mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 853b5727c9
			
		
	
	
		853b5727c9
		
	
	
	
	
		
			
			The type blk_status_t is from block layer and not related to checksums in our context. Use int internally and do the conversions to blk_status_t as needed in btrfs_submit_chunk(). Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			1351 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1351 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/bio.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <crypto/hash.h>
 | |
| #include "messages.h"
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "bio.h"
 | |
| #include "compression.h"
 | |
| #include "fs.h"
 | |
| #include "accessors.h"
 | |
| #include "file-item.h"
 | |
| 
 | |
| #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
 | |
| 				   sizeof(struct btrfs_item) * 2) / \
 | |
| 				  size) - 1))
 | |
| 
 | |
| #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
 | |
| 				       PAGE_SIZE))
 | |
| 
 | |
| /*
 | |
|  * Set inode's size according to filesystem options.
 | |
|  *
 | |
|  * @inode:      inode we want to update the disk_i_size for
 | |
|  * @new_i_size: i_size we want to set to, 0 if we use i_size
 | |
|  *
 | |
|  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
 | |
|  * returns as it is perfectly fine with a file that has holes without hole file
 | |
|  * extent items.
 | |
|  *
 | |
|  * However without NO_HOLES we need to only return the area that is contiguous
 | |
|  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
 | |
|  * to an extent that has a gap in between.
 | |
|  *
 | |
|  * Finally new_i_size should only be set in the case of truncate where we're not
 | |
|  * ready to use i_size_read() as the limiter yet.
 | |
|  */
 | |
| void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
 | |
| {
 | |
| 	u64 start, end, i_size;
 | |
| 	bool found;
 | |
| 
 | |
| 	spin_lock(&inode->lock);
 | |
| 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
 | |
| 	if (!inode->file_extent_tree) {
 | |
| 		inode->disk_i_size = i_size;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	found = btrfs_find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
 | |
| 						 &end, EXTENT_DIRTY);
 | |
| 	if (found && start == 0)
 | |
| 		i_size = min(i_size, end + 1);
 | |
| 	else
 | |
| 		i_size = 0;
 | |
| 	inode->disk_i_size = i_size;
 | |
| out_unlock:
 | |
| 	spin_unlock(&inode->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark range within a file as having a new extent inserted.
 | |
|  *
 | |
|  * @inode: inode being modified
 | |
|  * @start: start file offset of the file extent we've inserted
 | |
|  * @len:   logical length of the file extent item
 | |
|  *
 | |
|  * Call when we are inserting a new file extent where there was none before.
 | |
|  * Does not need to call this in the case where we're replacing an existing file
 | |
|  * extent, however if not sure it's fine to call this multiple times.
 | |
|  *
 | |
|  * The start and len must match the file extent item, so thus must be sectorsize
 | |
|  * aligned.
 | |
|  */
 | |
| int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
 | |
| 				      u64 len)
 | |
| {
 | |
| 	if (!inode->file_extent_tree)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (len == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
 | |
| 
 | |
| 	return btrfs_set_extent_bit(inode->file_extent_tree, start, start + len - 1,
 | |
| 				    EXTENT_DIRTY, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark an inode range as not having a backing extent.
 | |
|  *
 | |
|  * @inode: inode being modified
 | |
|  * @start: start file offset of the file extent we've inserted
 | |
|  * @len:   logical length of the file extent item
 | |
|  *
 | |
|  * Called when we drop a file extent, for example when we truncate.  Doesn't
 | |
|  * need to be called for cases where we're replacing a file extent, like when
 | |
|  * we've COWed a file extent.
 | |
|  *
 | |
|  * The start and len must match the file extent item, so thus must be sectorsize
 | |
|  * aligned.
 | |
|  */
 | |
| int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 | |
| 					u64 len)
 | |
| {
 | |
| 	if (!inode->file_extent_tree)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (len == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 | |
| 	       len == (u64)-1);
 | |
| 
 | |
| 	return btrfs_clear_extent_bit(inode->file_extent_tree, start,
 | |
| 				      start + len - 1, EXTENT_DIRTY, NULL);
 | |
| }
 | |
| 
 | |
| static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
 | |
| {
 | |
| 	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
 | |
| 
 | |
| 	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
 | |
| }
 | |
| 
 | |
| static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
 | |
| {
 | |
| 	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
 | |
| 
 | |
| 	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
 | |
| }
 | |
| 
 | |
| static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
 | |
| 				       fs_info->csum_size);
 | |
| 
 | |
| 	return csum_size_to_bytes(fs_info, max_csum_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the total size needed to allocate for an ordered sum structure
 | |
|  * spanning @bytes in the file.
