mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 00:28:52 +02:00 
			
		
		
		
	 061c991697
			
		
	
	
		061c991697
		
	
	
	
	
		
			
			Currently, __reserve_bp_slot() returns -ENOSPC for unsupported breakpoint types on the architecture. For example, powerpc does not support hardware instruction breakpoints. This causes the perf_skip BPF selftest to fail, as neither ENOENT nor EOPNOTSUPP is returned by perf_event_open for unsupported breakpoint types. As a result, the test that should be skipped for this arch is not correctly identified. To resolve this, hw_breakpoint_event_init() should exit early by checking for unsupported breakpoint types using hw_breakpoint_slots_cached() and return the appropriate error (-EOPNOTSUPP). Signed-off-by: Saket Kumar Bhaskar <skb99@linux.ibm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Marco Elver <elver@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: https://lore.kernel.org/r/20250303092451.1862862-1-skb99@linux.ibm.com
		
			
				
	
	
		
			1024 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1024 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright (C) 2007 Alan Stern
 | |
|  * Copyright (C) IBM Corporation, 2009
 | |
|  * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
 | |
|  *
 | |
|  * Thanks to Ingo Molnar for his many suggestions.
 | |
|  *
 | |
|  * Authors: Alan Stern <stern@rowland.harvard.edu>
 | |
|  *          K.Prasad <prasad@linux.vnet.ibm.com>
 | |
|  *          Frederic Weisbecker <fweisbec@gmail.com>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
 | |
|  * using the CPU's debug registers.
 | |
|  * This file contains the arch-independent routines.
 | |
|  */
 | |
| 
 | |
| #include <linux/hw_breakpoint.h>
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/irqflags.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/percpu-rwsem.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/rhashtable.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| /*
 | |
|  * Datastructure to track the total uses of N slots across tasks or CPUs;
 | |
|  * bp_slots_histogram::count[N] is the number of assigned N+1 breakpoint slots.
 | |
|  */
 | |
| struct bp_slots_histogram {
 | |
| #ifdef hw_breakpoint_slots
 | |
| 	atomic_t count[hw_breakpoint_slots(0)];
 | |
| #else
 | |
| 	atomic_t *count;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Per-CPU constraints data.
 | |
|  */
 | |
| struct bp_cpuinfo {
 | |
| 	/* Number of pinned CPU breakpoints in a CPU. */
 | |
| 	unsigned int			cpu_pinned;
 | |
| 	/* Histogram of pinned task breakpoints in a CPU. */
 | |
| 	struct bp_slots_histogram	tsk_pinned;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
 | |
| 
 | |
| static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
 | |
| {
 | |
| 	return per_cpu_ptr(bp_cpuinfo + type, cpu);
 | |
| }
 | |
| 
 | |
| /* Number of pinned CPU breakpoints globally. */
 | |
| static struct bp_slots_histogram cpu_pinned[TYPE_MAX];
 | |
| /* Number of pinned CPU-independent task breakpoints. */
 | |
| static struct bp_slots_histogram tsk_pinned_all[TYPE_MAX];
 | |
| 
 | |
| /* Keep track of the breakpoints attached to tasks */
 | |
| static struct rhltable task_bps_ht;
 | |
| static const struct rhashtable_params task_bps_ht_params = {
 | |
| 	.head_offset = offsetof(struct hw_perf_event, bp_list),
 | |
| 	.key_offset = offsetof(struct hw_perf_event, target),
 | |
| 	.key_len = sizeof_field(struct hw_perf_event, target),
 | |
| 	.automatic_shrinking = true,
 | |
| };
 | |
| 
 | |
| static bool constraints_initialized __ro_after_init;
 | |
| 
 | |
| /*
 | |
|  * Synchronizes accesses to the per-CPU constraints; the locking rules are:
 | |
|  *
 | |
|  *  1. Atomic updates to bp_cpuinfo::tsk_pinned only require a held read-lock
 | |
|  *     (due to bp_slots_histogram::count being atomic, no update are lost).
 | |
|  *
 | |
|  *  2. Holding a write-lock is required for computations that require a
 | |
|  *     stable snapshot of all bp_cpuinfo::tsk_pinned.
 | |
|  *
 | |
|  *  3. In all other cases, non-atomic accesses require the appropriately held
 | |
|  *     lock (read-lock for read-only accesses; write-lock for reads/writes).
 | |
|  */
 | |
| DEFINE_STATIC_PERCPU_RWSEM(bp_cpuinfo_sem);
 | |
| 
 | |
| /*
 | |
|  * Return mutex to serialize accesses to per-task lists in task_bps_ht. Since
 | |
|  * rhltable synchronizes concurrent insertions/deletions, independent tasks may
 | |
|  * insert/delete concurrently; therefore, a mutex per task is sufficient.
