mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 25a1399a6d
			
		
	
	
		25a1399a6d
		
	
	
	
	
		
			
			The path parameter was used for our own locking, that got converted to
rwsem eventually. Last usage in ac5887c8e0 ("btrfs: locking: remove
all the blocking helpers").
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
		
	
			
		
			
				
	
	
		
			1112 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1112 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| #include "messages.h"
 | |
| #include "tree-mod-log.h"
 | |
| #include "disk-io.h"
 | |
| #include "fs.h"
 | |
| #include "accessors.h"
 | |
| #include "tree-checker.h"
 | |
| 
 | |
| struct tree_mod_root {
 | |
| 	u64 logical;
 | |
| 	u8 level;
 | |
| };
 | |
| 
 | |
| struct tree_mod_elem {
 | |
| 	struct rb_node node;
 | |
| 	u64 logical;
 | |
| 	u64 seq;
 | |
| 	enum btrfs_mod_log_op op;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
 | |
| 	 * operations.
 | |
| 	 */
 | |
| 	int slot;
 | |
| 
 | |
| 	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
 | |
| 	u64 generation;
 | |
| 
 | |
| 	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
 | |
| 	struct btrfs_disk_key key;
 | |
| 	u64 blockptr;
 | |
| 
 | |
| 	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
 | |
| 	struct {
 | |
| 		int dst_slot;
 | |
| 		int nr_items;
 | |
| 	} move;
 | |
| 
 | |
| 	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
 | |
| 	struct tree_mod_root old_root;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Pull a new tree mod seq number for our operation.
 | |
|  */
 | |
| static u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	return atomic64_inc_return(&fs_info->tree_mod_seq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This adds a new blocker to the tree mod log's blocker list if the @elem
 | |
|  * passed does not already have a sequence number set. So when a caller expects
 | |
|  * to record tree modifications, it should ensure to set elem->seq to zero
 | |
|  * before calling btrfs_get_tree_mod_seq.
 | |
|  * Returns a fresh, unused tree log modification sequence number, even if no new
 | |
|  * blocker was added.
 | |
|  */
 | |
| u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 | |
| 			   struct btrfs_seq_list *elem)
 | |
| {
 | |
| 	write_lock(&fs_info->tree_mod_log_lock);
 | |
| 	if (!elem->seq) {
 | |
| 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 | |
| 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 | |
| 		set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
 | |
| 	}
 | |
| 	write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 
 | |
| 	return elem->seq;
 | |
| }
 | |
| 
 | |
| void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 | |
| 			    struct btrfs_seq_list *elem)
 | |
| {
 | |
| 	struct rb_root *tm_root;
 | |
| 	struct rb_node *node;
 | |
| 	struct rb_node *next;
 | |
| 	struct tree_mod_elem *tm;
 | |
| 	u64 min_seq = BTRFS_SEQ_LAST;
 | |
| 	u64 seq_putting = elem->seq;
 | |
| 
 | |
| 	if (!seq_putting)
 | |
| 		return;
 | |
| 
 | |
| 	write_lock(&fs_info->tree_mod_log_lock);
 | |
| 	list_del(&elem->list);
 | |
| 	elem->seq = 0;
 | |
| 
 | |
| 	if (list_empty(&fs_info->tree_mod_seq_list)) {
 | |
| 		clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
 | |
| 	} else {
 | |
| 		struct btrfs_seq_list *first;
 | |
| 
 | |
| 		first = list_first_entry(&fs_info->tree_mod_seq_list,
 | |
| 					 struct btrfs_seq_list, list);
 | |
| 		if (seq_putting > first->seq) {
 | |
| 			/*
 | |
| 			 * Blocker with lower sequence number exists, we cannot
 | |
| 			 * remove anything from the log.
 | |
| 			 */
 | |
| 			write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 			return;
 | |
| 		}
 | |
| 		min_seq = first->seq;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Anything that's lower than the lowest existing (read: blocked)
 | |
| 	 * sequence number can be removed from the tree.
 | |
| 	 */
 | |
| 	tm_root = &fs_info->tree_mod_log;
 | |
| 	for (node = rb_first(tm_root); node; node = next) {
 | |
| 		next = rb_next(node);
 | |
| 		tm = rb_entry(node, struct tree_mod_elem, node);
 | |
| 		if (tm->seq >= min_seq)
 | |
| 			continue;
 | |
| 		rb_erase(node, tm_root);
 | |
| 		kfree(tm);
 | |
| 	}
 | |
| 	write_unlock(&fs_info->tree_mod_log_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Key order of the log:
 | |
|  *       node/leaf start address -> sequence
 | |
|  *
 | |
|  * The 'start address' is the logical address of the *new* root node for root
 | |
|  * replace operations, or the logical address of the affected block for all
 | |
|  * other operations.
