_vendor;
 | 
						|
	} else {
 | 
						|
		if (c->cpuid_level >= 0)
 | 
						|
			vendor = c->x86_vendor_id;
 | 
						|
	}
 | 
						|
 | 
						|
	if (vendor && !strstr(c->x86_model_id, vendor))
 | 
						|
		pr_cont("%s ", vendor);
 | 
						|
 | 
						|
	if (c->x86_model_id[0])
 | 
						|
		pr_cont("%s", c->x86_model_id);
 | 
						|
	else
 | 
						|
		pr_cont("%d86", c->x86);
 | 
						|
 | 
						|
	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
 | 
						|
 | 
						|
	if (c->x86_stepping || c->cpuid_level >= 0)
 | 
						|
		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
 | 
						|
	else
 | 
						|
		pr_cont(")\n");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * clearcpuid= and setcpuid= were already parsed in cpu_parse_early_param().
 | 
						|
 * These dummy functions prevent them from becoming an environment variable for
 | 
						|
 * init.
 | 
						|
 */
 | 
						|
 | 
						|
static __init int setup_clearcpuid(char *arg)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("clearcpuid=", setup_clearcpuid);
 | 
						|
 | 
						|
static __init int setup_setcpuid(char *arg)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("setcpuid=", setup_setcpuid);
 | 
						|
 | 
						|
DEFINE_PER_CPU_CACHE_HOT(struct task_struct *, current_task) = &init_task;
 | 
						|
EXPORT_PER_CPU_SYMBOL(current_task);
 | 
						|
EXPORT_PER_CPU_SYMBOL(const_current_task);
 | 
						|
 | 
						|
DEFINE_PER_CPU_CACHE_HOT(int, __preempt_count) = INIT_PREEMPT_COUNT;
 | 
						|
EXPORT_PER_CPU_SYMBOL(__preempt_count);
 | 
						|
 | 
						|
DEFINE_PER_CPU_CACHE_HOT(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
 | 
						|
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
/*
 | 
						|
 * Note: Do not make this dependant on CONFIG_MITIGATION_CALL_DEPTH_TRACKING
 | 
						|
 * so that this space is reserved in the hot cache section even when the
 | 
						|
 * mitigation is disabled.
 | 
						|
 */
 | 
						|
DEFINE_PER_CPU_CACHE_HOT(u64, __x86_call_depth);
 | 
						|
EXPORT_PER_CPU_SYMBOL(__x86_call_depth);
 | 
						|
 | 
						|
static void wrmsrq_cstar(unsigned long val)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
 | 
						|
	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
 | 
						|
	 * guest. Avoid the pointless write on all Intel CPUs.
 | 
						|
	 */
 | 
						|
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 | 
						|
		wrmsrq(MSR_CSTAR, val);
 | 
						|
}
 | 
						|
 | 
						|
static inline void idt_syscall_init(void)
 | 
						|
{
 | 
						|
	wrmsrq(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
 | 
						|
 | 
						|
	if (ia32_enabled()) {
 | 
						|
		wrmsrq_cstar((unsigned long)entry_SYSCALL_compat);
 | 
						|
		/*
 | 
						|
		 * This only works on Intel CPUs.
 | 
						|
		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
 | 
						|
		 * This does not cause SYSENTER to jump to the wrong location, because
 | 
						|
		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
 | 
						|
		 */
 | 
						|
		wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
 | 
						|
		wrmsrq_safe(MSR_IA32_SYSENTER_ESP,
 | 
						|
			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
 | 
						|
		wrmsrq_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
 | 
						|
	} else {
 | 
						|
		wrmsrq_cstar((unsigned long)entry_SYSCALL32_ignore);
 | 
						|
		wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
 | 
						|
		wrmsrq_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
 | 
						|
		wrmsrq_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Flags to clear on syscall; clear as much as possible
 | 
						|
	 * to minimize user space-kernel interference.
 | 
						|
	 */
 | 
						|
	wrmsrq(MSR_SYSCALL_MASK,
 | 
						|
	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
 | 
						|
	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
 | 
						|
	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
 | 
						|
	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
 | 
						|
	       X86_EFLAGS_AC|X86_EFLAGS_ID);
 | 
						|
}
 | 
						|
 | 
						|
/* May not be marked __init: used by software suspend */
 | 
						|
void syscall_init(void)
 | 
						|
{
 | 
						|
	/* The default user and kernel segments */
 | 
						|
	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
 | 
						|
	 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
 | 
						|
	 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
 | 
						|
	 * instruction to return to ring 3 (both sysexit and sysret cause
 | 
						|
	 * #UD when FRED is enabled).