 | |
|  *
 | |
|  * Uses task_struct::perf_event_mutex, to avoid extending task_struct with a
 | |
|  * hw_breakpoint-only mutex, which may be infrequently used. The caveat here is
 | |
|  * that hw_breakpoint may contend with per-task perf event list management. The
 | |
|  * assumption is that perf usecases involving hw_breakpoints are very unlikely
 | |
|  * to result in unnecessary contention.
 | |
|  */
 | |
| static inline struct mutex *get_task_bps_mutex(struct perf_event *bp)
 | |
| {
 | |
| 	struct task_struct *tsk = bp->hw.target;
 | |
| 
 | |
| 	return tsk ? &tsk->perf_event_mutex : NULL;
 | |
| }
 | |
| 
 | |
| static struct mutex *bp_constraints_lock(struct perf_event *bp)
 | |
| {
 | |
| 	struct mutex *tsk_mtx = get_task_bps_mutex(bp);
 | |
| 
 | |
| 	if (tsk_mtx) {
 | |
| 		/*
 | |
| 		 * Fully analogous to the perf_try_init_event() nesting
 | |
| 		 * argument in the comment near perf_event_ctx_lock_nested();
 | |
| 		 * this child->perf_event_mutex cannot ever deadlock against
 | |
| 		 * the parent->perf_event_mutex usage from
 | |
| 		 * perf_event_task_{en,dis}able().
 | |
| 		 *
 | |
| 		 * Specifically, inherited events will never occur on
 | |
| 		 * ->perf_event_list.
 | |
| 		 */
 | |
| 		mutex_lock_nested(tsk_mtx, SINGLE_DEPTH_NESTING);
 | |
| 		percpu_down_read(&bp_cpuinfo_sem);
 | |
| 	} else {
 | |
| 		percpu_down_write(&bp_cpuinfo_sem);
 | |
| 	}
 | |
| 
 | |
| 	return tsk_mtx;
 | |
| }
 | |
| 
 | |
| static void bp_constraints_unlock(struct mutex *tsk_mtx)
 | |
| {
 | |
| 	if (tsk_mtx) {
 | |
| 		percpu_up_read(&bp_cpuinfo_sem);
 | |
| 		mutex_unlock(tsk_mtx);
 | |
| 	} else {
 | |
| 		percpu_up_write(&bp_cpuinfo_sem);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool bp_constraints_is_locked(struct perf_event *bp)
 | |
| {
 | |
| 	struct mutex *tsk_mtx = get_task_bps_mutex(bp);
 | |
| 
 | |
| 	return percpu_is_write_locked(&bp_cpuinfo_sem) ||
 | |
| 	       (tsk_mtx ? mutex_is_locked(tsk_mtx) :
 | |
| 			  percpu_is_read_locked(&bp_cpuinfo_sem));
 | |
| }
 | |
| 
 | |
| static inline void assert_bp_constraints_lock_held(struct perf_event *bp)
 | |
| {
 | |
| 	struct mutex *tsk_mtx = get_task_bps_mutex(bp);
 | |
| 
 | |
| 	if (tsk_mtx)
 | |
| 		lockdep_assert_held(tsk_mtx);
 | |
| 	lockdep_assert_held(&bp_cpuinfo_sem);
 | |
| }
 | |
| 
 | |
| #ifdef hw_breakpoint_slots
 | |
| /*
 | |
|  * Number of breakpoint slots is constant, and the same for all types.
 | |
|  */
 | |
| static_assert(hw_breakpoint_slots(TYPE_INST) == hw_breakpoint_slots(TYPE_DATA));
 | |
| static inline int hw_breakpoint_slots_cached(int type)	{ return hw_breakpoint_slots(type); }
 | |
| static inline int init_breakpoint_slots(void)		{ return 0; }
 | |
| #else
 | |
| /*
 | |
|  * Dynamic number of breakpoint slots.
