mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 d6b02199cd
			
		
	
	
		d6b02199cd
		
	
	
	
	
		
			
			reservation" from Sourabh Jain changes powerpc's kexec code to use more of the generic layers. - The 2 patch series "get_maintainer: report subsystem status separately" from Vlastimil Babka makes some long-requested improvements to the get_maintainer output. - The 4 patch series "ucount: Simplify refcounting with rcuref_t" from Sebastian Siewior cleans up and optimizing the refcounting in the ucount code. - The 12 patch series "reboot: support runtime configuration of emergency hw_protection action" from Ahmad Fatoum improves the ability for a driver to perform an emergency system shutdown or reboot. - The 16 patch series "Converge on using secs_to_jiffies() part two" from Easwar Hariharan performs further migrations from msecs_to_jiffies() to secs_to_jiffies(). - The 7 patch series "lib/interval_tree: add some test cases and cleanup" from Wei Yang permits more userspace testing of kernel library code, adds some more tests and performs some cleanups. - The 2 patch series "hung_task: Dump the blocking task stacktrace" from Masami Hiramatsu arranges for the hung_task detector to dump the stack of the blocking task and not just that of the blocked task. - The 4 patch series "resource: Split and use DEFINE_RES*() macros" from Andy Shevchenko provides some cleanups to the resource definition macros. - Plus the usual shower of singleton patches - please see the individual changelogs for details. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZ+nuqwAKCRDdBJ7gKXxA jtNqAQDxqJpjWkzn4yN9CNSs1ivVx3fr6SqazlYCrt3u89WQvwEA1oRrGpETzUGq r6khQUIcQImPPcjFqEFpuiSOU0MBZA0= =Kii8 -----END PGP SIGNATURE----- Merge tag 'mm-nonmm-stable-2025-03-30-18-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull non-MM updates from Andrew Morton: - The series "powerpc/crash: use generic crashkernel reservation" from Sourabh Jain changes powerpc's kexec code to use more of the generic layers. - The series "get_maintainer: report subsystem status separately" from Vlastimil Babka makes some long-requested improvements to the get_maintainer output. - The series "ucount: Simplify refcounting with rcuref_t" from Sebastian Siewior cleans up and optimizing the refcounting in the ucount code. - The series "reboot: support runtime configuration of emergency hw_protection action" from Ahmad Fatoum improves the ability for a driver to perform an emergency system shutdown or reboot. - The series "Converge on using secs_to_jiffies() part two" from Easwar Hariharan performs further migrations from msecs_to_jiffies() to secs_to_jiffies(). - The series "lib/interval_tree: add some test cases and cleanup" from Wei Yang permits more userspace testing of kernel library code, adds some more tests and performs some cleanups. - The series "hung_task: Dump the blocking task stacktrace" from Masami Hiramatsu arranges for the hung_task detector to dump the stack of the blocking task and not just that of the blocked task. - The series "resource: Split and use DEFINE_RES*() macros" from Andy Shevchenko provides some cleanups to the resource definition macros. - Plus the usual shower of singleton patches - please see the individual changelogs for details. * tag 'mm-nonmm-stable-2025-03-30-18-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (77 commits) mailmap: consolidate email addresses of Alexander Sverdlin fs/procfs: fix the comment above proc_pid_wchan() relay: use kasprintf() instead of fixed buffer formatting resource: replace open coded variant of DEFINE_RES() resource: replace open coded variants of DEFINE_RES_*_NAMED() resource: replace open coded variant of DEFINE_RES_NAMED_DESC() resource: split DEFINE_RES_NAMED_DESC() out of DEFINE_RES_NAMED() samples: add hung_task detector mutex blocking sample hung_task: show the blocker task if the task is hung on mutex kexec_core: accept unaccepted kexec segments' destination addresses watchdog/perf: optimize bytes copied and remove manual NUL-termination lib/interval_tree: fix the comment of interval_tree_span_iter_next_gap() lib/interval_tree: skip the check before go to the right subtree lib/interval_tree: add test case for span iteration lib/interval_tree: add test case for interval_tree_iter_xxx() helpers lib/rbtree: add random seed lib/rbtree: split tests lib/rbtree: enable userland test suite for rbtree related data structure checkpatch: describe --min-conf-desc-length scripts/gdb/symbols: determine KASLR offset on s390 ...
		
			
				
	
	
		
			2457 lines
		
	
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2457 lines
		
	
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | ||
| /*
 | ||
|  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
 | ||
|  */
 | ||
| 
 | ||
| #include <linux/fs.h>
 | ||
| #include <linux/slab.h>
 | ||
| #include <linux/highmem.h>
 | ||
| #include <linux/pagemap.h>
 | ||
| #include <asm/byteorder.h>
 | ||
| #include <linux/swap.h>
 | ||
| #include <linux/mpage.h>
 | ||
| #include <linux/quotaops.h>
 | ||
| #include <linux/blkdev.h>
 | ||
| #include <linux/uio.h>
 | ||
| #include <linux/mm.h>
 | ||
| 
 | ||
| #include <cluster/masklog.h>
 | ||
| 
 | ||
| #include "ocfs2.h"
 | ||
| 
 | ||
| #include "alloc.h"
 | ||
| #include "aops.h"
 | ||
| #include "dlmglue.h"
 | ||
| #include "extent_map.h"
 | ||
| #include "file.h"
 | ||
| #include "inode.h"
 | ||
| #include "journal.h"
 | ||
| #include "suballoc.h"
 | ||
| #include "super.h"
 | ||
| #include "symlink.h"
 | ||
| #include "refcounttree.h"
 | ||
| #include "ocfs2_trace.h"
 | ||
| 
 | ||
| #include "buffer_head_io.h"
 | ||
| #include "dir.h"
 | ||
| #include "namei.h"
 | ||
| #include "sysfile.h"
 | ||
| 
 | ||
| static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
 | ||
| 				   struct buffer_head *bh_result, int create)
 | ||
| {
 | ||
| 	int err = -EIO;
 | ||
| 	int status;
 | ||
| 	struct ocfs2_dinode *fe = NULL;
 | ||
| 	struct buffer_head *bh = NULL;
 | ||
| 	struct buffer_head *buffer_cache_bh = NULL;
 | ||
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | ||
| 
 | ||
| 	trace_ocfs2_symlink_get_block(
 | ||
| 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
 | ||
| 			(unsigned long long)iblock, bh_result, create);
 | ||
| 
 | ||
| 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
 | ||
| 
 | ||
| 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
 | ||
| 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
 | ||
| 		     (unsigned long long)iblock);
 | ||
| 		goto bail;
 | ||
| 	}
 | ||
| 
 | ||
| 	status = ocfs2_read_inode_block(inode, &bh);
 | ||
| 	if (status < 0) {
 | ||
| 		mlog_errno(status);
 | ||
| 		goto bail;
 | ||
| 	}
 | ||
| 	fe = (struct ocfs2_dinode *) bh->b_data;
 | ||
| 
 | ||
| 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
 | ||
| 						    le32_to_cpu(fe->i_clusters))) {
 | ||
| 		err = -ENOMEM;
 | ||
| 		mlog(ML_ERROR, "block offset is outside the allocated size: "
 | ||
| 		     "%llu\n", (unsigned long long)iblock);
 | ||
| 		goto bail;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* We don't use the page cache to create symlink data, so if
 | ||
| 	 * need be, copy it over from the buffer cache. */
 | ||
| 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
 | ||
| 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
 | ||
| 			    iblock;
 | ||
| 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
 | ||
| 		if (!buffer_cache_bh) {
 | ||
| 			err = -ENOMEM;
 | ||
| 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 | ||
| 			goto bail;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* we haven't locked out transactions, so a commit
 | ||
| 		 * could've happened. Since we've got a reference on
 | ||
| 		 * the bh, even if it commits while we're doing the
 | ||
| 		 * copy, the data is still good. */
 | ||
| 		if (buffer_jbd(buffer_cache_bh) && ocfs2_inode_is_new(inode)) {
 | ||
| 			memcpy_to_folio(bh_result->b_folio,
 | ||
| 					bh_result->b_size * iblock,
 | ||
| 					buffer_cache_bh->b_data,
 | ||
| 					bh_result->b_size);
 | ||
| 			set_buffer_uptodate(bh_result);
 | ||
| 		}
 | ||
| 		brelse(buffer_cache_bh);
 | ||
| 	}
 | ||
| 
 | ||
| 	map_bh(bh_result, inode->i_sb,
 | ||
| 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 | ||
| 
 | ||
| 	err = 0;
 | ||
| 
 | ||
| bail:
 | ||
| 	brelse(bh);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 | ||
| 		    struct buffer_head *bh_result, int create)
 | ||
| {
 | ||
| 	int ret = 0;
 | ||
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | ||
| 
 | ||
| 	down_read(&oi->ip_alloc_sem);
 | ||
| 	ret = ocfs2_get_block(inode, iblock, bh_result, create);
 | ||
| 	up_read(&oi->ip_alloc_sem);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| int ocfs2_get_block(struct inode *inode, sector_t iblock,
 | ||
| 		    struct buffer_head *bh_result, int create)
 | ||
| {
 | ||
| 	int err = 0;
 | ||
| 	unsigned int ext_flags;
 | ||
| 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 | ||
| 	u64 p_blkno, count, past_eof;
 | ||
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | ||
| 
 | ||
| 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 | ||
| 			      (unsigned long long)iblock, bh_result, create);
 | ||
| 
 | ||
| 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 | ||
| 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 | ||
| 		     inode, inode->i_ino);
 | ||
| 
 | ||
| 	if (S_ISLNK(inode->i_mode)) {
 | ||
| 		/* this always does I/O for some reason. */
 | ||
| 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 | ||
| 		goto bail;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 | ||
| 					  &ext_flags);
 | ||
| 	if (err) {
 | ||
| 		mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, "
 | ||
| 		     "block: %llu\n", inode, (unsigned long long)iblock);
 | ||
| 		goto bail;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (max_blocks < count)
 | ||
| 		count = max_blocks;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * ocfs2 never allocates in this function - the only time we
 | ||
| 	 * need to use BH_New is when we're extending i_size on a file
 | ||
| 	 * system which doesn't support holes, in which case BH_New
 | ||
| 	 * allows __block_write_begin() to zero.
 | ||
| 	 *
 | ||
| 	 * If we see this on a sparse file system, then a truncate has
 | ||
| 	 * raced us and removed the cluster. In this case, we clear
 | ||
| 	 * the buffers dirty and uptodate bits and let the buffer code
 | ||
| 	 * ignore it as a hole.
