mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 16195d2c7d
			
		
	
	
		16195d2c7d
		
			
		
	
	
	
	
		
			
			In contrast to other parameters written into /proc/sys/kernel/core_pattern that never fail we can validate enabling the new AF_UNIX support. This is obviously racy as hell but it's always been that way. Link: https://lore.kernel.org/20250516-work-coredump-socket-v8-7-664f3caf2516@kernel.org Acked-by: Luca Boccassi <luca.boccassi@gmail.com> Reviewed-by: Jann Horn <jannh@google.com> Reviewed-by: Alexander Mikhalitsyn <aleksandr.mikhalitsyn@canonical.com> Signed-off-by: Christian Brauner <brauner@kernel.org>
		
			
				
	
	
		
			1573 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1573 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #include <linux/slab.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/stat.h>
 | |
| #include <linux/fcntl.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/coredump.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/sched/coredump.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/cn_proc.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/kmod.h>
 | |
| #include <linux/fsnotify.h>
 | |
| #include <linux/fs_struct.h>
 | |
| #include <linux/pipe_fs_i.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/path.h>
 | |
| #include <linux/timekeeping.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/pidfs.h>
 | |
| #include <linux/net.h>
 | |
| #include <linux/socket.h>
 | |
| #include <net/af_unix.h>
 | |
| #include <net/net_namespace.h>
 | |
| #include <net/sock.h>
 | |
| #include <uapi/linux/pidfd.h>
 | |
| #include <uapi/linux/un.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/exec.h>
 | |
| 
 | |
| #include <trace/events/task.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| #include <trace/events/sched.h>
 | |
| 
 | |
| static bool dump_vma_snapshot(struct coredump_params *cprm);
 | |
| static void free_vma_snapshot(struct coredump_params *cprm);
 | |
| 
 | |
| #define CORE_FILE_NOTE_SIZE_DEFAULT (4*1024*1024)
 | |
| /* Define a reasonable max cap */
 | |
| #define CORE_FILE_NOTE_SIZE_MAX (16*1024*1024)
 | |
| /*
 | |
|  * File descriptor number for the pidfd for the thread-group leader of
 | |
|  * the coredumping task installed into the usermode helper's file
 | |
|  * descriptor table.
 | |
|  */
 | |
| #define COREDUMP_PIDFD_NUMBER 3
 | |
| 
 | |
| static int core_uses_pid;
 | |
| static unsigned int core_pipe_limit;
 | |
| static unsigned int core_sort_vma;
 | |
| static char core_pattern[CORENAME_MAX_SIZE] = "core";
 | |
| static int core_name_size = CORENAME_MAX_SIZE;
 | |
| unsigned int core_file_note_size_limit = CORE_FILE_NOTE_SIZE_DEFAULT;
 | |
| 
 | |
| enum coredump_type_t {
 | |
| 	COREDUMP_FILE = 1,
 | |
| 	COREDUMP_PIPE = 2,
 | |
| 	COREDUMP_SOCK = 3,
 | |
| };
 | |
| 
 | |
| struct core_name {
 | |
| 	char *corename;
 | |
| 	int used, size;
 | |
| 	enum coredump_type_t core_type;
 | |
| };
 | |
| 
 | |
| static int expand_corename(struct core_name *cn, int size)
 | |
| {
 | |
| 	char *corename;
 | |
| 
 | |
| 	size = kmalloc_size_roundup(size);
 | |
| 	corename = krealloc(cn->corename, size, GFP_KERNEL);
 | |
| 
 | |
| 	if (!corename)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (size > core_name_size) /* racy but harmless */
 | |
| 		core_name_size = size;
 | |
| 
 | |
| 	cn->size = size;
 | |
| 	cn->corename = corename;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
 | |
| 				     va_list arg)
 | |
| {
 | |
| 	int free, need;
 | |
| 	va_list arg_copy;
 | |
| 
 | |
| again:
 | |
| 	free = cn->size - cn->used;
 | |
| 
 | |
| 	va_copy(arg_copy, arg);
 | |
| 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
 | |
| 	va_end(arg_copy);
 | |
| 
 | |
| 	if (need < free) {
 | |
| 		cn->used += need;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!expand_corename(cn, cn->size + need - free + 1))
 | |
| 		goto again;
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
 | |
| {
 | |
| 	va_list arg;
 | |
| 	int ret;
 | |
| 
 | |
| 	va_start(arg, fmt);
 | |
| 	ret = cn_vprintf(cn, fmt, arg);
 | |
| 	va_end(arg);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static __printf(2, 3)
 | |
| int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
 | |
| {
 | |
| 	int cur = cn->used;
 | |
| 	va_list arg;
 | |
| 	int ret;
 | |
| 
 | |
| 	va_start(arg, fmt);
 | |
| 	ret = cn_vprintf(cn, fmt, arg);
 | |
| 	va_end(arg);
 | |
| 
 | |
| 	if (ret == 0) {
 | |
| 		/*
 | |
| 		 * Ensure that this coredump name component can't cause the
 | |
| 		 * resulting corefile path to consist of a ".." or ".".
 | |
| 		 */
 | |
| 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
 | |
| 				(cn->used - cur == 2 && cn->corename[cur] == '.'
 | |
| 				&& cn->corename[cur+1] == '.'))
 | |
| 			cn->corename[cur] = '!';
 | |
| 
 | |
| 		/*
 | |
| 		 * Empty names are fishy and could be used to create a "//" in a
 | |
| 		 * corefile name, causing the coredump to happen one directory
 | |
| 		 * level too high. Enforce that all components of the core
 | |
| 		 * pattern are at least one character long.
