mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 d2080c7a00
			
		
	
	
		d2080c7a00
		
	
	
	
	
		
			
			We can now rename 'ret2' to 'ret' and use it for generic errors. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			1640 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1640 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2008 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/psi.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/shrinker.h>
 | |
| #include <crypto/hash.h>
 | |
| #include "misc.h"
 | |
| #include "ctree.h"
 | |
| #include "fs.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "bio.h"
 | |
| #include "ordered-data.h"
 | |
| #include "compression.h"
 | |
| #include "extent_io.h"
 | |
| #include "extent_map.h"
 | |
| #include "subpage.h"
 | |
| #include "messages.h"
 | |
| #include "super.h"
 | |
| 
 | |
| static struct bio_set btrfs_compressed_bioset;
 | |
| 
 | |
| static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
 | |
| 
 | |
| const char* btrfs_compress_type2str(enum btrfs_compression_type type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case BTRFS_COMPRESS_ZLIB:
 | |
| 	case BTRFS_COMPRESS_LZO:
 | |
| 	case BTRFS_COMPRESS_ZSTD:
 | |
| 	case BTRFS_COMPRESS_NONE:
 | |
| 		return btrfs_compress_types[type];
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	return container_of(bbio, struct compressed_bio, bbio);
 | |
| }
 | |
| 
 | |
| static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
 | |
| 						   u64 start, blk_opf_t op,
 | |
| 						   btrfs_bio_end_io_t end_io)
 | |
| {
 | |
| 	struct btrfs_bio *bbio;
 | |
| 
 | |
| 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
 | |
| 					  GFP_NOFS, &btrfs_compressed_bioset));
 | |
| 	btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
 | |
| 	bbio->inode = inode;
 | |
| 	bbio->file_offset = start;
 | |
| 	return to_compressed_bio(bbio);
 | |
| }
 | |
| 
 | |
| bool btrfs_compress_is_valid_type(const char *str, size_t len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
 | |
| 		size_t comp_len = strlen(btrfs_compress_types[i]);
 | |
| 
 | |
| 		if (len < comp_len)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int compression_compress_pages(int type, struct list_head *ws,
 | |
| 				      struct address_space *mapping, u64 start,
 | |
| 				      struct folio **folios, unsigned long *out_folios,
 | |
| 				      unsigned long *total_in, unsigned long *total_out)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case BTRFS_COMPRESS_ZLIB:
 | |
| 		return zlib_compress_folios(ws, mapping, start, folios,
 | |
| 					    out_folios, total_in, total_out);
 | |
| 	case BTRFS_COMPRESS_LZO:
 | |
| 		return lzo_compress_folios(ws, mapping, start, folios,
 | |
| 					   out_folios, total_in, total_out);
 | |
| 	case BTRFS_COMPRESS_ZSTD:
 | |
| 		return zstd_compress_folios(ws, mapping, start, folios,
 | |
| 					    out_folios, total_in, total_out);
 | |
| 	case BTRFS_COMPRESS_NONE:
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * This can happen when compression races with remount setting
 | |
| 		 * it to 'no compress', while caller doesn't call
 | |
| 		 * inode_need_compress() to check if we really need to
 | |
| 		 * compress.
 | |
| 		 *
 | |
| 		 * Not a big deal, just need to inform caller that we
 | |
| 		 * haven't allocated any pages yet.
 | |
| 		 */
 | |
| 		*out_folios = 0;
 | |
| 		return -E2BIG;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int compression_decompress_bio(struct list_head *ws,
 | |
| 				      struct compressed_bio *cb)
 | |
| {
 | |
| 	switch (cb->compress_type) {
 | |
| 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 | |
| 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 | |
| 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 | |
| 	case BTRFS_COMPRESS_NONE:
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * This can't happen, the type is validated several times
 | |
| 		 * before we get here.
 | |
| 		 */
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int compression_decompress(int type, struct list_head *ws,
 | |
| 		const u8 *data_in, struct folio *dest_folio,
 | |
| 		unsigned long dest_pgoff, size_t srclen, size_t destlen)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio,
 | |
| 						dest_pgoff, srclen, destlen);
 | |
| 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_folio,
 | |
| 						dest_pgoff, srclen, destlen);
 | |
| 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio,
 | |
| 						dest_pgoff, srclen, destlen);
 | |
| 	case BTRFS_COMPRESS_NONE:
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * This can't happen, the type is validated several times
 | |
| 		 * before we get here.
 | |
| 		 */
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_free_compressed_folios(struct compressed_bio *cb)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < cb->nr_folios; i++)
 | |
| 		btrfs_free_compr_folio(cb->compressed_folios[i]);
 | |
| 	kfree(cb->compressed_folios);
 | |
| }
 | |
| 
 | |
| static int btrfs_decompress_bio(struct compressed_bio *cb);
 | |
| 
 | |
| /*
 | |
|  * Global cache of last unused pages for compression/decompression.
 | |
|  */
 | |
| static struct btrfs_compr_pool {
 | |
| 	struct shrinker *shrinker;
 | |
| 	spinlock_t lock;
 | |
| 	struct list_head list;
 | |
| 	int count;
 | |
| 	int thresh;
 | |
| } compr_pool;
 | |
| 
 | |
| static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must not read the values more than once if 'ret' gets expanded in
 | |
| 	 * the return statement so we don't accidentally return a negative
 | |
| 	 * number, even if the first condition finds it positive.