 | |
|  */
 | |
| static int btrfs_ordered_sum_size(const struct btrfs_fs_info *fs_info, unsigned long bytes)
 | |
| {
 | |
| 	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
 | |
| }
 | |
| 
 | |
| int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root,
 | |
| 			     u64 objectid, u64 pos, u64 num_bytes)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_file_extent_item *item;
 | |
| 	struct btrfs_key file_key;
 | |
| 	BTRFS_PATH_AUTO_FREE(path);
 | |
| 	struct extent_buffer *leaf;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	file_key.objectid = objectid;
 | |
| 	file_key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	file_key.offset = pos;
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 | |
| 				      sizeof(*item));
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	leaf = path->nodes[0];
 | |
| 	item = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 			      struct btrfs_file_extent_item);
 | |
| 	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
 | |
| 	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
 | |
| 	btrfs_set_file_extent_offset(leaf, item, 0);
 | |
| 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 | |
| 	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
 | |
| 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 | |
| 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 | |
| 	btrfs_set_file_extent_compression(leaf, item, 0);
 | |
| 	btrfs_set_file_extent_encryption(leaf, item, 0);
 | |
| 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct btrfs_csum_item *
 | |
| btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 | |
| 		  struct btrfs_root *root,
 | |
| 		  struct btrfs_path *path,
 | |
| 		  u64 bytenr, int cow)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int ret;
 | |
| 	struct btrfs_key file_key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_csum_item *item;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u64 csum_offset = 0;
 | |
| 	const u32 csum_size = fs_info->csum_size;
 | |
| 	int csums_in_item;
 | |
| 
 | |
| 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 | |
| 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 | |
| 	file_key.offset = bytenr;
 | |
| 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 	leaf = path->nodes[0];
 | |
| 	if (ret > 0) {
 | |
| 		ret = 1;
 | |
| 		if (path->slots[0] == 0)
 | |
| 			goto fail;
 | |
| 		path->slots[0]--;
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 | |
| 			goto fail;
 | |
| 
 | |
| 		csum_offset = (bytenr - found_key.offset) >>
 | |
| 				fs_info->sectorsize_bits;
 | |
| 		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
 | |
| 		csums_in_item /= csum_size;
 | |
| 
 | |
| 		if (csum_offset == csums_in_item) {
 | |
| 			ret = -EFBIG;
 | |
| 			goto fail;
 | |
| 		} else if (csum_offset > csums_in_item) {
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 | |
| 	item = (struct btrfs_csum_item *)((unsigned char *)item +
 | |
| 					  csum_offset * csum_size);
 | |
| 	return item;
 | |
| fail:
 | |
| 	if (ret > 0)
 | |
| 		ret = -ENOENT;
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root,
 | |
| 			     struct btrfs_path *path, u64 objectid,
 | |
| 			     u64 offset, int mod)
 | |
| {
 | |
| 	struct btrfs_key file_key;
 | |
| 	int ins_len = mod < 0 ? -1 : 0;
 | |
| 	int cow = mod != 0;
 | |
| 
 | |
| 	file_key.objectid = objectid;
 | |
| 	file_key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	file_key.offset = offset;
 | |
| 
 | |
| 	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
 | |
|  * store the result to @dst.
 | |
|  *
 | |
|  * Return >0 for the number of sectors we found.
 | |
|  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 | |
|  * for it. Caller may want to try next sector until one range is hit.
 | |
|  * Return <0 for fatal error.
 | |
|  */
 | |
| static int search_csum_tree(struct btrfs_fs_info *fs_info,
 | |
| 			    struct btrfs_path *path, u64 disk_bytenr,
 | |
| 			    u64 len, u8 *dst)
 | |
| {
 | |
| 	struct btrfs_root *csum_root;
 | |
| 	struct btrfs_csum_item *item = NULL;
 | |
| 	struct btrfs_key key;
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 	const u32 csum_size = fs_info->csum_size;
 | |
| 	u32 itemsize;
 | |
| 	int ret;
 | |
| 	u64 csum_start;
 | |
| 	u64 csum_len;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
 | |
| 	       IS_ALIGNED(len, sectorsize));
 | |
| 
 | |
| 	/* Check if the current csum item covers disk_bytenr */
 | |
| 	if (path->nodes[0]) {
 | |
| 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 				      struct btrfs_csum_item);
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 | |
| 
 | |
| 		csum_start = key.offset;
 | |
| 		csum_len = (itemsize / csum_size) * sectorsize;
 | |
| 
 | |
| 		if (in_range(disk_bytenr, csum_start, csum_len))
 | |
| 			goto found;
 | |
| 	}
 | |
| 
 | |
| 	/* Current item doesn't contain the desired range, search again */
 | |
| 	btrfs_release_path(path);
 | |
| 	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
 | |
| 	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
 | |
| 	if (IS_ERR(item)) {
 | |
| 		ret = PTR_ERR(item);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 | |
| 
 | |
| 	csum_start = key.offset;
 | |
| 	csum_len = (itemsize / csum_size) * sectorsize;
 | |
| 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
 | |
| 
 | |
| found:
 | |
| 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
 | |
| 		   disk_bytenr) >> fs_info->sectorsize_bits;
 | |
| 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
 | |
| 			ret * csum_size);
 | |
| out:
 | |
| 	if (ret == -ENOENT || ret == -EFBIG)
 | |
| 		ret = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup the checksum for the read bio in csum tree.
 | |
|  *
 | |
|  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 | |
|  */
 | |
| int btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct btrfs_inode *inode = bbio->inode;
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct bio *bio = &bbio->bio;
 | |
| 	BTRFS_PATH_AUTO_FREE(path);
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 	const u32 csum_size = fs_info->csum_size;
 | |
| 	u32 orig_len = bio->bi_iter.bi_size;
 | |
| 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
 | |
| 	int ret = 0;
 | |
| 	u32 bio_offset = 0;
 | |
| 
 | |
| 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
 | |
| 	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function is only called for read bio.
 | |
| 	 *
 | |
| 	 * This means two things:
 | |
| 	 * - All our csums should only be in csum tree
 | |
| 	 *   No ordered extents csums, as ordered extents are only for write
 | |
| 	 *   path.