 | |
|  */
 | |
| static int __nr_bp_slots[TYPE_MAX] __ro_after_init;
 | |
| 
 | |
| static inline int hw_breakpoint_slots_cached(int type)
 | |
| {
 | |
| 	return __nr_bp_slots[type];
 | |
| }
 | |
| 
 | |
| static __init bool
 | |
| bp_slots_histogram_alloc(struct bp_slots_histogram *hist, enum bp_type_idx type)
 | |
| {
 | |
| 	hist->count = kcalloc(hw_breakpoint_slots_cached(type), sizeof(*hist->count), GFP_KERNEL);
 | |
| 	return hist->count;
 | |
| }
 | |
| 
 | |
| static __init void bp_slots_histogram_free(struct bp_slots_histogram *hist)
 | |
| {
 | |
| 	kfree(hist->count);
 | |
| }
 | |
| 
 | |
| static __init int init_breakpoint_slots(void)
 | |
| {
 | |
| 	int i, cpu, err_cpu;
 | |
| 
 | |
| 	for (i = 0; i < TYPE_MAX; i++)
 | |
| 		__nr_bp_slots[i] = hw_breakpoint_slots(i);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		for (i = 0; i < TYPE_MAX; i++) {
 | |
| 			struct bp_cpuinfo *info = get_bp_info(cpu, i);
 | |
| 
 | |
| 			if (!bp_slots_histogram_alloc(&info->tsk_pinned, i))
 | |
| 				goto err;
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < TYPE_MAX; i++) {
 | |
| 		if (!bp_slots_histogram_alloc(&cpu_pinned[i], i))
 | |
| 			goto err;
 | |
| 		if (!bp_slots_histogram_alloc(&tsk_pinned_all[i], i))
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| err:
 | |
| 	for_each_possible_cpu(err_cpu) {
 | |
| 		for (i = 0; i < TYPE_MAX; i++)
 | |
| 			bp_slots_histogram_free(&get_bp_info(err_cpu, i)->tsk_pinned);
 | |
| 		if (err_cpu == cpu)
 | |
| 			break;
 | |
| 	}
 | |
| 	for (i = 0; i < TYPE_MAX; i++) {
 | |
| 		bp_slots_histogram_free(&cpu_pinned[i]);
 | |
| 		bp_slots_histogram_free(&tsk_pinned_all[i]);
 | |
| 	}
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void
 | |
| bp_slots_histogram_add(struct bp_slots_histogram *hist, int old, int val)
 | |
| {
 | |
| 	const int old_idx = old - 1;
 | |
| 	const int new_idx = old_idx + val;
 | |
| 
 | |
| 	if (old_idx >= 0)
 | |
| 		WARN_ON(atomic_dec_return_relaxed(&hist->count[old_idx]) < 0);
 | |
| 	if (new_idx >= 0)
 | |
| 		WARN_ON(atomic_inc_return_relaxed(&hist->count[new_idx]) < 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bp_slots_histogram_max(struct bp_slots_histogram *hist, enum bp_type_idx type)
 | |
| {
 | |
| 	for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
 | |
| 		const int count = atomic_read(&hist->count[i]);
 | |
| 
 | |
| 		/* Catch unexpected writers; we want a stable snapshot. */
 | |
| 		ASSERT_EXCLUSIVE_WRITER(hist->count[i]);
 | |
| 		if (count > 0)
 | |
| 			return i + 1;
 | |
| 		WARN(count < 0, "inconsistent breakpoint slots histogram");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bp_slots_histogram_max_merge(struct bp_slots_histogram *hist1, struct bp_slots_histogram *hist2,
 | |
| 			     enum bp_type_idx type)
 | |
| {
 | |
| 	for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
 | |
| 		const int count1 = atomic_read(&hist1->count[i]);
 | |
| 		const int count2 = atomic_read(&hist2->count[i]);
 | |
| 
 | |
| 		/* Catch unexpected writers; we want a stable snapshot. */
 | |
| 		ASSERT_EXCLUSIVE_WRITER(hist1->count[i]);
 | |
| 		ASSERT_EXCLUSIVE_WRITER(hist2->count[i]);
 | |
| 		if (count1 + count2 > 0)
 | |
| 			return i + 1;
 | |
| 		WARN(count1 < 0, "inconsistent breakpoint slots histogram");
 | |
| 		WARN(count2 < 0, "inconsistent breakpoint slots histogram");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef hw_breakpoint_weight
 | |
| static inline int hw_breakpoint_weight(struct perf_event *bp)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline enum bp_type_idx find_slot_idx(u64 bp_type)
 | |
| {
 | |
| 	if (bp_type & HW_BREAKPOINT_RW)
 | |
| 		return TYPE_DATA;
 | |
| 
 | |
| 	return TYPE_INST;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the maximum number of pinned breakpoints a task has in this CPU.
 | |
|  */
 | |
| static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
 | |
| {
 | |
| 	struct bp_slots_histogram *tsk_pinned = &get_bp_info(cpu, type)->tsk_pinned;
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we want to have acquired the bp_cpuinfo_sem as a
 | |
| 	 * writer to ensure that there are no concurrent writers in
 | |
| 	 * toggle_bp_task_slot() to tsk_pinned, and we get a stable snapshot.
 | |
| 	 */
 | |
| 	lockdep_assert_held_write(&bp_cpuinfo_sem);
 | |
| 	return bp_slots_histogram_max_merge(tsk_pinned, &tsk_pinned_all[type], type);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Count the number of breakpoints of the same type and same task.
 | |
|  * The given event must be not on the list.
 | |
|  *
 | |
|  * If @cpu is -1, but the result of task_bp_pinned() is not CPU-independent,
 | |
|  * returns a negative value.