 | |
|  */
 | |
| static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
 | |
| 					struct tree_mod_elem *tm)
 | |
| {
 | |
| 	struct rb_root *tm_root;
 | |
| 	struct rb_node **new;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct tree_mod_elem *cur;
 | |
| 
 | |
| 	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 | |
| 
 | |
| 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 | |
| 
 | |
| 	tm_root = &fs_info->tree_mod_log;
 | |
| 	new = &tm_root->rb_node;
 | |
| 	while (*new) {
 | |
| 		cur = rb_entry(*new, struct tree_mod_elem, node);
 | |
| 		parent = *new;
 | |
| 		if (cur->logical < tm->logical)
 | |
| 			new = &((*new)->rb_left);
 | |
| 		else if (cur->logical > tm->logical)
 | |
| 			new = &((*new)->rb_right);
 | |
| 		else if (cur->seq < tm->seq)
 | |
| 			new = &((*new)->rb_left);
 | |
| 		else if (cur->seq > tm->seq)
 | |
| 			new = &((*new)->rb_right);
 | |
| 		else
 | |
| 			return -EEXIST;
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&tm->node, parent, new);
 | |
| 	rb_insert_color(&tm->node, tm_root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determines if logging can be omitted. Returns true if it can. Otherwise, it
 | |
|  * returns false with the tree_mod_log_lock acquired. The caller must hold
 | |
|  * this until all tree mod log insertions are recorded in the rb tree and then
 | |
|  * write unlock fs_info::tree_mod_log_lock.
 | |
|  */
 | |
| static bool tree_mod_dont_log(struct btrfs_fs_info *fs_info, const struct extent_buffer *eb)
 | |
| {
 | |
| 	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
 | |
| 		return true;
 | |
| 	if (eb && btrfs_header_level(eb) == 0)
 | |
| 		return true;
 | |
| 
 | |
| 	write_lock(&fs_info->tree_mod_log_lock);
 | |
| 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 | |
| 		write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 | |
| static bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 | |
| 			      const struct extent_buffer *eb)
 | |
| {
 | |
| 	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
 | |
| 		return false;
 | |
| 	if (eb && btrfs_header_level(eb) == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct tree_mod_elem *alloc_tree_mod_elem(const struct extent_buffer *eb,
 | |
| 						 int slot,
 | |
| 						 enum btrfs_mod_log_op op)
 | |
| {
 | |
| 	struct tree_mod_elem *tm;
 | |
| 
 | |
| 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 | |
| 	if (!tm)
 | |
| 		return NULL;
 | |
| 
 | |
| 	tm->logical = eb->start;
 | |
| 	if (op != BTRFS_MOD_LOG_KEY_ADD) {
 | |
| 		btrfs_node_key(eb, &tm->key, slot);
 | |
| 		tm->blockptr = btrfs_node_blockptr(eb, slot);
 | |
| 	}
 | |
| 	tm->op = op;
 | |
| 	tm->slot = slot;
 | |
| 	tm->generation = btrfs_node_ptr_generation(eb, slot);
 | |
| 	RB_CLEAR_NODE(&tm->node);
 | |
| 
 | |
| 	return tm;
 | |
| }
 | |
| 
 | |
| int btrfs_tree_mod_log_insert_key(const struct extent_buffer *eb, int slot,
 | |
| 				  enum btrfs_mod_log_op op)
 | |
| {
 | |
| 	struct tree_mod_elem *tm;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!tree_mod_need_log(eb->fs_info, eb))
 | |
| 		return 0;
 | |
| 
 | |
| 	tm = alloc_tree_mod_elem(eb, slot, op);
 | |
| 	if (!tm)
 | |
| 		ret = -ENOMEM;
 | |
| 
 | |
| 	if (tree_mod_dont_log(eb->fs_info, eb)) {
 | |
| 		kfree(tm);
 | |
| 		/*
 | |
| 		 * Don't error if we failed to allocate memory because we don't
 | |
| 		 * need to log.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	} else if (ret != 0) {
 | |
| 		/*
 | |
| 		 * We previously failed to allocate memory and we need to log,
 | |
| 		 * so we have to fail.