 | |
| 	 * - No need to bother any other info from bvec
 | |
| 	 *   Since we're looking up csums, the only important info is the
 | |
| 	 *   disk_bytenr and the length, which can be extracted from bi_iter
 | |
| 	 *   directly.
 | |
| 	 */
 | |
| 	ASSERT(bio_op(bio) == REQ_OP_READ);
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 | |
| 		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
 | |
| 		if (!bbio->csum)
 | |
| 			return -ENOMEM;
 | |
| 	} else {
 | |
| 		bbio->csum = bbio->csum_inline;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If requested number of sectors is larger than one leaf can contain,
 | |
| 	 * kick the readahead for csum tree.
 | |
| 	 */
 | |
| 	if (nblocks > fs_info->csums_per_leaf)
 | |
| 		path->reada = READA_FORWARD;
 | |
| 
 | |
| 	/*
 | |
| 	 * the free space stuff is only read when it hasn't been
 | |
| 	 * updated in the current transaction.  So, we can safely
 | |
| 	 * read from the commit root and sidestep a nasty deadlock
 | |
| 	 * between reading the free space cache and updating the csum tree.
 | |
| 	 */
 | |
| 	if (btrfs_is_free_space_inode(inode)) {
 | |
| 		path->search_commit_root = 1;
 | |
| 		path->skip_locking = 1;
 | |
| 	}
 | |
| 
 | |
| 	while (bio_offset < orig_len) {
 | |
| 		int count;
 | |
| 		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
 | |
| 		u8 *csum_dst = bbio->csum +
 | |
| 			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
 | |
| 
 | |
| 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
 | |
| 					 orig_len - bio_offset, csum_dst);
 | |
| 		if (count < 0) {
 | |
| 			ret = count;
 | |
| 			if (bbio->csum != bbio->csum_inline)
 | |
| 				kfree(bbio->csum);
 | |
| 			bbio->csum = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We didn't find a csum for this range.  We need to make sure
 | |
| 		 * we complain loudly about this, because we are not NODATASUM.
 | |
| 		 *
 | |
| 		 * However for the DATA_RELOC inode we could potentially be
 | |
| 		 * relocating data extents for a NODATASUM inode, so the inode
 | |
| 		 * itself won't be marked with NODATASUM, but the extent we're
 | |
| 		 * copying is in fact NODATASUM.  If we don't find a csum we
 | |
| 		 * assume this is the case.
 | |
| 		 */
 | |
| 		if (count == 0) {
 | |
| 			memset(csum_dst, 0, csum_size);
 | |
| 			count = 1;
 | |
| 
 | |
| 			if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) {
 | |
| 				u64 file_offset = bbio->file_offset + bio_offset;
 | |
| 
 | |
| 				btrfs_set_extent_bit(&inode->io_tree, file_offset,
 | |
| 						     file_offset + sectorsize - 1,
 | |
| 						     EXTENT_NODATASUM, NULL);
 | |
| 			} else {
 | |
| 				btrfs_warn_rl(fs_info,
 | |
| 			"csum hole found for disk bytenr range [%llu, %llu)",
 | |
| 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
 | |
| 			}
 | |
| 		}
 | |
| 		bio_offset += count * sectorsize;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search for checksums for a given logical range.
 | |
|  *
 | |
|  * @root:		The root where to look for checksums.
 | |
|  * @start:		Logical address of target checksum range.
 | |
|  * @end:		End offset (inclusive) of the target checksum range.
 | |
|  * @list:		List for adding each checksum that was found.
 | |
|  *			Can be NULL in case the caller only wants to check if
 | |
|  *			there any checksums for the range.
 | |
|  * @nowait:		Indicate if the search must be non-blocking or not.
 | |
|  *
 | |
|  * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
 | |
|  * found.
 | |
|  */
 | |
| int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
 | |
| 			    struct list_head *list, bool nowait)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_ordered_sum *sums;
 | |
| 	struct btrfs_csum_item *item;
 | |
| 	int ret;
 | |
| 	bool found_csums = false;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 | |
| 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->nowait = nowait;
 | |
| 
 | |
| 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 | |
| 	key.type = BTRFS_EXTENT_CSUM_KEY;
 | |
| 	key.offset = start;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0 && path->slots[0] > 0) {
 | |
| 		leaf = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * There are two cases we can hit here for the previous csum
 | |
| 		 * item:
 | |
| 		 *
 | |
| 		 *		|<- search range ->|
 | |
| 		 *	|<- csum item ->|
 | |
| 		 *
 | |
| 		 * Or
 | |
| 		 *				|<- search range ->|
 | |
| 		 *	|<- csum item ->|
 | |
| 		 *
 | |
| 		 * Check if the previous csum item covers the leading part of
 | |
| 		 * the search range.  If so we have to start from previous csum
 | |
| 		 * item.