 | |
|  */
 | |
| static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
 | |
| {
 | |
| 	struct rhlist_head *head, *pos;
 | |
| 	struct perf_event *iter;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need a stable snapshot of the per-task breakpoint list.
 | |
| 	 */
 | |
| 	assert_bp_constraints_lock_held(bp);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	head = rhltable_lookup(&task_bps_ht, &bp->hw.target, task_bps_ht_params);
 | |
| 	if (!head)
 | |
| 		goto out;
 | |
| 
 | |
| 	rhl_for_each_entry_rcu(iter, pos, head, hw.bp_list) {
 | |
| 		if (find_slot_idx(iter->attr.bp_type) != type)
 | |
| 			continue;
 | |
| 
 | |
| 		if (iter->cpu >= 0) {
 | |
| 			if (cpu == -1) {
 | |
| 				count = -1;
 | |
| 				goto out;
 | |
| 			} else if (cpu != iter->cpu)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		count += hw_breakpoint_weight(iter);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
 | |
| {
 | |
| 	if (bp->cpu >= 0)
 | |
| 		return cpumask_of(bp->cpu);
 | |
| 	return cpu_possible_mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the max pinned breakpoint slots in a given
 | |
|  * CPU (cpu > -1) or across all of them (cpu = -1).
 | |
|  */
 | |
| static int
 | |
| max_bp_pinned_slots(struct perf_event *bp, enum bp_type_idx type)
 | |
| {
 | |
| 	const struct cpumask *cpumask = cpumask_of_bp(bp);
 | |
| 	int pinned_slots = 0;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (bp->hw.target && bp->cpu < 0) {
 | |
| 		int max_pinned = task_bp_pinned(-1, bp, type);
 | |
| 
 | |
| 		if (max_pinned >= 0) {
 | |
| 			/*
 | |
| 			 * Fast path: task_bp_pinned() is CPU-independent and
 | |
| 			 * returns the same value for any CPU.
 | |
| 			 */
 | |
| 			max_pinned += bp_slots_histogram_max(&cpu_pinned[type], type);
 | |
| 			return max_pinned;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for_each_cpu(cpu, cpumask) {
 | |
| 		struct bp_cpuinfo *info = get_bp_info(cpu, type);
 | |
| 		int nr;
 | |
| 
 | |
| 		nr = info->cpu_pinned;
 | |
| 		if (!bp->hw.target)
 | |
| 			nr += max_task_bp_pinned(cpu, type);
 | |
| 		else
 | |
| 			nr += task_bp_pinned(cpu, bp, type);
 | |
| 
 | |
| 		pinned_slots = max(nr, pinned_slots);
 | |
| 	}
 | |
| 
 | |
| 	return pinned_slots;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add/remove the given breakpoint in our constraint table
 | |
|  */
 | |
| static int
 | |
| toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight)
 | |
| {
 | |
| 	int cpu, next_tsk_pinned;
 | |
| 
 | |
| 	if (!enable)
 | |
| 		weight = -weight;
 | |
| 
 | |
| 	if (!bp->hw.target) {
 | |
| 		/*
 | |
| 		 * Update the pinned CPU slots, in per-CPU bp_cpuinfo and in the
 | |
| 		 * global histogram.
 | |
| 		 */
 | |
| 		struct bp_cpuinfo *info = get_bp_info(bp->cpu, type);
 | |
| 
 | |
| 		lockdep_assert_held_write(&bp_cpuinfo_sem);
 | |
| 		bp_slots_histogram_add(&cpu_pinned[type], info->cpu_pinned, weight);
 | |
| 		info->cpu_pinned += weight;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If bp->hw.target, tsk_pinned is only modified, but not used
 | |
| 	 * otherwise. We can permit concurrent updates as long as there are no
 | |
| 	 * other uses: having acquired bp_cpuinfo_sem as a reader allows
 | |
| 	 * concurrent updates here. Uses of tsk_pinned will require acquiring
 | |
| 	 * bp_cpuinfo_sem as a writer to stabilize tsk_pinned's value.
 | |
| 	 */
 | |
| 	lockdep_assert_held_read(&bp_cpuinfo_sem);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the pinned task slots, in per-CPU bp_cpuinfo and in the global
 | |
| 	 * histogram. We need to take care of 4 cases:
 | |
| 	 *
 | |
| 	 *  1. This breakpoint targets all CPUs (cpu < 0), and there may only
 | |
| 	 *     exist other task breakpoints targeting all CPUs. In this case we
 | |
| 	 *     can simply update the global slots histogram.
 | |
| 	 *
 | |
| 	 *  2. This breakpoint targets a specific CPU (cpu >= 0), but there may
 | |
| 	 *     only exist other task breakpoints targeting all CPUs.