 | |
| 		 */
 | |
| 		if (cn->used == cur)
 | |
| 			ret = cn_printf(cn, "!");
 | |
| 	}
 | |
| 
 | |
| 	for (; cur < cn->used; ++cur) {
 | |
| 		if (cn->corename[cur] == '/')
 | |
| 			cn->corename[cur] = '!';
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cn_print_exe_file(struct core_name *cn, bool name_only)
 | |
| {
 | |
| 	struct file *exe_file;
 | |
| 	char *pathbuf, *path, *ptr;
 | |
| 	int ret;
 | |
| 
 | |
| 	exe_file = get_mm_exe_file(current->mm);
 | |
| 	if (!exe_file)
 | |
| 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
 | |
| 
 | |
| 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 | |
| 	if (!pathbuf) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto put_exe_file;
 | |
| 	}
 | |
| 
 | |
| 	path = file_path(exe_file, pathbuf, PATH_MAX);
 | |
| 	if (IS_ERR(path)) {
 | |
| 		ret = PTR_ERR(path);
 | |
| 		goto free_buf;
 | |
| 	}
 | |
| 
 | |
| 	if (name_only) {
 | |
| 		ptr = strrchr(path, '/');
 | |
| 		if (ptr)
 | |
| 			path = ptr + 1;
 | |
| 	}
 | |
| 	ret = cn_esc_printf(cn, "%s", path);
 | |
| 
 | |
| free_buf:
 | |
| 	kfree(pathbuf);
 | |
| put_exe_file:
 | |
| 	fput(exe_file);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* format_corename will inspect the pattern parameter, and output a
 | |
|  * name into corename, which must have space for at least
 | |
|  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
 | |
|  */
 | |
| static int format_corename(struct core_name *cn, struct coredump_params *cprm,
 | |
| 			   size_t **argv, int *argc)
 | |
| {
 | |
| 	const struct cred *cred = current_cred();
 | |
| 	const char *pat_ptr = core_pattern;
 | |
| 	bool was_space = false;
 | |
| 	int pid_in_pattern = 0;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	cn->used = 0;
 | |
| 	cn->corename = NULL;
 | |
| 	if (*pat_ptr == '|')
 | |
| 		cn->core_type = COREDUMP_PIPE;
 | |
| 	else if (*pat_ptr == '@')
 | |
| 		cn->core_type = COREDUMP_SOCK;
 | |
| 	else
 | |
| 		cn->core_type = COREDUMP_FILE;
 | |
| 	if (expand_corename(cn, core_name_size))
 | |
| 		return -ENOMEM;
 | |
| 	cn->corename[0] = '\0';
 | |
| 
 | |
| 	switch (cn->core_type) {
 | |
| 	case COREDUMP_PIPE: {
 | |
| 		int argvs = sizeof(core_pattern) / 2;
 | |
| 		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
 | |
| 		if (!(*argv))
 | |
| 			return -ENOMEM;
 | |
| 		(*argv)[(*argc)++] = 0;
 | |
| 		++pat_ptr;
 | |
| 		if (!(*pat_ptr))
 | |
| 			return -ENOMEM;
 | |
| 		break;
 | |
| 	}
 | |
| 	case COREDUMP_SOCK: {
 | |
| 		/* skip the @ */
 | |
| 		pat_ptr++;
 | |
| 		if (!(*pat_ptr))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		err = cn_printf(cn, "%s", pat_ptr);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		/* Require absolute paths. */
 | |
| 		if (cn->corename[0] != '/')
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensure we can uses spaces to indicate additional
 | |
| 		 * parameters in the future.
 | |
| 		 */
 | |
| 		if (strchr(cn->corename, ' ')) {
 | |
| 			coredump_report_failure("Coredump socket may not %s contain spaces", cn->corename);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Currently no need to parse any other options.
 | |
| 		 * Relevant information can be retrieved from the peer
 | |
| 		 * pidfd retrievable via SO_PEERPIDFD by the receiver or
 | |
| 		 * via /proc/<pid>, using the SO_PEERPIDFD to guard
 | |
| 		 * against pid recycling when opening /proc/<pid>.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	}
 | |
| 	case COREDUMP_FILE:
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(true);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Repeat as long as we have more pattern to process and more output
 | |
| 	   space */
 | |
| 	while (*pat_ptr) {
 | |
| 		/*
 | |
| 		 * Split on spaces before doing template expansion so that
 | |
| 		 * %e and %E don't get split if they have spaces in them
 | |
| 		 */
 | |
| 		if (cn->core_type == COREDUMP_PIPE) {
 | |
| 			if (isspace(*pat_ptr)) {
 | |
| 				if (cn->used != 0)
 | |
| 					was_space = true;
 | |
| 				pat_ptr++;
 | |
| 				continue;
 | |
| 			} else if (was_space) {
 | |
| 				was_space = false;
 | |
| 				err = cn_printf(cn, "%c", '\0');
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				(*argv)[(*argc)++] = cn->used;
 | |
| 			}
 | |
| 		}
 | |
| 		if (*pat_ptr != '%') {
 | |
| 			err = cn_printf(cn, "%c", *pat_ptr++);
 | |
| 		} else {
 | |
| 			switch (*++pat_ptr) {
 | |
| 			/* single % at the end, drop that */
 | |
| 			case 0:
 | |
| 				goto out;
 | |
| 			/* Double percent, output one percent */
 | |
| 			case '%':
 | |
| 				err = cn_printf(cn, "%c", '%');
 | |
| 				break;
 | |
| 			/* pid */
 | |
| 			case 'p':
 | |
| 				pid_in_pattern = 1;
 | |
| 				err = cn_printf(cn, "%d",
 | |
| 					      task_tgid_vnr(current));
 | |
| 				break;
 | |
| 			/* global pid */
 | |
| 			case 'P':
 | |
| 				err = cn_printf(cn, "%d",
 | |
| 					      task_tgid_nr(current));
 | |
| 				break;
 | |
| 			case 'i':
 | |
| 				err = cn_printf(cn, "%d",
 | |
| 					      task_pid_vnr(current));
 | |
| 				break;
 | |
| 			case 'I':
 | |
| 				err = cn_printf(cn, "%d",
 | |
| 					      task_pid_nr(current));
 | |
| 				break;
 | |
| 			/* uid */
 | |
| 			case 'u':
 | |
| 				err = cn_printf(cn, "%u",
 | |
| 						from_kuid(&init_user_ns,
 | |
| 							  cred->uid));
 | |
| 				break;
 | |
| 			/* gid */
 | |
| 			case 'g':
 | |
| 				err = cn_printf(cn, "%u",
 | |
| 						from_kgid(&init_user_ns,
 | |
| 							  cred->gid));
 | |
| 				break;
 | |
| 			case 'd':
 | |
| 				err = cn_printf(cn, "%d",
 | |
| 					__get_dumpable(cprm->mm_flags));
 | |
| 				break;
 | |
| 			/* signal that caused the coredump */
 | |
| 			case 's':
 | |
| 				err = cn_printf(cn, "%d",
 | |
| 						cprm->siginfo->si_signo);
 | |
| 				break;
 | |
| 			/* UNIX time of coredump */
 | |
| 			case 't': {
 | |
| 				time64_t time;
 | |
| 
 | |
| 				time = ktime_get_real_seconds();
 | |
| 				err = cn_printf(cn, "%lld", time);
 | |
| 				break;
 | |
| 			}
 | |
| 			/* hostname */
 | |
| 			case 'h':
 | |
| 				down_read(&uts_sem);
 | |
| 				err = cn_esc_printf(cn, "%s",
 | |
| 					      utsname()->nodename);
 | |
| 				up_read(&uts_sem);
 | |
| 				break;
 | |
| 			/* executable, could be changed by prctl PR_SET_NAME etc */
 | |
| 			case 'e':
 | |
| 				err = cn_esc_printf(cn, "%s", current->comm);
 | |
| 				break;
 | |
| 			/* file name of executable */
 | |
| 			case 'f':
 | |
| 				err = cn_print_exe_file(cn, true);
 | |
| 				break;
 | |
| 			case 'E':
 | |
| 				err = cn_print_exe_file(cn, false);
 | |
| 				break;
 | |
| 			/* core limit size */
 | |
| 			case 'c':
 | |
| 				err = cn_printf(cn, "%lu",
 | |
| 					      rlimit(RLIMIT_CORE));
 | |
| 				break;
 | |
| 			/* CPU the task ran on */
 | |
| 			case 'C':
 | |
| 				err = cn_printf(cn, "%d", cprm->cpu);
 | |
| 				break;
 | |
| 			/* pidfd number */
 | |
| 			case 'F': {
 | |
| 				/*
 | |
| 				 * Installing a pidfd only makes sense if
 | |
| 				 * we actually spawn a usermode helper.