 | |
| 		 */
 | |
| 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 | |
| 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 | |
| 			if (bytes_to_csum_size(fs_info, start - key.offset) <
 | |
| 			    btrfs_item_size(leaf, path->slots[0] - 1))
 | |
| 				path->slots[0]--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (start <= end) {
 | |
| 		u64 csum_end;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 			if (ret > 0)
 | |
| 				break;
 | |
| 			leaf = path->nodes[0];
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 | |
| 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 | |
| 		    key.offset > end)
 | |
| 			break;
 | |
| 
 | |
| 		if (key.offset > start)
 | |
| 			start = key.offset;
 | |
| 
 | |
| 		csum_end = key.offset + csum_size_to_bytes(fs_info,
 | |
| 					btrfs_item_size(leaf, path->slots[0]));
 | |
| 		if (csum_end <= start) {
 | |
| 			path->slots[0]++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		found_csums = true;
 | |
| 		if (!list)
 | |
| 			goto out;
 | |
| 
 | |
| 		csum_end = min(csum_end, end + 1);
 | |
| 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 				      struct btrfs_csum_item);
 | |
| 		while (start < csum_end) {
 | |
| 			unsigned long offset;
 | |
| 			size_t size;
 | |
| 
 | |
| 			size = min_t(size_t, csum_end - start,
 | |
| 				     max_ordered_sum_bytes(fs_info));
 | |
| 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 | |
| 				       GFP_NOFS);
 | |
| 			if (!sums) {
 | |
| 				ret = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			sums->logical = start;
 | |
| 			sums->len = size;
 | |
| 
 | |
| 			offset = bytes_to_csum_size(fs_info, start - key.offset);
 | |
| 
 | |
| 			read_extent_buffer(path->nodes[0],
 | |
| 					   sums->sums,
 | |
| 					   ((unsigned long)item) + offset,
 | |
| 					   bytes_to_csum_size(fs_info, size));
 | |
| 
 | |
| 			start += size;
 | |
| 			list_add_tail(&sums->list, list);
 | |
| 		}
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	if (ret < 0) {
 | |
| 		if (list) {
 | |
| 			struct btrfs_ordered_sum *tmp_sums;
 | |
| 
 | |
| 			list_for_each_entry_safe(sums, tmp_sums, list, list)
 | |
| 				kfree(sums);
 | |
| 		}
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return found_csums ? 1 : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
 | |
|  * we return the result.
 | |
|  *
 | |
|  * This version will set the corresponding bits in @csum_bitmap to represent
 | |
|  * that there is a csum found.
 | |
|  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
 | |
|  * in is large enough to contain all csums.
 | |
|  */
 | |
| int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
 | |
| 			      u64 start, u64 end, u8 *csum_buf,
 | |
| 			      unsigned long *csum_bitmap)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_csum_item *item;
 | |
| 	const u64 orig_start = start;
 | |
| 	bool free_path = false;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 | |
| 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 | |
| 
 | |
| 	if (!path) {
 | |
| 		path = btrfs_alloc_path();
 | |
| 		if (!path)
 | |
| 			return -ENOMEM;
 | |
| 		free_path = true;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if we can reuse the previous path. */
 | |
| 	if (path->nodes[0]) {
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 
 | |
| 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 | |
| 		    key.type == BTRFS_EXTENT_CSUM_KEY &&
 | |
| 		    key.offset <= start)
 | |
| 			goto search_forward;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 
 | |
| 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 | |
| 	key.type = BTRFS_EXTENT_CSUM_KEY;
 | |
| 	key.offset = start;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 	if (ret > 0 && path->slots[0] > 0) {
 | |
| 		leaf = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * There are two cases we can hit here for the previous csum
 | |
| 		 * item:
 | |
| 		 *
 | |
| 		 *		|<- search range ->|
 | |
| 		 *	|<- csum item ->|
 | |
| 		 *
 | |
| 		 * Or
 | |
| 		 *				|<- search range ->|
 | |
| 		 *	|<- csum item ->|
 | |
| 		 *
 | |
| 		 * Check if the previous csum item covers the leading part of
 | |
| 		 * the search range.  If so we have to start from previous csum
 | |
| 		 * item.
 | |
| 		 */
 | |
| 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 | |
| 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 | |
| 			if (bytes_to_csum_size(fs_info, start - key.offset) <
 | |
| 			    btrfs_item_size(leaf, path->slots[0] - 1))
 | |
| 				path->slots[0]--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| search_forward:
 | |
| 	while (start <= end) {
 | |
| 		u64 csum_end;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				goto fail;
 | |
| 			if (ret > 0)
 | |
| 				break;
 | |
| 			leaf = path->nodes[0];
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 | |
| 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 | |
| 		    key.offset > end)
 | |
| 			break;
 | |
| 
 | |
| 		if (key.offset > start)
 | |
| 			start = key.offset;
 | |
| 
 | |
| 		csum_end = key.offset + csum_size_to_bytes(fs_info,
 | |
| 					btrfs_item_size(leaf, path->slots[0]));
 | |
| 		if (csum_end <= start) {
 | |
| 			path->slots[0]++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		csum_end = min(csum_end, end + 1);
 | |
| 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 				      struct btrfs_csum_item);
 | |
| 		while (start < csum_end) {
 | |
| 			unsigned long offset;
 | |
| 			size_t size;
 | |
| 			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
 | |
| 						start - orig_start);
 | |
| 
 | |
| 			size = min_t(size_t, csum_end - start, end + 1 - start);
 | |
| 
 | |
| 			offset = bytes_to_csum_size(fs_info, start - key.offset);
 | |
| 
 | |
| 			read_extent_buffer(path->nodes[0], csum_dest,
 | |
| 					   ((unsigned long)item) + offset,
 | |
| 					   bytes_to_csum_size(fs_info, size));
 | |
| 
 | |
| 			bitmap_set(csum_bitmap,
 | |
| 				(start - orig_start) >> fs_info->sectorsize_bits,
 | |
| 				size >> fs_info->sectorsize_bits);
 | |
| 
 | |
| 			start += size;
 | |
| 		}
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| fail:
 | |
| 	if (free_path)
 | |
| 		btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate checksums of the data contained inside a bio.