 | |
| 	 *
 | |
| 	 *     a. On enable: remove the existing breakpoints from the global
 | |
| 	 *        slots histogram and use the per-CPU histogram.
 | |
| 	 *
 | |
| 	 *     b. On disable: re-insert the existing breakpoints into the global
 | |
| 	 *        slots histogram and remove from per-CPU histogram.
 | |
| 	 *
 | |
| 	 *  3. Some other existing task breakpoints target specific CPUs. Only
 | |
| 	 *     update the per-CPU slots histogram.
 | |
| 	 */
 | |
| 
 | |
| 	if (!enable) {
 | |
| 		/*
 | |
| 		 * Remove before updating histograms so we can determine if this
 | |
| 		 * was the last task breakpoint for a specific CPU.
 | |
| 		 */
 | |
| 		int ret = rhltable_remove(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Note: If !enable, next_tsk_pinned will not count the to-be-removed breakpoint.
 | |
| 	 */
 | |
| 	next_tsk_pinned = task_bp_pinned(-1, bp, type);
 | |
| 
 | |
| 	if (next_tsk_pinned >= 0) {
 | |
| 		if (bp->cpu < 0) { /* Case 1: fast path */
 | |
| 			if (!enable)
 | |
| 				next_tsk_pinned += hw_breakpoint_weight(bp);
 | |
| 			bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned, weight);
 | |
| 		} else if (enable) { /* Case 2.a: slow path */
 | |
| 			/* Add existing to per-CPU histograms. */
 | |
| 			for_each_possible_cpu(cpu) {
 | |
| 				bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
 | |
| 						       0, next_tsk_pinned);
 | |
| 			}
 | |
| 			/* Add this first CPU-pinned task breakpoint. */
 | |
| 			bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
 | |
| 					       next_tsk_pinned, weight);
 | |
| 			/* Rebalance global task pinned histogram. */
 | |
| 			bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned,
 | |
| 					       -next_tsk_pinned);
 | |
| 		} else { /* Case 2.b: slow path */
 | |
| 			/* Remove this last CPU-pinned task breakpoint. */
 | |
| 			bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
 | |
| 					       next_tsk_pinned + hw_breakpoint_weight(bp), weight);
 | |
| 			/* Remove all from per-CPU histograms. */
 | |
| 			for_each_possible_cpu(cpu) {
 | |
| 				bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
 | |
| 						       next_tsk_pinned, -next_tsk_pinned);
 | |
| 			}
 | |
| 			/* Rebalance global task pinned histogram. */
 | |
| 			bp_slots_histogram_add(&tsk_pinned_all[type], 0, next_tsk_pinned);
 | |
| 		}
 | |
| 	} else { /* Case 3: slow path */
 | |
| 		const struct cpumask *cpumask = cpumask_of_bp(bp);
 | |
| 
 | |
| 		for_each_cpu(cpu, cpumask) {
 | |
| 			next_tsk_pinned = task_bp_pinned(cpu, bp, type);
 | |
| 			if (!enable)
 | |
| 				next_tsk_pinned += hw_breakpoint_weight(bp);
 | |
| 			bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
 | |
| 					       next_tsk_pinned, weight);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Readers want a stable snapshot of the per-task breakpoint list.
 | |
| 	 */
 | |
| 	assert_bp_constraints_lock_held(bp);
 | |
| 
 | |
| 	if (enable)
 | |
| 		return rhltable_insert(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constraints to check before allowing this new breakpoint counter.
 | |
|  *
 | |
|  * Note: Flexible breakpoints are currently unimplemented, but outlined in the
 | |
|  * below algorithm for completeness.  The implementation treats flexible as
 | |
|  * pinned due to no guarantee that we currently always schedule flexible events
 | |
|  * before a pinned event in a same CPU.
 | |
|  *
 | |
|  *  == Non-pinned counter == (Considered as pinned for now)
 | |
|  *
 | |
|  *   - If attached to a single cpu, check:
 | |
|  *
 | |
|  *       (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
 | |
|  *           + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
 | |
|  *
 | |
|  *       -> If there are already non-pinned counters in this cpu, it means
 | |
|  *          there is already a free slot for them.
 | |
|  *          Otherwise, we check that the maximum number of per task
 | |
|  *          breakpoints (for this cpu) plus the number of per cpu breakpoint
 | |
|  *          (for this cpu) doesn't cover every registers.
 | |
|  *
 | |
|  *   - If attached to every cpus, check:
 | |
|  *
 | |
|  *       (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
 | |
|  *           + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
 | |
|  *
 | |
|  *       -> This is roughly the same, except we check the number of per cpu
 | |
|  *          bp for every cpu and we keep the max one. Same for the per tasks
 | |
|  *          breakpoints.