 | |
| 		 */
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = tree_mod_log_insert(eb->fs_info, tm);
 | |
| out_unlock:
 | |
| 	write_unlock(&eb->fs_info->tree_mod_log_lock);
 | |
| 	if (ret)
 | |
| 		kfree(tm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct tree_mod_elem *tree_mod_log_alloc_move(const struct extent_buffer *eb,
 | |
| 						     int dst_slot, int src_slot,
 | |
| 						     int nr_items)
 | |
| {
 | |
| 	struct tree_mod_elem *tm;
 | |
| 
 | |
| 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 | |
| 	if (!tm)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	tm->logical = eb->start;
 | |
| 	tm->slot = src_slot;
 | |
| 	tm->move.dst_slot = dst_slot;
 | |
| 	tm->move.nr_items = nr_items;
 | |
| 	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
 | |
| 	RB_CLEAR_NODE(&tm->node);
 | |
| 
 | |
| 	return tm;
 | |
| }
 | |
| 
 | |
| int btrfs_tree_mod_log_insert_move(const struct extent_buffer *eb,
 | |
| 				   int dst_slot, int src_slot,
 | |
| 				   int nr_items)
 | |
| {
 | |
| 	struct tree_mod_elem *tm = NULL;
 | |
| 	struct tree_mod_elem **tm_list = NULL;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 	bool locked = false;
 | |
| 
 | |
| 	if (!tree_mod_need_log(eb->fs_info, eb))
 | |
| 		return 0;
 | |
| 
 | |
| 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 | |
| 	if (!tm_list) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto lock;
 | |
| 	}
 | |
| 
 | |
| 	tm = tree_mod_log_alloc_move(eb, dst_slot, src_slot, nr_items);
 | |
| 	if (IS_ERR(tm)) {
 | |
| 		ret = PTR_ERR(tm);
 | |
| 		tm = NULL;
 | |
| 		goto lock;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 | |
| 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 | |
| 				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING);
 | |
| 		if (!tm_list[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto lock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| lock:
 | |
| 	if (tree_mod_dont_log(eb->fs_info, eb)) {
 | |
| 		/*
 | |
| 		 * Don't error if we failed to allocate memory because we don't
 | |
| 		 * need to log.
 | |
| 		 */
 | |
| 		ret = 0;
 | |
| 		goto free_tms;
 | |
| 	}
 | |
| 	locked = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * We previously failed to allocate memory and we need to log, so we
 | |
| 	 * have to fail.
 | |
| 	 */
 | |
| 	if (ret != 0)
 | |
| 		goto free_tms;
 | |
| 
 | |
| 	/*
 | |
| 	 * When we override something during the move, we log these removals.
 | |
| 	 * This can only happen when we move towards the beginning of the
 | |
| 	 * buffer, i.e. dst_slot < src_slot.
 | |
| 	 */
 | |
| 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 | |
| 		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
 | |
| 		if (ret)
 | |
| 			goto free_tms;
 | |
| 	}
 | |
| 
 | |
| 	ret = tree_mod_log_insert(eb->fs_info, tm);
 | |
| 	if (ret)
 | |
| 		goto free_tms;
 | |
| 	write_unlock(&eb->fs_info->tree_mod_log_lock);
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_tms:
 | |
| 	if (tm_list) {
 | |
| 		for (i = 0; i < nr_items; i++) {
 | |
| 			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 | |
| 				rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 | |
| 			kfree(tm_list[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	if (locked)
 | |
| 		write_unlock(&eb->fs_info->tree_mod_log_lock);
 | |
| 	kfree(tm_list);
 | |
| 	kfree(tm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 | |
| 				struct tree_mod_elem **tm_list,
 | |
| 				int nritems)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (i = nritems - 1; i >= 0; i--) {
 | |
| 		ret = tree_mod_log_insert(fs_info, tm_list[i]);
 | |
| 		if (ret) {
 | |
| 			for (j = nritems - 1; j > i; j--)
 | |
| 				rb_erase(&tm_list[j]->node,
 | |
| 					 &fs_info->tree_mod_log);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
 | |
| 				   struct extent_buffer *new_root,
 | |
| 				   bool log_removal)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = old_root->fs_info;
 | |
| 	struct tree_mod_elem *tm = NULL;
 | |
| 	struct tree_mod_elem **tm_list = NULL;
 | |
| 	int nritems = 0;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!tree_mod_need_log(fs_info, NULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (log_removal && btrfs_header_level(old_root) > 0) {
 | |
| 		nritems = btrfs_header_nritems(old_root);
 | |
| 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 | |
| 				  GFP_NOFS);
 | |
| 		if (!tm_list) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto lock;
 | |
| 		}
 | |
| 		for (i = 0; i < nritems; i++) {
 | |
| 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 | |
| 			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
 | |
| 			if (!tm_list[i]) {
 | |
| 				ret = -ENOMEM;
 | |
| 				goto lock;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 | |
| 	if (!tm) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto lock;
 | |
| 	}
 | |
| 
 | |
| 	tm->logical = new_root->start;
 | |
| 	tm->old_root.logical = old_root->start;
 | |
| 	tm->old_root.level = btrfs_header_level(old_root);
 | |
| 	tm->generation = btrfs_header_generation(old_root);
 | |
| 	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
 | |
| 
 | |
| lock:
 | |
| 	if (tree_mod_dont_log(fs_info, NULL)) {
 | |
| 		/*
 | |
| 		 * Don't error if we failed to allocate memory because we don't
 | |
| 		 * need to log.
 | |
| 		 */
 | |
| 		ret = 0;
 | |
| 		goto free_tms;
 | |
| 	} else if (ret != 0) {
 | |
| 		/*
 | |
| 		 * We previously failed to allocate memory and we need to log,
 | |
| 		 * so we have to fail.