 | ||
| 	 */
 | ||
| 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 | ||
| 		clear_buffer_dirty(bh_result);
 | ||
| 		clear_buffer_uptodate(bh_result);
 | ||
| 		goto bail;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Treat the unwritten extent as a hole for zeroing purposes. */
 | ||
| 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 | ||
| 		map_bh(bh_result, inode->i_sb, p_blkno);
 | ||
| 
 | ||
| 	bh_result->b_size = count << inode->i_blkbits;
 | ||
| 
 | ||
| 	if (!ocfs2_sparse_alloc(osb)) {
 | ||
| 		if (p_blkno == 0) {
 | ||
| 			err = -EIO;
 | ||
| 			mlog(ML_ERROR,
 | ||
| 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 | ||
| 			     (unsigned long long)iblock,
 | ||
| 			     (unsigned long long)p_blkno,
 | ||
| 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 | ||
| 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 | ||
| 			dump_stack();
 | ||
| 			goto bail;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 | ||
| 
 | ||
| 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 | ||
| 				  (unsigned long long)past_eof);
 | ||
| 	if (create && (iblock >= past_eof))
 | ||
| 		set_buffer_new(bh_result);
 | ||
| 
 | ||
| bail:
 | ||
| 	if (err < 0)
 | ||
| 		err = -EIO;
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| int ocfs2_read_inline_data(struct inode *inode, struct folio *folio,
 | ||
| 			   struct buffer_head *di_bh)
 | ||
| {
 | ||
| 	loff_t size;
 | ||
| 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 | ||
| 
 | ||
| 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 | ||
| 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 | ||
| 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 | ||
| 		return -EROFS;
 | ||
| 	}
 | ||
| 
 | ||
| 	size = i_size_read(inode);
 | ||
| 
 | ||
| 	if (size > folio_size(folio) ||
 | ||
| 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 | ||
| 		ocfs2_error(inode->i_sb,
 | ||
| 			    "Inode %llu has with inline data has bad size: %Lu\n",
 | ||
| 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 | ||
| 			    (unsigned long long)size);
 | ||
| 		return -EROFS;
 | ||
| 	}
 | ||
| 
 | ||
| 	folio_fill_tail(folio, 0, di->id2.i_data.id_data, size);
 | ||
| 	folio_mark_uptodate(folio);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_readpage_inline(struct inode *inode, struct folio *folio)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 	struct buffer_head *di_bh = NULL;
 | ||
| 
 | ||
| 	BUG_ON(!folio_test_locked(folio));
 | ||
| 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 | ||
| 
 | ||
| 	ret = ocfs2_read_inode_block(inode, &di_bh);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	ret = ocfs2_read_inline_data(inode, folio, di_bh);
 | ||
| out:
 | ||
| 	folio_unlock(folio);
 | ||
| 
 | ||
| 	brelse(di_bh);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_read_folio(struct file *file, struct folio *folio)
 | ||
| {
 | ||
| 	struct inode *inode = folio->mapping->host;
 | ||
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | ||
| 	loff_t start = folio_pos(folio);
 | ||
| 	int ret, unlock = 1;
 | ||
| 
 | ||
| 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
 | ||
| 
 | ||
| 	ret = ocfs2_inode_lock_with_folio(inode, NULL, 0, folio);
 | ||
| 	if (ret != 0) {
 | ||
| 		if (ret == AOP_TRUNCATED_PAGE)
 | ||
| 			unlock = 0;
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 | ||
| 		/*
 | ||
| 		 * Unlock the folio and cycle ip_alloc_sem so that we don't
 | ||
| 		 * busyloop waiting for ip_alloc_sem to unlock
 | ||
| 		 */
 | ||
| 		ret = AOP_TRUNCATED_PAGE;
 | ||
| 		folio_unlock(folio);
 | ||
| 		unlock = 0;
 | ||
| 		down_read(&oi->ip_alloc_sem);
 | ||
| 		up_read(&oi->ip_alloc_sem);
 | ||
| 		goto out_inode_unlock;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * i_size might have just been updated as we grabbed the meta lock.  We
 | ||
| 	 * might now be discovering a truncate that hit on another node.
 | ||
| 	 * block_read_full_folio->get_block freaks out if it is asked to read
 | ||
| 	 * beyond the end of a file, so we check here.  Callers
 | ||
| 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 | ||
| 	 * and notice that the folio they just read isn't needed.
 | ||
| 	 *
 | ||
| 	 * XXX sys_readahead() seems to get that wrong?
 | ||
| 	 */
 | ||
| 	if (start >= i_size_read(inode)) {
 | ||
| 		folio_zero_segment(folio, 0, folio_size(folio));
 | ||
| 		folio_mark_uptodate(folio);
 | ||
| 		ret = 0;
 | ||
| 		goto out_alloc;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 | ||
| 		ret = ocfs2_readpage_inline(inode, folio);
 | ||
| 	else
 | ||
| 		ret = block_read_full_folio(folio, ocfs2_get_block);
 | ||
| 	unlock = 0;
 | ||
| 
 | ||
| out_alloc:
 | ||
| 	up_read(&oi->ip_alloc_sem);
 | ||
| out_inode_unlock:
 | ||
| 	ocfs2_inode_unlock(inode, 0);
 | ||
| out:
 | ||
| 	if (unlock)
 | ||
| 		folio_unlock(folio);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This is used only for read-ahead. Failures or difficult to handle
 | ||
|  * situations are safe to ignore.
 | ||
|  *
 | ||
|  * Right now, we don't bother with BH_Boundary - in-inode extent lists
 | ||
|  * are quite large (243 extents on 4k blocks), so most inodes don't
 | ||
|  * grow out to a tree. If need be, detecting boundary extents could
 | ||
|  * trivially be added in a future version of ocfs2_get_block().
 | ||
|  */
 | ||
| static void ocfs2_readahead(struct readahead_control *rac)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 	struct inode *inode = rac->mapping->host;
 | ||
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Use the nonblocking flag for the dlm code to avoid page
 | ||
| 	 * lock inversion, but don't bother with retrying.
 | ||
| 	 */
 | ||
| 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 | ||
| 	if (ret)
 | ||
| 		return;
 | ||
| 
 | ||
| 	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
 | ||
| 		goto out_unlock;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Don't bother with inline-data. There isn't anything
 | ||
| 	 * to read-ahead in that case anyway...
 | ||
| 	 */
 | ||
| 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 | ||
| 		goto out_up;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Check whether a remote node truncated this file - we just
 | ||
| 	 * drop out in that case as it's not worth handling here.
 | ||
| 	 */
 | ||
| 	if (readahead_pos(rac) >= i_size_read(inode))
 | ||
| 		goto out_up;
 | ||
| 
 | ||
| 	mpage_readahead(rac, ocfs2_get_block);
 | ||
| 
 | ||
| out_up:
 | ||
| 	up_read(&oi->ip_alloc_sem);
 | ||
| out_unlock:
 | ||
| 	ocfs2_inode_unlock(inode, 0);
 | ||
| }
 | ||
| 
 | ||
| /* Note: Because we don't support holes, our allocation has
 | ||
|  * already happened (allocation writes zeros to the file data)
 | ||
|  * so we don't have to worry about ordered writes in
 | ||
|  * ocfs2_writepages.
 | ||
|  *
 | ||
|  * ->writepages is called during the process of invalidating the page cache
 | ||
|  * during blocked lock processing.  It can't block on any cluster locks
 | ||
|  * to during block mapping.  It's relying on the fact that the block
 | ||
|  * mapping can't have disappeared under the dirty pages that it is
 | ||
|  * being asked to write back.
 | ||
|  */
 | ||
| static int ocfs2_writepages(struct address_space *mapping,
 | ||
| 		struct writeback_control *wbc)
 | ||
| {
 | ||
| 	return mpage_writepages(mapping, wbc, ocfs2_get_block);
 | ||
| }
 | ||
| 
 | ||
| /* Taken from ext3. We don't necessarily need the full blown
 | ||
|  * functionality yet, but IMHO it's better to cut and paste the whole
 | ||
|  * thing so we can avoid introducing our own bugs (and easily pick up
 | ||
|  * their fixes when they happen) --Mark */
 | ||
| int walk_page_buffers(	handle_t *handle,
 | ||
| 			struct buffer_head *head,
 | ||
| 			unsigned from,
 | ||
| 			unsigned to,
 | ||
| 			int *partial,
 | ||
| 			int (*fn)(	handle_t *handle,
 | ||
| 					struct buffer_head *bh))
 | ||
| {
 | ||
| 	struct buffer_head *bh;
 | ||
| 	unsigned block_start, block_end;
 | ||
| 	unsigned blocksize = head->b_size;
 | ||
| 	int err, ret = 0;
 | ||
| 	struct buffer_head *next;
 | ||
| 
 | ||
| 	for (	bh = head, block_start = 0;
 | ||
| 		ret == 0 && (bh != head || !block_start);
 | ||
| 	    	block_start = block_end, bh = next)
 | ||
| 	{
 | ||
| 		next = bh->b_this_page;
 | ||
| 		block_end = block_start + blocksize;
 | ||
| 		if (block_end <= from || block_start >= to) {
 | ||
| 			if (partial && !buffer_uptodate(bh))
 | ||
| 				*partial = 1;
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 		err = (*fn)(handle, bh);
 | ||
| 		if (!ret)
 | ||
| 			ret = err;
 | ||
| 	}
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 | ||
| {
 | ||
| 	sector_t status;
 | ||
| 	u64 p_blkno = 0;
 | ||
| 	int err = 0;
 | ||
| 	struct inode *inode = mapping->host;
 | ||
| 
 | ||
| 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 | ||
| 			 (unsigned long long)block);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
 | ||
| 	 * bypasseѕ the file system for actual I/O.  We really can't allow
 | ||
| 	 * that on refcounted inodes, so we have to skip out here.  And yes,
 | ||
| 	 * 0 is the magic code for a bmap error..
 | ||
| 	 */
 | ||
| 	if (ocfs2_is_refcount_inode(inode))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* We don't need to lock journal system files, since they aren't
 | ||
| 	 * accessed concurrently from multiple nodes.
 | ||
| 	 */
 | ||
| 	if (!INODE_JOURNAL(inode)) {
 | ||
| 		err = ocfs2_inode_lock(inode, NULL, 0);
 | ||
| 		if (err) {
 | ||
| 			if (err != -ENOENT)
 | ||
| 				mlog_errno(err);
 | ||
| 			goto bail;
 | ||
| 		}
 | ||
| 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 | ||
| 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 | ||
| 						  NULL);
 | ||
| 
 | ||
| 	if (!INODE_JOURNAL(inode)) {
 | ||
| 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 | ||
| 		ocfs2_inode_unlock(inode, 0);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (err) {
 | ||
| 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 | ||
| 		     (unsigned long long)block);
 | ||
| 		mlog_errno(err);
 | ||
| 		goto bail;
 | ||
| 	}
 | ||
| 
 | ||
| bail:
 | ||
| 	status = err ? 0 : p_blkno;
 | ||
| 
 | ||
| 	return status;
 | ||
| }
 | ||
| 
 | ||
| static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
 | ||
| {
 | ||
| 	if (!folio_buffers(folio))
 | ||
| 		return false;
 | ||
| 	return try_to_free_buffers(folio);
 | ||
| }
 | ||
| 
 | ||
| static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 | ||
| 					    u32 cpos,
 | ||
| 					    unsigned int *start,
 | ||
| 					    unsigned int *end)
 | ||
| {
 | ||
| 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 | ||
| 
 | ||
| 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 | ||
| 		unsigned int cpp;
 | ||
| 
 | ||
| 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 | ||
| 
 | ||
| 		cluster_start = cpos % cpp;
 | ||
| 		cluster_start = cluster_start << osb->s_clustersize_bits;
 | ||
| 
 | ||
| 		cluster_end = cluster_start + osb->s_clustersize;
 | ||
| 	}
 | ||
| 
 | ||
| 	BUG_ON(cluster_start > PAGE_SIZE);
 | ||
| 	BUG_ON(cluster_end > PAGE_SIZE);
 | ||
| 
 | ||
| 	if (start)
 | ||
| 		*start = cluster_start;
 | ||
| 	if (end)
 | ||
| 		*end = cluster_end;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * 'from' and 'to' are the region in the page to avoid zeroing.
 | ||
|  *
 | ||
|  * If pagesize > clustersize, this function will avoid zeroing outside
 | ||
|  * of the cluster boundary.