 | |
| 				 */
 | |
| 				if (cn->core_type != COREDUMP_PIPE)
 | |
| 					break;
 | |
| 
 | |
| 				/*
 | |
| 				 * Note that we'll install a pidfd for the
 | |
| 				 * thread-group leader. We know that task
 | |
| 				 * linkage hasn't been removed yet and even if
 | |
| 				 * this @current isn't the actual thread-group
 | |
| 				 * leader we know that the thread-group leader
 | |
| 				 * cannot be reaped until @current has exited.
 | |
| 				 */
 | |
| 				cprm->pid = task_tgid(current);
 | |
| 				err = cn_printf(cn, "%d", COREDUMP_PIDFD_NUMBER);
 | |
| 				break;
 | |
| 			}
 | |
| 			default:
 | |
| 				break;
 | |
| 			}
 | |
| 			++pat_ptr;
 | |
| 		}
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/* Backward compatibility with core_uses_pid:
 | |
| 	 *
 | |
| 	 * If core_pattern does not include a %p (as is the default)
 | |
| 	 * and core_uses_pid is set, then .%pid will be appended to
 | |
| 	 * the filename. Do not do this for piped commands. */
 | |
| 	if (cn->core_type == COREDUMP_FILE && !pid_in_pattern && core_uses_pid)
 | |
| 		return cn_printf(cn, ".%d", task_tgid_vnr(current));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int zap_process(struct signal_struct *signal, int exit_code)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 	int nr = 0;
 | |
| 
 | |
| 	signal->flags = SIGNAL_GROUP_EXIT;
 | |
| 	signal->group_exit_code = exit_code;
 | |
| 	signal->group_stop_count = 0;
 | |
| 
 | |
| 	__for_each_thread(signal, t) {
 | |
| 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 | |
| 		if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
 | |
| 			sigaddset(&t->pending.signal, SIGKILL);
 | |
| 			signal_wake_up(t, 1);
 | |
| 			nr++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static int zap_threads(struct task_struct *tsk,
 | |
| 			struct core_state *core_state, int exit_code)
 | |
| {
 | |
| 	struct signal_struct *signal = tsk->signal;
 | |
| 	int nr = -EAGAIN;
 | |
| 
 | |
| 	spin_lock_irq(&tsk->sighand->siglock);
 | |
| 	if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
 | |
| 		/* Allow SIGKILL, see prepare_signal() */
 | |
| 		signal->core_state = core_state;
 | |
| 		nr = zap_process(signal, exit_code);
 | |
| 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 | |
| 		tsk->flags |= PF_DUMPCORE;
 | |
| 		atomic_set(&core_state->nr_threads, nr);
 | |
| 	}
 | |
| 	spin_unlock_irq(&tsk->sighand->siglock);
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static int coredump_wait(int exit_code, struct core_state *core_state)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	int core_waiters = -EBUSY;
 | |
| 
 | |
| 	init_completion(&core_state->startup);
 | |
| 	core_state->dumper.task = tsk;
 | |
| 	core_state->dumper.next = NULL;
 | |
| 
 | |
| 	core_waiters = zap_threads(tsk, core_state, exit_code);
 | |
| 	if (core_waiters > 0) {
 | |
| 		struct core_thread *ptr;
 | |
| 
 | |
| 		wait_for_completion_state(&core_state->startup,
 | |
| 					  TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
 | |
| 		/*
 | |
| 		 * Wait for all the threads to become inactive, so that
 | |
| 		 * all the thread context (extended register state, like
 | |
| 		 * fpu etc) gets copied to the memory.
 | |
| 		 */
 | |
| 		ptr = core_state->dumper.next;
 | |
| 		while (ptr != NULL) {
 | |
| 			wait_task_inactive(ptr->task, TASK_ANY);
 | |
| 			ptr = ptr->next;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return core_waiters;
 | |
| }
 | |
| 
 | |
| static void coredump_finish(bool core_dumped)
 | |
| {
 | |
| 	struct core_thread *curr, *next;
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	if (core_dumped && !__fatal_signal_pending(current))
 | |
| 		current->signal->group_exit_code |= 0x80;
 | |
| 	next = current->signal->core_state->dumper.next;
 | |
| 	current->signal->core_state = NULL;
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	while ((curr = next) != NULL) {
 | |
| 		next = curr->next;
 | |
| 		task = curr->task;
 | |
| 		/*
 | |
| 		 * see coredump_task_exit(), curr->task must not see
 | |
| 		 * ->task == NULL before we read ->next.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 		curr->task = NULL;
 | |
| 		wake_up_process(task);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool dump_interrupted(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
 | |
| 	 * can do try_to_freeze() and check __fatal_signal_pending(),
 | |
| 	 * but then we need to teach dump_write() to restart and clear
 | |
| 	 * TIF_SIGPENDING.
 | |
| 	 */
 | |
| 	return fatal_signal_pending(current) || freezing(current);
 | |
| }
 | |
| 
 | |
| static void wait_for_dump_helpers(struct file *file)
 | |
| {
 | |
| 	struct pipe_inode_info *pipe = file->private_data;
 | |
| 
 | |
| 	pipe_lock(pipe);
 | |
| 	pipe->readers++;
 | |
| 	pipe->writers--;
 | |
| 	wake_up_interruptible_sync(&pipe->rd_wait);
 | |
| 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 | |
| 	pipe_unlock(pipe);
 | |
| 
 | |
| 	/*
 | |
| 	 * We actually want wait_event_freezable() but then we need
 | |
| 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
 | |
| 	 */
 | |
| 	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
 | |
| 
 | |
| 	pipe_lock(pipe);
 | |
| 	pipe->readers--;
 | |
| 	pipe->writers++;
 | |
| 	pipe_unlock(pipe);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * umh_coredump_setup
 | |
|  * helper function to customize the process used
 | |
|  * to collect the core in userspace.  Specifically
 | |
|  * it sets up a pipe and installs it as fd 0 (stdin)
 | |
|  * for the process.  Returns 0 on success, or
 | |
|  * PTR_ERR on failure.
 | |
|  * Note that it also sets the core limit to 1.  This
 | |
|  * is a special value that we use to trap recursive
 | |
|  * core dumps
 | |
|  */
 | |
| static int umh_coredump_setup(struct subprocess_info *info, struct cred *new)
 | |
| {
 | |
| 	struct file *files[2];
 | |
| 	struct coredump_params *cp = (struct coredump_params *)info->data;
 | |
| 	int err;
 | |
| 
 | |
| 	if (cp->pid) {
 | |
| 		struct file *pidfs_file __free(fput) = NULL;
 | |
| 
 | |
| 		pidfs_file = pidfs_alloc_file(cp->pid, 0);
 | |
| 		if (IS_ERR(pidfs_file))
 | |
| 			return PTR_ERR(pidfs_file);
 | |
| 
 | |
| 		pidfs_coredump(cp);
 | |
| 
 | |
| 		/*
 | |
| 		 * Usermode helpers are childen of either
 | |
| 		 * system_unbound_wq or of kthreadd. So we know that
 | |
| 		 * we're starting off with a clean file descriptor
 | |
| 		 * table. So we should always be able to use
 | |
| 		 * COREDUMP_PIDFD_NUMBER as our file descriptor value.