 | |
| 	 */
 | |
| 	ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
 | |
| 
 | |
| 	return ret > 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
 | |
| {
 | |
| 	struct list_head remove;
 | |
| 	struct list_head *tmp, *next;
 | |
| 	int freed;
 | |
| 
 | |
| 	if (compr_pool.count == 0)
 | |
| 		return SHRINK_STOP;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&remove);
 | |
| 
 | |
| 	/* For now, just simply drain the whole list. */
 | |
| 	spin_lock(&compr_pool.lock);
 | |
| 	list_splice_init(&compr_pool.list, &remove);
 | |
| 	freed = compr_pool.count;
 | |
| 	compr_pool.count = 0;
 | |
| 	spin_unlock(&compr_pool.lock);
 | |
| 
 | |
| 	list_for_each_safe(tmp, next, &remove) {
 | |
| 		struct page *page = list_entry(tmp, struct page, lru);
 | |
| 
 | |
| 		ASSERT(page_ref_count(page) == 1);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common wrappers for page allocation from compression wrappers
 | |
|  */
 | |
| struct folio *btrfs_alloc_compr_folio(void)
 | |
| {
 | |
| 	struct folio *folio = NULL;
 | |
| 
 | |
| 	spin_lock(&compr_pool.lock);
 | |
| 	if (compr_pool.count > 0) {
 | |
| 		folio = list_first_entry(&compr_pool.list, struct folio, lru);
 | |
| 		list_del_init(&folio->lru);
 | |
| 		compr_pool.count--;
 | |
| 	}
 | |
| 	spin_unlock(&compr_pool.lock);
 | |
| 
 | |
| 	if (folio)
 | |
| 		return folio;
 | |
| 
 | |
| 	return folio_alloc(GFP_NOFS, 0);
 | |
| }
 | |
| 
 | |
| void btrfs_free_compr_folio(struct folio *folio)
 | |
| {
 | |
| 	bool do_free = false;
 | |
| 
 | |
| 	spin_lock(&compr_pool.lock);
 | |
| 	if (compr_pool.count > compr_pool.thresh) {
 | |
| 		do_free = true;
 | |
| 	} else {
 | |
| 		list_add(&folio->lru, &compr_pool.list);
 | |
| 		compr_pool.count++;
 | |
| 	}
 | |
| 	spin_unlock(&compr_pool.lock);
 | |
| 
 | |
| 	if (!do_free)
 | |
| 		return;
 | |
| 
 | |
| 	ASSERT(folio_ref_count(folio) == 1);
 | |
| 	folio_put(folio);
 | |
| }
 | |
| 
 | |
| static void end_bbio_compressed_read(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct compressed_bio *cb = to_compressed_bio(bbio);
 | |
| 	blk_status_t status = bbio->bio.bi_status;
 | |
| 
 | |
| 	if (!status)
 | |
| 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
 | |
| 
 | |
| 	btrfs_free_compressed_folios(cb);
 | |
| 	btrfs_bio_end_io(cb->orig_bbio, status);
 | |
| 	bio_put(&bbio->bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the writeback bits on all of the file
 | |
|  * pages for a compressed write
 | |
|  */
 | |
| static noinline void end_compressed_writeback(const struct compressed_bio *cb)
 | |
| {
 | |
| 	struct inode *inode = &cb->bbio.inode->vfs_inode;
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	unsigned long index = cb->start >> PAGE_SHIFT;
 | |
| 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 | |
| 	struct folio_batch fbatch;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = blk_status_to_errno(cb->bbio.bio.bi_status);
 | |
| 	if (ret)
 | |
| 		mapping_set_error(inode->i_mapping, ret);
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 	while (index <= end_index) {
 | |
| 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
 | |
| 				&fbatch);
 | |
| 
 | |
| 		if (ret == 0)
 | |
| 			return;
 | |
| 
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 
 | |
| 			btrfs_folio_clamp_clear_writeback(fs_info, folio,
 | |
| 							  cb->start, cb->len);
 | |
| 		}
 | |
| 		folio_batch_release(&fbatch);
 | |
| 	}
 | |
| 	/* the inode may be gone now */
 | |
| }
 | |
| 
 | |
| static void btrfs_finish_compressed_write_work(struct work_struct *work)
 | |
| {
 | |
| 	struct compressed_bio *cb =
 | |
| 		container_of(work, struct compressed_bio, write_end_work);
 | |
| 
 | |
| 	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
 | |
| 				    cb->bbio.bio.bi_status == BLK_STS_OK);
 | |
| 
 | |
| 	if (cb->writeback)
 | |
| 		end_compressed_writeback(cb);
 | |
| 	/* Note, our inode could be gone now */
 | |
| 
 | |
| 	btrfs_free_compressed_folios(cb);
 | |
| 	bio_put(&cb->bbio.bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the cleanup once all the compressed pages hit the disk.  This will clear
 | |
|  * writeback on the file pages and free the compressed pages.
 | |
|  *
 | |
|  * This also calls the writeback end hooks for the file pages so that metadata
 | |
|  * and checksums can be updated in the file.
 | |
|  */
 | |
| static void end_bbio_compressed_write(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct compressed_bio *cb = to_compressed_bio(bbio);
 | |
| 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
 | |
| 
 | |
| 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
 | |
| }
 | |
| 
 | |
| static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb)
 | |
| {
 | |
| 	struct bio *bio = &cb->bbio.bio;
 | |
| 	u32 offset = 0;
 | |
| 
 | |
| 	while (offset < cb->compressed_len) {
 | |
| 		int ret;
 | |
| 		u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
 | |
| 
 | |
| 		/* Maximum compressed extent is smaller than bio size limit. */
 | |
| 		ret = bio_add_folio(bio, cb->compressed_folios[offset >> PAGE_SHIFT],
 | |
| 				    len, 0);
 | |
| 		ASSERT(ret);
 | |
| 		offset += len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * worker function to build and submit bios for previously compressed pages.
 | |
|  * The corresponding pages in the inode should be marked for writeback
 | |
|  * and the compressed pages should have a reference on them for dropping
 | |
|  * when the IO is complete.
 | |
|  *
 | |
|  * This also checksums the file bytes and gets things ready for
 | |
|  * the end io hooks.
 | |
|  */
 | |
| void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
 | |
| 				   struct folio **compressed_folios,
 | |
| 				   unsigned int nr_folios,
 | |
| 				   blk_opf_t write_flags,
 | |
| 				   bool writeback)
 | |
| {
 | |
| 	struct btrfs_inode *inode = ordered->inode;
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct compressed_bio *cb;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
 | |
| 	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
 | |
| 
 | |
| 	cb = alloc_compressed_bio(inode, ordered->file_offset,
 | |
| 				  REQ_OP_WRITE | write_flags,
 | |
| 				  end_bbio_compressed_write);
 | |
| 	cb->start = ordered->file_offset;
 | |
| 	cb->len = ordered->num_bytes;
 | |
| 	cb->compressed_folios = compressed_folios;
 | |
| 	cb->compressed_len = ordered->disk_num_bytes;
 | |
| 	cb->writeback = writeback;
 | |
| 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
 | |
| 	cb->nr_folios = nr_folios;
 | |
| 	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
 | |
| 	cb->bbio.ordered = ordered;
 | |
| 	btrfs_add_compressed_bio_folios(cb);
 | |
| 
 | |
| 	btrfs_submit_bbio(&cb->bbio, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add extra pages in the same compressed file extent so that we don't need to
 | |
|  * re-read the same extent again and again.
 | |
|  *
 | |
|  * NOTE: this won't work well for subpage, as for subpage read, we lock the
 | |
|  * full page then submit bio for each compressed/regular extents.
 | |
|  *
 | |
|  * This means, if we have several sectors in the same page points to the same
 | |
|  * on-disk compressed data, we will re-read the same extent many times and
 | |
|  * this function can only help for the next page.
 | |
|  */
 | |
| static noinline int add_ra_bio_pages(struct inode *inode,
 | |
| 				     u64 compressed_end,
 | |
| 				     struct compressed_bio *cb,
 | |
| 				     int *memstall, unsigned long *pflags)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	unsigned long end_index;
 | |
| 	struct bio *orig_bio = &cb->orig_bbio->bio;
 | |
| 	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
 | |
| 	u64 isize = i_size_read(inode);
 | |
| 	int ret;
 | |
| 	struct folio *folio;
 | |
| 	struct extent_map *em;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct extent_io_tree *tree;
 | |
| 	int sectors_missed = 0;
 | |
| 
 | |
| 	em_tree = &BTRFS_I(inode)->extent_tree;
 | |
| 	tree = &BTRFS_I(inode)->io_tree;
 | |
| 
 | |
| 	if (isize == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For current subpage support, we only support 64K page size,
 | |
| 	 * which means maximum compressed extent size (128K) is just 2x page
 | |
| 	 * size.