 | ||
|  *
 | ||
|  * from == to == 0 is code for "zero the entire cluster region"
 | ||
|  */
 | ||
| static void ocfs2_clear_folio_regions(struct folio *folio,
 | ||
| 				     struct ocfs2_super *osb, u32 cpos,
 | ||
| 				     unsigned from, unsigned to)
 | ||
| {
 | ||
| 	void *kaddr;
 | ||
| 	unsigned int cluster_start, cluster_end;
 | ||
| 
 | ||
| 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 | ||
| 
 | ||
| 	kaddr = kmap_local_folio(folio, 0);
 | ||
| 
 | ||
| 	if (from || to) {
 | ||
| 		if (from > cluster_start)
 | ||
| 			memset(kaddr + cluster_start, 0, from - cluster_start);
 | ||
| 		if (to < cluster_end)
 | ||
| 			memset(kaddr + to, 0, cluster_end - to);
 | ||
| 	} else {
 | ||
| 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 | ||
| 	}
 | ||
| 
 | ||
| 	kunmap_local(kaddr);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Nonsparse file systems fully allocate before we get to the write
 | ||
|  * code. This prevents ocfs2_write() from tagging the write as an
 | ||
|  * allocating one, which means ocfs2_map_folio_blocks() might try to
 | ||
|  * read-in the blocks at the tail of our file. Avoid reading them by
 | ||
|  * testing i_size against each block offset.
 | ||
|  */
 | ||
| static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio,
 | ||
| 				 unsigned int block_start)
 | ||
| {
 | ||
| 	u64 offset = folio_pos(folio) + block_start;
 | ||
| 
 | ||
| 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	if (i_size_read(inode) > offset)
 | ||
| 		return 1;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Some of this taken from __block_write_begin(). We already have our
 | ||
|  * mapping by now though, and the entire write will be allocating or
 | ||
|  * it won't, so not much need to use BH_New.
 | ||
|  *
 | ||
|  * This will also skip zeroing, which is handled externally.
 | ||
|  */
 | ||
| int ocfs2_map_folio_blocks(struct folio *folio, u64 *p_blkno,
 | ||
| 			  struct inode *inode, unsigned int from,
 | ||
| 			  unsigned int to, int new)
 | ||
| {
 | ||
| 	int ret = 0;
 | ||
| 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 | ||
| 	unsigned int block_end, block_start;
 | ||
| 	unsigned int bsize = i_blocksize(inode);
 | ||
| 
 | ||
| 	head = folio_buffers(folio);
 | ||
| 	if (!head)
 | ||
| 		head = create_empty_buffers(folio, bsize, 0);
 | ||
| 
 | ||
| 	for (bh = head, block_start = 0; bh != head || !block_start;
 | ||
| 	     bh = bh->b_this_page, block_start += bsize) {
 | ||
| 		block_end = block_start + bsize;
 | ||
| 
 | ||
| 		clear_buffer_new(bh);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Ignore blocks outside of our i/o range -
 | ||
| 		 * they may belong to unallocated clusters.
 | ||
| 		 */
 | ||
| 		if (block_start >= to || block_end <= from) {
 | ||
| 			if (folio_test_uptodate(folio))
 | ||
| 				set_buffer_uptodate(bh);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * For an allocating write with cluster size >= page
 | ||
| 		 * size, we always write the entire page.
 | ||
| 		 */
 | ||
| 		if (new)
 | ||
| 			set_buffer_new(bh);
 | ||
| 
 | ||
| 		if (!buffer_mapped(bh)) {
 | ||
| 			map_bh(bh, inode->i_sb, *p_blkno);
 | ||
| 			clean_bdev_bh_alias(bh);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (folio_test_uptodate(folio)) {
 | ||
| 			set_buffer_uptodate(bh);
 | ||
| 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 | ||
| 			   !buffer_new(bh) &&
 | ||
| 			   ocfs2_should_read_blk(inode, folio, block_start) &&
 | ||
| 			   (block_start < from || block_end > to)) {
 | ||
| 			bh_read_nowait(bh, 0);
 | ||
| 			*wait_bh++=bh;
 | ||
| 		}
 | ||
| 
 | ||
| 		*p_blkno = *p_blkno + 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If we issued read requests - let them complete.
 | ||
| 	 */
 | ||
| 	while(wait_bh > wait) {
 | ||
| 		wait_on_buffer(*--wait_bh);
 | ||
| 		if (!buffer_uptodate(*wait_bh))
 | ||
| 			ret = -EIO;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (ret == 0 || !new)
 | ||
| 		return ret;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If we get -EIO above, zero out any newly allocated blocks
 | ||
| 	 * to avoid exposing stale data.
 | ||
| 	 */
 | ||
| 	bh = head;
 | ||
| 	block_start = 0;
 | ||
| 	do {
 | ||
| 		block_end = block_start + bsize;
 | ||
| 		if (block_end <= from)
 | ||
| 			goto next_bh;
 | ||
| 		if (block_start >= to)
 | ||
| 			break;
 | ||
| 
 | ||
| 		folio_zero_range(folio, block_start, bh->b_size);
 | ||
| 		set_buffer_uptodate(bh);
 | ||
| 		mark_buffer_dirty(bh);
 | ||
| 
 | ||
| next_bh:
 | ||
| 		block_start = block_end;
 | ||
| 		bh = bh->b_this_page;
 | ||
| 	} while (bh != head);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 | ||
| #define OCFS2_MAX_CTXT_PAGES	1
 | ||
| #else
 | ||
| #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 | ||
| #endif
 | ||
| 
 | ||
| #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 | ||
| 
 | ||
| struct ocfs2_unwritten_extent {
 | ||
| 	struct list_head	ue_node;
 | ||
| 	struct list_head	ue_ip_node;
 | ||
| 	u32			ue_cpos;
 | ||
| 	u32			ue_phys;
 | ||
| };
 | ||
| 
 | ||
| /*
 | ||
|  * Describe the state of a single cluster to be written to.
 | ||
|  */
 | ||
| struct ocfs2_write_cluster_desc {
 | ||
| 	u32		c_cpos;
 | ||
| 	u32		c_phys;
 | ||
| 	/*
 | ||
| 	 * Give this a unique field because c_phys eventually gets
 | ||
| 	 * filled.
 | ||
| 	 */
 | ||
| 	unsigned	c_new;
 | ||
| 	unsigned	c_clear_unwritten;
 | ||
| 	unsigned	c_needs_zero;
 | ||
| };
 | ||
| 
 | ||
| struct ocfs2_write_ctxt {
 | ||
| 	/* Logical cluster position / len of write */
 | ||
| 	u32				w_cpos;
 | ||
| 	u32				w_clen;
 | ||
| 
 | ||
| 	/* First cluster allocated in a nonsparse extend */
 | ||
| 	u32				w_first_new_cpos;
 | ||
| 
 | ||
| 	/* Type of caller. Must be one of buffer, mmap, direct.  */
 | ||
| 	ocfs2_write_type_t		w_type;
 | ||
| 
 | ||
| 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * This is true if page_size > cluster_size.
 | ||
| 	 *
 | ||
| 	 * It triggers a set of special cases during write which might
 | ||
| 	 * have to deal with allocating writes to partial pages.
 | ||
| 	 */
 | ||
| 	unsigned int			w_large_pages;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Folios involved in this write.
 | ||
| 	 *
 | ||
| 	 * w_target_folio is the folio being written to by the user.
 | ||
| 	 *
 | ||
| 	 * w_folios is an array of folios which always contains
 | ||
| 	 * w_target_folio, and in the case of an allocating write with
 | ||
| 	 * page_size < cluster size, it will contain zero'd and mapped
 | ||
| 	 * pages adjacent to w_target_folio which need to be written
 | ||
| 	 * out in so that future reads from that region will get
 | ||
| 	 * zero's.
 | ||
| 	 */
 | ||
| 	unsigned int			w_num_folios;
 | ||
| 	struct folio			*w_folios[OCFS2_MAX_CTXT_PAGES];
 | ||
| 	struct folio			*w_target_folio;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 | ||
| 	 * against w_target_folio in ocfs2_write_end_nolock.
 | ||
| 	 */
 | ||
| 	unsigned int			w_target_locked:1;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * ocfs2_write_end() uses this to know what the real range to
 | ||
| 	 * write in the target should be.
 | ||
| 	 */
 | ||
| 	unsigned int			w_target_from;
 | ||
| 	unsigned int			w_target_to;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We could use journal_current_handle() but this is cleaner,
 | ||
| 	 * IMHO -Mark
 | ||
| 	 */
 | ||
| 	handle_t			*w_handle;
 | ||
| 
 | ||
| 	struct buffer_head		*w_di_bh;
 | ||
| 
 | ||
| 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 | ||
| 
 | ||
| 	struct list_head		w_unwritten_list;
 | ||
| 	unsigned int			w_unwritten_count;
 | ||
| };
 | ||
| 
 | ||
| void ocfs2_unlock_and_free_folios(struct folio **folios, int num_folios)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	for(i = 0; i < num_folios; i++) {
 | ||
| 		if (!folios[i])
 | ||
| 			continue;
 | ||
| 		folio_unlock(folios[i]);
 | ||
| 		folio_mark_accessed(folios[i]);
 | ||
| 		folio_put(folios[i]);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void ocfs2_unlock_folios(struct ocfs2_write_ctxt *wc)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * w_target_locked is only set to true in the page_mkwrite() case.
 | ||
| 	 * The intent is to allow us to lock the target page from write_begin()
 | ||
| 	 * to write_end(). The caller must hold a ref on w_target_folio.
 | ||
| 	 */
 | ||
| 	if (wc->w_target_locked) {
 | ||
| 		BUG_ON(!wc->w_target_folio);
 | ||
| 		for (i = 0; i < wc->w_num_folios; i++) {
 | ||
| 			if (wc->w_target_folio == wc->w_folios[i]) {
 | ||
| 				wc->w_folios[i] = NULL;
 | ||
| 				break;
 | ||
| 			}
 | ||
| 		}
 | ||
| 		folio_mark_accessed(wc->w_target_folio);
 | ||
| 		folio_put(wc->w_target_folio);
 | ||
| 	}
 | ||
| 	ocfs2_unlock_and_free_folios(wc->w_folios, wc->w_num_folios);
 | ||
| }
 | ||
| 
 | ||
| static void ocfs2_free_unwritten_list(struct inode *inode,
 | ||
| 				 struct list_head *head)
 | ||
| {
 | ||
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | ||
| 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 | ||
| 
 | ||
| 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
 | ||
| 		list_del(&ue->ue_node);
 | ||
| 		spin_lock(&oi->ip_lock);
 | ||
| 		list_del(&ue->ue_ip_node);
 | ||
| 		spin_unlock(&oi->ip_lock);
 | ||
| 		kfree(ue);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void ocfs2_free_write_ctxt(struct inode *inode,
 | ||
| 				  struct ocfs2_write_ctxt *wc)
 | ||
| {
 | ||
| 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 | ||
| 	ocfs2_unlock_folios(wc);
 | ||
| 	brelse(wc->w_di_bh);
 | ||
| 	kfree(wc);
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 | ||
| 				  struct ocfs2_super *osb, loff_t pos,
 | ||
| 				  unsigned len, ocfs2_write_type_t type,
 | ||
| 				  struct buffer_head *di_bh)
 | ||
| {
 | ||
| 	u32 cend;
 | ||
| 	struct ocfs2_write_ctxt *wc;
 | ||
| 
 | ||
| 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 | ||
| 	if (!wc)
 | ||
| 		return -ENOMEM;
 | ||
| 
 | ||
| 	wc->w_cpos = pos >> osb->s_clustersize_bits;
 | ||
| 	wc->w_first_new_cpos = UINT_MAX;
 | ||
| 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 | ||
| 	wc->w_clen = cend - wc->w_cpos + 1;
 | ||
| 	get_bh(di_bh);
 | ||
| 	wc->w_di_bh = di_bh;
 | ||
| 	wc->w_type = type;
 | ||
| 
 | ||
| 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 | ||
| 		wc->w_large_pages = 1;
 | ||
| 	else
 | ||
| 		wc->w_large_pages = 0;
 | ||
| 
 | ||
| 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 | ||
| 	INIT_LIST_HEAD(&wc->w_unwritten_list);
 | ||
| 
 | ||
| 	*wcp = wc;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * If a page has any new buffers, zero them out here, and mark them uptodate
 | ||
|  * and dirty so they'll be written out (in order to prevent uninitialised
 | ||
|  * block data from leaking). And clear the new bit.