 | |
|  *
 | |
|  *
 | |
|  * == Pinned counter ==
 | |
|  *
 | |
|  *   - If attached to a single cpu, check:
 | |
|  *
 | |
|  *       ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
 | |
|  *            + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
 | |
|  *
 | |
|  *       -> Same checks as before. But now the info->flexible, if any, must keep
 | |
|  *          one register at least (or they will never be fed).
 | |
|  *
 | |
|  *   - If attached to every cpus, check:
 | |
|  *
 | |
|  *       ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
 | |
|  *            + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
 | |
|  */
 | |
| static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
 | |
| {
 | |
| 	enum bp_type_idx type;
 | |
| 	int max_pinned_slots;
 | |
| 	int weight;
 | |
| 
 | |
| 	/* We couldn't initialize breakpoint constraints on boot */
 | |
| 	if (!constraints_initialized)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Basic checks */
 | |
| 	if (bp_type == HW_BREAKPOINT_EMPTY ||
 | |
| 	    bp_type == HW_BREAKPOINT_INVALID)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	type = find_slot_idx(bp_type);
 | |
| 	weight = hw_breakpoint_weight(bp);
 | |
| 
 | |
| 	/* Check if this new breakpoint can be satisfied across all CPUs. */
 | |
| 	max_pinned_slots = max_bp_pinned_slots(bp, type) + weight;
 | |
| 	if (max_pinned_slots > hw_breakpoint_slots_cached(type))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	return toggle_bp_slot(bp, true, type, weight);
 | |
| }
 | |
| 
 | |
| int reserve_bp_slot(struct perf_event *bp)
 | |
| {
 | |
| 	struct mutex *mtx = bp_constraints_lock(bp);
 | |
| 	int ret = __reserve_bp_slot(bp, bp->attr.bp_type);
 | |
| 
 | |
| 	bp_constraints_unlock(mtx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
 | |
| {
 | |
| 	enum bp_type_idx type;
 | |
| 	int weight;
 | |
| 
 | |
| 	type = find_slot_idx(bp_type);
 | |
| 	weight = hw_breakpoint_weight(bp);
 | |
| 	WARN_ON(toggle_bp_slot(bp, false, type, weight));
 | |
| }
 | |
| 
 | |
| void release_bp_slot(struct perf_event *bp)
 | |
| {
 | |
| 	struct mutex *mtx = bp_constraints_lock(bp);
 | |
| 
 | |
| 	__release_bp_slot(bp, bp->attr.bp_type);
 | |
| 	bp_constraints_unlock(mtx);
 | |
| }
 | |
| 
 | |
| static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	__release_bp_slot(bp, old_type);
 | |
| 
 | |
| 	err = __reserve_bp_slot(bp, new_type);
 | |
| 	if (err) {
 | |
| 		/*
 | |
| 		 * Reserve the old_type slot back in case
 | |
| 		 * there's no space for the new type.
 | |
| 		 *
 | |
| 		 * This must succeed, because we just released
 | |
| 		 * the old_type slot in the __release_bp_slot
 | |
| 		 * call above. If not, something is broken.
 | |
| 		 */
 | |
| 		WARN_ON(__reserve_bp_slot(bp, old_type));
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
 | |
| {
 | |
| 	struct mutex *mtx = bp_constraints_lock(bp);
 | |
| 	int ret = __modify_bp_slot(bp, old_type, new_type);
 | |
| 
 | |
| 	bp_constraints_unlock(mtx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allow the kernel debugger to reserve breakpoint slots without
 | |
|  * taking a lock using the dbg_* variant of for the reserve and
 | |
|  * release breakpoint slots.
 | |
|  */
 | |
| int dbg_reserve_bp_slot(struct perf_event *bp)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (bp_constraints_is_locked(bp))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Locks aren't held; disable lockdep assert checking. */
 | |
| 	lockdep_off();
 | |
| 	ret = __reserve_bp_slot(bp, bp->attr.bp_type);
 | |
| 	lockdep_on();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int dbg_release_bp_slot(struct perf_event *bp)
 | |
| {
 | |
| 	if (bp_constraints_is_locked(bp))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Locks aren't held; disable lockdep assert checking. */
 | |
| 	lockdep_off();
 | |
| 	__release_bp_slot(bp, bp->attr.bp_type);
 | |
| 	lockdep_on();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hw_breakpoint_parse(struct perf_event *bp,
 | |
| 			       const struct perf_event_attr *attr,
 | |
| 			       struct arch_hw_breakpoint *hw)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = hw_breakpoint_arch_parse(bp, attr, hw);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (arch_check_bp_in_kernelspace(hw)) {
 | |
| 		if (attr->exclude_kernel)
 | |
| 			return -EINVAL;
 | |
| 		/*
 | |
| 		 * Don't let unprivileged users set a breakpoint in the trap
 | |
| 		 * path to avoid trap recursion attacks.