 | |
| 	 * This makes readahead less effective, so here disable readahead for
 | |
| 	 * subpage for now, until full compressed write is supported.
 | |
| 	 */
 | |
| 	if (fs_info->sectorsize < PAGE_SIZE)
 | |
| 		return 0;
 | |
| 
 | |
| 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	while (cur < compressed_end) {
 | |
| 		u64 page_end;
 | |
| 		u64 pg_index = cur >> PAGE_SHIFT;
 | |
| 		u32 add_size;
 | |
| 
 | |
| 		if (pg_index > end_index)
 | |
| 			break;
 | |
| 
 | |
| 		folio = filemap_get_folio(mapping, pg_index);
 | |
| 		if (!IS_ERR(folio)) {
 | |
| 			u64 folio_sz = folio_size(folio);
 | |
| 			u64 offset = offset_in_folio(folio, cur);
 | |
| 
 | |
| 			folio_put(folio);
 | |
| 			sectors_missed += (folio_sz - offset) >>
 | |
| 					  fs_info->sectorsize_bits;
 | |
| 
 | |
| 			/* Beyond threshold, no need to continue */
 | |
| 			if (sectors_missed > 4)
 | |
| 				break;
 | |
| 
 | |
| 			/*
 | |
| 			 * Jump to next page start as we already have page for
 | |
| 			 * current offset.
 | |
| 			 */
 | |
| 			cur += (folio_sz - offset);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		folio = filemap_alloc_folio(mapping_gfp_constraint(mapping,
 | |
| 								   ~__GFP_FS), 0);
 | |
| 		if (!folio)
 | |
| 			break;
 | |
| 
 | |
| 		if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) {
 | |
| 			/* There is already a page, skip to page end */
 | |
| 			cur += folio_size(folio);
 | |
| 			folio_put(folio);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!*memstall && folio_test_workingset(folio)) {
 | |
| 			psi_memstall_enter(pflags);
 | |
| 			*memstall = 1;
 | |
| 		}
 | |
| 
 | |
| 		ret = set_folio_extent_mapped(folio);
 | |
| 		if (ret < 0) {
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1;
 | |
| 		btrfs_lock_extent(tree, cur, page_end, NULL);
 | |
| 		read_lock(&em_tree->lock);
 | |
| 		em = btrfs_lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
 | |
| 		read_unlock(&em_tree->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * At this point, we have a locked page in the page cache for
 | |
| 		 * these bytes in the file.  But, we have to make sure they map
 | |
| 		 * to this compressed extent on disk.
 | |
| 		 */
 | |
| 		if (!em || cur < em->start ||
 | |
| 		    (cur + fs_info->sectorsize > btrfs_extent_map_end(em)) ||
 | |
| 		    (btrfs_extent_map_block_start(em) >> SECTOR_SHIFT) !=
 | |
| 		    orig_bio->bi_iter.bi_sector) {
 | |
| 			btrfs_free_extent_map(em);
 | |
| 			btrfs_unlock_extent(tree, cur, page_end, NULL);
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			break;
 | |
| 		}
 | |
| 		add_size = min(em->start + em->len, page_end + 1) - cur;
 | |
| 		btrfs_free_extent_map(em);
 | |
| 		btrfs_unlock_extent(tree, cur, page_end, NULL);
 | |
| 
 | |
| 		if (folio_contains(folio, end_index)) {
 | |
| 			size_t zero_offset = offset_in_folio(folio, isize);
 | |
| 
 | |
| 			if (zero_offset) {
 | |
| 				int zeros;
 | |
| 				zeros = folio_size(folio) - zero_offset;
 | |
| 				folio_zero_range(folio, zero_offset, zeros);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!bio_add_folio(orig_bio, folio, add_size,
 | |
| 				   offset_in_folio(folio, cur))) {
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If it's subpage, we also need to increase its
 | |
| 		 * subpage::readers number, as at endio we will decrease
 | |
| 		 * subpage::readers and to unlock the page.
 | |
| 		 */
 | |
| 		if (fs_info->sectorsize < PAGE_SIZE)
 | |
| 			btrfs_folio_set_lock(fs_info, folio, cur, add_size);
 | |
| 		folio_put(folio);
 | |
| 		cur += add_size;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for a compressed read, the bio we get passed has all the inode pages
 | |
|  * in it.  We don't actually do IO on those pages but allocate new ones
 | |
|  * to hold the compressed pages on disk.
 | |
|  *
 | |
|  * bio->bi_iter.bi_sector points to the compressed extent on disk
 | |
|  * bio->bi_io_vec points to all of the inode pages
 | |
|  *
 | |
|  * After the compressed pages are read, we copy the bytes into the
 | |
|  * bio we were passed and then call the bio end_io calls
 | |
|  */
 | |
| void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct btrfs_inode *inode = bbio->inode;
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct extent_map_tree *em_tree = &inode->extent_tree;
 | |
| 	struct compressed_bio *cb;
 | |
| 	unsigned int compressed_len;
 | |
| 	u64 file_offset = bbio->file_offset;
 | |
| 	u64 em_len;
 | |
| 	u64 em_start;
 | |
| 	struct extent_map *em;
 | |
| 	unsigned long pflags;
 | |
| 	int memstall = 0;
 | |
| 	blk_status_t status;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* we need the actual starting offset of this extent in the file */
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = btrfs_lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 	if (!em) {
 | |
| 		status = BLK_STS_IOERR;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(btrfs_extent_map_is_compressed(em));
 | |
| 	compressed_len = em->disk_num_bytes;
 | |
| 
 | |
| 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
 | |
| 				  end_bbio_compressed_read);
 | |
| 
 | |
| 	cb->start = em->start - em->offset;
 | |
| 	em_len = em->len;
 | |
| 	em_start = em->start;
 | |
| 
 | |
| 	cb->len = bbio->bio.bi_iter.bi_size;
 | |
| 	cb->compressed_len = compressed_len;
 | |
| 	cb->compress_type = btrfs_extent_map_compression(em);
 | |
| 	cb->orig_bbio = bbio;
 | |
| 
 | |
| 	btrfs_free_extent_map(em);
 | |
| 
 | |
| 	cb->nr_folios = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 | |
| 	cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct folio *), GFP_NOFS);
 | |
| 	if (!cb->compressed_folios) {
 | |
| 		status = BLK_STS_RESOURCE;
 | |
| 		goto out_free_bio;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_alloc_folio_array(cb->nr_folios, cb->compressed_folios);
 | |
| 	if (ret) {
 | |
| 		status = BLK_STS_RESOURCE;
 | |
| 		goto out_free_compressed_pages;
 | |
| 	}
 | |
| 
 | |
| 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
 | |
| 			 &pflags);
 | |
| 
 | |
| 	/* include any pages we added in add_ra-bio_pages */
 | |
| 	cb->len = bbio->bio.bi_iter.bi_size;
 | |
| 	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
 | |
| 	btrfs_add_compressed_bio_folios(cb);
 | |
| 
 | |
| 	if (memstall)
 | |
| 		psi_memstall_leave(&pflags);
 | |
| 
 | |
| 	btrfs_submit_bbio(&cb->bbio, 0);
 | |
| 	return;
 | |
| 
 | |
| out_free_compressed_pages:
 | |
| 	kfree(cb->compressed_folios);
 | |
| out_free_bio:
 | |
| 	bio_put(&cb->bbio.bio);
 | |
| out:
 | |
| 	btrfs_bio_end_io(bbio, status);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Heuristic uses systematic sampling to collect data from the input data
 | |
|  * range, the logic can be tuned by the following constants:
 | |
|  *
 | |
|  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 | |
|  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 | |
|  */
 | |
| #define SAMPLING_READ_SIZE	(16)
 | |
| #define SAMPLING_INTERVAL	(256)
 | |
| 
 | |
| /*
 | |
|  * For statistical analysis of the input data we consider bytes that form a
 | |
|  * Galois Field of 256 objects. Each object has an attribute count, ie. how
 | |
|  * many times the object appeared in the sample.