 | ||
|  */
 | ||
| static void ocfs2_zero_new_buffers(struct folio *folio, size_t from, size_t to)
 | ||
| {
 | ||
| 	unsigned int block_start, block_end;
 | ||
| 	struct buffer_head *head, *bh;
 | ||
| 
 | ||
| 	BUG_ON(!folio_test_locked(folio));
 | ||
| 	head = folio_buffers(folio);
 | ||
| 	if (!head)
 | ||
| 		return;
 | ||
| 
 | ||
| 	bh = head;
 | ||
| 	block_start = 0;
 | ||
| 	do {
 | ||
| 		block_end = block_start + bh->b_size;
 | ||
| 
 | ||
| 		if (buffer_new(bh)) {
 | ||
| 			if (block_end > from && block_start < to) {
 | ||
| 				if (!folio_test_uptodate(folio)) {
 | ||
| 					unsigned start, end;
 | ||
| 
 | ||
| 					start = max(from, block_start);
 | ||
| 					end = min(to, block_end);
 | ||
| 
 | ||
| 					folio_zero_segment(folio, start, end);
 | ||
| 					set_buffer_uptodate(bh);
 | ||
| 				}
 | ||
| 
 | ||
| 				clear_buffer_new(bh);
 | ||
| 				mark_buffer_dirty(bh);
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		block_start = block_end;
 | ||
| 		bh = bh->b_this_page;
 | ||
| 	} while (bh != head);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Only called when we have a failure during allocating write to write
 | ||
|  * zero's to the newly allocated region.
 | ||
|  */
 | ||
| static void ocfs2_write_failure(struct inode *inode,
 | ||
| 				struct ocfs2_write_ctxt *wc,
 | ||
| 				loff_t user_pos, unsigned user_len)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	unsigned from = user_pos & (PAGE_SIZE - 1),
 | ||
| 		to = user_pos + user_len;
 | ||
| 
 | ||
| 	if (wc->w_target_folio)
 | ||
| 		ocfs2_zero_new_buffers(wc->w_target_folio, from, to);
 | ||
| 
 | ||
| 	for (i = 0; i < wc->w_num_folios; i++) {
 | ||
| 		struct folio *folio = wc->w_folios[i];
 | ||
| 
 | ||
| 		if (folio && folio_buffers(folio)) {
 | ||
| 			if (ocfs2_should_order_data(inode))
 | ||
| 				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
 | ||
| 							   user_pos, user_len);
 | ||
| 
 | ||
| 			block_commit_write(folio, from, to);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_prepare_folio_for_write(struct inode *inode, u64 *p_blkno,
 | ||
| 		struct ocfs2_write_ctxt *wc, struct folio *folio, u32 cpos,
 | ||
| 		loff_t user_pos, unsigned user_len, int new)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 	unsigned int map_from = 0, map_to = 0;
 | ||
| 	unsigned int cluster_start, cluster_end;
 | ||
| 	unsigned int user_data_from = 0, user_data_to = 0;
 | ||
| 
 | ||
| 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 | ||
| 					&cluster_start, &cluster_end);
 | ||
| 
 | ||
| 	/* treat the write as new if the a hole/lseek spanned across
 | ||
| 	 * the page boundary.
 | ||
| 	 */
 | ||
| 	new = new | ((i_size_read(inode) <= folio_pos(folio)) &&
 | ||
| 			(folio_pos(folio) <= user_pos));
 | ||
| 
 | ||
| 	if (folio == wc->w_target_folio) {
 | ||
| 		map_from = user_pos & (PAGE_SIZE - 1);
 | ||
| 		map_to = map_from + user_len;
 | ||
| 
 | ||
| 		if (new)
 | ||
| 			ret = ocfs2_map_folio_blocks(folio, p_blkno, inode,
 | ||
| 					cluster_start, cluster_end, new);
 | ||
| 		else
 | ||
| 			ret = ocfs2_map_folio_blocks(folio, p_blkno, inode,
 | ||
| 					map_from, map_to, new);
 | ||
| 		if (ret) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 
 | ||
| 		user_data_from = map_from;
 | ||
| 		user_data_to = map_to;
 | ||
| 		if (new) {
 | ||
| 			map_from = cluster_start;
 | ||
| 			map_to = cluster_end;
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		/*
 | ||
| 		 * If we haven't allocated the new folio yet, we
 | ||
| 		 * shouldn't be writing it out without copying user
 | ||
| 		 * data. This is likely a math error from the caller.
 | ||
| 		 */
 | ||
| 		BUG_ON(!new);
 | ||
| 
 | ||
| 		map_from = cluster_start;
 | ||
| 		map_to = cluster_end;
 | ||
| 
 | ||
| 		ret = ocfs2_map_folio_blocks(folio, p_blkno, inode,
 | ||
| 				cluster_start, cluster_end, new);
 | ||
| 		if (ret) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Parts of newly allocated folios need to be zero'd.
 | ||
| 	 *
 | ||
| 	 * Above, we have also rewritten 'to' and 'from' - as far as
 | ||
| 	 * the rest of the function is concerned, the entire cluster
 | ||
| 	 * range inside of a folio needs to be written.
 | ||
| 	 *
 | ||
| 	 * We can skip this if the folio is uptodate - it's already
 | ||
| 	 * been zero'd from being read in as a hole.
 | ||
| 	 */
 | ||
| 	if (new && !folio_test_uptodate(folio))
 | ||
| 		ocfs2_clear_folio_regions(folio, OCFS2_SB(inode->i_sb),
 | ||
| 					 cpos, user_data_from, user_data_to);
 | ||
| 
 | ||
| 	flush_dcache_folio(folio);
 | ||
| 
 | ||
| out:
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This function will only grab one clusters worth of pages.
 | ||
|  */
 | ||
| static int ocfs2_grab_folios_for_write(struct address_space *mapping,
 | ||
| 		struct ocfs2_write_ctxt *wc, u32 cpos, loff_t user_pos,
 | ||
| 		unsigned user_len, int new, struct folio *mmap_folio)
 | ||
| {
 | ||
| 	int ret = 0, i;
 | ||
| 	unsigned long start, target_index, end_index, index;
 | ||
| 	struct inode *inode = mapping->host;
 | ||
| 	loff_t last_byte;
 | ||
| 
 | ||
| 	target_index = user_pos >> PAGE_SHIFT;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Figure out how many pages we'll be manipulating here. For
 | ||
| 	 * non allocating write, we just change the one
 | ||
| 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
 | ||
| 	 * writing past i_size, we only need enough pages to cover the
 | ||
| 	 * last page of the write.
 | ||
| 	 */
 | ||
| 	if (new) {
 | ||
| 		wc->w_num_folios = ocfs2_pages_per_cluster(inode->i_sb);
 | ||
| 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
 | ||
| 		/*
 | ||
| 		 * We need the index *past* the last page we could possibly
 | ||
| 		 * touch.  This is the page past the end of the write or
 | ||
| 		 * i_size, whichever is greater.
 | ||
| 		 */
 | ||
| 		last_byte = max(user_pos + user_len, i_size_read(inode));
 | ||
| 		BUG_ON(last_byte < 1);
 | ||
| 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
 | ||
| 		if ((start + wc->w_num_folios) > end_index)
 | ||
| 			wc->w_num_folios = end_index - start;
 | ||
| 	} else {
 | ||
| 		wc->w_num_folios = 1;
 | ||
| 		start = target_index;
 | ||
| 	}
 | ||
| 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
 | ||
| 
 | ||
| 	for(i = 0; i < wc->w_num_folios; i++) {
 | ||
| 		index = start + i;
 | ||
| 
 | ||
| 		if (index >= target_index && index <= end_index &&
 | ||
| 		    wc->w_type == OCFS2_WRITE_MMAP) {
 | ||
| 			/*
 | ||
| 			 * ocfs2_pagemkwrite() is a little different
 | ||
| 			 * and wants us to directly use the page
 | ||
| 			 * passed in.
 | ||
| 			 */
 | ||
| 			folio_lock(mmap_folio);
 | ||
| 
 | ||
| 			/* Exit and let the caller retry */
 | ||
| 			if (mmap_folio->mapping != mapping) {
 | ||
| 				WARN_ON(mmap_folio->mapping);
 | ||
| 				folio_unlock(mmap_folio);
 | ||
| 				ret = -EAGAIN;
 | ||
| 				goto out;
 | ||
| 			}
 | ||
| 
 | ||
| 			folio_get(mmap_folio);
 | ||
| 			wc->w_folios[i] = mmap_folio;
 | ||
| 			wc->w_target_locked = true;
 | ||
| 		} else if (index >= target_index && index <= end_index &&
 | ||
| 			   wc->w_type == OCFS2_WRITE_DIRECT) {
 | ||
| 			/* Direct write has no mapping page. */
 | ||
| 			wc->w_folios[i] = NULL;
 | ||
| 			continue;
 | ||
| 		} else {
 | ||
| 			wc->w_folios[i] = __filemap_get_folio(mapping, index,
 | ||
| 					FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
 | ||
| 					GFP_NOFS);
 | ||
| 			if (IS_ERR(wc->w_folios[i])) {
 | ||
| 				ret = PTR_ERR(wc->w_folios[i]);
 | ||
| 				mlog_errno(ret);
 | ||
| 				goto out;
 | ||
| 			}
 | ||
| 		}
 | ||
| 		folio_wait_stable(wc->w_folios[i]);
 | ||
| 
 | ||
| 		if (index == target_index)
 | ||
| 			wc->w_target_folio = wc->w_folios[i];
 | ||
| 	}
 | ||
| out:
 | ||
| 	if (ret)
 | ||
| 		wc->w_target_locked = false;
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Prepare a single cluster for write one cluster into the file.
 | ||
|  */
 | ||
| static int ocfs2_write_cluster(struct address_space *mapping,
 | ||
| 			       u32 *phys, unsigned int new,
 | ||
| 			       unsigned int clear_unwritten,
 | ||
| 			       unsigned int should_zero,
 | ||
| 			       struct ocfs2_alloc_context *data_ac,
 | ||
| 			       struct ocfs2_alloc_context *meta_ac,
 | ||
| 			       struct ocfs2_write_ctxt *wc, u32 cpos,
 | ||
| 			       loff_t user_pos, unsigned user_len)
 | ||
| {
 | ||
| 	int ret, i;
 | ||
| 	u64 p_blkno;
 | ||
| 	struct inode *inode = mapping->host;
 | ||
| 	struct ocfs2_extent_tree et;
 | ||
| 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
 | ||
| 
 | ||
| 	if (new) {
 | ||
| 		u32 tmp_pos;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * This is safe to call with the page locks - it won't take
 | ||
| 		 * any additional semaphores or cluster locks.
 | ||
| 		 */
 | ||
| 		tmp_pos = cpos;
 | ||
| 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
 | ||
| 					   &tmp_pos, 1, !clear_unwritten,
 | ||
| 					   wc->w_di_bh, wc->w_handle,
 | ||
| 					   data_ac, meta_ac, NULL);
 | ||
| 		/*
 | ||
| 		 * This shouldn't happen because we must have already
 | ||
| 		 * calculated the correct meta data allocation required. The
 | ||
| 		 * internal tree allocation code should know how to increase
 | ||
| 		 * transaction credits itself.