 | |
| 		 */
 | |
| 		if (!capable(CAP_SYS_ADMIN))
 | |
| 			return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int register_perf_hw_breakpoint(struct perf_event *bp)
 | |
| {
 | |
| 	struct arch_hw_breakpoint hw = { };
 | |
| 	int err;
 | |
| 
 | |
| 	err = reserve_bp_slot(bp);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = hw_breakpoint_parse(bp, &bp->attr, &hw);
 | |
| 	if (err) {
 | |
| 		release_bp_slot(bp);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	bp->hw.info = hw;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * register_user_hw_breakpoint - register a hardware breakpoint for user space
 | |
|  * @attr: breakpoint attributes
 | |
|  * @triggered: callback to trigger when we hit the breakpoint
 | |
|  * @context: context data could be used in the triggered callback
 | |
|  * @tsk: pointer to 'task_struct' of the process to which the address belongs
 | |
|  */
 | |
| struct perf_event *
 | |
| register_user_hw_breakpoint(struct perf_event_attr *attr,
 | |
| 			    perf_overflow_handler_t triggered,
 | |
| 			    void *context,
 | |
| 			    struct task_struct *tsk)
 | |
| {
 | |
| 	return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
 | |
| 						context);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
 | |
| 
 | |
| static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
 | |
| 				    struct perf_event_attr *from)
 | |
| {
 | |
| 	to->bp_addr = from->bp_addr;
 | |
| 	to->bp_type = from->bp_type;
 | |
| 	to->bp_len  = from->bp_len;
 | |
| 	to->disabled = from->disabled;
 | |
| }
 | |
| 
 | |
| int
 | |
| modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
 | |
| 			        bool check)
 | |
| {
 | |
| 	struct arch_hw_breakpoint hw = { };
 | |
| 	int err;
 | |
| 
 | |
| 	err = hw_breakpoint_parse(bp, attr, &hw);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (check) {
 | |
| 		struct perf_event_attr old_attr;
 | |
| 
 | |
| 		old_attr = bp->attr;
 | |
| 		hw_breakpoint_copy_attr(&old_attr, attr);
 | |
| 		if (memcmp(&old_attr, attr, sizeof(*attr)))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->attr.bp_type != attr->bp_type) {
 | |
| 		err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	hw_breakpoint_copy_attr(&bp->attr, attr);
 | |
| 	bp->hw.info = hw;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
 | |
|  * @bp: the breakpoint structure to modify
 | |
|  * @attr: new breakpoint attributes
 | |
|  */
 | |
| int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
 | |
| 	 * will not be possible to raise IPIs that invoke __perf_event_disable.
 | |
| 	 * So call the function directly after making sure we are targeting the
 | |
| 	 * current task.
 | |
| 	 */
 | |
| 	if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
 | |
| 		perf_event_disable_local(bp);
 | |
| 	else
 | |
| 		perf_event_disable(bp);
 | |
| 
 | |
| 	err = modify_user_hw_breakpoint_check(bp, attr, false);
 | |
| 
 | |
| 	if (!bp->attr.disabled)
 | |
| 		perf_event_enable(bp);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
 | |
| 
 | |
| /**
 | |
|  * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
 | |
|  * @bp: the breakpoint structure to unregister
 | |
|  */
 | |
| void unregister_hw_breakpoint(struct perf_event *bp)
 | |
| {
 | |
| 	if (!bp)
 | |
| 		return;
 | |
| 	perf_event_release_kernel(bp);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
 | |
| 
 | |
| /**
 | |
|  * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
 | |
|  * @attr: breakpoint attributes
 | |
|  * @triggered: callback to trigger when we hit the breakpoint
 | |
|  * @context: context data could be used in the triggered callback
 | |
|  *
 | |
|  * @return a set of per_cpu pointers to perf events
 | |
|  */
 | |
| struct perf_event * __percpu *
 | |
| register_wide_hw_breakpoint(struct perf_event_attr *attr,
 | |
| 			    perf_overflow_handler_t triggered,
 | |
| 			    void *context)
 | |
| {
 | |
| 	struct perf_event * __percpu *cpu_events, *bp;
 | |
| 	long err = 0;
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu_events = alloc_percpu(typeof(*cpu_events));
 | |
| 	if (!cpu_events)
 | |
| 		return ERR_PTR_PCPU(-ENOMEM);
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		bp = perf_event_create_kernel_counter(attr, cpu, NULL,
 | |
| 						      triggered, context);
 | |
| 		if (IS_ERR(bp)) {
 | |
| 			err = PTR_ERR(bp);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		per_cpu(*cpu_events, cpu) = bp;
 | |
| 	}
 | |
| 	cpus_read_unlock();
 | |
| 
 | |
| 	if (likely(!err))
 | |
| 		return cpu_events;
 | |
| 
 | |
| 	unregister_wide_hw_breakpoint(cpu_events);
 | |
| 	return ERR_PTR_PCPU(err);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
 | |
| 
 | |
| /**
 | |
|  * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
 | |
|  * @cpu_events: the per cpu set of events to unregister
 | |
|  */
 | |
| void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
 | |
| 
 | |
| 	free_percpu(cpu_events);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
 | |
| 
 | |
| /**
 | |
|  * hw_breakpoint_is_used - check if breakpoints are currently used
 | |
|  *
 | |
|  * Returns: true if breakpoints are used, false otherwise.