 | |
| 		 */
 | |
| 		err = replace_fd(COREDUMP_PIDFD_NUMBER, pidfs_file, 0);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = create_pipe_files(files, 0);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	cp->file = files[1];
 | |
| 
 | |
| 	err = replace_fd(0, files[0], 0);
 | |
| 	fput(files[0]);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	/* and disallow core files too */
 | |
| 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void do_coredump(const kernel_siginfo_t *siginfo)
 | |
| {
 | |
| 	struct core_state core_state;
 | |
| 	struct core_name cn;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct linux_binfmt * binfmt;
 | |
| 	const struct cred *old_cred;
 | |
| 	struct cred *cred;
 | |
| 	int retval = 0;
 | |
| 	size_t *argv = NULL;
 | |
| 	int argc = 0;
 | |
| 	/* require nonrelative corefile path and be extra careful */
 | |
| 	bool need_suid_safe = false;
 | |
| 	bool core_dumped = false;
 | |
| 	static atomic_t core_dump_count = ATOMIC_INIT(0);
 | |
| 	struct coredump_params cprm = {
 | |
| 		.siginfo = siginfo,
 | |
| 		.limit = rlimit(RLIMIT_CORE),
 | |
| 		/*
 | |
| 		 * We must use the same mm->flags while dumping core to avoid
 | |
| 		 * inconsistency of bit flags, since this flag is not protected
 | |
| 		 * by any locks.
 | |
| 		 */
 | |
| 		.mm_flags = mm->flags,
 | |
| 		.vma_meta = NULL,
 | |
| 		.cpu = raw_smp_processor_id(),
 | |
| 	};
 | |
| 
 | |
| 	audit_core_dumps(siginfo->si_signo);
 | |
| 
 | |
| 	binfmt = mm->binfmt;
 | |
| 	if (!binfmt || !binfmt->core_dump)
 | |
| 		goto fail;
 | |
| 	if (!__get_dumpable(cprm.mm_flags))
 | |
| 		goto fail;
 | |
| 
 | |
| 	cred = prepare_creds();
 | |
| 	if (!cred)
 | |
| 		goto fail;
 | |
| 	/*
 | |
| 	 * We cannot trust fsuid as being the "true" uid of the process
 | |
| 	 * nor do we know its entire history. We only know it was tainted
 | |
| 	 * so we dump it as root in mode 2, and only into a controlled
 | |
| 	 * environment (pipe handler or fully qualified path).
 | |
| 	 */
 | |
| 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
 | |
| 		/* Setuid core dump mode */
 | |
| 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
 | |
| 		need_suid_safe = true;
 | |
| 	}
 | |
| 
 | |
| 	retval = coredump_wait(siginfo->si_signo, &core_state);
 | |
| 	if (retval < 0)
 | |
| 		goto fail_creds;
 | |
| 
 | |
| 	old_cred = override_creds(cred);
 | |
| 
 | |
| 	retval = format_corename(&cn, &cprm, &argv, &argc);
 | |
| 	if (retval < 0) {
 | |
| 		coredump_report_failure("format_corename failed, aborting core");
 | |
| 		goto fail_unlock;
 | |
| 	}
 | |
| 
 | |
| 	switch (cn.core_type) {
 | |
| 	case COREDUMP_FILE: {
 | |
| 		struct mnt_idmap *idmap;
 | |
| 		struct inode *inode;
 | |
| 		int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW |
 | |
| 				 O_LARGEFILE | O_EXCL;
 | |
| 
 | |
| 		if (cprm.limit < binfmt->min_coredump)
 | |
| 			goto fail_unlock;
 | |
| 
 | |
| 		if (need_suid_safe && cn.corename[0] != '/') {
 | |
| 			coredump_report_failure(
 | |
| 				"this process can only dump core to a fully qualified path, skipping core dump");
 | |
| 			goto fail_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Unlink the file if it exists unless this is a SUID
 | |
| 		 * binary - in that case, we're running around with root
 | |
| 		 * privs and don't want to unlink another user's coredump.
 | |
| 		 */
 | |
| 		if (!need_suid_safe) {
 | |
| 			/*
 | |
| 			 * If it doesn't exist, that's fine. If there's some
 | |
| 			 * other problem, we'll catch it at the filp_open().
 | |
| 			 */
 | |
| 			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * There is a race between unlinking and creating the
 | |
| 		 * file, but if that causes an EEXIST here, that's
 | |
| 		 * fine - another process raced with us while creating
 | |
| 		 * the corefile, and the other process won. To userspace,
 | |
| 		 * what matters is that at least one of the two processes
 | |
| 		 * writes its coredump successfully, not which one.
 | |
| 		 */
 | |
| 		if (need_suid_safe) {
 | |
| 			/*
 | |
| 			 * Using user namespaces, normal user tasks can change
 | |
| 			 * their current->fs->root to point to arbitrary
 | |
| 			 * directories. Since the intention of the "only dump
 | |
| 			 * with a fully qualified path" rule is to control where
 | |
| 			 * coredumps may be placed using root privileges,
 | |
| 			 * current->fs->root must not be used. Instead, use the
 | |
| 			 * root directory of init_task.
 | |
| 			 */
 | |
| 			struct path root;
 | |
| 
 | |
| 			task_lock(&init_task);
 | |
| 			get_fs_root(init_task.fs, &root);
 | |
| 			task_unlock(&init_task);
 | |
| 			cprm.file = file_open_root(&root, cn.corename,
 | |
| 						   open_flags, 0600);
 | |
| 			path_put(&root);
 | |
| 		} else {
 | |
| 			cprm.file = filp_open(cn.corename, open_flags, 0600);
 | |
| 		}
 | |
| 		if (IS_ERR(cprm.file))
 | |
| 			goto fail_unlock;
 | |
| 
 | |
| 		inode = file_inode(cprm.file);
 | |
| 		if (inode->i_nlink > 1)
 | |
| 			goto close_fail;
 | |
| 		if (d_unhashed(cprm.file->f_path.dentry))
 | |
| 			goto close_fail;
 | |
| 		/*
 | |
| 		 * AK: actually i see no reason to not allow this for named
 | |
| 		 * pipes etc, but keep the previous behaviour for now.
 | |
| 		 */
 | |
| 		if (!S_ISREG(inode->i_mode))
 | |
| 			goto close_fail;
 | |
| 		/*
 | |
| 		 * Don't dump core if the filesystem changed owner or mode
 | |
| 		 * of the file during file creation. This is an issue when
 | |
| 		 * a process dumps core while its cwd is e.g. on a vfat
 | |
| 		 * filesystem.