 | |
| 		 */
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (tm_list)
 | |
| 		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
 | |
| 	if (!ret)
 | |
| 		ret = tree_mod_log_insert(fs_info, tm);
 | |
| 
 | |
| out_unlock:
 | |
| 	write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 	if (ret)
 | |
| 		goto free_tms;
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| free_tms:
 | |
| 	if (tm_list) {
 | |
| 		for (i = 0; i < nritems; i++)
 | |
| 			kfree(tm_list[i]);
 | |
| 		kfree(tm_list);
 | |
| 	}
 | |
| 	kfree(tm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
 | |
| 						   u64 start, u64 min_seq,
 | |
| 						   bool smallest)
 | |
| {
 | |
| 	struct rb_root *tm_root;
 | |
| 	struct rb_node *node;
 | |
| 	struct tree_mod_elem *cur = NULL;
 | |
| 	struct tree_mod_elem *found = NULL;
 | |
| 
 | |
| 	read_lock(&fs_info->tree_mod_log_lock);
 | |
| 	tm_root = &fs_info->tree_mod_log;
 | |
| 	node = tm_root->rb_node;
 | |
| 	while (node) {
 | |
| 		cur = rb_entry(node, struct tree_mod_elem, node);
 | |
| 		if (cur->logical < start) {
 | |
| 			node = node->rb_left;
 | |
| 		} else if (cur->logical > start) {
 | |
| 			node = node->rb_right;
 | |
| 		} else if (cur->seq < min_seq) {
 | |
| 			node = node->rb_left;
 | |
| 		} else if (!smallest) {
 | |
| 			/* We want the node with the highest seq */
 | |
| 			if (found)
 | |
| 				BUG_ON(found->seq > cur->seq);
 | |
| 			found = cur;
 | |
| 			node = node->rb_left;
 | |
| 		} else if (cur->seq > min_seq) {
 | |
| 			/* We want the node with the smallest seq */
 | |
| 			if (found)
 | |
| 				BUG_ON(found->seq < cur->seq);
 | |
| 			found = cur;
 | |
| 			node = node->rb_right;
 | |
| 		} else {
 | |
| 			found = cur;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	read_unlock(&fs_info->tree_mod_log_lock);
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This returns the element from the log with the smallest time sequence
 | |
|  * value that's in the log (the oldest log item). Any element with a time
 | |
|  * sequence lower than min_seq will be ignored.
 | |
|  */
 | |
| static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
 | |
| 							u64 start, u64 min_seq)
 | |
| {
 | |
| 	return __tree_mod_log_search(fs_info, start, min_seq, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This returns the element from the log with the largest time sequence
 | |
|  * value that's in the log (the most recent log item). Any element with
 | |
|  * a time sequence lower than min_seq will be ignored.
 | |
|  */
 | |
| static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
 | |
| 						 u64 start, u64 min_seq)
 | |
| {
 | |
| 	return __tree_mod_log_search(fs_info, start, min_seq, false);
 | |
| }
 | |
| 
 | |
| int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
 | |
| 			       const struct extent_buffer *src,
 | |
| 			       unsigned long dst_offset,
 | |
| 			       unsigned long src_offset,
 | |
| 			       int nr_items)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = dst->fs_info;
 | |
| 	int ret = 0;
 | |
| 	struct tree_mod_elem **tm_list = NULL;
 | |
| 	struct tree_mod_elem **tm_list_add = NULL;
 | |
| 	struct tree_mod_elem **tm_list_rem = NULL;
 | |
| 	int i;
 | |
| 	bool locked = false;
 | |
| 	struct tree_mod_elem *dst_move_tm = NULL;
 | |
| 	struct tree_mod_elem *src_move_tm = NULL;
 | |
| 	u32 dst_move_nr_items = btrfs_header_nritems(dst) - dst_offset;
 | |
| 	u32 src_move_nr_items = btrfs_header_nritems(src) - (src_offset + nr_items);
 | |
| 
 | |
| 	if (!tree_mod_need_log(fs_info, NULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 | |
| 			  GFP_NOFS);
 | |
| 	if (!tm_list) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto lock;
 | |
| 	}
 | |
| 
 | |
| 	if (dst_move_nr_items) {
 | |
| 		dst_move_tm = tree_mod_log_alloc_move(dst, dst_offset + nr_items,
 | |
| 						      dst_offset, dst_move_nr_items);
 | |
| 		if (IS_ERR(dst_move_tm)) {
 | |
| 			ret = PTR_ERR(dst_move_tm);
 | |
| 			dst_move_tm = NULL;
 | |
| 			goto lock;
 | |
| 		}
 | |
| 	}
 | |
| 	if (src_move_nr_items) {
 | |
| 		src_move_tm = tree_mod_log_alloc_move(src, src_offset,
 | |
| 						      src_offset + nr_items,
 | |
| 						      src_move_nr_items);
 | |
| 		if (IS_ERR(src_move_tm)) {
 | |
| 			ret = PTR_ERR(src_move_tm);
 | |
| 			src_move_tm = NULL;
 | |
| 			goto lock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tm_list_add = tm_list;
 | |
| 	tm_list_rem = tm_list + nr_items;
 | |
| 	for (i = 0; i < nr_items; i++) {
 | |
| 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 | |
| 						     BTRFS_MOD_LOG_KEY_REMOVE);
 | |
| 		if (!tm_list_rem[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto lock;
 | |
| 		}
 | |
| 
 | |
| 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 | |
| 						     BTRFS_MOD_LOG_KEY_ADD);
 | |
| 		if (!tm_list_add[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto lock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| lock:
 | |
| 	if (tree_mod_dont_log(fs_info, NULL)) {
 | |
| 		/*
 | |
| 		 * Don't error if we failed to allocate memory because we don't
 | |
| 		 * need to log.