 | |
|  */
 | |
| int btrfs_csum_one_bio(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *ordered = bbio->ordered;
 | |
| 	struct btrfs_inode *inode = bbio->inode;
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 | |
| 	struct bio *bio = &bbio->bio;
 | |
| 	struct btrfs_ordered_sum *sums;
 | |
| 	char *data;
 | |
| 	struct bvec_iter iter;
 | |
| 	struct bio_vec bvec;
 | |
| 	int index;
 | |
| 	unsigned int blockcount;
 | |
| 	int i;
 | |
| 	unsigned nofs_flag;
 | |
| 
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 | |
| 		       GFP_KERNEL);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 
 | |
| 	if (!sums)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sums->len = bio->bi_iter.bi_size;
 | |
| 	INIT_LIST_HEAD(&sums->list);
 | |
| 
 | |
| 	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 	index = 0;
 | |
| 
 | |
| 	shash->tfm = fs_info->csum_shash;
 | |
| 
 | |
| 	bio_for_each_segment(bvec, bio, iter) {
 | |
| 		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
 | |
| 						 bvec.bv_len + fs_info->sectorsize
 | |
| 						 - 1);
 | |
| 
 | |
| 		for (i = 0; i < blockcount; i++) {
 | |
| 			data = bvec_kmap_local(&bvec);
 | |
| 			crypto_shash_digest(shash,
 | |
| 					    data + (i * fs_info->sectorsize),
 | |
| 					    fs_info->sectorsize,
 | |
| 					    sums->sums + index);
 | |
| 			kunmap_local(data);
 | |
| 			index += fs_info->csum_size;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	bbio->sums = sums;
 | |
| 	btrfs_add_ordered_sum(ordered, sums);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
 | |
|  * record the updated logical address on Zone Append completion.
 | |
|  * Allocate just the structure with an empty sums array here for that case.
 | |
|  */
 | |
| int btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
 | |
| 	if (!bbio->sums)
 | |
| 		return -ENOMEM;
 | |
| 	bbio->sums->len = bbio->bio.bi_iter.bi_size;
 | |
| 	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove one checksum overlapping a range.
 | |
|  *
 | |
|  * This expects the key to describe the csum pointed to by the path, and it
 | |
|  * expects the csum to overlap the range [bytenr, len]
 | |
|  *
 | |
|  * The csum should not be entirely contained in the range and the range should
 | |
|  * not be entirely contained in the csum.
 | |
|  *
 | |
|  * This calls btrfs_truncate_item with the correct args based on the overlap,
 | |
|  * and fixes up the key as required.
 | |
|  */
 | |
| static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_path *path,
 | |
| 				       struct btrfs_key *key,
 | |
| 				       u64 bytenr, u64 len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	const u32 csum_size = fs_info->csum_size;
 | |
| 	u64 csum_end;
 | |
| 	u64 end_byte = bytenr + len;
 | |
| 	u32 blocksize_bits = fs_info->sectorsize_bits;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 | |
| 	csum_end <<= blocksize_bits;
 | |
| 	csum_end += key->offset;
 | |
| 
 | |
| 	if (key->offset < bytenr && csum_end <= end_byte) {
 | |
| 		/*
 | |
| 		 *         [ bytenr - len ]
 | |
| 		 *         [   ]
 | |
| 		 *   [csum     ]
 | |
| 		 *   A simple truncate off the end of the item
 | |
| 		 */
 | |
| 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 | |
| 		new_size *= csum_size;
 | |
| 		btrfs_truncate_item(trans, path, new_size, 1);
 | |
| 	} else if (key->offset >= bytenr && csum_end > end_byte &&
 | |
| 		   end_byte > key->offset) {
 | |
| 		/*
 | |
| 		 *         [ bytenr - len ]
 | |
| 		 *                 [ ]
 | |
| 		 *                 [csum     ]
 | |
| 		 * we need to truncate from the beginning of the csum
 | |
| 		 */
 | |
| 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 | |
| 		new_size *= csum_size;
 | |
| 
 | |
| 		btrfs_truncate_item(trans, path, new_size, 0);
 | |
| 
 | |
| 		key->offset = end_byte;
 | |
| 		btrfs_set_item_key_safe(trans, path, key);
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete the csum items from the csum tree for a given range of bytes.