 | |
| 		 */
 | |
| 		idmap = file_mnt_idmap(cprm.file);
 | |
| 		if (!vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode),
 | |
| 				    current_fsuid())) {
 | |
| 			coredump_report_failure("Core dump to %s aborted: "
 | |
| 				"cannot preserve file owner", cn.corename);
 | |
| 			goto close_fail;
 | |
| 		}
 | |
| 		if ((inode->i_mode & 0677) != 0600) {
 | |
| 			coredump_report_failure("Core dump to %s aborted: "
 | |
| 				"cannot preserve file permissions", cn.corename);
 | |
| 			goto close_fail;
 | |
| 		}
 | |
| 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
 | |
| 			goto close_fail;
 | |
| 		if (do_truncate(idmap, cprm.file->f_path.dentry,
 | |
| 				0, 0, cprm.file))
 | |
| 			goto close_fail;
 | |
| 		break;
 | |
| 	}
 | |
| 	case COREDUMP_PIPE: {
 | |
| 		int argi;
 | |
| 		int dump_count;
 | |
| 		char **helper_argv;
 | |
| 		struct subprocess_info *sub_info;
 | |
| 
 | |
| 		if (cprm.limit == 1) {
 | |
| 			/* See umh_coredump_setup() which sets RLIMIT_CORE = 1.
 | |
| 			 *
 | |
| 			 * Normally core limits are irrelevant to pipes, since
 | |
| 			 * we're not writing to the file system, but we use
 | |
| 			 * cprm.limit of 1 here as a special value, this is a
 | |
| 			 * consistent way to catch recursive crashes.
 | |
| 			 * We can still crash if the core_pattern binary sets
 | |
| 			 * RLIM_CORE = !1, but it runs as root, and can do
 | |
| 			 * lots of stupid things.
 | |
| 			 *
 | |
| 			 * Note that we use task_tgid_vnr here to grab the pid
 | |
| 			 * of the process group leader.  That way we get the
 | |
| 			 * right pid if a thread in a multi-threaded
 | |
| 			 * core_pattern process dies.
 | |
| 			 */
 | |
| 			coredump_report_failure("RLIMIT_CORE is set to 1, aborting core");
 | |
| 			goto fail_unlock;
 | |
| 		}
 | |
| 		cprm.limit = RLIM_INFINITY;
 | |
| 
 | |
| 		dump_count = atomic_inc_return(&core_dump_count);
 | |
| 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
 | |
| 			coredump_report_failure("over core_pipe_limit, skipping core dump");
 | |
| 			goto fail_dropcount;
 | |
| 		}
 | |
| 
 | |
| 		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
 | |
| 					    GFP_KERNEL);
 | |
| 		if (!helper_argv) {
 | |
| 			coredump_report_failure("%s failed to allocate memory", __func__);
 | |
| 			goto fail_dropcount;
 | |
| 		}
 | |
| 		for (argi = 0; argi < argc; argi++)
 | |
| 			helper_argv[argi] = cn.corename + argv[argi];
 | |
| 		helper_argv[argi] = NULL;
 | |
| 
 | |
| 		retval = -ENOMEM;
 | |
| 		sub_info = call_usermodehelper_setup(helper_argv[0],
 | |
| 						helper_argv, NULL, GFP_KERNEL,
 | |
| 						umh_coredump_setup, NULL, &cprm);
 | |
| 		if (sub_info)
 | |
| 			retval = call_usermodehelper_exec(sub_info,
 | |
| 							  UMH_WAIT_EXEC);
 | |
| 
 | |
| 		kfree(helper_argv);
 | |
| 		if (retval) {
 | |
| 			coredump_report_failure("|%s pipe failed", cn.corename);
 | |
| 			goto close_fail;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case COREDUMP_SOCK: {
 | |
| #ifdef CONFIG_UNIX
 | |
| 		struct file *file __free(fput) = NULL;
 | |
| 		struct sockaddr_un addr = {
 | |
| 			.sun_family = AF_UNIX,
 | |
| 		};
 | |
| 		ssize_t addr_len;
 | |
| 		struct socket *socket;
 | |
| 
 | |
| 		addr_len = strscpy(addr.sun_path, cn.corename);
 | |
| 		if (addr_len < 0)
 | |
| 			goto close_fail;
 | |
| 		addr_len += offsetof(struct sockaddr_un, sun_path) + 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * It is possible that the userspace process which is
 | |
| 		 * supposed to handle the coredump and is listening on
 | |
| 		 * the AF_UNIX socket coredumps. Userspace should just
 | |
| 		 * mark itself non dumpable.
 | |
| 		 */
 | |
| 
 | |
| 		retval = sock_create_kern(&init_net, AF_UNIX, SOCK_STREAM, 0, &socket);
 | |
| 		if (retval < 0)
 | |
| 			goto close_fail;
 | |
| 
 | |
| 		file = sock_alloc_file(socket, 0, NULL);
 | |
| 		if (IS_ERR(file))
 | |
| 			goto close_fail;
 | |
| 
 | |
| 		/*
 | |
| 		 * Set the thread-group leader pid which is used for the
 | |
| 		 * peer credentials during connect() below. Then
 | |
| 		 * immediately register it in pidfs...
 | |
| 		 */
 | |
| 		cprm.pid = task_tgid(current);
 | |
| 		retval = pidfs_register_pid(cprm.pid);
 | |
| 		if (retval)
 | |
| 			goto close_fail;
 | |
| 
 | |
| 		/*
 | |
| 		 * ... and set the coredump information so userspace
 | |
| 		 * has it available after connect()...
 | |
| 		 */
 | |
| 		pidfs_coredump(&cprm);
 | |
| 
 | |
| 		retval = kernel_connect(socket, (struct sockaddr *)(&addr),
 | |
| 					addr_len, O_NONBLOCK | SOCK_COREDUMP);
 | |
| 
 | |
| 		/*
 | |
| 		 * ... Make sure to only put our reference after connect() took
 | |
| 		 * its own reference keeping the pidfs entry alive ...
 | |
| 		 */
 | |
| 		pidfs_put_pid(cprm.pid);
 | |
| 
 | |
| 		if (retval) {
 | |
| 			if (retval == -EAGAIN)
 | |
| 				coredump_report_failure("Coredump socket %s receive queue full", addr.sun_path);
 | |
| 			else
 | |
| 				coredump_report_failure("Coredump socket connection %s failed %d", addr.sun_path, retval);
 | |
| 			goto close_fail;
 | |
| 		}
 | |
| 
 | |
| 		/* ... and validate that @sk_peer_pid matches @cprm.pid. */
 | |
| 		if (WARN_ON_ONCE(unix_peer(socket->sk)->sk_peer_pid != cprm.pid))
 | |
| 			goto close_fail;
 | |
| 
 | |
| 		cprm.limit = RLIM_INFINITY;
 | |
| 		cprm.file = no_free_ptr(file);
 | |
| #else
 | |
| 		coredump_report_failure("Core dump socket support %s disabled", cn.corename);
 | |
| 		goto close_fail;
 | |
| #endif
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(true);
 | |
| 		goto close_fail;
 | |
| 	}
 | |
| 
 | |
| 	/* get us an unshared descriptor table; almost always a no-op */
 | |
| 	/* The cell spufs coredump code reads the file descriptor tables */
 | |
| 	retval = unshare_files();
 | |
| 	if (retval)
 | |
| 		goto close_fail;
 | |
| 	if (!dump_interrupted()) {
 | |
| 		/*
 | |
| 		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
 | |
| 		 * have this set to NULL.