 | ||
| 		 *
 | ||
| 		 * If need be, we could handle -EAGAIN for a
 | ||
| 		 * RESTART_TRANS here.
 | ||
| 		 */
 | ||
| 		mlog_bug_on_msg(ret == -EAGAIN,
 | ||
| 				"Inode %llu: EAGAIN return during allocation.\n",
 | ||
| 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
 | ||
| 		if (ret < 0) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 	} else if (clear_unwritten) {
 | ||
| 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
 | ||
| 					      wc->w_di_bh);
 | ||
| 		ret = ocfs2_mark_extent_written(inode, &et,
 | ||
| 						wc->w_handle, cpos, 1, *phys,
 | ||
| 						meta_ac, &wc->w_dealloc);
 | ||
| 		if (ret < 0) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The only reason this should fail is due to an inability to
 | ||
| 	 * find the extent added.
 | ||
| 	 */
 | ||
| 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
 | ||
| 	if (ret < 0) {
 | ||
| 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
 | ||
| 			    "at logical cluster %u",
 | ||
| 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	BUG_ON(*phys == 0);
 | ||
| 
 | ||
| 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
 | ||
| 	if (!should_zero)
 | ||
| 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
 | ||
| 
 | ||
| 	for (i = 0; i < wc->w_num_folios; i++) {
 | ||
| 		int tmpret;
 | ||
| 
 | ||
| 		/* This is the direct io target page. */
 | ||
| 		if (wc->w_folios[i] == NULL) {
 | ||
| 			p_blkno += (1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits));
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		tmpret = ocfs2_prepare_folio_for_write(inode, &p_blkno, wc,
 | ||
| 				wc->w_folios[i], cpos, user_pos, user_len,
 | ||
| 				should_zero);
 | ||
| 		if (tmpret) {
 | ||
| 			mlog_errno(tmpret);
 | ||
| 			if (ret == 0)
 | ||
| 				ret = tmpret;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We only have cleanup to do in case of allocating write.
 | ||
| 	 */
 | ||
| 	if (ret && new)
 | ||
| 		ocfs2_write_failure(inode, wc, user_pos, user_len);
 | ||
| 
 | ||
| out:
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
 | ||
| 				       struct ocfs2_alloc_context *data_ac,
 | ||
| 				       struct ocfs2_alloc_context *meta_ac,
 | ||
| 				       struct ocfs2_write_ctxt *wc,
 | ||
| 				       loff_t pos, unsigned len)
 | ||
| {
 | ||
| 	int ret, i;
 | ||
| 	loff_t cluster_off;
 | ||
| 	unsigned int local_len = len;
 | ||
| 	struct ocfs2_write_cluster_desc *desc;
 | ||
| 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
 | ||
| 
 | ||
| 	for (i = 0; i < wc->w_clen; i++) {
 | ||
| 		desc = &wc->w_desc[i];
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * We have to make sure that the total write passed in
 | ||
| 		 * doesn't extend past a single cluster.
 | ||
| 		 */
 | ||
| 		local_len = len;
 | ||
| 		cluster_off = pos & (osb->s_clustersize - 1);
 | ||
| 		if ((cluster_off + local_len) > osb->s_clustersize)
 | ||
| 			local_len = osb->s_clustersize - cluster_off;
 | ||
| 
 | ||
| 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
 | ||
| 					  desc->c_new,
 | ||
| 					  desc->c_clear_unwritten,
 | ||
| 					  desc->c_needs_zero,
 | ||
| 					  data_ac, meta_ac,
 | ||
| 					  wc, desc->c_cpos, pos, local_len);
 | ||
| 		if (ret) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 
 | ||
| 		len -= local_len;
 | ||
| 		pos += local_len;
 | ||
| 	}
 | ||
| 
 | ||
| 	ret = 0;
 | ||
| out:
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * ocfs2_write_end() wants to know which parts of the target page it
 | ||
|  * should complete the write on. It's easiest to compute them ahead of
 | ||
|  * time when a more complete view of the write is available.
 | ||
|  */
 | ||
| static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
 | ||
| 					struct ocfs2_write_ctxt *wc,
 | ||
| 					loff_t pos, unsigned len, int alloc)
 | ||
| {
 | ||
| 	struct ocfs2_write_cluster_desc *desc;
 | ||
| 
 | ||
| 	wc->w_target_from = pos & (PAGE_SIZE - 1);
 | ||
| 	wc->w_target_to = wc->w_target_from + len;
 | ||
| 
 | ||
| 	if (alloc == 0)
 | ||
| 		return;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Allocating write - we may have different boundaries based
 | ||
| 	 * on page size and cluster size.
 | ||
| 	 *
 | ||
| 	 * NOTE: We can no longer compute one value from the other as
 | ||
| 	 * the actual write length and user provided length may be
 | ||
| 	 * different.
 | ||
| 	 */
 | ||
| 
 | ||
| 	if (wc->w_large_pages) {
 | ||
| 		/*
 | ||
| 		 * We only care about the 1st and last cluster within
 | ||
| 		 * our range and whether they should be zero'd or not. Either
 | ||
| 		 * value may be extended out to the start/end of a
 | ||
| 		 * newly allocated cluster.
 | ||
| 		 */
 | ||
| 		desc = &wc->w_desc[0];
 | ||
| 		if (desc->c_needs_zero)
 | ||
| 			ocfs2_figure_cluster_boundaries(osb,
 | ||
| 							desc->c_cpos,
 | ||
| 							&wc->w_target_from,
 | ||
| 							NULL);
 | ||
| 
 | ||
| 		desc = &wc->w_desc[wc->w_clen - 1];
 | ||
| 		if (desc->c_needs_zero)
 | ||
| 			ocfs2_figure_cluster_boundaries(osb,
 | ||
| 							desc->c_cpos,
 | ||
| 							NULL,
 | ||
| 							&wc->w_target_to);
 | ||
| 	} else {
 | ||
| 		wc->w_target_from = 0;
 | ||
| 		wc->w_target_to = PAGE_SIZE;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
 | ||
|  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
 | ||
|  * by the direct io procedure.
 | ||
|  * If this is a new extent that allocated by direct io, we should mark it in
 | ||
|  * the ip_unwritten_list.
 | ||
|  */
 | ||
| static int ocfs2_unwritten_check(struct inode *inode,
 | ||
| 				 struct ocfs2_write_ctxt *wc,
 | ||
| 				 struct ocfs2_write_cluster_desc *desc)
 | ||
| {
 | ||
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | ||
| 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
 | ||
| 	int ret = 0;
 | ||
| 
 | ||
| 	if (!desc->c_needs_zero)
 | ||
| 		return 0;
 | ||
| 
 | ||
| retry:
 | ||
| 	spin_lock(&oi->ip_lock);
 | ||
| 	/* Needs not to zero no metter buffer or direct. The one who is zero
 | ||
| 	 * the cluster is doing zero. And he will clear unwritten after all
 | ||
| 	 * cluster io finished. */
 | ||
| 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
 | ||
| 		if (desc->c_cpos == ue->ue_cpos) {
 | ||
| 			BUG_ON(desc->c_new);
 | ||
| 			desc->c_needs_zero = 0;
 | ||
| 			desc->c_clear_unwritten = 0;
 | ||
| 			goto unlock;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (wc->w_type != OCFS2_WRITE_DIRECT)
 | ||
| 		goto unlock;
 | ||
| 
 | ||
| 	if (new == NULL) {
 | ||
| 		spin_unlock(&oi->ip_lock);
 | ||
| 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
 | ||
| 			     GFP_NOFS);
 | ||
| 		if (new == NULL) {
 | ||
| 			ret = -ENOMEM;
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 		goto retry;
 | ||
| 	}
 | ||
| 	/* This direct write will doing zero. */
 | ||
| 	new->ue_cpos = desc->c_cpos;
 | ||
| 	new->ue_phys = desc->c_phys;
 | ||
| 	desc->c_clear_unwritten = 0;
 | ||
| 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
 | ||
| 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
 | ||
| 	wc->w_unwritten_count++;
 | ||
| 	new = NULL;
 | ||
| unlock:
 | ||
| 	spin_unlock(&oi->ip_lock);
 | ||
| out:
 | ||
| 	kfree(new);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Populate each single-cluster write descriptor in the write context
 | ||
|  * with information about the i/o to be done.
 | ||
|  *
 | ||
|  * Returns the number of clusters that will have to be allocated, as
 | ||
|  * well as a worst case estimate of the number of extent records that
 | ||
|  * would have to be created during a write to an unwritten region.
 | ||
|  */
 | ||
| static int ocfs2_populate_write_desc(struct inode *inode,
 | ||
| 				     struct ocfs2_write_ctxt *wc,
 | ||
| 				     unsigned int *clusters_to_alloc,
 | ||
| 				     unsigned int *extents_to_split)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 	struct ocfs2_write_cluster_desc *desc;
 | ||
| 	unsigned int num_clusters = 0;
 | ||
| 	unsigned int ext_flags = 0;
 | ||
| 	u32 phys = 0;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	*clusters_to_alloc = 0;
 | ||
| 	*extents_to_split = 0;
 | ||
| 
 | ||
| 	for (i = 0; i < wc->w_clen; i++) {
 | ||
| 		desc = &wc->w_desc[i];
 | ||
| 		desc->c_cpos = wc->w_cpos + i;
 | ||
| 
 | ||
| 		if (num_clusters == 0) {
 | ||
| 			/*
 | ||
| 			 * Need to look up the next extent record.
 | ||
| 			 */
 | ||
| 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
 | ||
| 						 &num_clusters, &ext_flags);
 | ||
| 			if (ret) {
 | ||
| 				mlog_errno(ret);
 | ||
| 				goto out;
 | ||
| 			}
 | ||
| 
 | ||
| 			/* We should already CoW the refcountd extent. */
 | ||
| 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * Assume worst case - that we're writing in
 | ||
| 			 * the middle of the extent.
 | ||
| 			 *
 | ||
| 			 * We can assume that the write proceeds from
 | ||
| 			 * left to right, in which case the extent
 | ||
| 			 * insert code is smart enough to coalesce the
 | ||
| 			 * next splits into the previous records created.
 | ||
| 			 */
 | ||
| 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
 | ||
| 				*extents_to_split = *extents_to_split + 2;
 | ||
| 		} else if (phys) {
 | ||
| 			/*
 | ||
| 			 * Only increment phys if it doesn't describe
 | ||
| 			 * a hole.
 | ||
| 			 */
 | ||
| 			phys++;
 | ||
| 		}
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
 | ||
| 		 * file that got extended.  w_first_new_cpos tells us
 | ||
| 		 * where the newly allocated clusters are so we can
 | ||
| 		 * zero them.