 | |
|  */
 | |
| bool hw_breakpoint_is_used(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!constraints_initialized)
 | |
| 		return false;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		for (int type = 0; type < TYPE_MAX; ++type) {
 | |
| 			struct bp_cpuinfo *info = get_bp_info(cpu, type);
 | |
| 
 | |
| 			if (info->cpu_pinned)
 | |
| 				return true;
 | |
| 
 | |
| 			for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
 | |
| 				if (atomic_read(&info->tsk_pinned.count[slot]))
 | |
| 					return true;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int type = 0; type < TYPE_MAX; ++type) {
 | |
| 		for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
 | |
| 			/*
 | |
| 			 * Warn, because if there are CPU pinned counters,
 | |
| 			 * should never get here; bp_cpuinfo::cpu_pinned should
 | |
| 			 * be consistent with the global cpu_pinned histogram.
 | |
| 			 */
 | |
| 			if (WARN_ON(atomic_read(&cpu_pinned[type].count[slot])))
 | |
| 				return true;
 | |
| 
 | |
| 			if (atomic_read(&tsk_pinned_all[type].count[slot]))
 | |
| 				return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static struct notifier_block hw_breakpoint_exceptions_nb = {
 | |
| 	.notifier_call = hw_breakpoint_exceptions_notify,
 | |
| 	/* we need to be notified first */
 | |
| 	.priority = 0x7fffffff
 | |
| };
 | |
| 
 | |
| static void bp_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	release_bp_slot(event);
 | |
| }
 | |
| 
 | |
| static int hw_breakpoint_event_init(struct perf_event *bp)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (bp->attr.type != PERF_TYPE_BREAKPOINT)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if breakpoint type is supported before proceeding.
 | |
| 	 * Also, no branch sampling for breakpoint events.
 | |
| 	 */
 | |
| 	if (!hw_breakpoint_slots_cached(find_slot_idx(bp->attr.bp_type)) || has_branch_stack(bp))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	err = register_perf_hw_breakpoint(bp);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	bp->destroy = bp_perf_event_destroy;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hw_breakpoint_add(struct perf_event *bp, int flags)
 | |
| {
 | |
| 	if (!(flags & PERF_EF_START))
 | |
| 		bp->hw.state = PERF_HES_STOPPED;
 | |
| 
 | |
| 	if (is_sampling_event(bp)) {
 | |
| 		bp->hw.last_period = bp->hw.sample_period;
 | |
| 		perf_swevent_set_period(bp);
 | |
| 	}
 | |
| 
 | |
| 	return arch_install_hw_breakpoint(bp);
 | |
| }
 | |
| 
 | |
| static void hw_breakpoint_del(struct perf_event *bp, int flags)
 | |
| {
 | |
| 	arch_uninstall_hw_breakpoint(bp);
 | |
| }
 | |
| 
 | |
| static void hw_breakpoint_start(struct perf_event *bp, int flags)
 | |
| {
 | |
| 	bp->hw.state = 0;
 | |
| }
 | |
| 
 | |
| static void hw_breakpoint_stop(struct perf_event *bp, int flags)
 | |
| {
 | |
| 	bp->hw.state = PERF_HES_STOPPED;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_breakpoint = {
 | |
| 	.task_ctx_nr	= perf_sw_context, /* could eventually get its own */
 | |
| 
 | |
| 	.event_init	= hw_breakpoint_event_init,
 | |
| 	.add		= hw_breakpoint_add,
 | |
| 	.del		= hw_breakpoint_del,
 | |
| 	.start		= hw_breakpoint_start,
 | |
| 	.stop		= hw_breakpoint_stop,
 | |
| 	.read		= hw_breakpoint_pmu_read,
 | |
| };
 | |
| 
 | |
| int __init init_hw_breakpoint(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = rhltable_init(&task_bps_ht, &task_bps_ht_params);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = init_breakpoint_slots();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	constraints_initialized = true;
 | |
| 
 | |
| 	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
 | |
| 
 | |
| 	return register_die_notifier(&hw_breakpoint_exceptions_nb);
 | |
| }
 |