mirror of
				https://github.com/torvalds/linux.git
				synced 2025-10-31 08:38:45 +02:00 
			
		
		
		
	 18049c8cff
			
		
	
	
		18049c8cff
		
	
	
	
	
		
			
			perf always allocates contiguous AUX pages based on aux_watermark. However, this contiguous allocation doesn't benefit all PMUs. For instance, ARM SPE and TRBE operate with virtual pages, and Coresight ETR allocates a separate buffer. For these PMUs, allocating contiguous AUX pages unnecessarily exacerbates memory fragmentation. This fragmentation can prevent their use on long-running devices. This patch modifies the perf driver to be memory-friendly by default, by allocating non-contiguous AUX pages. For PMUs requiring contiguous pages (Intel BTS and some Intel PT), the existing PERF_PMU_CAP_AUX_NO_SG capability can be used. For PMUs that don't require but can benefit from contiguous pages (some Intel PT), a new capability, PERF_PMU_CAP_AUX_PREFER_LARGE, is added to maintain their existing behavior. Signed-off-by: Yabin Cui <yabinc@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: James Clark <james.clark@linaro.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20250508232642.148767-1-yabinc@google.com
		
			
				
	
	
		
			975 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			975 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Performance events ring-buffer code:
 | |
|  *
 | |
|  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
 | |
|  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/circ_buf.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/nospec.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| static void perf_output_wakeup(struct perf_output_handle *handle)
 | |
| {
 | |
| 	atomic_set(&handle->rb->poll, EPOLLIN | EPOLLRDNORM);
 | |
| 
 | |
| 	handle->event->pending_wakeup = 1;
 | |
| 
 | |
| 	if (*perf_event_fasync(handle->event) && !handle->event->pending_kill)
 | |
| 		handle->event->pending_kill = POLL_IN;
 | |
| 
 | |
| 	irq_work_queue(&handle->event->pending_irq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We need to ensure a later event_id doesn't publish a head when a former
 | |
|  * event isn't done writing. However since we need to deal with NMIs we
 | |
|  * cannot fully serialize things.
 | |
|  *
 | |
|  * We only publish the head (and generate a wakeup) when the outer-most
 | |
|  * event completes.
 | |
|  */
 | |
| static void perf_output_get_handle(struct perf_output_handle *handle)
 | |
| {
 | |
| 	struct perf_buffer *rb = handle->rb;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid an explicit LOAD/STORE such that architectures with memops
 | |
| 	 * can use them.
 | |
| 	 */
 | |
| 	(*(volatile unsigned int *)&rb->nest)++;
 | |
| 	handle->wakeup = local_read(&rb->wakeup);
 | |
| }
 | |
| 
 | |
| static void perf_output_put_handle(struct perf_output_handle *handle)
 | |
| {
 | |
| 	struct perf_buffer *rb = handle->rb;
 | |
| 	unsigned long head;
 | |
| 	unsigned int nest;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this isn't the outermost nesting, we don't have to update
 | |
| 	 * @rb->user_page->data_head.
 | |
| 	 */
 | |
| 	nest = READ_ONCE(rb->nest);
 | |
| 	if (nest > 1) {
 | |
| 		WRITE_ONCE(rb->nest, nest - 1);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	/*
 | |
| 	 * In order to avoid publishing a head value that goes backwards,
 | |
| 	 * we must ensure the load of @rb->head happens after we've
 | |
| 	 * incremented @rb->nest.
 | |
| 	 *
 | |
| 	 * Otherwise we can observe a @rb->head value before one published
 | |
| 	 * by an IRQ/NMI happening between the load and the increment.
 | |
| 	 */
 | |
| 	barrier();
 | |
| 	head = local_read(&rb->head);
 | |
| 
 | |
| 	/*
 | |
| 	 * IRQ/NMI can happen here and advance @rb->head, causing our
 | |
| 	 * load above to be stale.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the mmap() consumer (userspace) can run on a different CPU:
 | |
| 	 *
 | |
| 	 *   kernel				user
 | |
| 	 *
 | |
| 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 | |
| 	 *			(A)		smp_rmb()	(C)
 | |
| 	 *	STORE $data			LOAD $data
 | |
| 	 *	smp_wmb()	(B)		smp_mb()	(D)
 | |
| 	 *	STORE ->data_head		STORE ->data_tail
 | |
| 	 *   }
 | |
| 	 *
 | |
| 	 * Where A pairs with D, and B pairs with C.
 | |
| 	 *
 | |
| 	 * In our case (A) is a control dependency that separates the load of
 | |
| 	 * the ->data_tail and the stores of $data. In case ->data_tail
 | |
| 	 * indicates there is no room in the buffer to store $data we do not.
 | |
| 	 *
 | |
| 	 * D needs to be a full barrier since it separates the data READ
 | |
| 	 * from the tail WRITE.
 | |
| 	 *
 | |
| 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
 | |
| 	 * an RMB is sufficient since it separates two READs.
 | |
| 	 *
 | |
| 	 * See perf_output_begin().
 | |
| 	 */
 | |
| 	smp_wmb(); /* B, matches C */
 | |
| 	WRITE_ONCE(rb->user_page->data_head, head);
 | |
| 
 | |
| 	/*
 | |
| 	 * We must publish the head before decrementing the nest count,
 | |
| 	 * otherwise an IRQ/NMI can publish a more recent head value and our
 | |
| 	 * write will (temporarily) publish a stale value.
 | |
| 	 */
 | |
| 	barrier();
 | |
| 	WRITE_ONCE(rb->nest, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure we decrement @rb->nest before we validate the @rb->head.
 | |
| 	 * Otherwise we cannot be sure we caught the 'last' nested update.
 | |
| 	 */
 | |
| 	barrier();
 | |
| 	if (unlikely(head != local_read(&rb->head))) {
 | |
| 		WRITE_ONCE(rb->nest, 1);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	if (handle->wakeup != local_read(&rb->wakeup))
 | |
| 		perf_output_wakeup(handle);
 | |
| 
 | |
| out:
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static __always_inline bool
 | |
| ring_buffer_has_space(unsigned long head, unsigned long tail,
 | |
| 		      unsigned long data_size, unsigned int size,
 | |
| 		      bool backward)
 | |
| {
 | |
| 	if (!backward)
 | |
| 		return CIRC_SPACE(head, tail, data_size) >= size;
 | |
| 	else
 | |
| 		return CIRC_SPACE(tail, head, data_size) >= size;
 | |
| }
 | |
| 
 | |
| static __always_inline int
 | |
| __perf_output_begin(struct perf_output_handle *handle,
 | |
| 		    struct perf_sample_data *data,
 | |
| 		    struct perf_event *event, unsigned int size,
 | |
| 		    bool backward)
 | |
| {
 | |
| 	struct perf_buffer *rb;
 | |
| 	unsigned long tail, offset, head;
 | |
| 	int have_lost, page_shift;
 | |
| 	struct {
 | |
| 		struct perf_event_header header;
 | |
| 		u64			 id;
 | |
| 		u64			 lost;
 | |
| 	} lost_event;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * For inherited events we send all the output towards the parent.
 | |
| 	 */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (unlikely(!rb))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (unlikely(rb->paused)) {
 | |
| 		if (rb->nr_pages) {
 | |
| 			local_inc(&rb->lost);
 | |
| 			atomic64_inc(&event->lost_samples);
 | |
| 		}
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	handle->rb    = rb;
 | |
| 	handle->event = event;
 | |
| 	handle->flags = 0;
 | |
| 
 | |
| 	have_lost = local_read(&rb->lost);
 | |
| 	if (unlikely(have_lost)) {
 | |
| 		size += sizeof(lost_event);
 | |
| 		if (event->attr.sample_id_all)
 | |
| 			size += event->id_header_size;
 | |
| 	}
 | |
| 
 | |
| 	perf_output_get_handle(handle);
 | |
| 
 | |
| 	offset = local_read(&rb->head);
 | |
| 	do {
 | |
| 		head = offset;
 | |
| 		tail = READ_ONCE(rb->user_page->data_tail);
 | |
| 		if (!rb->overwrite) {
 | |
| 			if (unlikely(!ring_buffer_has_space(head, tail,
 | |
| 							    perf_data_size(rb),
 | |
| 							    size, backward)))
 | |
| 				goto fail;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The above forms a control dependency barrier separating the
 | |