 | ||
| 		 */
 | ||
| 		if (desc->c_cpos >= wc->w_first_new_cpos) {
 | ||
| 			BUG_ON(phys == 0);
 | ||
| 			desc->c_needs_zero = 1;
 | ||
| 		}
 | ||
| 
 | ||
| 		desc->c_phys = phys;
 | ||
| 		if (phys == 0) {
 | ||
| 			desc->c_new = 1;
 | ||
| 			desc->c_needs_zero = 1;
 | ||
| 			desc->c_clear_unwritten = 1;
 | ||
| 			*clusters_to_alloc = *clusters_to_alloc + 1;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
 | ||
| 			desc->c_clear_unwritten = 1;
 | ||
| 			desc->c_needs_zero = 1;
 | ||
| 		}
 | ||
| 
 | ||
| 		ret = ocfs2_unwritten_check(inode, wc, desc);
 | ||
| 		if (ret) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 
 | ||
| 		num_clusters--;
 | ||
| 	}
 | ||
| 
 | ||
| 	ret = 0;
 | ||
| out:
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_write_begin_inline(struct address_space *mapping,
 | ||
| 				    struct inode *inode,
 | ||
| 				    struct ocfs2_write_ctxt *wc)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | ||
| 	struct folio *folio;
 | ||
| 	handle_t *handle;
 | ||
| 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
 | ||
| 
 | ||
| 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
 | ||
| 	if (IS_ERR(handle)) {
 | ||
| 		ret = PTR_ERR(handle);
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	folio = __filemap_get_folio(mapping, 0,
 | ||
| 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_NOFS);
 | ||
| 	if (IS_ERR(folio)) {
 | ||
| 		ocfs2_commit_trans(osb, handle);
 | ||
| 		ret = PTR_ERR(folio);
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 	/*
 | ||
| 	 * If we don't set w_num_folios then this folio won't get unlocked
 | ||
| 	 * and freed on cleanup of the write context.
 | ||
| 	 */
 | ||
| 	wc->w_target_folio = folio;
 | ||
| 	wc->w_folios[0] = folio;
 | ||
| 	wc->w_num_folios = 1;
 | ||
| 
 | ||
| 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
 | ||
| 				      OCFS2_JOURNAL_ACCESS_WRITE);
 | ||
| 	if (ret) {
 | ||
| 		ocfs2_commit_trans(osb, handle);
 | ||
| 
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 | ||
| 		ocfs2_set_inode_data_inline(inode, di);
 | ||
| 
 | ||
| 	if (!folio_test_uptodate(folio)) {
 | ||
| 		ret = ocfs2_read_inline_data(inode, folio, wc->w_di_bh);
 | ||
| 		if (ret) {
 | ||
| 			ocfs2_commit_trans(osb, handle);
 | ||
| 
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	wc->w_handle = handle;
 | ||
| out:
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
 | ||
| {
 | ||
| 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 | ||
| 
 | ||
| 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
 | ||
| 		return 1;
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
 | ||
| 		struct inode *inode, loff_t pos, size_t len,
 | ||
| 		struct folio *mmap_folio, struct ocfs2_write_ctxt *wc)
 | ||
| {
 | ||
| 	int ret, written = 0;
 | ||
| 	loff_t end = pos + len;
 | ||
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | ||
| 	struct ocfs2_dinode *di = NULL;
 | ||
| 
 | ||
| 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
 | ||
| 					     len, (unsigned long long)pos,
 | ||
| 					     oi->ip_dyn_features);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Handle inodes which already have inline data 1st.
 | ||
| 	 */
 | ||
| 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
 | ||
| 		if (mmap_folio == NULL &&
 | ||
| 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
 | ||
| 			goto do_inline_write;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * The write won't fit - we have to give this inode an
 | ||
| 		 * inline extent list now.
 | ||
| 		 */
 | ||
| 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
 | ||
| 		if (ret)
 | ||
| 			mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Check whether the inode can accept inline data.
 | ||
| 	 */
 | ||
| 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Check whether the write can fit.
 | ||
| 	 */
 | ||
| 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
 | ||
| 	if (mmap_folio ||
 | ||
| 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
 | ||
| 		return 0;
 | ||
| 
 | ||
| do_inline_write:
 | ||
| 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * This signals to the caller that the data can be written
 | ||
| 	 * inline.
 | ||
| 	 */
 | ||
| 	written = 1;
 | ||
| out:
 | ||
| 	return written ? written : ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This function only does anything for file systems which can't
 | ||
|  * handle sparse files.
 | ||
|  *
 | ||
|  * What we want to do here is fill in any hole between the current end
 | ||
|  * of allocation and the end of our write. That way the rest of the
 | ||
|  * write path can treat it as an non-allocating write, which has no
 | ||
|  * special case code for sparse/nonsparse files.
 | ||
|  */
 | ||
| static int ocfs2_expand_nonsparse_inode(struct inode *inode,
 | ||
| 					struct buffer_head *di_bh,
 | ||
| 					loff_t pos, unsigned len,
 | ||
| 					struct ocfs2_write_ctxt *wc)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 	loff_t newsize = pos + len;
 | ||
| 
 | ||
| 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
 | ||
| 
 | ||
| 	if (newsize <= i_size_read(inode))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
 | ||
| 	if (ret)
 | ||
| 		mlog_errno(ret);
 | ||
| 
 | ||
| 	/* There is no wc if this is call from direct. */
 | ||
| 	if (wc)
 | ||
| 		wc->w_first_new_cpos =
 | ||
| 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
 | ||
| 			   loff_t pos)
 | ||
| {
 | ||
| 	int ret = 0;
 | ||
| 
 | ||
| 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
 | ||
| 	if (pos > i_size_read(inode))
 | ||
| 		ret = ocfs2_zero_extend(inode, di_bh, pos);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| int ocfs2_write_begin_nolock(struct address_space *mapping,
 | ||
| 		loff_t pos, unsigned len, ocfs2_write_type_t type,
 | ||
| 		struct folio **foliop, void **fsdata,
 | ||
| 		struct buffer_head *di_bh, struct folio *mmap_folio)
 | ||
| {
 | ||
| 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
 | ||
| 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
 | ||
| 	struct ocfs2_write_ctxt *wc;
 | ||
| 	struct inode *inode = mapping->host;
 | ||
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | ||
| 	struct ocfs2_dinode *di;
 | ||
| 	struct ocfs2_alloc_context *data_ac = NULL;
 | ||
| 	struct ocfs2_alloc_context *meta_ac = NULL;
 | ||
| 	handle_t *handle;
 | ||
| 	struct ocfs2_extent_tree et;
 | ||
| 	int try_free = 1, ret1;
 | ||
| 
 | ||
| try_again:
 | ||
| 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		return ret;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (ocfs2_supports_inline_data(osb)) {
 | ||
| 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
 | ||
| 						     mmap_folio, wc);
 | ||
| 		if (ret == 1) {
 | ||
| 			ret = 0;
 | ||
| 			goto success;
 | ||
| 		}
 | ||
| 		if (ret < 0) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Direct io change i_size late, should not zero tail here. */
 | ||
| 	if (type != OCFS2_WRITE_DIRECT) {
 | ||
| 		if (ocfs2_sparse_alloc(osb))
 | ||
| 			ret = ocfs2_zero_tail(inode, di_bh, pos);
 | ||
| 		else
 | ||
| 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
 | ||
| 							   len, wc);
 | ||
| 		if (ret) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
 | ||
| 	if (ret < 0) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	} else if (ret == 1) {
 | ||
| 		clusters_need = wc->w_clen;
 | ||
| 		ret = ocfs2_refcount_cow(inode, di_bh,
 | ||
| 					 wc->w_cpos, wc->w_clen, UINT_MAX);
 | ||
| 		if (ret) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
 | ||
| 					&extents_to_split);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 	clusters_need += clusters_to_alloc;
 | ||
| 
 | ||
| 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
 | ||
| 
 | ||
| 	trace_ocfs2_write_begin_nolock(
 | ||
| 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
 | ||
| 			(long long)i_size_read(inode),
 | ||
| 			le32_to_cpu(di->i_clusters),
 | ||
| 			pos, len, type, mmap_folio,
 | ||
| 			clusters_to_alloc, extents_to_split);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We set w_target_from, w_target_to here so that
 | ||
| 	 * ocfs2_write_end() knows which range in the target page to
 | ||
| 	 * write out. An allocation requires that we write the entire
 | ||
| 	 * cluster range.
 | ||
| 	 */
 | ||
| 	if (clusters_to_alloc || extents_to_split) {
 | ||
| 		/*
 | ||
| 		 * XXX: We are stretching the limits of
 | ||
| 		 * ocfs2_lock_allocators(). It greatly over-estimates
 | ||
| 		 * the work to be done.
 | ||
| 		 */
 | ||
| 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
 | ||
| 					      wc->w_di_bh);
 | ||
| 		ret = ocfs2_lock_allocators(inode, &et,
 | ||
| 					    clusters_to_alloc, extents_to_split,
 | ||
| 					    &data_ac, &meta_ac);
 | ||
| 		if (ret) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (data_ac)
 | ||
| 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
 | ||
| 
 | ||
| 		credits = ocfs2_calc_extend_credits(inode->i_sb,
 | ||
| 						    &di->id2.i_list);
 | ||
| 	} else if (type == OCFS2_WRITE_DIRECT)
 | ||
| 		/* direct write needs not to start trans if no extents alloc. */
 | ||
| 		goto success;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
 | ||
| 	 * and non-sparse clusters we just extended.  For non-sparse writes,
 | ||
| 	 * we know zeros will only be needed in the first and/or last cluster.
 | ||
| 	 */
 | ||
| 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
 | ||
| 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
 | ||
| 		cluster_of_pages = 1;
 | ||
| 	else
 | ||
| 		cluster_of_pages = 0;
 | ||
| 
 | ||
| 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
 | ||
| 
 | ||
| 	handle = ocfs2_start_trans(osb, credits);
 | ||
| 	if (IS_ERR(handle)) {
 | ||
| 		ret = PTR_ERR(handle);
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	wc->w_handle = handle;
 | ||
| 
 | ||
| 	if (clusters_to_alloc) {
 | ||
| 		ret = dquot_alloc_space_nodirty(inode,
 | ||
| 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
 | ||
| 		if (ret)
 | ||
| 			goto out_commit;
 | ||
| 	}
 | ||
| 
 | ||
| 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
 | ||
| 				      OCFS2_JOURNAL_ACCESS_WRITE);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out_quota;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Fill our folio array first. That way we've grabbed enough so
 | ||
| 	 * that we can zero and flush if we error after adding the
 | ||
| 	 * extent.
 | ||
| 	 */
 | ||
| 	ret = ocfs2_grab_folios_for_write(mapping, wc, wc->w_cpos, pos, len,
 | ||
| 			cluster_of_pages, mmap_folio);
 | ||
| 	if (ret) {
 | ||
| 		/*
 | ||
| 		 * ocfs2_grab_folios_for_write() returns -EAGAIN if it
 | ||
| 		 * could not lock the target folio. In this case, we exit
 | ||
| 		 * with no error and no target folio. This will trigger
 | ||
| 		 * the caller, page_mkwrite(), to re-try the operation.
 | ||
| 		 */
 | ||
| 		if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
 | ||
| 			BUG_ON(wc->w_target_folio);
 | ||
| 			ret = 0;
 | ||
| 			goto out_quota;
 | ||
| 		}
 | ||
| 
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out_quota;
 | ||
| 	}
 | ||
| 
 | ||
| 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
 | ||
| 					  len);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out_quota;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (data_ac)
 | ||
| 		ocfs2_free_alloc_context(data_ac);
 | ||
| 	if (meta_ac)
 | ||
| 		ocfs2_free_alloc_context(meta_ac);
 | ||
| 
 | ||
| success:
 | ||
| 	if (foliop)
 | ||
| 		*foliop = wc->w_target_folio;
 | ||
| 	*fsdata = wc;
 | ||
| 	return 0;
 | ||
| out_quota:
 | ||
| 	if (clusters_to_alloc)
 | ||
| 		dquot_free_space(inode,
 | ||
| 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
 | ||
| out_commit:
 | ||
| 	ocfs2_commit_trans(osb, handle);
 | ||
| 
 | ||
| out:
 | ||
| 	/*
 | ||
| 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
 | ||
| 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
 | ||
| 	 * to unlock the target page manually to prevent deadlocks when
 | ||
| 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
 | ||
| 	 * to VM code.