 | |
|  */
 | |
| #define BUCKET_SIZE		(256)
 | |
| 
 | |
| /*
 | |
|  * The size of the sample is based on a statistical sampling rule of thumb.
 | |
|  * The common way is to perform sampling tests as long as the number of
 | |
|  * elements in each cell is at least 5.
 | |
|  *
 | |
|  * Instead of 5, we choose 32 to obtain more accurate results.
 | |
|  * If the data contain the maximum number of symbols, which is 256, we obtain a
 | |
|  * sample size bound by 8192.
 | |
|  *
 | |
|  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 | |
|  * from up to 512 locations.
 | |
|  */
 | |
| #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 | |
| 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 | |
| 
 | |
| struct bucket_item {
 | |
| 	u32 count;
 | |
| };
 | |
| 
 | |
| struct heuristic_ws {
 | |
| 	/* Partial copy of input data */
 | |
| 	u8 *sample;
 | |
| 	u32 sample_size;
 | |
| 	/* Buckets store counters for each byte value */
 | |
| 	struct bucket_item *bucket;
 | |
| 	/* Sorting buffer */
 | |
| 	struct bucket_item *bucket_b;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| static struct workspace_manager heuristic_wsm;
 | |
| 
 | |
| static void free_heuristic_ws(struct list_head *ws)
 | |
| {
 | |
| 	struct heuristic_ws *workspace;
 | |
| 
 | |
| 	workspace = list_entry(ws, struct heuristic_ws, list);
 | |
| 
 | |
| 	kvfree(workspace->sample);
 | |
| 	kfree(workspace->bucket);
 | |
| 	kfree(workspace->bucket_b);
 | |
| 	kfree(workspace);
 | |
| }
 | |
| 
 | |
| static struct list_head *alloc_heuristic_ws(void)
 | |
| {
 | |
| 	struct heuristic_ws *ws;
 | |
| 
 | |
| 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 | |
| 	if (!ws)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 | |
| 	if (!ws->sample)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 | |
| 	if (!ws->bucket)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 | |
| 	if (!ws->bucket_b)
 | |
| 		goto fail;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ws->list);
 | |
| 	return &ws->list;
 | |
| fail:
 | |
| 	free_heuristic_ws(&ws->list);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| const struct btrfs_compress_op btrfs_heuristic_compress = {
 | |
| 	.workspace_manager = &heuristic_wsm,
 | |
| };
 | |
| 
 | |
| static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 | |
| 	/* The heuristic is represented as compression type 0 */
 | |
| 	&btrfs_heuristic_compress,
 | |
| 	&btrfs_zlib_compress,
 | |
| 	&btrfs_lzo_compress,
 | |
| 	&btrfs_zstd_compress,
 | |
| };
 | |
| 
 | |
| static struct list_head *alloc_workspace(int type, int level)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws();
 | |
| 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
 | |
| 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace();
 | |
| 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * This can't happen, the type is validated several times
 | |
| 		 * before we get here.
 | |
| 		 */
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_workspace(int type, struct list_head *ws)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
 | |
| 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
 | |
| 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
 | |
| 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * This can't happen, the type is validated several times
 | |
| 		 * before we get here.
 | |
| 		 */
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_init_workspace_manager(int type)
 | |
| {
 | |
| 	struct workspace_manager *wsm;
 | |
| 	struct list_head *workspace;
 | |
| 
 | |
| 	wsm = btrfs_compress_op[type]->workspace_manager;
 | |
| 	INIT_LIST_HEAD(&wsm->idle_ws);
 | |
| 	spin_lock_init(&wsm->ws_lock);
 | |
| 	atomic_set(&wsm->total_ws, 0);
 | |
| 	init_waitqueue_head(&wsm->ws_wait);
 | |
| 
 | |
| 	/*
 | |
| 	 * Preallocate one workspace for each compression type so we can
 | |
| 	 * guarantee forward progress in the worst case
 | |
| 	 */
 | |
| 	workspace = alloc_workspace(type, 0);
 | |
| 	if (IS_ERR(workspace)) {
 | |
| 		pr_warn(
 | |
| 	"BTRFS: cannot preallocate compression workspace, will try later\n");
 | |
| 	} else {
 | |
| 		atomic_set(&wsm->total_ws, 1);
 | |
| 		wsm->free_ws = 1;
 | |
| 		list_add(workspace, &wsm->idle_ws);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_cleanup_workspace_manager(int type)
 | |
| {
 | |
| 	struct workspace_manager *wsman;
 | |
| 	struct list_head *ws;
 | |
| 
 | |
| 	wsman = btrfs_compress_op[type]->workspace_manager;
 | |
| 	while (!list_empty(&wsman->idle_ws)) {
 | |
| 		ws = wsman->idle_ws.next;
 | |
| 		list_del(ws);
 | |
| 		free_workspace(type, ws);
 | |
| 		atomic_dec(&wsman->total_ws);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This finds an available workspace or allocates a new one.
 | |
|  * If it's not possible to allocate a new one, waits until there's one.
 | |
|  * Preallocation makes a forward progress guarantees and we do not return
 | |
|  * errors.