 | |
|  */
 | |
| int btrfs_del_csums(struct btrfs_trans_handle *trans,
 | |
| 		    struct btrfs_root *root, u64 bytenr, u64 len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	BTRFS_PATH_AUTO_FREE(path);
 | |
| 	struct btrfs_key key;
 | |
| 	u64 end_byte = bytenr + len;
 | |
| 	u64 csum_end;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int ret = 0;
 | |
| 	const u32 csum_size = fs_info->csum_size;
 | |
| 	u32 blocksize_bits = fs_info->sectorsize_bits;
 | |
| 
 | |
| 	ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
 | |
| 	       btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	while (1) {
 | |
| 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 | |
| 		key.type = BTRFS_EXTENT_CSUM_KEY;
 | |
| 		key.offset = end_byte - 1;
 | |
| 
 | |
| 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 		if (ret > 0) {
 | |
| 			ret = 0;
 | |
| 			if (path->slots[0] == 0)
 | |
| 				break;
 | |
| 			path->slots[0]--;
 | |
| 		} else if (ret < 0) {
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 
 | |
| 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 | |
| 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (key.offset >= end_byte)
 | |
| 			break;
 | |
| 
 | |
| 		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 | |
| 		csum_end <<= blocksize_bits;
 | |
| 		csum_end += key.offset;
 | |
| 
 | |
| 		/* this csum ends before we start, we're done */
 | |
| 		if (csum_end <= bytenr)
 | |
| 			break;
 | |
| 
 | |
| 		/* delete the entire item, it is inside our range */
 | |
| 		if (key.offset >= bytenr && csum_end <= end_byte) {
 | |
| 			int del_nr = 1;
 | |
| 
 | |
| 			/*
 | |
| 			 * Check how many csum items preceding this one in this
 | |
| 			 * leaf correspond to our range and then delete them all
 | |
| 			 * at once.
 | |
| 			 */
 | |
| 			if (key.offset > bytenr && path->slots[0] > 0) {
 | |
| 				int slot = path->slots[0] - 1;
 | |
| 
 | |
| 				while (slot >= 0) {
 | |
| 					struct btrfs_key pk;
 | |
| 
 | |
| 					btrfs_item_key_to_cpu(leaf, &pk, slot);
 | |
| 					if (pk.offset < bytenr ||
 | |
| 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 | |
| 					    pk.objectid !=
 | |
| 					    BTRFS_EXTENT_CSUM_OBJECTID)
 | |
| 						break;
 | |
| 					path->slots[0] = slot;
 | |
| 					del_nr++;
 | |
| 					key.offset = pk.offset;
 | |
| 					slot--;
 | |
| 				}
 | |
| 			}
 | |
| 			ret = btrfs_del_items(trans, root, path,
 | |
| 					      path->slots[0], del_nr);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			if (key.offset == bytenr)
 | |
| 				break;
 | |
| 		} else if (key.offset < bytenr && csum_end > end_byte) {
 | |
| 			unsigned long offset;
 | |
| 			unsigned long shift_len;
 | |
| 			unsigned long item_offset;
 | |
| 			/*
 | |
| 			 *        [ bytenr - len ]
 | |
| 			 *     [csum                ]
 | |
| 			 *
 | |
| 			 * Our bytes are in the middle of the csum,
 | |
| 			 * we need to split this item and insert a new one.
 | |
| 			 *
 | |
| 			 * But we can't drop the path because the
 | |
| 			 * csum could change, get removed, extended etc.
 | |
| 			 *
 | |
| 			 * The trick here is the max size of a csum item leaves
 | |
| 			 * enough room in the tree block for a single
 | |
| 			 * item header.  So, we split the item in place,
 | |
| 			 * adding a new header pointing to the existing
 | |
| 			 * bytes.  Then we loop around again and we have
 | |
| 			 * a nicely formed csum item that we can neatly
 | |
| 			 * truncate.
 | |
| 			 */
 | |
| 			offset = (bytenr - key.offset) >> blocksize_bits;
 | |
| 			offset *= csum_size;
 | |
| 
 | |
| 			shift_len = (len >> blocksize_bits) * csum_size;
 | |
| 
 | |
| 			item_offset = btrfs_item_ptr_offset(leaf,
 | |
| 							    path->slots[0]);
 | |
| 
 | |
| 			memzero_extent_buffer(leaf, item_offset + offset,
 | |
| 					     shift_len);
 | |
| 			key.offset = bytenr;
 | |
| 
 | |
| 			/*
 | |
| 			 * btrfs_split_item returns -EAGAIN when the
 | |
| 			 * item changed size or key
 | |
| 			 */
 | |
| 			ret = btrfs_split_item(trans, root, path, &key, offset);
 | |
| 			if (ret && ret != -EAGAIN) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				break;
 | |
| 			}
 | |
| 			ret = 0;
 | |
| 
 | |
| 			key.offset = end_byte - 1;
 | |
| 		} else {
 | |
| 			truncate_one_csum(trans, path, &key, bytenr, len);
 | |
| 			if (key.offset < bytenr)
 | |
| 				break;
 | |
| 		}
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int find_next_csum_offset(struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 u64 *next_offset)
 | |
| {
 | |
| 	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 	struct btrfs_key found_key;
 | |
| 	int slot = path->slots[0] + 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (nritems == 0 || slot >= nritems) {
 | |
| 		ret = btrfs_next_leaf(root, path);
 | |
| 		if (ret < 0) {
 | |
| 			return ret;
 | |
| 		} else if (ret > 0) {
 | |
| 			*next_offset = (u64)-1;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		slot = path->slots[0];
 | |
| 	}
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
 | |
| 
 | |
| 	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 | |
| 	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