 | ||
| 	 */
 | ||
| 	if (wc->w_target_locked)
 | ||
| 		folio_unlock(mmap_folio);
 | ||
| 
 | ||
| 	ocfs2_free_write_ctxt(inode, wc);
 | ||
| 
 | ||
| 	if (data_ac) {
 | ||
| 		ocfs2_free_alloc_context(data_ac);
 | ||
| 		data_ac = NULL;
 | ||
| 	}
 | ||
| 	if (meta_ac) {
 | ||
| 		ocfs2_free_alloc_context(meta_ac);
 | ||
| 		meta_ac = NULL;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (ret == -ENOSPC && try_free) {
 | ||
| 		/*
 | ||
| 		 * Try to free some truncate log so that we can have enough
 | ||
| 		 * clusters to allocate.
 | ||
| 		 */
 | ||
| 		try_free = 0;
 | ||
| 
 | ||
| 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
 | ||
| 		if (ret1 == 1)
 | ||
| 			goto try_again;
 | ||
| 
 | ||
| 		if (ret1 < 0)
 | ||
| 			mlog_errno(ret1);
 | ||
| 	}
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
 | ||
| 			     loff_t pos, unsigned len,
 | ||
| 			     struct folio **foliop, void **fsdata)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 	struct buffer_head *di_bh = NULL;
 | ||
| 	struct inode *inode = mapping->host;
 | ||
| 
 | ||
| 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		return ret;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Take alloc sem here to prevent concurrent lookups. That way
 | ||
| 	 * the mapping, zeroing and tree manipulation within
 | ||
| 	 * ocfs2_write() will be safe against ->read_folio(). This
 | ||
| 	 * should also serve to lock out allocation from a shared
 | ||
| 	 * writeable region.
 | ||
| 	 */
 | ||
| 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
 | ||
| 
 | ||
| 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
 | ||
| 				       foliop, fsdata, di_bh, NULL);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out_fail;
 | ||
| 	}
 | ||
| 
 | ||
| 	brelse(di_bh);
 | ||
| 
 | ||
| 	return 0;
 | ||
| 
 | ||
| out_fail:
 | ||
| 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
 | ||
| 
 | ||
| 	brelse(di_bh);
 | ||
| 	ocfs2_inode_unlock(inode, 1);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
 | ||
| 				   unsigned len, unsigned *copied,
 | ||
| 				   struct ocfs2_dinode *di,
 | ||
| 				   struct ocfs2_write_ctxt *wc)
 | ||
| {
 | ||
| 	if (unlikely(*copied < len)) {
 | ||
| 		if (!folio_test_uptodate(wc->w_target_folio)) {
 | ||
| 			*copied = 0;
 | ||
| 			return;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	memcpy_from_folio(di->id2.i_data.id_data + pos, wc->w_target_folio,
 | ||
| 			pos, *copied);
 | ||
| 
 | ||
| 	trace_ocfs2_write_end_inline(
 | ||
| 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
 | ||
| 	     (unsigned long long)pos, *copied,
 | ||
| 	     le16_to_cpu(di->id2.i_data.id_count),
 | ||
| 	     le16_to_cpu(di->i_dyn_features));
 | ||
| }
 | ||
| 
 | ||
| int ocfs2_write_end_nolock(struct address_space *mapping, loff_t pos,
 | ||
| 		unsigned len, unsigned copied, void *fsdata)
 | ||
| {
 | ||
| 	int i, ret;
 | ||
| 	size_t from, to, start = pos & (PAGE_SIZE - 1);
 | ||
| 	struct inode *inode = mapping->host;
 | ||
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | ||
| 	struct ocfs2_write_ctxt *wc = fsdata;
 | ||
| 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
 | ||
| 	handle_t *handle = wc->w_handle;
 | ||
| 
 | ||
| 	BUG_ON(!list_empty(&wc->w_unwritten_list));
 | ||
| 
 | ||
| 	if (handle) {
 | ||
| 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
 | ||
| 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
 | ||
| 		if (ret) {
 | ||
| 			copied = ret;
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
 | ||
| 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
 | ||
| 		goto out_write_size;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (unlikely(copied < len) && wc->w_target_folio) {
 | ||
| 		loff_t new_isize;
 | ||
| 
 | ||
| 		if (!folio_test_uptodate(wc->w_target_folio))
 | ||
| 			copied = 0;
 | ||
| 
 | ||
| 		new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
 | ||
| 		if (new_isize > folio_pos(wc->w_target_folio))
 | ||
| 			ocfs2_zero_new_buffers(wc->w_target_folio, start+copied,
 | ||
| 					       start+len);
 | ||
| 		else {
 | ||
| 			/*
 | ||
| 			 * When folio is fully beyond new isize (data copy
 | ||
| 			 * failed), do not bother zeroing the folio. Invalidate
 | ||
| 			 * it instead so that writeback does not get confused
 | ||
| 			 * put page & buffer dirty bits into inconsistent
 | ||
| 			 * state.
 | ||
| 			 */
 | ||
| 			block_invalidate_folio(wc->w_target_folio, 0,
 | ||
| 					folio_size(wc->w_target_folio));
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if (wc->w_target_folio)
 | ||
| 		flush_dcache_folio(wc->w_target_folio);
 | ||
| 
 | ||
| 	for (i = 0; i < wc->w_num_folios; i++) {
 | ||
| 		struct folio *folio = wc->w_folios[i];
 | ||
| 
 | ||
| 		/* This is the direct io target folio */
 | ||
| 		if (folio == NULL)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		if (folio == wc->w_target_folio) {
 | ||
| 			from = wc->w_target_from;
 | ||
| 			to = wc->w_target_to;
 | ||
| 
 | ||
| 			BUG_ON(from > folio_size(folio) ||
 | ||
| 			       to > folio_size(folio) ||
 | ||
| 			       to < from);
 | ||
| 		} else {
 | ||
| 			/*
 | ||
| 			 * Pages adjacent to the target (if any) imply
 | ||
| 			 * a hole-filling write in which case we want
 | ||
| 			 * to flush their entire range.
 | ||
| 			 */
 | ||
| 			from = 0;
 | ||
| 			to = folio_size(folio);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (folio_buffers(folio)) {
 | ||
| 			if (handle && ocfs2_should_order_data(inode)) {
 | ||
| 				loff_t start_byte = folio_pos(folio) + from;
 | ||
| 				loff_t length = to - from;
 | ||
| 				ocfs2_jbd2_inode_add_write(handle, inode,
 | ||
| 							   start_byte, length);
 | ||
| 			}
 | ||
| 			block_commit_write(folio, from, to);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| out_write_size:
 | ||
| 	/* Direct io do not update i_size here. */
 | ||
| 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
 | ||
| 		pos += copied;
 | ||
| 		if (pos > i_size_read(inode)) {
 | ||
| 			i_size_write(inode, pos);
 | ||
| 			mark_inode_dirty(inode);
 | ||
| 		}
 | ||
| 		inode->i_blocks = ocfs2_inode_sector_count(inode);
 | ||
| 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
 | ||
| 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
 | ||
| 		di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
 | ||
| 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
 | ||
| 		if (handle)
 | ||
| 			ocfs2_update_inode_fsync_trans(handle, inode, 1);
 | ||
| 	}
 | ||
| 	if (handle)
 | ||
| 		ocfs2_journal_dirty(handle, wc->w_di_bh);
 | ||
| 
 | ||
| out:
 | ||
| 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
 | ||
| 	 * lock, or it will cause a deadlock since journal commit threads holds
 | ||
| 	 * this lock and will ask for the page lock when flushing the data.
 | ||
| 	 * put it here to preserve the unlock order.
 | ||
| 	 */
 | ||
| 	ocfs2_unlock_folios(wc);
 | ||
| 
 | ||
| 	if (handle)
 | ||
| 		ocfs2_commit_trans(osb, handle);
 | ||
| 
 | ||
| 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
 | ||
| 
 | ||
| 	brelse(wc->w_di_bh);
 | ||
| 	kfree(wc);
 | ||
| 
 | ||
| 	return copied;
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_write_end(struct file *file, struct address_space *mapping,
 | ||
| 			   loff_t pos, unsigned len, unsigned copied,
 | ||
| 			   struct folio *folio, void *fsdata)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 	struct inode *inode = mapping->host;
 | ||
| 
 | ||
| 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
 | ||
| 
 | ||
| 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
 | ||
| 	ocfs2_inode_unlock(inode, 1);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| struct ocfs2_dio_write_ctxt {
 | ||
| 	struct list_head	dw_zero_list;
 | ||
| 	unsigned		dw_zero_count;
 | ||
| 	int			dw_orphaned;
 | ||
| 	pid_t			dw_writer_pid;
 | ||
| };
 | ||
| 
 | ||
| static struct ocfs2_dio_write_ctxt *
 | ||
| ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
 | ||
| {
 | ||
| 	struct ocfs2_dio_write_ctxt *dwc = NULL;
 | ||
| 
 | ||
| 	if (bh->b_private)
 | ||
| 		return bh->b_private;
 | ||
| 
 | ||
| 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
 | ||
| 	if (dwc == NULL)
 | ||
| 		return NULL;
 | ||
| 	INIT_LIST_HEAD(&dwc->dw_zero_list);
 | ||
| 	dwc->dw_zero_count = 0;
 | ||
| 	dwc->dw_orphaned = 0;
 | ||
| 	dwc->dw_writer_pid = task_pid_nr(current);
 | ||
| 	bh->b_private = dwc;
 | ||
| 	*alloc = 1;
 | ||
| 
 | ||
| 	return dwc;
 | ||
| }
 | ||
| 
 | ||
| static void ocfs2_dio_free_write_ctx(struct inode *inode,
 | ||
| 				     struct ocfs2_dio_write_ctxt *dwc)
 | ||
| {
 | ||
| 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
 | ||
| 	kfree(dwc);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * TODO: Make this into a generic get_blocks function.
 | ||
|  *
 | ||
|  * From do_direct_io in direct-io.c:
 | ||
|  *  "So what we do is to permit the ->get_blocks function to populate
 | ||
|  *   bh.b_size with the size of IO which is permitted at this offset and
 | ||
|  *   this i_blkbits."
 | ||
|  *
 | ||
|  * This function is called directly from get_more_blocks in direct-io.c.
 | ||
|  *
 | ||
|  * called like this: dio->get_blocks(dio->inode, fs_startblk,
 | ||
|  * 					fs_count, map_bh, dio->rw == WRITE);
 | ||
|  */
 | ||
| static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
 | ||
| 			       struct buffer_head *bh_result, int create)
 | ||
| {
 | ||
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | ||
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | ||
| 	struct ocfs2_write_ctxt *wc;
 | ||
| 	struct ocfs2_write_cluster_desc *desc = NULL;
 | ||
| 	struct ocfs2_dio_write_ctxt *dwc = NULL;
 | ||
| 	struct buffer_head *di_bh = NULL;
 | ||
| 	u64 p_blkno;
 | ||
| 	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
 | ||
| 	loff_t pos = iblock << i_blkbits;
 | ||
| 	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
 | ||
| 	unsigned len, total_len = bh_result->b_size;
 | ||
| 	int ret = 0, first_get_block = 0;
 | ||
| 
 | ||
| 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
 | ||
| 	len = min(total_len, len);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * bh_result->b_size is count in get_more_blocks according to write
 | ||
| 	 * "pos" and "end", we need map twice to return different buffer state:
 | ||
| 	 * 1. area in file size, not set NEW;
 | ||
| 	 * 2. area out file size, set  NEW.