 | |
|  */
 | |
| struct list_head *btrfs_get_workspace(int type, int level)
 | |
| {
 | |
| 	struct workspace_manager *wsm;
 | |
| 	struct list_head *workspace;
 | |
| 	int cpus = num_online_cpus();
 | |
| 	unsigned nofs_flag;
 | |
| 	struct list_head *idle_ws;
 | |
| 	spinlock_t *ws_lock;
 | |
| 	atomic_t *total_ws;
 | |
| 	wait_queue_head_t *ws_wait;
 | |
| 	int *free_ws;
 | |
| 
 | |
| 	wsm = btrfs_compress_op[type]->workspace_manager;
 | |
| 	idle_ws	 = &wsm->idle_ws;
 | |
| 	ws_lock	 = &wsm->ws_lock;
 | |
| 	total_ws = &wsm->total_ws;
 | |
| 	ws_wait	 = &wsm->ws_wait;
 | |
| 	free_ws	 = &wsm->free_ws;
 | |
| 
 | |
| again:
 | |
| 	spin_lock(ws_lock);
 | |
| 	if (!list_empty(idle_ws)) {
 | |
| 		workspace = idle_ws->next;
 | |
| 		list_del(workspace);
 | |
| 		(*free_ws)--;
 | |
| 		spin_unlock(ws_lock);
 | |
| 		return workspace;
 | |
| 
 | |
| 	}
 | |
| 	if (atomic_read(total_ws) > cpus) {
 | |
| 		DEFINE_WAIT(wait);
 | |
| 
 | |
| 		spin_unlock(ws_lock);
 | |
| 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 | |
| 		if (atomic_read(total_ws) > cpus && !*free_ws)
 | |
| 			schedule();
 | |
| 		finish_wait(ws_wait, &wait);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	atomic_inc(total_ws);
 | |
| 	spin_unlock(ws_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
 | |
| 	 * to turn it off here because we might get called from the restricted
 | |
| 	 * context of btrfs_compress_bio/btrfs_compress_pages
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	workspace = alloc_workspace(type, level);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 
 | |
| 	if (IS_ERR(workspace)) {
 | |
| 		atomic_dec(total_ws);
 | |
| 		wake_up(ws_wait);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not return the error but go back to waiting. There's a
 | |
| 		 * workspace preallocated for each type and the compression
 | |
| 		 * time is bounded so we get to a workspace eventually. This
 | |
| 		 * makes our caller's life easier.
 | |
| 		 *
 | |
| 		 * To prevent silent and low-probability deadlocks (when the
 | |
| 		 * initial preallocation fails), check if there are any
 | |
| 		 * workspaces at all.
 | |
| 		 */
 | |
| 		if (atomic_read(total_ws) == 0) {
 | |
| 			static DEFINE_RATELIMIT_STATE(_rs,
 | |
| 					/* once per minute */ 60 * HZ,
 | |
| 					/* no burst */ 1);
 | |
| 
 | |
| 			if (__ratelimit(&_rs)) {
 | |
| 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 | |
| 			}
 | |
| 		}
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return workspace;
 | |
| }
 | |
| 
 | |
| static struct list_head *get_workspace(int type, int level)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
 | |
| 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
 | |
| 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
 | |
| 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * This can't happen, the type is validated several times
 | |
| 		 * before we get here.
 | |
| 		 */
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * put a workspace struct back on the list or free it if we have enough
 | |
|  * idle ones sitting around
 | |
|  */
 | |
| void btrfs_put_workspace(int type, struct list_head *ws)
 | |
| {
 | |
| 	struct workspace_manager *wsm;
 | |
| 	struct list_head *idle_ws;
 | |
| 	spinlock_t *ws_lock;
 | |
| 	atomic_t *total_ws;
 | |
| 	wait_queue_head_t *ws_wait;
 | |
| 	int *free_ws;
 | |
| 
 | |
| 	wsm = btrfs_compress_op[type]->workspace_manager;
 | |
| 	idle_ws	 = &wsm->idle_ws;
 | |
| 	ws_lock	 = &wsm->ws_lock;
 | |
| 	total_ws = &wsm->total_ws;
 | |
| 	ws_wait	 = &wsm->ws_wait;
 | |
| 	free_ws	 = &wsm->free_ws;
 | |
| 
 | |
| 	spin_lock(ws_lock);
 | |
| 	if (*free_ws <= num_online_cpus()) {
 | |
| 		list_add(ws, idle_ws);
 | |
| 		(*free_ws)++;
 | |
| 		spin_unlock(ws_lock);
 | |
| 		goto wake;
 | |
| 	}
 | |
| 	spin_unlock(ws_lock);
 | |
| 
 | |
| 	free_workspace(type, ws);
 | |
| 	atomic_dec(total_ws);
 | |
| wake:
 | |
| 	cond_wake_up(ws_wait);
 | |
| }
 | |
| 
 | |
| static void put_workspace(int type, struct list_head *ws)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
 | |
| 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
 | |
| 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
 | |
| 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * This can't happen, the type is validated several times
 | |
| 		 * before we get here.
 | |
| 		 */
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust @level according to the limits of the compression algorithm or
 | |
|  * fallback to default
 | |
|  */
 | |
| static int btrfs_compress_set_level(unsigned int type, int level)
 | |
| {
 | |
| 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
 | |
| 
 | |
| 	if (level == 0)
 | |
| 		level = ops->default_level;
 | |
| 	else
 | |
| 		level = min(max(level, ops->min_level), ops->max_level);
 | |
| 
 | |
| 	return level;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether the @level is within the valid range for the given type.
 | |
|  */
 | |
| bool btrfs_compress_level_valid(unsigned int type, int level)
 | |
| {
 | |
| 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
 | |
| 
 | |
| 	return ops->min_level <= level && level <= ops->max_level;
 | |
| }
 | |
| 
 | |
| /* Wrapper around find_get_page(), with extra error message. */
 | |
| int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start,
 | |
| 				     struct folio **in_folio_ret)
 | |
| {
 | |
| 	struct folio *in_folio;
 | |
| 
 | |
| 	/*
 | |
| 	 * The compressed write path should have the folio locked already, thus
 | |
| 	 * we only need to grab one reference.
 | |
| 	 */
 | |
| 	in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT);
 | |
| 	if (IS_ERR(in_folio)) {
 | |
| 		struct btrfs_inode *inode = BTRFS_I(mapping->host);
 | |
| 
 | |
| 		btrfs_crit(inode->root->fs_info,
 | |
| 		"failed to get page cache, root %lld ino %llu file offset %llu",
 | |
| 			   btrfs_root_id(inode->root), btrfs_ino(inode), start);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 	*in_folio_ret = in_folio;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given an address space and start and length, compress the bytes into @pages
 | |
|  * that are allocated on demand.
 | |
|  *
 | |
|  * @type_level is encoded algorithm and level, where level 0 means whatever
 | |
|  * default the algorithm chooses and is opaque here;
 | |
|  * - compression algo are 0-3
 | |
|  * - the level are bits 4-7
 | |
|  *
 | |
|  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 | |
|  * and returns number of actually allocated pages
 | |
|  *
 | |
|  * @total_in is used to return the number of bytes actually read.  It
 | |
|  * may be smaller than the input length if we had to exit early because we
 | |
|  * ran out of room in the pages array or because we cross the
 | |
|  * max_out threshold.