 | |
| 		*next_offset = (u64)-1;
 | |
| 	else
 | |
| 		*next_offset = found_key.offset;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root,
 | |
| 			   struct btrfs_ordered_sum *sums)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_key file_key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	BTRFS_PATH_AUTO_FREE(path);
 | |
| 	struct btrfs_csum_item *item;
 | |
| 	struct btrfs_csum_item *item_end;
 | |
| 	struct extent_buffer *leaf = NULL;
 | |
| 	u64 next_offset;
 | |
| 	u64 total_bytes = 0;
 | |
| 	u64 csum_offset;
 | |
| 	u64 bytenr;
 | |
| 	u32 ins_size;
 | |
| 	int index = 0;
 | |
| 	int found_next;
 | |
| 	int ret;
 | |
| 	const u32 csum_size = fs_info->csum_size;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| again:
 | |
| 	next_offset = (u64)-1;
 | |
| 	found_next = 0;
 | |
| 	bytenr = sums->logical + total_bytes;
 | |
| 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 | |
| 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 | |
| 	file_key.offset = bytenr;
 | |
| 
 | |
| 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
 | |
| 	if (!IS_ERR(item)) {
 | |
| 		ret = 0;
 | |
| 		leaf = path->nodes[0];
 | |
| 		item_end = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					  struct btrfs_csum_item);
 | |
| 		item_end = (struct btrfs_csum_item *)((char *)item_end +
 | |
| 			   btrfs_item_size(leaf, path->slots[0]));
 | |
| 		goto found;
 | |
| 	}
 | |
| 	ret = PTR_ERR(item);
 | |
| 	if (ret != -EFBIG && ret != -ENOENT)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (ret == -EFBIG) {
 | |
| 		u32 item_size;
 | |
| 		/* we found one, but it isn't big enough yet */
 | |
| 		leaf = path->nodes[0];
 | |
| 		item_size = btrfs_item_size(leaf, path->slots[0]);
 | |
| 		if ((item_size / csum_size) >=
 | |
| 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
 | |
| 			/* already at max size, make a new one */
 | |
| 			goto insert;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* We didn't find a csum item, insert one. */
 | |
| 		ret = find_next_csum_offset(root, path, &next_offset);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		found_next = 1;
 | |
| 		goto insert;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, we know the tree has a checksum item that ends at an
 | |
| 	 * offset matching the start of the checksum range we want to insert.
 | |
| 	 * We try to extend that item as much as possible and then add as many
 | |
| 	 * checksums to it as they fit.
 | |
| 	 *
 | |
| 	 * First check if the leaf has enough free space for at least one
 | |
| 	 * checksum. If it has go directly to the item extension code, otherwise
 | |
| 	 * release the path and do a search for insertion before the extension.
 | |
| 	 */
 | |
| 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 		csum_offset = (bytenr - found_key.offset) >>
 | |
| 			fs_info->sectorsize_bits;
 | |
| 		goto extend_csum;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	path->search_for_extension = 1;
 | |
| 	ret = btrfs_search_slot(trans, root, &file_key, path,
 | |
| 				csum_size, 1);
 | |
| 	path->search_for_extension = 0;
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (ret > 0) {
 | |
| 		if (path->slots[0] == 0)
 | |
| 			goto insert;
 | |
| 		path->slots[0]--;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
 | |
| 
 | |
| 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
 | |
| 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 | |
| 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
 | |
| 		goto insert;
 | |
| 	}
 | |
| 
 | |
| extend_csum:
 | |
| 	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
 | |
| 	    csum_size) {
 | |
| 		int extend_nr;
 | |
| 		u64 tmp;
 | |
| 		u32 diff;
 | |
| 
 | |
| 		tmp = sums->len - total_bytes;
 | |
| 		tmp >>= fs_info->sectorsize_bits;
 | |
| 		WARN_ON(tmp < 1);
 | |
| 		extend_nr = max_t(int, 1, tmp);
 | |
| 
 | |
| 		/*
 | |
| 		 * A log tree can already have checksum items with a subset of
 | |
| 		 * the checksums we are trying to log. This can happen after
 | |
| 		 * doing a sequence of partial writes into prealloc extents and
 | |
| 		 * fsyncs in between, with a full fsync logging a larger subrange
 | |
| 		 * of an extent for which a previous fast fsync logged a smaller
 | |
| 		 * subrange. And this happens in particular due to merging file
 | |
| 		 * extent items when we complete an ordered extent for a range
 | |
| 		 * covered by a prealloc extent - this is done at
 | |
| 		 * btrfs_mark_extent_written().
 | |
| 		 *
 | |
| 		 * So if we try to extend the previous checksum item, which has
 | |
| 		 * a range that ends at the start of the range we want to insert,
 | |
| 		 * make sure we don't extend beyond the start offset of the next
 | |
| 		 * checksum item. If we are at the last item in the leaf, then
 | |
| 		 * forget the optimization of extending and add a new checksum
 | |
| 		 * item - it is not worth the complexity of releasing the path,
 | |
| 		 * getting the first key for the next leaf, repeat the btree
 | |
| 		 * search, etc, because log trees are temporary anyway and it
 | |
| 		 * would only save a few bytes of leaf space.