 | |
| 		 */
 | |
| 		if (!cprm.file) {
 | |
| 			coredump_report_failure("Core dump to |%s disabled", cn.corename);
 | |
| 			goto close_fail;
 | |
| 		}
 | |
| 		if (!dump_vma_snapshot(&cprm))
 | |
| 			goto close_fail;
 | |
| 
 | |
| 		file_start_write(cprm.file);
 | |
| 		core_dumped = binfmt->core_dump(&cprm);
 | |
| 		/*
 | |
| 		 * Ensures that file size is big enough to contain the current
 | |
| 		 * file postion. This prevents gdb from complaining about
 | |
| 		 * a truncated file if the last "write" to the file was
 | |
| 		 * dump_skip.
 | |
| 		 */
 | |
| 		if (cprm.to_skip) {
 | |
| 			cprm.to_skip--;
 | |
| 			dump_emit(&cprm, "", 1);
 | |
| 		}
 | |
| 		file_end_write(cprm.file);
 | |
| 		free_vma_snapshot(&cprm);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_UNIX
 | |
| 	/* Let userspace know we're done processing the coredump. */
 | |
| 	if (sock_from_file(cprm.file))
 | |
| 		kernel_sock_shutdown(sock_from_file(cprm.file), SHUT_WR);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * When core_pipe_limit is set we wait for the coredump server
 | |
| 	 * or usermodehelper to finish before exiting so it can e.g.,
 | |
| 	 * inspect /proc/<pid>.
 | |
| 	 */
 | |
| 	if (core_pipe_limit) {
 | |
| 		switch (cn.core_type) {
 | |
| 		case COREDUMP_PIPE:
 | |
| 			wait_for_dump_helpers(cprm.file);
 | |
| 			break;
 | |
| #ifdef CONFIG_UNIX
 | |
| 		case COREDUMP_SOCK: {
 | |
| 			ssize_t n;
 | |
| 
 | |
| 			/*
 | |
| 			 * We use a simple read to wait for the coredump
 | |
| 			 * processing to finish. Either the socket is
 | |
| 			 * closed or we get sent unexpected data. In
 | |
| 			 * both cases, we're done.
 | |
| 			 */
 | |
| 			n = __kernel_read(cprm.file, &(char){ 0 }, 1, NULL);
 | |
| 			if (n != 0)
 | |
| 				coredump_report_failure("Unexpected data on coredump socket");
 | |
| 			break;
 | |
| 		}
 | |
| #endif
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| close_fail:
 | |
| 	if (cprm.file)
 | |
| 		filp_close(cprm.file, NULL);
 | |
| fail_dropcount:
 | |
| 	if (cn.core_type == COREDUMP_PIPE)
 | |
| 		atomic_dec(&core_dump_count);
 | |
| fail_unlock:
 | |
| 	kfree(argv);
 | |
| 	kfree(cn.corename);
 | |
| 	coredump_finish(core_dumped);
 | |
| 	revert_creds(old_cred);
 | |
| fail_creds:
 | |
| 	put_cred(cred);
 | |
| fail:
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Core dumping helper functions.  These are the only things you should
 | |
|  * do on a core-file: use only these functions to write out all the
 | |
|  * necessary info.
 | |
|  */
 | |
| static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
 | |
| {
 | |
| 	struct file *file = cprm->file;
 | |
| 	loff_t pos = file->f_pos;
 | |
| 	ssize_t n;
 | |
| 
 | |
| 	if (cprm->written + nr > cprm->limit)
 | |
| 		return 0;
 | |
| 	if (dump_interrupted())
 | |
| 		return 0;
 | |
| 	n = __kernel_write(file, addr, nr, &pos);
 | |
| 	if (n != nr)
 | |
| 		return 0;
 | |
| 	file->f_pos = pos;
 | |
| 	cprm->written += n;
 | |
| 	cprm->pos += n;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __dump_skip(struct coredump_params *cprm, size_t nr)
 | |
| {
 | |
| 	static char zeroes[PAGE_SIZE];
 | |
| 	struct file *file = cprm->file;
 | |
| 
 | |
| 	if (file->f_mode & FMODE_LSEEK) {
 | |
| 		if (dump_interrupted() || vfs_llseek(file, nr, SEEK_CUR) < 0)
 | |
| 			return 0;
 | |
| 		cprm->pos += nr;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	while (nr > PAGE_SIZE) {
 | |
| 		if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
 | |
| 			return 0;
 | |
| 		nr -= PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	return __dump_emit(cprm, zeroes, nr);
 | |
| }
 | |
| 
 | |
| int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
 | |
| {
 | |
| 	if (cprm->to_skip) {
 | |
| 		if (!__dump_skip(cprm, cprm->to_skip))
 | |
| 			return 0;
 | |
| 		cprm->to_skip = 0;
 | |
| 	}
 | |
| 	return __dump_emit(cprm, addr, nr);
 | |
| }
 | |
| EXPORT_SYMBOL(dump_emit);
 | |
| 
 | |
| void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
 | |
| {
 | |
| 	cprm->to_skip = pos - cprm->pos;
 | |
| }
 | |
| EXPORT_SYMBOL(dump_skip_to);
 | |
| 
 | |
| void dump_skip(struct coredump_params *cprm, size_t nr)
 | |
| {
 | |
| 	cprm->to_skip += nr;
 | |
| }
 | |
| EXPORT_SYMBOL(dump_skip);
 | |
| 
 | |
| #ifdef CONFIG_ELF_CORE
 | |
| static int dump_emit_page(struct coredump_params *cprm, struct page *page)
 | |
| {
 | |
| 	struct bio_vec bvec;
 | |
| 	struct iov_iter iter;
 | |
| 	struct file *file = cprm->file;
 | |
| 	loff_t pos;
 | |
| 	ssize_t n;
 | |
| 
 | |
| 	if (!page)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (cprm->to_skip) {
 | |
| 		if (!__dump_skip(cprm, cprm->to_skip))
 | |
| 			return 0;
 | |
| 		cprm->to_skip = 0;
 | |
| 	}
 | |
| 	if (cprm->written + PAGE_SIZE > cprm->limit)
 | |
| 		return 0;
 | |
| 	if (dump_interrupted())
 | |
| 		return 0;
 | |
| 	pos = file->f_pos;
 | |
| 	bvec_set_page(&bvec, page, PAGE_SIZE, 0);
 | |
| 	iov_iter_bvec(&iter, ITER_SOURCE, &bvec, 1, PAGE_SIZE);
 | |
| 	n = __kernel_write_iter(cprm->file, &iter, &pos);
 | |
| 	if (n != PAGE_SIZE)
 | |
| 		return 0;
 | |
| 	file->f_pos = pos;
 | |
| 	cprm->written += PAGE_SIZE;
 | |
| 	cprm->pos += PAGE_SIZE;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we might get machine checks from kernel accesses during the
 | |
|  * core dump, let's get those errors early rather than during the
 | |
|  * IO. This is not performance-critical enough to warrant having
 | |
|  * all the machine check logic in the iovec paths.