 | |
|  *
 | |
|  * @total_out is an in/out parameter, must be set to the input length and will
 | |
|  * be also used to return the total number of compressed bytes
 | |
|  */
 | |
| int btrfs_compress_folios(unsigned int type, int level, struct address_space *mapping,
 | |
| 			 u64 start, struct folio **folios, unsigned long *out_folios,
 | |
| 			 unsigned long *total_in, unsigned long *total_out)
 | |
| {
 | |
| 	const unsigned long orig_len = *total_out;
 | |
| 	struct list_head *workspace;
 | |
| 	int ret;
 | |
| 
 | |
| 	level = btrfs_compress_set_level(type, level);
 | |
| 	workspace = get_workspace(type, level);
 | |
| 	ret = compression_compress_pages(type, workspace, mapping, start, folios,
 | |
| 					 out_folios, total_in, total_out);
 | |
| 	/* The total read-in bytes should be no larger than the input. */
 | |
| 	ASSERT(*total_in <= orig_len);
 | |
| 	put_workspace(type, workspace);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_decompress_bio(struct compressed_bio *cb)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int ret;
 | |
| 	int type = cb->compress_type;
 | |
| 
 | |
| 	workspace = get_workspace(type, 0);
 | |
| 	ret = compression_decompress_bio(workspace, cb);
 | |
| 	put_workspace(type, workspace);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		zero_fill_bio(&cb->orig_bbio->bio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a less complex decompression routine.  Our compressed data fits in a
 | |
|  * single page, and we want to read a single page out of it.
 | |
|  * start_byte tells us the offset into the compressed data we're interested in
 | |
|  */
 | |
| int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio,
 | |
| 		     unsigned long dest_pgoff, size_t srclen, size_t destlen)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio);
 | |
| 	struct list_head *workspace;
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * The full destination page range should not exceed the page size.
 | |
| 	 * And the @destlen should not exceed sectorsize, as this is only called for
 | |
| 	 * inline file extents, which should not exceed sectorsize.
 | |
| 	 */
 | |
| 	ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
 | |
| 
 | |
| 	workspace = get_workspace(type, 0);
 | |
| 	ret = compression_decompress(type, workspace, data_in, dest_folio,
 | |
| 				     dest_pgoff, srclen, destlen);
 | |
| 	put_workspace(type, workspace);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __init btrfs_init_compress(void)
 | |
| {
 | |
| 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
 | |
| 			offsetof(struct compressed_bio, bbio.bio),
 | |
| 			BIOSET_NEED_BVECS))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
 | |
| 	if (!compr_pool.shrinker)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
 | |
| 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
 | |
| 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
 | |
| 	zstd_init_workspace_manager();
 | |
| 
 | |
| 	spin_lock_init(&compr_pool.lock);
 | |
| 	INIT_LIST_HEAD(&compr_pool.list);
 | |
| 	compr_pool.count = 0;
 | |
| 	/* 128K / 4K = 32, for 8 threads is 256 pages. */
 | |
| 	compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
 | |
| 	compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
 | |
| 	compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
 | |
| 	compr_pool.shrinker->batch = 32;
 | |
| 	compr_pool.shrinker->seeks = DEFAULT_SEEKS;
 | |
| 	shrinker_register(compr_pool.shrinker);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cold btrfs_exit_compress(void)
 | |
| {
 | |
| 	/* For now scan drains all pages and does not touch the parameters. */
 | |
| 	btrfs_compr_pool_scan(NULL, NULL);
 | |
| 	shrinker_free(compr_pool.shrinker);
 | |
| 
 | |
| 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
 | |
| 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
 | |
| 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
 | |
| 	zstd_cleanup_workspace_manager();
 | |
| 	bioset_exit(&btrfs_compressed_bioset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The bvec is a single page bvec from a bio that contains folios from a filemap.
 | |
|  *
 | |
|  * Since the folio may be a large one, and if the bv_page is not a head page of
 | |
|  * a large folio, then page->index is unreliable.
 | |
|  *
 | |
|  * Thus we need this helper to grab the proper file offset.
 | |
|  */
 | |
| static u64 file_offset_from_bvec(const struct bio_vec *bvec)
 | |
| {
 | |
| 	const struct page *page = bvec->bv_page;
 | |
| 	const struct folio *folio = page_folio(page);
 | |
| 
 | |
| 	return (page_pgoff(folio, page) << PAGE_SHIFT) + bvec->bv_offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy decompressed data from working buffer to pages.
 | |
|  *
 | |
|  * @buf:		The decompressed data buffer
 | |
|  * @buf_len:		The decompressed data length
 | |
|  * @decompressed:	Number of bytes that are already decompressed inside the
 | |
|  * 			compressed extent
 | |
|  * @cb:			The compressed extent descriptor
 | |
|  * @orig_bio:		The original bio that the caller wants to read for
 | |
|  *
 | |
|  * An easier to understand graph is like below:
 | |
|  *
 | |
|  * 		|<- orig_bio ->|     |<- orig_bio->|
 | |
|  * 	|<-------      full decompressed extent      ----->|
 | |
|  * 	|<-----------    @cb range   ---->|
 | |
|  * 	|			|<-- @buf_len -->|
 | |
|  * 	|<--- @decompressed --->|
 | |
|  *
 | |
|  * Note that, @cb can be a subpage of the full decompressed extent, but
 | |
|  * @cb->start always has the same as the orig_file_offset value of the full
 | |
|  * decompressed extent.
 | |
|  *
 | |
|  * When reading compressed extent, we have to read the full compressed extent,
 | |
|  * while @orig_bio may only want part of the range.
 | |
|  * Thus this function will ensure only data covered by @orig_bio will be copied
 | |
|  * to.
 | |
|  *
 | |
|  * Return 0 if we have copied all needed contents for @orig_bio.
 | |
|  * Return >0 if we need continue decompress.
 | |
|  */
 | |
| int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
 | |
| 			      struct compressed_bio *cb, u32 decompressed)
 | |
| {
 | |
| 	struct bio *orig_bio = &cb->orig_bbio->bio;
 | |
| 	/* Offset inside the full decompressed extent */
 | |
| 	u32 cur_offset;
 | |
| 
 | |
| 	cur_offset = decompressed;
 | |
| 	/* The main loop to do the copy */
 | |
| 	while (cur_offset < decompressed + buf_len) {
 | |
| 		struct bio_vec bvec;
 | |
| 		size_t copy_len;
 | |
| 		u32 copy_start;
 | |
| 		/* Offset inside the full decompressed extent */
 | |
| 		u32 bvec_offset;
 | |
| 		void *kaddr;
 | |
| 
 | |
| 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
 | |
| 		/*
 | |
| 		 * cb->start may underflow, but subtracting that value can still
 | |
| 		 * give us correct offset inside the full decompressed extent.
 | |
| 		 */
 | |
| 		bvec_offset = file_offset_from_bvec(&bvec) - cb->start;
 | |
| 
 | |
| 		/* Haven't reached the bvec range, exit */
 | |
| 		if (decompressed + buf_len <= bvec_offset)
 | |
| 			return 1;
 | |
| 
 | |
| 		copy_start = max(cur_offset, bvec_offset);
 | |
| 		copy_len = min(bvec_offset + bvec.bv_len,
 | |
| 			       decompressed + buf_len) - copy_start;
 | |
| 		ASSERT(copy_len);
 | |
| 
 | |
| 		/*
 | |
| 		 * Extra range check to ensure we didn't go beyond
 | |
| 		 * @buf + @buf_len.