 | |
| 		 */
 | |
| 		ret = 0;
 | |
| 		goto free_tms;
 | |
| 	}
 | |
| 	locked = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * We previously failed to allocate memory and we need to log, so we
 | |
| 	 * have to fail.
 | |
| 	 */
 | |
| 	if (ret != 0)
 | |
| 		goto free_tms;
 | |
| 
 | |
| 	if (dst_move_tm) {
 | |
| 		ret = tree_mod_log_insert(fs_info, dst_move_tm);
 | |
| 		if (ret)
 | |
| 			goto free_tms;
 | |
| 	}
 | |
| 	for (i = 0; i < nr_items; i++) {
 | |
| 		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
 | |
| 		if (ret)
 | |
| 			goto free_tms;
 | |
| 		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
 | |
| 		if (ret)
 | |
| 			goto free_tms;
 | |
| 	}
 | |
| 	if (src_move_tm) {
 | |
| 		ret = tree_mod_log_insert(fs_info, src_move_tm);
 | |
| 		if (ret)
 | |
| 			goto free_tms;
 | |
| 	}
 | |
| 
 | |
| 	write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_tms:
 | |
| 	if (dst_move_tm && !RB_EMPTY_NODE(&dst_move_tm->node))
 | |
| 		rb_erase(&dst_move_tm->node, &fs_info->tree_mod_log);
 | |
| 	kfree(dst_move_tm);
 | |
| 	if (src_move_tm && !RB_EMPTY_NODE(&src_move_tm->node))
 | |
| 		rb_erase(&src_move_tm->node, &fs_info->tree_mod_log);
 | |
| 	kfree(src_move_tm);
 | |
| 	if (tm_list) {
 | |
| 		for (i = 0; i < nr_items * 2; i++) {
 | |
| 			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 | |
| 				rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 | |
| 			kfree(tm_list[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	if (locked)
 | |
| 		write_unlock(&fs_info->tree_mod_log_lock);
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
 | |
| {
 | |
| 	struct tree_mod_elem **tm_list = NULL;
 | |
| 	int nritems = 0;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!tree_mod_need_log(eb->fs_info, eb))
 | |
| 		return 0;
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(eb);
 | |
| 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 | |
| 	if (!tm_list) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto lock;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nritems; i++) {
 | |
| 		tm_list[i] = alloc_tree_mod_elem(eb, i,
 | |
| 				    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
 | |
| 		if (!tm_list[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto lock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| lock:
 | |
| 	if (tree_mod_dont_log(eb->fs_info, eb)) {
 | |
| 		/*
 | |
| 		 * Don't error if we failed to allocate memory because we don't
 | |
| 		 * need to log.
 | |
| 		 */
 | |
| 		ret = 0;
 | |
| 		goto free_tms;
 | |
| 	} else if (ret != 0) {
 | |
| 		/*
 | |
| 		 * We previously failed to allocate memory and we need to log,
 | |
| 		 * so we have to fail.
 | |
| 		 */
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 | |
| out_unlock:
 | |
| 	write_unlock(&eb->fs_info->tree_mod_log_lock);
 | |
| 	if (ret)
 | |
| 		goto free_tms;
 | |
| 	kfree(tm_list);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_tms:
 | |
| 	if (tm_list) {
 | |
| 		for (i = 0; i < nritems; i++)
 | |
| 			kfree(tm_list[i]);
 | |
| 		kfree(tm_list);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the logical address of the oldest predecessor of the given root.
 | |
|  * Entries older than time_seq are ignored.
 | |
|  */
 | |
| static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
 | |
| 						      u64 time_seq)
 | |
| {
 | |
| 	struct tree_mod_elem *tm;
 | |
| 	struct tree_mod_elem *found = NULL;
 | |
| 	u64 root_logical = eb_root->start;
 | |
| 	bool looped = false;
 | |
| 
 | |
| 	if (!time_seq)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The very last operation that's logged for a root is the replacement
 | |
| 	 * operation (if it is replaced at all). This has the logical address
 | |
| 	 * of the *new* root, making it the very first operation that's logged
 | |
| 	 * for this root.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
 | |
| 						time_seq);
 | |
| 		if (!looped && !tm)
 | |
| 			return NULL;
 | |
| 		/*
 | |
| 		 * If there are no tree operation for the oldest root, we simply
 | |
| 		 * return it. This should only happen if that (old) root is at
 | |
| 		 * level 0.