 | 
						|
	 */
 | 
						|
	if (!cpu_feature_enabled(X86_FEATURE_FRED))
 | 
						|
		idt_syscall_init();
 | 
						|
}
 | 
						|
#endif /* CONFIG_X86_64 */
 | 
						|
 | 
						|
#ifdef CONFIG_STACKPROTECTOR
 | 
						|
DEFINE_PER_CPU_CACHE_HOT(unsigned long, __stack_chk_guard);
 | 
						|
#ifndef CONFIG_SMP
 | 
						|
EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Clear all 6 debug registers:
 | 
						|
 */
 | 
						|
static void clear_all_debug_regs(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < 8; i++) {
 | 
						|
		/* Ignore db4, db5 */
 | 
						|
		if ((i == 4) || (i == 5))
 | 
						|
			continue;
 | 
						|
 | 
						|
		set_debugreg(0, i);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_KGDB
 | 
						|
/*
 | 
						|
 * Restore debug regs if using kgdbwait and you have a kernel debugger
 | 
						|
 * connection established.
 | 
						|
 */
 | 
						|
static void dbg_restore_debug_regs(void)
 | 
						|
{
 | 
						|
	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
 | 
						|
		arch_kgdb_ops.correct_hw_break();
 | 
						|
}
 | 
						|
#else /* ! CONFIG_KGDB */
 | 
						|
#define dbg_restore_debug_regs()
 | 
						|
#endif /* ! CONFIG_KGDB */
 | 
						|
 | 
						|
static inline void setup_getcpu(int cpu)
 | 
						|
{
 | 
						|
	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
 | 
						|
	struct desc_struct d = { };
 | 
						|
 | 
						|
	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
 | 
						|
		wrmsrq(MSR_TSC_AUX, cpudata);
 | 
						|
 | 
						|
	/* Store CPU and node number in limit. */
 | 
						|
	d.limit0 = cpudata;
 | 
						|
	d.limit1 = cpudata >> 16;
 | 
						|
 | 
						|
	d.type = 5;		/* RO data, expand down, accessed */
 | 
						|
	d.dpl = 3;		/* Visible to user code */
 | 
						|
	d.s = 1;		/* Not a system segment */
 | 
						|
	d.p = 1;		/* Present */
 | 
						|
	d.d = 1;		/* 32-bit */
 | 
						|
 | 
						|
	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
static inline void tss_setup_ist(struct tss_struct *tss)
 | 
						|
{
 | 
						|
	/* Set up the per-CPU TSS IST stacks */
 | 
						|
	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
 | 
						|
	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
 | 
						|
	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
 | 
						|
	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
 | 
						|
	/* Only mapped when SEV-ES is active */
 | 
						|
	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
 | 
						|
}
 | 
						|
#else /* CONFIG_X86_64 */
 | 
						|
static inline void tss_setup_ist(struct tss_struct *tss) { }
 | 
						|
#endif /* !CONFIG_X86_64 */
 | 
						|
 | 
						|
static inline void tss_setup_io_bitmap(struct tss_struct *tss)
 | 
						|
{
 | 
						|
	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
 | 
						|
 | 
						|
#ifdef CONFIG_X86_IOPL_IOPERM
 | 
						|
	tss->io_bitmap.prev_max = 0;
 | 
						|
	tss->io_bitmap.prev_sequence = 0;
 | 
						|
	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
 | 
						|
	/*
 | 
						|
	 * Invalidate the extra array entry past the end of the all
 | 
						|
	 * permission bitmap as required by the hardware.
 | 
						|
	 */
 | 
						|
	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Setup everything needed to handle exceptions from the IDT, including the IST
 | 
						|
 * exceptions which use paranoid_entry().