 | |
|  */
 | |
| #ifdef copy_mc_to_kernel
 | |
| 
 | |
| #define dump_page_alloc() alloc_page(GFP_KERNEL)
 | |
| #define dump_page_free(x) __free_page(x)
 | |
| static struct page *dump_page_copy(struct page *src, struct page *dst)
 | |
| {
 | |
| 	void *buf = kmap_local_page(src);
 | |
| 	size_t left = copy_mc_to_kernel(page_address(dst), buf, PAGE_SIZE);
 | |
| 	kunmap_local(buf);
 | |
| 	return left ? NULL : dst;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* We just want to return non-NULL; it's never used. */
 | |
| #define dump_page_alloc() ERR_PTR(-EINVAL)
 | |
| #define dump_page_free(x) ((void)(x))
 | |
| static inline struct page *dump_page_copy(struct page *src, struct page *dst)
 | |
| {
 | |
| 	return src;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int dump_user_range(struct coredump_params *cprm, unsigned long start,
 | |
| 		    unsigned long len)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	struct page *dump_page;
 | |
| 	int locked, ret;
 | |
| 
 | |
| 	dump_page = dump_page_alloc();
 | |
| 	if (!dump_page)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	locked = 0;
 | |
| 	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (!locked) {
 | |
| 			if (mmap_read_lock_killable(current->mm))
 | |
| 				goto out;
 | |
| 			locked = 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * To avoid having to allocate page tables for virtual address
 | |
| 		 * ranges that have never been used yet, and also to make it
 | |
| 		 * easy to generate sparse core files, use a helper that returns
 | |
| 		 * NULL when encountering an empty page table entry that would
 | |
| 		 * otherwise have been filled with the zero page.
 | |
| 		 */
 | |
| 		page = get_dump_page(addr, &locked);
 | |
| 		if (page) {
 | |
| 			if (locked) {
 | |
| 				mmap_read_unlock(current->mm);
 | |
| 				locked = 0;
 | |
| 			}
 | |
| 			int stop = !dump_emit_page(cprm, dump_page_copy(page, dump_page));
 | |
| 			put_page(page);
 | |
| 			if (stop)
 | |
| 				goto out;
 | |
| 		} else {
 | |
| 			dump_skip(cprm, PAGE_SIZE);
 | |
| 		}
 | |
| 
 | |
| 		if (dump_interrupted())
 | |
| 			goto out;
 | |
| 
 | |
| 		if (!need_resched())
 | |
| 			continue;
 | |
| 		if (locked) {
 | |
| 			mmap_read_unlock(current->mm);
 | |
| 			locked = 0;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	if (locked)
 | |
| 		mmap_read_unlock(current->mm);
 | |
| 
 | |
| 	dump_page_free(dump_page);
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int dump_align(struct coredump_params *cprm, int align)
 | |
| {
 | |
| 	unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
 | |
| 	if (align & (align - 1))
 | |
| 		return 0;
 | |
| 	if (mod)
 | |
| 		cprm->to_skip += align - mod;
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(dump_align);
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| 
 | |
| void validate_coredump_safety(void)
 | |
| {
 | |
| 	if (suid_dumpable == SUID_DUMP_ROOT &&
 | |
| 	    core_pattern[0] != '/' && core_pattern[0] != '|' && core_pattern[0] != '@') {
 | |
| 
 | |
| 		coredump_report_failure("Unsafe core_pattern used with fs.suid_dumpable=2: "
 | |
| 			"pipe handler or fully qualified core dump path required. "
 | |
| 			"Set kernel.core_pattern before fs.suid_dumpable.");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline bool check_coredump_socket(void)
 | |
| {
 | |
| 	if (core_pattern[0] != '@')
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Coredump socket must be located in the initial mount
 | |
| 	 * namespace. Don't give the impression that anything else is
 | |
| 	 * supported right now.
 | |
| 	 */
 | |
| 	if (current->nsproxy->mnt_ns != init_task.nsproxy->mnt_ns)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Must be an absolute path. */
 | |
| 	if (*(core_pattern + 1) != '/')
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int proc_dostring_coredump(const struct ctl_table *table, int write,
 | |
| 		  void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	int error;
 | |
| 	ssize_t retval;
 | |
| 	char old_core_pattern[CORENAME_MAX_SIZE];
 | |
| 
 | |
| 	retval = strscpy(old_core_pattern, core_pattern, CORENAME_MAX_SIZE);
 | |
| 
 | |
| 	error = proc_dostring(table, write, buffer, lenp, ppos);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	if (!check_coredump_socket()) {
 | |
| 		strscpy(core_pattern, old_core_pattern, retval + 1);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	validate_coredump_safety();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static const unsigned int core_file_note_size_min = CORE_FILE_NOTE_SIZE_DEFAULT;
 | |
| static const unsigned int core_file_note_size_max = CORE_FILE_NOTE_SIZE_MAX;
 | |
| static char core_modes[] = {
 | |
| 	"file\npipe"
 | |
| #ifdef CONFIG_UNIX
 | |
| 	"\nsocket"
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static const struct ctl_table coredump_sysctls[] = {
 | |
| 	{
 | |
| 		.procname	= "core_uses_pid",
 | |
| 		.data		= &core_uses_pid,
 | |
| 		.maxlen		= sizeof(int),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "core_pattern",
 | |
| 		.data		= core_pattern,
 | |
| 		.maxlen		= CORENAME_MAX_SIZE,
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dostring_coredump,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "core_pipe_limit",
 | |
| 		.data		= &core_pipe_limit,
 | |
| 		.maxlen		= sizeof(unsigned int),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec_minmax,
 | |
| 		.extra1		= SYSCTL_ZERO,
 | |
| 		.extra2		= SYSCTL_INT_MAX,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname       = "core_file_note_size_limit",
 | |
| 		.data           = &core_file_note_size_limit,
 | |
| 		.maxlen         = sizeof(unsigned int),
 | |
| 		.mode           = 0644,
 | |
| 		.proc_handler	= proc_douintvec_minmax,
 | |
| 		.extra1		= (unsigned int *)&core_file_note_size_min,
 | |
| 		.extra2		= (unsigned int *)&core_file_note_size_max,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "core_sort_vma",
 | |
| 		.data		= &core_sort_vma,
 | |
| 		.maxlen		= sizeof(int),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_douintvec_minmax,
 | |
| 		.extra1		= SYSCTL_ZERO,
 | |
| 		.extra2		= SYSCTL_ONE,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "core_modes",
 | |
| 		.data		= core_modes,
 | |
| 		.maxlen		= sizeof(core_modes) - 1,
 | |
| 		.mode		= 0444,
 | |
| 		.proc_handler	= proc_dostring,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init init_fs_coredump_sysctls(void)
 | |
| {
 | |
| 	register_sysctl_init("kernel", coredump_sysctls);
 | |
| 	return 0;
 | |
| }
 | |
| fs_initcall(init_fs_coredump_sysctls);
 | |
| #endif /* CONFIG_SYSCTL */
 | |
| 
 | |
| /*
 | |
|  * The purpose of always_dump_vma() is to make sure that special kernel mappings
 | |
|  * that are useful for post-mortem analysis are included in every core dump.