 | |
| 		 */
 | |
| 		if (!tm)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there's an operation that's not a root replacement, we
 | |
| 		 * found the oldest version of our root. Normally, we'll find a
 | |
| 		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
 | |
| 		 */
 | |
| 		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
 | |
| 			break;
 | |
| 
 | |
| 		found = tm;
 | |
| 		root_logical = tm->old_root.logical;
 | |
| 		looped = true;
 | |
| 	}
 | |
| 
 | |
| 	/* If there's no old root to return, return what we found instead */
 | |
| 	if (!found)
 | |
| 		found = tm;
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * tm is a pointer to the first operation to rewind within eb. Then, all
 | |
|  * previous operations will be rewound (until we reach something older than
 | |
|  * time_seq).
 | |
|  */
 | |
| static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
 | |
| 				struct extent_buffer *eb,
 | |
| 				u64 time_seq,
 | |
| 				struct tree_mod_elem *first_tm)
 | |
| {
 | |
| 	u32 n;
 | |
| 	struct rb_node *next;
 | |
| 	struct tree_mod_elem *tm = first_tm;
 | |
| 	unsigned long o_dst;
 | |
| 	unsigned long o_src;
 | |
| 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
 | |
| 	/*
 | |
| 	 * max_slot tracks the maximum valid slot of the rewind eb at every
 | |
| 	 * step of the rewind. This is in contrast with 'n' which eventually
 | |
| 	 * matches the number of items, but can be wrong during moves or if
 | |
| 	 * removes overlap on already valid slots (which is probably separately
 | |
| 	 * a bug). We do this to validate the offsets of memmoves for rewinding
 | |
| 	 * moves and detect invalid memmoves.
 | |
| 	 *
 | |
| 	 * Since a rewind eb can start empty, max_slot is a signed integer with
 | |
| 	 * a special meaning for -1, which is that no slot is valid to move out
 | |
| 	 * of. Any other negative value is invalid.
 | |
| 	 */
 | |
| 	int max_slot;
 | |
| 	int move_src_end_slot;
 | |
| 	int move_dst_end_slot;
 | |
| 
 | |
| 	n = btrfs_header_nritems(eb);
 | |
| 	max_slot = n - 1;
 | |
| 	read_lock(&fs_info->tree_mod_log_lock);
 | |
| 	while (tm && tm->seq >= time_seq) {
 | |
| 		ASSERT(max_slot >= -1);
 | |
| 		/*
 | |
| 		 * All the operations are recorded with the operator used for
 | |
| 		 * the modification. As we're going backwards, we do the
 | |
| 		 * opposite of each operation here.
 | |
| 		 */
 | |
| 		switch (tm->op) {
 | |
| 		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
 | |
| 			BUG_ON(tm->slot < n);
 | |
| 			fallthrough;
 | |
| 		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
 | |
| 		case BTRFS_MOD_LOG_KEY_REMOVE:
 | |
| 			btrfs_set_node_key(eb, &tm->key, tm->slot);
 | |
| 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
 | |
| 			btrfs_set_node_ptr_generation(eb, tm->slot,
 | |
| 						      tm->generation);
 | |
| 			n++;
 | |
| 			if (tm->slot > max_slot)
 | |
| 				max_slot = tm->slot;
 | |
| 			break;
 | |
| 		case BTRFS_MOD_LOG_KEY_REPLACE:
 | |
| 			BUG_ON(tm->slot >= n);
 | |
| 			btrfs_set_node_key(eb, &tm->key, tm->slot);
 | |
| 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
 | |
| 			btrfs_set_node_ptr_generation(eb, tm->slot,
 | |
| 						      tm->generation);
 | |
| 			break;
 | |
| 		case BTRFS_MOD_LOG_KEY_ADD:
 | |
| 			/*
 | |
| 			 * It is possible we could have already removed keys
 | |
| 			 * behind the known max slot, so this will be an
 | |
| 			 * overestimate. In practice, the copy operation
 | |
| 			 * inserts them in increasing order, and overestimating
 | |
| 			 * just means we miss some warnings, so it's OK. It
 | |
| 			 * isn't worth carefully tracking the full array of
 | |
| 			 * valid slots to check against when moving.
 | |
| 			 */
 | |
| 			if (tm->slot == max_slot)
 | |
| 				max_slot--;
 | |
| 			/* if a move operation is needed it's in the log */
 | |
| 			n--;
 | |
| 			break;
 | |
| 		case BTRFS_MOD_LOG_MOVE_KEYS:
 | |
| 			ASSERT(tm->move.nr_items > 0);
 | |
| 			move_src_end_slot = tm->move.dst_slot + tm->move.nr_items - 1;
 | |
| 			move_dst_end_slot = tm->slot + tm->move.nr_items - 1;
 | |
| 			o_dst = btrfs_node_key_ptr_offset(eb, tm->slot);
 | |
| 			o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot);
 | |
| 			if (WARN_ON(move_src_end_slot > max_slot ||
 | |
| 				    tm->move.nr_items <= 0)) {
 | |
| 				btrfs_warn(fs_info,
 | |
| "move from invalid tree mod log slot eb %llu slot %d dst_slot %d nr_items %d seq %llu n %u max_slot %d",
 | |
| 					   eb->start, tm->slot,
 | |
| 					   tm->move.dst_slot, tm->move.nr_items,
 | |
| 					   tm->seq, n, max_slot);
 | |
| 			}
 | |
| 			memmove_extent_buffer(eb, o_dst, o_src,
 | |
| 					      tm->move.nr_items * p_size);
 | |
| 			max_slot = move_dst_end_slot;
 | |
| 			break;
 | |
| 		case BTRFS_MOD_LOG_ROOT_REPLACE:
 | |
| 			/*
 | |
| 			 * This operation is special. For roots, this must be
 | |
| 			 * handled explicitly before rewinding.