| 		 * @tail load above from the data stores below. Since the @tail
 | |
| 		 * load is required to compute the branch to fail below.
 | |
| 		 *
 | |
| 		 * A, matches D; the full memory barrier userspace SHOULD issue
 | |
| 		 * after reading the data and before storing the new tail
 | |
| 		 * position.
 | |
| 		 *
 | |
| 		 * See perf_output_put_handle().
 | |
| 		 */
 | |
| 
 | |
| 		if (!backward)
 | |
| 			head += size;
 | |
| 		else
 | |
| 			head -= size;
 | |
| 	} while (!local_try_cmpxchg(&rb->head, &offset, head));
 | |
| 
 | |
| 	if (backward) {
 | |
| 		offset = head;
 | |
| 		head = (u64)(-head);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
 | |
| 	 * none of the data stores below can be lifted up by the compiler.
 | |
| 	 */
 | |
| 
 | |
| 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
 | |
| 		local_add(rb->watermark, &rb->wakeup);
 | |
| 
 | |
| 	page_shift = PAGE_SHIFT + page_order(rb);
 | |
| 
 | |
| 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
 | |
| 	offset &= (1UL << page_shift) - 1;
 | |
| 	handle->addr = rb->data_pages[handle->page] + offset;
 | |
| 	handle->size = (1UL << page_shift) - offset;
 | |
| 
 | |
| 	if (unlikely(have_lost)) {
 | |
| 		lost_event.header.size = sizeof(lost_event);
 | |
| 		lost_event.header.type = PERF_RECORD_LOST;
 | |
| 		lost_event.header.misc = 0;
 | |
| 		lost_event.id          = event->id;
 | |
| 		lost_event.lost        = local_xchg(&rb->lost, 0);
 | |
| 
 | |
| 		/* XXX mostly redundant; @data is already fully initializes */
 | |
| 		perf_event_header__init_id(&lost_event.header, data, event);
 | |
| 		perf_output_put(handle, lost_event);
 | |
| 		perf_event__output_id_sample(event, handle, data);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	local_inc(&rb->lost);
 | |
| 	atomic64_inc(&event->lost_samples);
 | |
| 	perf_output_put_handle(handle);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| int perf_output_begin_forward(struct perf_output_handle *handle,
 | |
| 			      struct perf_sample_data *data,
 | |
| 			      struct perf_event *event, unsigned int size)
 | |
| {
 | |
| 	return __perf_output_begin(handle, data, event, size, false);
 | |
| }
 | |
| 
 | |
| int perf_output_begin_backward(struct perf_output_handle *handle,
 | |
| 			       struct perf_sample_data *data,
 | |
| 			       struct perf_event *event, unsigned int size)
 | |
| {
 | |
| 	return __perf_output_begin(handle, data, event, size, true);
 | |
| }
 | |
| 
 | |
| int perf_output_begin(struct perf_output_handle *handle,
 | |
| 		      struct perf_sample_data *data,
 | |
| 		      struct perf_event *event, unsigned int size)
 | |
| {
 | |
| 
 | |
| 	return __perf_output_begin(handle, data, event, size,
 | |
| 				   unlikely(is_write_backward(event)));
 | |
| }
 | |
| 
 | |
| unsigned int perf_output_copy(struct perf_output_handle *handle,
 | |
| 		      const void *buf, unsigned int len)
 | |
| {
 | |
| 	return __output_copy(handle, buf, len);
 | |
| }
 | |
| 
 | |
| unsigned int perf_output_skip(struct perf_output_handle *handle,
 | |
| 			      unsigned int len)
 | |
| {
 | |
| 	return __output_skip(handle, NULL, len);
 | |
| }
 | |
| 
 | |
| void perf_output_end(struct perf_output_handle *handle)
 | |
| {
 | |
| 	perf_output_put_handle(handle);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void
 | |
| ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
 | |
| {
 | |
| 	long max_size = perf_data_size(rb);
 | |
| 
 | |
| 	if (watermark)
 | |
| 		rb->watermark = min(max_size, watermark);
 | |
| 
 | |
| 	if (!rb->watermark)
 | |
| 		rb->watermark = max_size / 2;
 | |
| 
 | |
| 	if (flags & RING_BUFFER_WRITABLE)
 | |
| 		rb->overwrite = 0;
 | |
| 	else
 | |
| 		rb->overwrite = 1;
 | |
| 
 | |
| 	refcount_set(&rb->refcount, 1);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&rb->event_list);
 | |