 | 
						|
 */
 | 
						|
void cpu_init_exception_handling(bool boot_cpu)
 | 
						|
{
 | 
						|
	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 | 
						|
	int cpu = raw_smp_processor_id();
 | 
						|
 | 
						|
	/* paranoid_entry() gets the CPU number from the GDT */
 | 
						|
	setup_getcpu(cpu);
 | 
						|
 | 
						|
	/* For IDT mode, IST vectors need to be set in TSS. */
 | 
						|
	if (!cpu_feature_enabled(X86_FEATURE_FRED))
 | 
						|
		tss_setup_ist(tss);
 | 
						|
	tss_setup_io_bitmap(tss);
 | 
						|
	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
 | 
						|
 | 
						|
	load_TR_desc();
 | 
						|
 | 
						|
	/* GHCB needs to be setup to handle #VC. */
 | 
						|
	setup_ghcb();
 | 
						|
 | 
						|
	if (cpu_feature_enabled(X86_FEATURE_FRED)) {
 | 
						|
		/* The boot CPU has enabled FRED during early boot */
 | 
						|
		if (!boot_cpu)
 | 
						|
			cpu_init_fred_exceptions();
 | 
						|
 | 
						|
		cpu_init_fred_rsps();
 | 
						|
	} else {
 | 
						|
		load_current_idt();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init cpu_init_replace_early_idt(void)
 | 
						|
{
 | 
						|
	if (cpu_feature_enabled(X86_FEATURE_FRED))
 | 
						|
		cpu_init_fred_exceptions();
 | 
						|
	else
 | 
						|
		idt_setup_early_pf();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * cpu_init() initializes state that is per-CPU. Some data is already
 | 
						|
 * initialized (naturally) in the bootstrap process, such as the GDT.  We
 | 
						|
 * reload it nevertheless, this function acts as a 'CPU state barrier',
 | 
						|
 * nothing should get across.
 | 
						|
 */
 | 
						|
void cpu_init(void)
 | 
						|
{
 | 
						|
	struct task_struct *cur = current;
 | 
						|
	int cpu = raw_smp_processor_id();
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	if (this_cpu_read(numa_node) == 0 &&
 | 
						|
	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
 | 
						|
		set_numa_node(early_cpu_to_node(cpu));
 | 
						|
#endif
 | 
						|
	pr_debug("Initializing CPU#%d\n", cpu);
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
 | 
						|
	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
 | 
						|
		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_X86_64)) {
 | 
						|
		loadsegment(fs, 0);
 | 
						|
		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
 | 
						|
		syscall_init();
 | 
						|
 | 
						|
		wrmsrq(MSR_FS_BASE, 0);
 | 
						|
		wrmsrq(MSR_KERNEL_GS_BASE, 0);
 | 
						|
		barrier();
 | 
						|
 | 
						|
		x2apic_setup();
 | 
						|
 | 
						|
		intel_posted_msi_init();
 | 
						|
	}
 | 
						|
 | 
						|
	mmgrab(&init_mm);
 | 
						|
	cur->active_mm = &init_mm;
 | 
						|
	BUG_ON(cur->mm);
 | 
						|
	initialize_tlbstate_and_flush();
 | 
						|
	enter_lazy_tlb(&init_mm, cur);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * sp0 points to the entry trampoline stack regardless of what task
 | 
						|
	 * is running.
 | 
						|
	 */
 | 
						|
	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
 | 
						|
 | 
						|
	load_mm_ldt(&init_mm);
 | 
						|
 | 
						|
	clear_all_debug_regs();
 | 
						|
	dbg_restore_debug_regs();
 | 
						|
 | 
						|
	doublefault_init_cpu_tss();
 | 
						|
 | 
						|
	if (is_uv_system())
 | 
						|
		uv_cpu_init();
 | 
						|
 | 
						|
	load_fixmap_gdt(cpu);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MICROCODE_LATE_LOADING
 | 
						|
/**
 | 
						|
 * store_cpu_caps() - Store a snapshot of CPU capabilities
 | 
						|
 * @curr_info: Pointer where to store it
 | 
						|
 *
 | 
						|
 * Returns: None
 | 
						|
 */
 | 
						|
void store_cpu_caps(struct cpuinfo_x86 *curr_info)
 | 
						|
{
 | 
						|
	/* Reload CPUID max function as it might've changed. */
 | 
						|
	curr_info->cpuid_level = cpuid_eax(0);
 | 
						|
 | 
						|
	/* Copy all capability leafs and pick up the synthetic ones. */
 | 
						|
	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
 | 
						|
	       sizeof(curr_info->x86_capability));
 | 
						|
 | 
						|
	/* Get the hardware CPUID leafs */
 | 
						|
	get_cpu_cap(curr_info);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * microcode_check() - Check if any CPU capabilities changed after an update.
 | 
						|
 * @prev_info:	CPU capabilities stored before an update.