 | |
|  * In that way we ensure that the core dump is fully interpretable later
 | |
|  * without matching up the same kernel and hardware config to see what PC values
 | |
|  * meant. These special mappings include - vDSO, vsyscall, and other
 | |
|  * architecture specific mappings
 | |
|  */
 | |
| static bool always_dump_vma(struct vm_area_struct *vma)
 | |
| {
 | |
| 	/* Any vsyscall mappings? */
 | |
| 	if (vma == get_gate_vma(vma->vm_mm))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume that all vmas with a .name op should always be dumped.
 | |
| 	 * If this changes, a new vm_ops field can easily be added.
 | |
| 	 */
 | |
| 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * arch_vma_name() returns non-NULL for special architecture mappings,
 | |
| 	 * such as vDSO sections.
 | |
| 	 */
 | |
| 	if (arch_vma_name(vma))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
 | |
| 
 | |
| /*
 | |
|  * Decide how much of @vma's contents should be included in a core dump.
 | |
|  */
 | |
| static unsigned long vma_dump_size(struct vm_area_struct *vma,
 | |
| 				   unsigned long mm_flags)
 | |
| {
 | |
| #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
 | |
| 
 | |
| 	/* always dump the vdso and vsyscall sections */
 | |
| 	if (always_dump_vma(vma))
 | |
| 		goto whole;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_DONTDUMP)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* support for DAX */
 | |
| 	if (vma_is_dax(vma)) {
 | |
| 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
 | |
| 			goto whole;
 | |
| 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
 | |
| 			goto whole;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Hugetlb memory check */
 | |
| 	if (is_vm_hugetlb_page(vma)) {
 | |
| 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
 | |
| 			goto whole;
 | |
| 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
 | |
| 			goto whole;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Do not dump I/O mapped devices or special mappings */
 | |
| 	if (vma->vm_flags & VM_IO)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* By default, dump shared memory if mapped from an anonymous file. */
 | |
| 	if (vma->vm_flags & VM_SHARED) {
 | |
| 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
 | |
| 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
 | |
| 			goto whole;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Dump segments that have been written to.  */
 | |
| 	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
 | |
| 		goto whole;
 | |
| 	if (vma->vm_file == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (FILTER(MAPPED_PRIVATE))
 | |
| 		goto whole;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is the beginning of an executable file mapping,
 | |
| 	 * dump the first page to aid in determining what was mapped here.
 | |
| 	 */
 | |
| 	if (FILTER(ELF_HEADERS) &&
 | |
| 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
 | |
| 		if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
 | |
| 			return PAGE_SIZE;
 | |
| 
 | |
| 		/*
 | |
| 		 * ELF libraries aren't always executable.
 | |
| 		 * We'll want to check whether the mapping starts with the ELF
 | |
| 		 * magic, but not now - we're holding the mmap lock,
 | |
| 		 * so copy_from_user() doesn't work here.
 | |
| 		 * Use a placeholder instead, and fix it up later in
 | |
| 		 * dump_vma_snapshot().
 | |
| 		 */
 | |
| 		return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
 | |
| 	}
 | |
| 
 | |
| #undef	FILTER
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| whole:
 | |
| 	return vma->vm_end - vma->vm_start;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for iterating across a vma list.  It ensures that the caller
 | |
|  * will visit `gate_vma' prior to terminating the search.
 | |
|  */
 | |
| static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi,
 | |
| 				       struct vm_area_struct *vma,
 | |
| 				       struct vm_area_struct *gate_vma)
 | |
| {
 | |
| 	if (gate_vma && (vma == gate_vma))
 | |
| 		return NULL;
 | |
| 
 | |
| 	vma = vma_next(vmi);
 | |
| 	if (vma)
 | |
| 		return vma;
 | |
| 	return gate_vma;
 | |
| }
 | |
| 
 | |
| static void free_vma_snapshot(struct coredump_params *cprm)
 | |
| {
 | |
| 	if (cprm->vma_meta) {
 | |
| 		int i;
 | |
| 		for (i = 0; i < cprm->vma_count; i++) {
 | |
| 			struct file *file = cprm->vma_meta[i].file;
 | |
| 			if (file)
 | |
| 				fput(file);
 | |
| 		}
 | |
| 		kvfree(cprm->vma_meta);
 | |
| 		cprm->vma_meta = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cmp_vma_size(const void *vma_meta_lhs_ptr, const void *vma_meta_rhs_ptr)
 | |
| {
 | |
| 	const struct core_vma_metadata *vma_meta_lhs = vma_meta_lhs_ptr;
 | |
| 	const struct core_vma_metadata *vma_meta_rhs = vma_meta_rhs_ptr;
 | |
| 
 | |
| 	if (vma_meta_lhs->dump_size < vma_meta_rhs->dump_size)
 | |
| 		return -1;
 | |
| 	if (vma_meta_lhs->dump_size > vma_meta_rhs->dump_size)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Under the mmap_lock, take a snapshot of relevant information about the task's
 | |
|  * VMAs.
 | |
|  */
 | |
| static bool dump_vma_snapshot(struct coredump_params *cprm)
 | |
| {
 | |
| 	struct vm_area_struct *gate_vma, *vma = NULL;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	VMA_ITERATOR(vmi, mm, 0);
 | |
| 	int i = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once the stack expansion code is fixed to not change VMA bounds
 | |
| 	 * under mmap_lock in read mode, this can be changed to take the
 | |
| 	 * mmap_lock in read mode.
 | |
| 	 */
 | |
| 	if (mmap_write_lock_killable(mm))
 | |
| 		return false;
 | |
| 
 | |
| 	cprm->vma_data_size = 0;
 | |
| 	gate_vma = get_gate_vma(mm);
 | |
| 	cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
 | |
| 
 | |
| 	cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
 | |
| 	if (!cprm->vma_meta) {
 | |
| 		mmap_write_unlock(mm);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	while ((vma = coredump_next_vma(&vmi, vma, gate_vma)) != NULL) {
 | |
| 		struct core_vma_metadata *m = cprm->vma_meta + i;
 | |
| 
 | |
| 		m->start = vma->vm_start;
 | |
| 		m->end = vma->vm_end;
 | |
| 		m->flags = vma->vm_flags;
 | |
| 		m->dump_size = vma_dump_size(vma, cprm->mm_flags);
 | |
| 		m->pgoff = vma->vm_pgoff;
 | |
| 		m->file = vma->vm_file;
 | |
| 		if (m->file)
 | |
| 			get_file(m->file);
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	mmap_write_unlock(mm);
 | |
| 
 | |
| 	for (i = 0; i < cprm->vma_count; i++) {
 | |
| 		struct core_vma_metadata *m = cprm->vma_meta + i;
 | |
| 
 | |
| 		if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
 | |
| 			char elfmag[SELFMAG];
 | |
| 
 | |
| 			if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
 | |
| 					memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
 | |
| 				m->dump_size = 0;
 | |
| 			} else {
 | |
| 				m->dump_size = PAGE_SIZE;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		cprm->vma_data_size += m->dump_size;
 | |
| 	}
 | |
| 
 | |
| 	if (core_sort_vma)
 | |
| 		sort(cprm->vma_meta, cprm->vma_count, sizeof(*cprm->vma_meta),
 | |
| 		     cmp_vma_size, NULL);
 | |
| 
 | |
| 	return true;
 | |
| }
 |