 | ||
| 	 *
 | ||
| 	 *		   iblock    endblk
 | ||
| 	 * |--------|---------|---------|---------
 | ||
| 	 * |<-------area in file------->|
 | ||
| 	 */
 | ||
| 
 | ||
| 	if ((iblock <= endblk) &&
 | ||
| 	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
 | ||
| 		len = (endblk - iblock + 1) << i_blkbits;
 | ||
| 
 | ||
| 	mlog(0, "get block of %lu at %llu:%u req %u\n",
 | ||
| 			inode->i_ino, pos, len, total_len);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
 | ||
| 	 * we may need to add it to orphan dir. So can not fall to fast path
 | ||
| 	 * while file size will be changed.
 | ||
| 	 */
 | ||
| 	if (pos + total_len <= i_size_read(inode)) {
 | ||
| 
 | ||
| 		/* This is the fast path for re-write. */
 | ||
| 		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
 | ||
| 		if (buffer_mapped(bh_result) &&
 | ||
| 		    !buffer_new(bh_result) &&
 | ||
| 		    ret == 0)
 | ||
| 			goto out;
 | ||
| 
 | ||
| 		/* Clear state set by ocfs2_get_block. */
 | ||
| 		bh_result->b_state = 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
 | ||
| 	if (unlikely(dwc == NULL)) {
 | ||
| 		ret = -ENOMEM;
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
 | ||
| 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
 | ||
| 	    !dwc->dw_orphaned) {
 | ||
| 		/*
 | ||
| 		 * when we are going to alloc extents beyond file size, add the
 | ||
| 		 * inode to orphan dir, so we can recall those spaces when
 | ||
| 		 * system crashed during write.
 | ||
| 		 */
 | ||
| 		ret = ocfs2_add_inode_to_orphan(osb, inode);
 | ||
| 		if (ret < 0) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 		dwc->dw_orphaned = 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	down_write(&oi->ip_alloc_sem);
 | ||
| 
 | ||
| 	if (first_get_block) {
 | ||
| 		if (ocfs2_sparse_alloc(osb))
 | ||
| 			ret = ocfs2_zero_tail(inode, di_bh, pos);
 | ||
| 		else
 | ||
| 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
 | ||
| 							   total_len, NULL);
 | ||
| 		if (ret < 0) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			goto unlock;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
 | ||
| 				       OCFS2_WRITE_DIRECT, NULL,
 | ||
| 				       (void **)&wc, di_bh, NULL);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto unlock;
 | ||
| 	}
 | ||
| 
 | ||
| 	desc = &wc->w_desc[0];
 | ||
| 
 | ||
| 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
 | ||
| 	BUG_ON(p_blkno == 0);
 | ||
| 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
 | ||
| 
 | ||
| 	map_bh(bh_result, inode->i_sb, p_blkno);
 | ||
| 	bh_result->b_size = len;
 | ||
| 	if (desc->c_needs_zero)
 | ||
| 		set_buffer_new(bh_result);
 | ||
| 
 | ||
| 	if (iblock > endblk)
 | ||
| 		set_buffer_new(bh_result);
 | ||
| 
 | ||
| 	/* May sleep in end_io. It should not happen in a irq context. So defer
 | ||
| 	 * it to dio work queue. */
 | ||
| 	set_buffer_defer_completion(bh_result);
 | ||
| 
 | ||
| 	if (!list_empty(&wc->w_unwritten_list)) {
 | ||
| 		struct ocfs2_unwritten_extent *ue = NULL;
 | ||
| 
 | ||
| 		ue = list_first_entry(&wc->w_unwritten_list,
 | ||
| 				      struct ocfs2_unwritten_extent,
 | ||
| 				      ue_node);
 | ||
| 		BUG_ON(ue->ue_cpos != desc->c_cpos);
 | ||
| 		/* The physical address may be 0, fill it. */
 | ||
| 		ue->ue_phys = desc->c_phys;
 | ||
| 
 | ||
| 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
 | ||
| 		dwc->dw_zero_count += wc->w_unwritten_count;
 | ||
| 	}
 | ||
| 
 | ||
| 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
 | ||
| 	BUG_ON(ret != len);
 | ||
| 	ret = 0;
 | ||
| unlock:
 | ||
| 	up_write(&oi->ip_alloc_sem);
 | ||
| 	ocfs2_inode_unlock(inode, 1);
 | ||
| 	brelse(di_bh);
 | ||
| out:
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static int ocfs2_dio_end_io_write(struct inode *inode,
 | ||
| 				  struct ocfs2_dio_write_ctxt *dwc,
 | ||
| 				  loff_t offset,
 | ||
| 				  ssize_t bytes)
 | ||
| {
 | ||
| 	struct ocfs2_cached_dealloc_ctxt dealloc;
 | ||
| 	struct ocfs2_extent_tree et;
 | ||
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | ||
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | ||
| 	struct ocfs2_unwritten_extent *ue = NULL;
 | ||
| 	struct buffer_head *di_bh = NULL;
 | ||
| 	struct ocfs2_dinode *di;
 | ||
| 	struct ocfs2_alloc_context *data_ac = NULL;
 | ||
| 	struct ocfs2_alloc_context *meta_ac = NULL;
 | ||
| 	handle_t *handle = NULL;
 | ||
| 	loff_t end = offset + bytes;
 | ||
| 	int ret = 0, credits = 0;
 | ||
| 
 | ||
| 	ocfs2_init_dealloc_ctxt(&dealloc);
 | ||
| 
 | ||
| 	/* We do clear unwritten, delete orphan, change i_size here. If neither
 | ||
| 	 * of these happen, we can skip all this. */
 | ||
| 	if (list_empty(&dwc->dw_zero_list) &&
 | ||
| 	    end <= i_size_read(inode) &&
 | ||
| 	    !dwc->dw_orphaned)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
 | ||
| 	if (ret < 0) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	down_write(&oi->ip_alloc_sem);
 | ||
| 
 | ||
| 	/* Delete orphan before acquire i_rwsem. */
 | ||
| 	if (dwc->dw_orphaned) {
 | ||
| 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
 | ||
| 
 | ||
| 		end = end > i_size_read(inode) ? end : 0;
 | ||
| 
 | ||
| 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
 | ||
| 				!!end, end);
 | ||
| 		if (ret < 0)
 | ||
| 			mlog_errno(ret);
 | ||
| 	}
 | ||
| 
 | ||
| 	di = (struct ocfs2_dinode *)di_bh->b_data;
 | ||
| 
 | ||
| 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
 | ||
| 
 | ||
| 	/* Attach dealloc with extent tree in case that we may reuse extents
 | ||
| 	 * which are already unlinked from current extent tree due to extent
 | ||
| 	 * rotation and merging.
 | ||
| 	 */
 | ||
| 	et.et_dealloc = &dealloc;
 | ||
| 
 | ||
| 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
 | ||
| 				    &data_ac, &meta_ac);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto unlock;
 | ||
| 	}
 | ||
| 
 | ||
| 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
 | ||
| 
 | ||
| 	handle = ocfs2_start_trans(osb, credits);
 | ||
| 	if (IS_ERR(handle)) {
 | ||
| 		ret = PTR_ERR(handle);
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto unlock;
 | ||
| 	}
 | ||
| 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
 | ||
| 				      OCFS2_JOURNAL_ACCESS_WRITE);
 | ||
| 	if (ret) {
 | ||
| 		mlog_errno(ret);
 | ||
| 		goto commit;
 | ||
| 	}
 | ||
| 
 | ||
| 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
 | ||
| 		ret = ocfs2_assure_trans_credits(handle, credits);
 | ||
| 		if (ret < 0) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			break;
 | ||
| 		}
 | ||
| 		ret = ocfs2_mark_extent_written(inode, &et, handle,
 | ||
| 						ue->ue_cpos, 1,
 | ||
| 						ue->ue_phys,
 | ||
| 						meta_ac, &dealloc);
 | ||
| 		if (ret < 0) {
 | ||
| 			mlog_errno(ret);
 | ||
| 			break;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (end > i_size_read(inode)) {
 | ||
| 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
 | ||
| 		if (ret < 0)
 | ||
| 			mlog_errno(ret);
 | ||
| 	}
 | ||
| commit:
 | ||
| 	ocfs2_commit_trans(osb, handle);
 | ||
| unlock:
 | ||
| 	up_write(&oi->ip_alloc_sem);
 | ||
| 	ocfs2_inode_unlock(inode, 1);
 | ||
| 	brelse(di_bh);
 | ||
| out:
 | ||
| 	if (data_ac)
 | ||
| 		ocfs2_free_alloc_context(data_ac);
 | ||
| 	if (meta_ac)
 | ||
| 		ocfs2_free_alloc_context(meta_ac);
 | ||
| 	ocfs2_run_deallocs(osb, &dealloc);
 | ||
| 	ocfs2_dio_free_write_ctx(inode, dwc);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 | ||
|  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 | ||
|  * to protect io on one node from truncation on another.
 | ||
|  */
 | ||
| static int ocfs2_dio_end_io(struct kiocb *iocb,
 | ||
| 			    loff_t offset,
 | ||
| 			    ssize_t bytes,
 | ||
| 			    void *private)
 | ||
| {
 | ||
| 	struct inode *inode = file_inode(iocb->ki_filp);
 | ||
| 	int level;
 | ||
| 	int ret = 0;
 | ||
| 
 | ||
| 	/* this io's submitter should not have unlocked this before we could */
 | ||
| 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 | ||
| 
 | ||
| 	if (bytes <= 0)
 | ||
| 		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
 | ||
| 				 (long long)bytes);
 | ||
| 	if (private) {
 | ||
| 		if (bytes > 0)
 | ||
| 			ret = ocfs2_dio_end_io_write(inode, private, offset,
 | ||
| 						     bytes);
 | ||
| 		else
 | ||
| 			ocfs2_dio_free_write_ctx(inode, private);
 | ||
| 	}
 | ||
| 
 | ||
| 	ocfs2_iocb_clear_rw_locked(iocb);
 | ||
| 
 | ||
| 	level = ocfs2_iocb_rw_locked_level(iocb);
 | ||
| 	ocfs2_rw_unlock(inode, level);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 | ||
| {
 | ||
| 	struct file *file = iocb->ki_filp;
 | ||
| 	struct inode *inode = file->f_mapping->host;
 | ||
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | ||
| 	get_block_t *get_block;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Fallback to buffered I/O if we see an inode without
 | ||
| 	 * extents.
 | ||
| 	 */
 | ||
| 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Fallback to buffered I/O if we do not support append dio. */
 | ||
| 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
 | ||
| 	    !ocfs2_supports_append_dio(osb))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (iov_iter_rw(iter) == READ)
 | ||
| 		get_block = ocfs2_lock_get_block;
 | ||
| 	else
 | ||
| 		get_block = ocfs2_dio_wr_get_block;
 | ||
| 
 | ||
| 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
 | ||
| 				    iter, get_block,
 | ||
| 				    ocfs2_dio_end_io, 0);
 | ||
| }
 | ||
| 
 | ||
| const struct address_space_operations ocfs2_aops = {
 | ||
| 	.dirty_folio		= block_dirty_folio,
 | ||
| 	.read_folio		= ocfs2_read_folio,
 | ||
| 	.readahead		= ocfs2_readahead,
 | ||
| 	.writepages		= ocfs2_writepages,
 | ||
| 	.write_begin		= ocfs2_write_begin,
 | ||
| 	.write_end		= ocfs2_write_end,
 | ||
| 	.bmap			= ocfs2_bmap,
 | ||
| 	.direct_IO		= ocfs2_direct_IO,
 | ||
| 	.invalidate_folio	= block_invalidate_folio,
 | ||
| 	.release_folio		= ocfs2_release_folio,
 | ||
| 	.migrate_folio		= buffer_migrate_folio,
 | ||
| 	.is_partially_uptodate	= block_is_partially_uptodate,
 | ||
| 	.error_remove_folio	= generic_error_remove_folio,
 | ||
| };
 |