 | |
| 		 */
 | |
| 		ASSERT(copy_start - decompressed < buf_len);
 | |
| 
 | |
| 		kaddr = bvec_kmap_local(&bvec);
 | |
| 		memcpy(kaddr, buf + copy_start - decompressed, copy_len);
 | |
| 		kunmap_local(kaddr);
 | |
| 
 | |
| 		cur_offset += copy_len;
 | |
| 		bio_advance(orig_bio, copy_len);
 | |
| 		/* Finished the bio */
 | |
| 		if (!orig_bio->bi_iter.bi_size)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shannon Entropy calculation
 | |
|  *
 | |
|  * Pure byte distribution analysis fails to determine compressibility of data.
 | |
|  * Try calculating entropy to estimate the average minimum number of bits
 | |
|  * needed to encode the sampled data.
 | |
|  *
 | |
|  * For convenience, return the percentage of needed bits, instead of amount of
 | |
|  * bits directly.
 | |
|  *
 | |
|  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 | |
|  *			    and can be compressible with high probability
 | |
|  *
 | |
|  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 | |
|  *
 | |
|  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 | |
|  */
 | |
| #define ENTROPY_LVL_ACEPTABLE		(65)
 | |
| #define ENTROPY_LVL_HIGH		(80)
 | |
| 
 | |
| /*
 | |
|  * For increasead precision in shannon_entropy calculation,
 | |
|  * let's do pow(n, M) to save more digits after comma:
 | |
|  *
 | |
|  * - maximum int bit length is 64
 | |
|  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 | |
|  * - 13 * 4 = 52 < 64		-> M = 4
 | |
|  *
 | |
|  * So use pow(n, 4).
 | |
|  */
 | |
| static inline u32 ilog2_w(u64 n)
 | |
| {
 | |
| 	return ilog2(n * n * n * n);
 | |
| }
 | |
| 
 | |
| static u32 shannon_entropy(struct heuristic_ws *ws)
 | |
| {
 | |
| 	const u32 entropy_max = 8 * ilog2_w(2);
 | |
| 	u32 entropy_sum = 0;
 | |
| 	u32 p, p_base, sz_base;
 | |
| 	u32 i;
 | |
| 
 | |
| 	sz_base = ilog2_w(ws->sample_size);
 | |
| 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
 | |
| 		p = ws->bucket[i].count;
 | |
| 		p_base = ilog2_w(p);
 | |
| 		entropy_sum += p * (sz_base - p_base);
 | |
| 	}
 | |
| 
 | |
| 	entropy_sum /= ws->sample_size;
 | |
| 	return entropy_sum * 100 / entropy_max;
 | |
| }
 | |
| 
 | |
| #define RADIX_BASE		4U
 | |
| #define COUNTERS_SIZE		(1U << RADIX_BASE)
 | |
| 
 | |
| static u8 get4bits(u64 num, int shift) {
 | |
| 	u8 low4bits;
 | |
| 
 | |
| 	num >>= shift;
 | |
| 	/* Reverse order */
 | |
| 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
 | |
| 	return low4bits;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use 4 bits as radix base
 | |
|  * Use 16 u32 counters for calculating new position in buf array
 | |
|  *
 | |
|  * @array     - array that will be sorted
 | |
|  * @array_buf - buffer array to store sorting results
 | |
|  *              must be equal in size to @array
 | |
|  * @num       - array size
 | |
|  */
 | |
| static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
 | |
| 		       int num)
 | |
| {
 | |
| 	u64 max_num;
 | |
| 	u64 buf_num;
 | |
| 	u32 counters[COUNTERS_SIZE];
 | |
| 	u32 new_addr;
 | |
| 	u32 addr;
 | |
| 	int bitlen;
 | |
| 	int shift;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try avoid useless loop iterations for small numbers stored in big
 | |
| 	 * counters.  Example: 48 33 4 ... in 64bit array
 | |
| 	 */
 | |
| 	max_num = array[0].count;
 | |
| 	for (i = 1; i < num; i++) {
 | |
| 		buf_num = array[i].count;
 | |
| 		if (buf_num > max_num)
 | |
| 			max_num = buf_num;
 | |
| 	}
 | |
| 
 | |
| 	buf_num = ilog2(max_num);
 | |
| 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
 | |
| 
 | |
| 	shift = 0;
 | |
| 	while (shift < bitlen) {
 | |
| 		memset(counters, 0, sizeof(counters));
 | |
| 
 | |
| 		for (i = 0; i < num; i++) {
 | |
| 			buf_num = array[i].count;
 | |
| 			addr = get4bits(buf_num, shift);
 | |
| 			counters[addr]++;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 1; i < COUNTERS_SIZE; i++)
 | |
| 			counters[i] += counters[i - 1];
 | |
| 
 | |
| 		for (i = num - 1; i >= 0; i--) {
 | |
| 			buf_num = array[i].count;
 | |
| 			addr = get4bits(buf_num, shift);
 | |
| 			counters[addr]--;
 | |
| 			new_addr = counters[addr];
 | |
| 			array_buf[new_addr] = array[i];
 | |
| 		}
 | |
| 
 | |
| 		shift += RADIX_BASE;
 | |
| 
 | |
| 		/*
 | |
| 		 * Normal radix expects to move data from a temporary array, to
 | |
| 		 * the main one.  But that requires some CPU time. Avoid that
 | |
| 		 * by doing another sort iteration to original array instead of
 | |
| 		 * memcpy()
 | |
| 		 */
 | |
| 		memset(counters, 0, sizeof(counters));
 | |
| 
 | |
| 		for (i = 0; i < num; i ++) {
 | |
| 			buf_num = array_buf[i].count;
 | |
| 			addr = get4bits(buf_num, shift);
 | |
| 			counters[addr]++;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 1; i < COUNTERS_SIZE; i++)
 | |
| 			counters[i] += counters[i - 1];
 | |
| 
 | |
| 		for (i = num - 1; i >= 0; i--) {
 | |
| 			buf_num = array_buf[i].count;
 | |
| 			addr = get4bits(buf_num, shift);
 | |
| 			counters[addr]--;
 | |
| 			new_addr = counters[addr];
 | |
| 			array[new_addr] = array_buf[i];
 | |
| 		}
 | |
| 
 | |
| 		shift += RADIX_BASE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Size of the core byte set - how many bytes cover 90% of the sample
 | |
|  *
 | |
|  * There are several types of structured binary data that use nearly all byte
 | |
|  * values. The distribution can be uniform and counts in all buckets will be
 | |
|  * nearly the same (eg. encrypted data). Unlikely to be compressible.
 | |
|  *
 | |
|  * Other possibility is normal (Gaussian) distribution, where the data could
 | |
|  * be potentially compressible, but we have to take a few more steps to decide
 | |
|  * how much.