 | |
| 		 */
 | |
| 		if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
 | |
| 			if (path->slots[0] + 1 >=
 | |
| 			    btrfs_header_nritems(path->nodes[0])) {
 | |
| 				ret = find_next_csum_offset(root, path, &next_offset);
 | |
| 				if (ret < 0)
 | |
| 					goto out;
 | |
| 				found_next = 1;
 | |
| 				goto insert;
 | |
| 			}
 | |
| 
 | |
| 			ret = find_next_csum_offset(root, path, &next_offset);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
 | |
| 			if (tmp <= INT_MAX)
 | |
| 				extend_nr = min_t(int, extend_nr, tmp);
 | |
| 		}
 | |
| 
 | |
| 		diff = (csum_offset + extend_nr) * csum_size;
 | |
| 		diff = min(diff,
 | |
| 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
 | |
| 
 | |
| 		diff = diff - btrfs_item_size(leaf, path->slots[0]);
 | |
| 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
 | |
| 		diff /= csum_size;
 | |
| 		diff *= csum_size;
 | |
| 
 | |
| 		btrfs_extend_item(trans, path, diff);
 | |
| 		ret = 0;
 | |
| 		goto csum;
 | |
| 	}
 | |
| 
 | |
| insert:
 | |
| 	btrfs_release_path(path);
 | |
| 	csum_offset = 0;
 | |
| 	if (found_next) {
 | |
| 		u64 tmp;
 | |
| 
 | |
| 		tmp = sums->len - total_bytes;
 | |
| 		tmp >>= fs_info->sectorsize_bits;
 | |
| 		tmp = min(tmp, (next_offset - file_key.offset) >>
 | |
| 					 fs_info->sectorsize_bits);
 | |
| 
 | |
| 		tmp = max_t(u64, 1, tmp);
 | |
| 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
 | |
| 		ins_size = csum_size * tmp;
 | |
| 	} else {
 | |
| 		ins_size = csum_size;
 | |
| 	}
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 | |
| 				      ins_size);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	leaf = path->nodes[0];
 | |
| csum:
 | |
| 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 | |
| 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
 | |
| 				      btrfs_item_size(leaf, path->slots[0]));
 | |
| 	item = (struct btrfs_csum_item *)((unsigned char *)item +
 | |
| 					  csum_offset * csum_size);
 | |
| found:
 | |
| 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
 | |
| 	ins_size *= csum_size;
 | |
| 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
 | |
| 			      ins_size);
 | |
| 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
 | |
| 			    ins_size);
 | |
| 
 | |
| 	index += ins_size;
 | |
| 	ins_size /= csum_size;
 | |
| 	total_bytes += ins_size * fs_info->sectorsize;
 | |
| 
 | |
| 	if (total_bytes < sums->len) {
 | |
| 		btrfs_release_path(path);
 | |
| 		cond_resched();
 | |
| 		goto again;
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
 | |
| 				     const struct btrfs_path *path,
 | |
| 				     const struct btrfs_file_extent_item *fi,
 | |
| 				     struct extent_map *em)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct extent_buffer *leaf = path->nodes[0];
 | |
| 	const int slot = path->slots[0];
 | |
| 	struct btrfs_key key;
 | |
| 	u64 extent_start;
 | |
| 	u8 type = btrfs_file_extent_type(leaf, fi);
 | |
| 	int compress_type = btrfs_file_extent_compression(leaf, fi);
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 	extent_start = key.offset;
 | |
| 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
 | |
| 	em->generation = btrfs_file_extent_generation(leaf, fi);
 | |
| 	if (type == BTRFS_FILE_EXTENT_REG ||
 | |
| 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 		const u64 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 | |
| 
 | |
| 		em->start = extent_start;
 | |
| 		em->len = btrfs_file_extent_end(path) - extent_start;
 | |
| 		if (disk_bytenr == 0) {
 | |
| 			em->disk_bytenr = EXTENT_MAP_HOLE;
 | |
| 			em->disk_num_bytes = 0;
 | |
| 			em->offset = 0;
 | |
| 			return;
 | |
| 		}
 | |
| 		em->disk_bytenr = disk_bytenr;
 | |
| 		em->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 | |
| 		em->offset = btrfs_file_extent_offset(leaf, fi);
 | |
| 		if (compress_type != BTRFS_COMPRESS_NONE) {
 | |
| 			btrfs_extent_map_set_compression(em, compress_type);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Older kernels can create regular non-hole data
 | |
| 			 * extents with ram_bytes smaller than disk_num_bytes.
 | |
| 			 * Not a big deal, just always use disk_num_bytes
 | |
| 			 * for ram_bytes.
 | |
| 			 */
 | |
| 			em->ram_bytes = em->disk_num_bytes;
 | |
| 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
 | |
| 				em->flags |= EXTENT_FLAG_PREALLOC;
 | |
| 		}
 | |
| 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 		/* Tree-checker has ensured this. */
 | |
| 		ASSERT(extent_start == 0);
 | |
| 
 | |
| 		em->disk_bytenr = EXTENT_MAP_INLINE;
 | |
| 		em->start = 0;
 | |
| 		em->len = fs_info->sectorsize;
 | |
| 		em->offset = 0;
 | |
| 		btrfs_extent_map_set_compression(em, compress_type);
 | |
| 	} else {
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "unknown file extent item type %d, inode %llu, offset %llu, "
 | |
| 			  "root %llu", type, btrfs_ino(inode), extent_start,
 | |
| 			  btrfs_root_id(root));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the end offset (non inclusive) of the file extent item the given path
 | |
|  * points to. If it points to an inline extent, the returned offset is rounded
 | |
|  * up to the sector size.
 | |
|  */
 | |
| u64 btrfs_file_extent_end(const struct btrfs_path *path)
 | |
| {
 | |
| 	const struct extent_buffer *leaf = path->nodes[0];
 | |
| 	const int slot = path->slots[0];
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 end;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
 | |
| 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 | |
| 
 | |
| 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
 | |
| 		end = leaf->fs_info->sectorsize;
 | |
| 	else
 | |
| 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 | |
| 
 | |
| 	return end;
 | |
| }
 |