 | |
| 			 * For non-roots, this operation may exist if the node
 | |
| 			 * was a root: root A -> child B; then A gets empty and
 | |
| 			 * B is promoted to the new root. In the mod log, we'll
 | |
| 			 * have a root-replace operation for B, a tree block
 | |
| 			 * that is no root. We simply ignore that operation.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 		next = rb_next(&tm->node);
 | |
| 		if (!next)
 | |
| 			break;
 | |
| 		tm = rb_entry(next, struct tree_mod_elem, node);
 | |
| 		if (tm->logical != first_tm->logical)
 | |
| 			break;
 | |
| 	}
 | |
| 	read_unlock(&fs_info->tree_mod_log_lock);
 | |
| 	btrfs_set_header_nritems(eb, n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
 | |
|  * is returned. If rewind operations happen, a fresh buffer is returned. The
 | |
|  * returned buffer is always read-locked. If the returned buffer is not the
 | |
|  * input buffer, the lock on the input buffer is released and the input buffer
 | |
|  * is freed (its refcount is decremented).
 | |
|  */
 | |
| struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
 | |
| 						struct extent_buffer *eb,
 | |
| 						u64 time_seq)
 | |
| {
 | |
| 	struct extent_buffer *eb_rewin;
 | |
| 	struct tree_mod_elem *tm;
 | |
| 
 | |
| 	if (!time_seq)
 | |
| 		return eb;
 | |
| 
 | |
| 	if (btrfs_header_level(eb) == 0)
 | |
| 		return eb;
 | |
| 
 | |
| 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
 | |
| 	if (!tm)
 | |
| 		return eb;
 | |
| 
 | |
| 	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
 | |
| 		BUG_ON(tm->slot != 0);
 | |
| 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
 | |
| 		if (!eb_rewin) {
 | |
| 			btrfs_tree_read_unlock(eb);
 | |
| 			free_extent_buffer(eb);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		btrfs_set_header_bytenr(eb_rewin, eb->start);
 | |
| 		btrfs_set_header_backref_rev(eb_rewin,
 | |
| 					     btrfs_header_backref_rev(eb));
 | |
| 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
 | |
| 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
 | |
| 	} else {
 | |
| 		eb_rewin = btrfs_clone_extent_buffer(eb);
 | |
| 		if (!eb_rewin) {
 | |
| 			btrfs_tree_read_unlock(eb);
 | |
| 			free_extent_buffer(eb);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_tree_read_unlock(eb);
 | |
| 	free_extent_buffer(eb);
 | |
| 
 | |
| 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
 | |
| 				       eb_rewin, btrfs_header_level(eb_rewin));
 | |
| 	btrfs_tree_read_lock(eb_rewin);
 | |
| 	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
 | |
| 	WARN_ON(btrfs_header_nritems(eb_rewin) >
 | |
| 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 | |
| 
 | |
| 	return eb_rewin;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rewind the state of @root's root node to the given @time_seq value.
 | |
|  * If there are no changes, the current root->root_node is returned. If anything
 | |
|  * changed in between, there's a fresh buffer allocated on which the rewind
 | |
|  * operations are done. In any case, the returned buffer is read locked.
 | |
|  * Returns NULL on error (with no locks held).