 | |
|  *
 | |
|  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 | |
|  *                       compression algo can easy fix that
 | |
|  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 | |
|  *                       probability is not compressible
 | |
|  */
 | |
| #define BYTE_CORE_SET_LOW		(64)
 | |
| #define BYTE_CORE_SET_HIGH		(200)
 | |
| 
 | |
| static int byte_core_set_size(struct heuristic_ws *ws)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 coreset_sum = 0;
 | |
| 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
 | |
| 	struct bucket_item *bucket = ws->bucket;
 | |
| 
 | |
| 	/* Sort in reverse order */
 | |
| 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
 | |
| 
 | |
| 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
 | |
| 		coreset_sum += bucket[i].count;
 | |
| 
 | |
| 	if (coreset_sum > core_set_threshold)
 | |
| 		return i;
 | |
| 
 | |
| 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
 | |
| 		coreset_sum += bucket[i].count;
 | |
| 		if (coreset_sum > core_set_threshold)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Count byte values in buckets.
 | |
|  * This heuristic can detect textual data (configs, xml, json, html, etc).
 | |
|  * Because in most text-like data byte set is restricted to limited number of
 | |
|  * possible characters, and that restriction in most cases makes data easy to
 | |
|  * compress.
 | |
|  *
 | |
|  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 | |
|  *	less - compressible
 | |
|  *	more - need additional analysis
 | |
|  */
 | |
| #define BYTE_SET_THRESHOLD		(64)
 | |
| 
 | |
| static u32 byte_set_size(const struct heuristic_ws *ws)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 byte_set_size = 0;
 | |
| 
 | |
| 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
 | |
| 		if (ws->bucket[i].count > 0)
 | |
| 			byte_set_size++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Continue collecting count of byte values in buckets.  If the byte
 | |
| 	 * set size is bigger then the threshold, it's pointless to continue,
 | |
| 	 * the detection technique would fail for this type of data.
 | |
| 	 */
 | |
| 	for (; i < BUCKET_SIZE; i++) {
 | |
| 		if (ws->bucket[i].count > 0) {
 | |
| 			byte_set_size++;
 | |
| 			if (byte_set_size > BYTE_SET_THRESHOLD)
 | |
| 				return byte_set_size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return byte_set_size;
 | |
| }
 | |
| 
 | |
| static bool sample_repeated_patterns(struct heuristic_ws *ws)
 | |
| {
 | |
| 	const u32 half_of_sample = ws->sample_size / 2;
 | |
| 	const u8 *data = ws->sample;
 | |
| 
 | |
| 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
 | |
| }
 | |
| 
 | |
| static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
 | |
| 				     struct heuristic_ws *ws)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	u64 index, index_end;
 | |
| 	u32 i, curr_sample_pos;
 | |
| 	u8 *in_data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compression handles the input data by chunks of 128KiB
 | |
| 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
 | |
| 	 *
 | |
| 	 * We do the same for the heuristic and loop over the whole range.
 | |
| 	 *
 | |
| 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
 | |
| 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
 | |
| 	 */
 | |
| 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
 | |
| 		end = start + BTRFS_MAX_UNCOMPRESSED;
 | |
| 
 | |
| 	index = start >> PAGE_SHIFT;
 | |
| 	index_end = end >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* Don't miss unaligned end */
 | |
| 	if (!PAGE_ALIGNED(end))
 | |
| 		index_end++;
 | |
| 
 | |
| 	curr_sample_pos = 0;
 | |
| 	while (index < index_end) {
 | |
| 		page = find_get_page(inode->i_mapping, index);
 | |
| 		in_data = kmap_local_page(page);
 | |
| 		/* Handle case where the start is not aligned to PAGE_SIZE */
 | |
| 		i = start % PAGE_SIZE;
 | |
| 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
 | |
| 			/* Don't sample any garbage from the last page */
 | |
| 			if (start > end - SAMPLING_READ_SIZE)
 | |
| 				break;
 | |
| 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
 | |
| 					SAMPLING_READ_SIZE);
 | |
| 			i += SAMPLING_INTERVAL;
 | |
| 			start += SAMPLING_INTERVAL;
 | |
| 			curr_sample_pos += SAMPLING_READ_SIZE;
 | |
| 		}
 | |
| 		kunmap_local(in_data);
 | |
| 		put_page(page);
 | |
| 
 | |
| 		index++;
 | |
| 	}
 | |
| 
 | |
| 	ws->sample_size = curr_sample_pos;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compression heuristic.
 | |
|  *
 | |
|  * The following types of analysis can be performed:
 | |
|  * - detect mostly zero data
 | |
|  * - detect data with low "byte set" size (text, etc)
 | |
|  * - detect data with low/high "core byte" set
 | |
|  *
 | |
|  * Return non-zero if the compression should be done, 0 otherwise.
 | |
|  */
 | |
| int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end)
 | |
| {
 | |
| 	struct list_head *ws_list = get_workspace(0, 0);
 | |
| 	struct heuristic_ws *ws;
 | |
| 	u32 i;
 | |
| 	u8 byte;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ws = list_entry(ws_list, struct heuristic_ws, list);
 | |
| 
 | |
| 	heuristic_collect_sample(&inode->vfs_inode, start, end, ws);
 | |
| 
 | |
| 	if (sample_repeated_patterns(ws)) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
 | |
| 
 | |
| 	for (i = 0; i < ws->sample_size; i++) {
 | |
| 		byte = ws->sample[i];
 | |
| 		ws->bucket[byte].count++;
 | |
| 	}
 | |
| 
 | |
| 	i = byte_set_size(ws);
 | |
| 	if (i < BYTE_SET_THRESHOLD) {
 | |
| 		ret = 2;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	i = byte_core_set_size(ws);
 | |
| 	if (i <= BYTE_CORE_SET_LOW) {
 | |
| 		ret = 3;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (i >= BYTE_CORE_SET_HIGH) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	i = shannon_entropy(ws);
 | |
| 	if (i <= ENTROPY_LVL_ACEPTABLE) {
 | |
| 		ret = 4;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
 | |
| 	 * needed to give green light to compression.
 | |
| 	 *
 | |
| 	 * For now just assume that compression at that level is not worth the
 | |
| 	 * resources because:
 | |
| 	 *
 | |
| 	 * 1. it is possible to defrag the data later
 | |
| 	 *
 | |
| 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
 | |
| 	 * values, every bucket has counter at level ~54. The heuristic would
 | |
| 	 * be confused. This can happen when data have some internal repeated
 | |
| 	 * patterns like "abbacbbc...". This can be detected by analyzing
 | |
| 	 * pairs of bytes, which is too costly.
 | |
| 	 */
 | |
| 	if (i < ENTROPY_LVL_HIGH) {
 | |
| 		ret = 5;
 | |
| 		goto out;
 | |
| 	} else {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	put_workspace(0, ws_list);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert the compression suffix (eg. after "zlib" starting with ":") to
 | |
|  * level, unrecognized string will set the default level. Negative level
 | |
|  * numbers are allowed.
 | |
|  */
 | |
| int btrfs_compress_str2level(unsigned int type, const char *str)
 | |
| {
 | |
| 	int level = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!type)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (str[0] == ':') {
 | |
| 		ret = kstrtoint(str + 1, 10, &level);
 | |
| 		if (ret)
 | |
| 			level = 0;
 | |
| 	}
 | |
| 
 | |
| 	level = btrfs_compress_set_level(type, level);
 | |
| 
 | |
| 	return level;
 | |
| }
 |