 | 
						|
 *
 | 
						|
 * The microcode loader calls this upon late microcode load to recheck features,
 | 
						|
 * only when microcode has been updated. Caller holds and CPU hotplug lock.
 | 
						|
 *
 | 
						|
 * Return: None
 | 
						|
 */
 | 
						|
void microcode_check(struct cpuinfo_x86 *prev_info)
 | 
						|
{
 | 
						|
	struct cpuinfo_x86 curr_info;
 | 
						|
 | 
						|
	perf_check_microcode();
 | 
						|
 | 
						|
	amd_check_microcode();
 | 
						|
 | 
						|
	store_cpu_caps(&curr_info);
 | 
						|
 | 
						|
	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
 | 
						|
		    sizeof(prev_info->x86_capability)))
 | 
						|
		return;
 | 
						|
 | 
						|
	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
 | 
						|
	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Invoked from core CPU hotplug code after hotplug operations
 | 
						|
 */
 | 
						|
void arch_smt_update(void)
 | 
						|
{
 | 
						|
	/* Handle the speculative execution misfeatures */
 | 
						|
	cpu_bugs_smt_update();
 | 
						|
	/* Check whether IPI broadcasting can be enabled */
 | 
						|
	apic_smt_update();
 | 
						|
}
 | 
						|
 | 
						|
void __init arch_cpu_finalize_init(void)
 | 
						|
{
 | 
						|
	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
 | 
						|
 | 
						|
	identify_boot_cpu();
 | 
						|
 | 
						|
	select_idle_routine();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * identify_boot_cpu() initialized SMT support information, let the
 | 
						|
	 * core code know.
 | 
						|
	 */
 | 
						|
	cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
 | 
						|
 | 
						|
	if (!IS_ENABLED(CONFIG_SMP)) {
 | 
						|
		pr_info("CPU: ");
 | 
						|
		print_cpu_info(&boot_cpu_data);
 | 
						|
	}
 | 
						|
 | 
						|
	cpu_select_mitigations();
 | 
						|
 | 
						|
	arch_smt_update();
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_X86_32)) {
 | 
						|
		/*
 | 
						|
		 * Check whether this is a real i386 which is not longer
 | 
						|
		 * supported and fixup the utsname.
 | 
						|
		 */
 | 
						|
		if (boot_cpu_data.x86 < 4)
 | 
						|
			panic("Kernel requires i486+ for 'invlpg' and other features");
 | 
						|
 | 
						|
		init_utsname()->machine[1] =
 | 
						|
			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Must be before alternatives because it might set or clear
 | 
						|
	 * feature bits.
 | 
						|
	 */
 | 
						|
	fpu__init_system();
 | 
						|
	fpu__init_cpu();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that access to the per CPU representation has the initial
 | 
						|
	 * boot CPU configuration.
 | 
						|
	 */
 | 
						|
	*c = boot_cpu_data;
 | 
						|
	c->initialized = true;
 | 
						|
 | 
						|
	alternative_instructions();
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_X86_64)) {
 | 
						|
		unsigned long USER_PTR_MAX = TASK_SIZE_MAX;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Enable this when LAM is gated on LASS support
 | 
						|
		if (cpu_feature_enabled(X86_FEATURE_LAM))
 | 
						|
			USER_PTR_MAX = (1ul << 63) - PAGE_SIZE;
 | 
						|
		 */
 | 
						|
		runtime_const_init(ptr, USER_PTR_MAX);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Make sure the first 2MB area is not mapped by huge pages
 | 
						|
		 * There are typically fixed size MTRRs in there and overlapping
 | 
						|
		 * MTRRs into large pages causes slow downs.
 | 
						|
		 *
 | 
						|
		 * Right now we don't do that with gbpages because there seems
 | 
						|
		 * very little benefit for that case.
 | 
						|
		 */
 | 
						|
		if (!direct_gbpages)
 | 
						|
			set_memory_4k((unsigned long)__va(0), 1);
 | 
						|
	} else {
 | 
						|
		fpu__init_check_bugs();
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This needs to be called before any devices perform DMA
 | 
						|
	 * operations that might use the SWIOTLB bounce buffers. It will
 | 
						|
	 * mark the bounce buffers as decrypted so that their usage will
 | 
						|
	 * not cause "plain-text" data to be decrypted when accessed. It
 | 
						|
	 * must be called after late_time_init() so that Hyper-V x86/x64
 | 
						|
	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
 | 
						|
	 */
 | 
						|
	mem_encrypt_init();
 | 
						|
}
 |