 | |
|  */
 | |
| struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct tree_mod_elem *tm;
 | |
| 	struct extent_buffer *eb = NULL;
 | |
| 	struct extent_buffer *eb_root;
 | |
| 	u64 eb_root_owner = 0;
 | |
| 	struct extent_buffer *old;
 | |
| 	struct tree_mod_root *old_root = NULL;
 | |
| 	u64 old_generation = 0;
 | |
| 	u64 logical;
 | |
| 	int level;
 | |
| 
 | |
| 	eb_root = btrfs_read_lock_root_node(root);
 | |
| 	tm = tree_mod_log_oldest_root(eb_root, time_seq);
 | |
| 	if (!tm)
 | |
| 		return eb_root;
 | |
| 
 | |
| 	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
 | |
| 		old_root = &tm->old_root;
 | |
| 		old_generation = tm->generation;
 | |
| 		logical = old_root->logical;
 | |
| 		level = old_root->level;
 | |
| 	} else {
 | |
| 		logical = eb_root->start;
 | |
| 		level = btrfs_header_level(eb_root);
 | |
| 	}
 | |
| 
 | |
| 	tm = tree_mod_log_search(fs_info, logical, time_seq);
 | |
| 	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
 | |
| 		struct btrfs_tree_parent_check check = { 0 };
 | |
| 
 | |
| 		btrfs_tree_read_unlock(eb_root);
 | |
| 		free_extent_buffer(eb_root);
 | |
| 
 | |
| 		check.level = level;
 | |
| 		check.owner_root = btrfs_root_id(root);
 | |
| 
 | |
| 		old = read_tree_block(fs_info, logical, &check);
 | |
| 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
 | |
| 			if (!IS_ERR(old))
 | |
| 				free_extent_buffer(old);
 | |
| 			btrfs_warn(fs_info,
 | |
| 				   "failed to read tree block %llu from get_old_root",
 | |
| 				   logical);
 | |
| 		} else {
 | |
| 			struct tree_mod_elem *tm2;
 | |
| 
 | |
| 			btrfs_tree_read_lock(old);
 | |
| 			eb = btrfs_clone_extent_buffer(old);
 | |
| 			/*
 | |
| 			 * After the lookup for the most recent tree mod operation
 | |
| 			 * above and before we locked and cloned the extent buffer
 | |
| 			 * 'old', a new tree mod log operation may have been added.
 | |
| 			 * So lookup for a more recent one to make sure the number
 | |
| 			 * of mod log operations we replay is consistent with the
 | |
| 			 * number of items we have in the cloned extent buffer,
 | |
| 			 * otherwise we can hit a BUG_ON when rewinding the extent
 | |
| 			 * buffer.
 | |
| 			 */
 | |
| 			tm2 = tree_mod_log_search(fs_info, logical, time_seq);
 | |
| 			btrfs_tree_read_unlock(old);
 | |
| 			free_extent_buffer(old);
 | |
| 			ASSERT(tm2);
 | |
| 			ASSERT(tm2 == tm || tm2->seq > tm->seq);
 | |
| 			if (!tm2 || tm2->seq < tm->seq) {
 | |
| 				free_extent_buffer(eb);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			tm = tm2;
 | |
| 		}
 | |
| 	} else if (old_root) {
 | |
| 		eb_root_owner = btrfs_header_owner(eb_root);
 | |
| 		btrfs_tree_read_unlock(eb_root);
 | |
| 		free_extent_buffer(eb_root);
 | |
| 		eb = alloc_dummy_extent_buffer(fs_info, logical);
 | |
| 	} else {
 | |
| 		eb = btrfs_clone_extent_buffer(eb_root);
 | |
| 		btrfs_tree_read_unlock(eb_root);
 | |
| 		free_extent_buffer(eb_root);
 | |
| 	}
 | |
| 
 | |
| 	if (!eb)
 | |
| 		return NULL;
 | |
| 	if (old_root) {
 | |
| 		btrfs_set_header_bytenr(eb, eb->start);
 | |
| 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
 | |
| 		btrfs_set_header_owner(eb, eb_root_owner);
 | |
| 		btrfs_set_header_level(eb, old_root->level);
 | |
| 		btrfs_set_header_generation(eb, old_generation);
 | |
| 	}
 | |
| 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
 | |
| 				       btrfs_header_level(eb));
 | |
| 	btrfs_tree_read_lock(eb);
 | |
| 	if (tm)
 | |
| 		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
 | |
| 	else
 | |
| 		WARN_ON(btrfs_header_level(eb) != 0);
 | |
| 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 | |
| 
 | |
| 	return eb;
 | |
| }
 | |
| 
 | |
| int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
 | |
| {
 | |
| 	struct tree_mod_elem *tm;
 | |
| 	int level;
 | |
| 	struct extent_buffer *eb_root = btrfs_root_node(root);
 | |
| 
 | |
| 	tm = tree_mod_log_oldest_root(eb_root, time_seq);
 | |
| 	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
 | |
| 		level = tm->old_root.level;
 | |
| 	else
 | |
| 		level = btrfs_header_level(eb_root);
 | |
| 
 | |
| 	free_extent_buffer(eb_root);
 | |
| 
 | |
| 	return level;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the lowest sequence number in the tree modification log.
 | |
|  *
 | |
|  * Return the sequence number of the oldest tree modification log user, which
 | |
|  * corresponds to the lowest sequence number of all existing users. If there are
 | |
|  * no users it returns 0.
 | |
|  */
 | |
| u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	u64 ret = 0;
 | |
| 
 | |
| 	read_lock(&fs_info->tree_mod_log_lock);
 | |
| 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
 | |
| 		struct btrfs_seq_list *elem;
 | |
| 
 | |
| 		elem = list_first_entry(&fs_info->tree_mod_seq_list,
 | |
| 					struct btrfs_seq_list, list);
 | |
| 		ret = elem->seq;
 | |
| 	}
 | |
| 	read_unlock(&fs_info->tree_mod_log_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 |