| 	spin_lock_init(&rb->event_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * perf_output_begin() only checks rb->paused, therefore
 | |
| 	 * rb->paused must be true if we have no pages for output.
 | |
| 	 */
 | |
| 	if (!rb->nr_pages)
 | |
| 		rb->paused = 1;
 | |
| 
 | |
| 	mutex_init(&rb->aux_mutex);
 | |
| }
 | |
| 
 | |
| void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * OVERWRITE is determined by perf_aux_output_end() and can't
 | |
| 	 * be passed in directly.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
 | |
| 		return;
 | |
| 
 | |
| 	handle->aux_flags |= flags;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_aux_output_flag);
 | |
| 
 | |
| /*
 | |
|  * This is called before hardware starts writing to the AUX area to
 | |
|  * obtain an output handle and make sure there's room in the buffer.
 | |
|  * When the capture completes, call perf_aux_output_end() to commit
 | |
|  * the recorded data to the buffer.
 | |
|  *
 | |
|  * The ordering is similar to that of perf_output_{begin,end}, with
 | |
|  * the exception of (B), which should be taken care of by the pmu
 | |
|  * driver, since ordering rules will differ depending on hardware.
 | |
|  *
 | |
|  * Call this from pmu::start(); see the comment in perf_aux_output_end()
 | |
|  * about its use in pmu callbacks. Both can also be called from the PMI
 | |
|  * handler if needed.
 | |
|  */
 | |
| void *perf_aux_output_begin(struct perf_output_handle *handle,
 | |
| 			    struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *output_event = event;
 | |
| 	unsigned long aux_head, aux_tail;
 | |
| 	struct perf_buffer *rb;
 | |
| 	unsigned int nest;
 | |
| 
 | |
| 	if (output_event->parent)
 | |
| 		output_event = output_event->parent;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since this will typically be open across pmu::add/pmu::del, we
 | |
| 	 * grab ring_buffer's refcount instead of holding rcu read lock
 | |
| 	 * to make sure it doesn't disappear under us.
 | |
| 	 */
 | |
| 	rb = ring_buffer_get(output_event);
 | |
| 	if (!rb)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!rb_has_aux(rb))
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
 | |
| 	 * about to get freed, so we leave immediately.
 | |
| 	 *
 | |
| 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
 | |
| 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
 | |
| 	 * aux pages in this path, which is a bug, because in_atomic().
 | |
| 	 */
 | |
| 	if (!atomic_read(&rb->aux_mmap_count))
 | |
| 		goto err;
 | |
| 
 | |
| 	if (!refcount_inc_not_zero(&rb->aux_refcount))
 | |
| 		goto err;
 | |
| 
 | |
| 	nest = READ_ONCE(rb->aux_nest);
 | |
| 	/*
 | |
| 	 * Nesting is not supported for AUX area, make sure nested
 | |
| 	 * writers are caught early
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(nest))
 | |
| 		goto err_put;
 | |
| 
 | |
| 	WRITE_ONCE(rb->aux_nest, nest + 1);
 | |
| 
 | |
| 	aux_head = rb->aux_head;
 | |
| 
 | |
| 	handle->rb = rb;
 | |
| 	handle->event = event;
 | |
| 	handle->head = aux_head;
 | |
| 	handle->size = 0;
 | |
| 	handle->aux_flags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
 | |
| 	 * therefore (A) control dependency barrier does not exist. The
 | |
| 	 * (B) <-> (C) ordering is still observed by the pmu driver.
 | |
| 	 */
 | |
| 	if (!rb->aux_overwrite) {
 | |
| 		aux_tail = READ_ONCE(rb->user_page->aux_tail);
 | |
| 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
 | |
| 		if (aux_head - aux_tail < perf_aux_size(rb))
 | |
| 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
 | |
| 
 | |
| 		/*
 | |
| 		 * handle->size computation depends on aux_tail load; this forms a
 | |
| 		 * control dependency barrier separating aux_tail load from aux data
 | |
| 		 * store that will be enabled on successful return
 | |
| 		 */
 | |
| 		if (!handle->size) { /* A, matches D */
 | |
| 			event->pending_disable = smp_processor_id();
 | |
| 			perf_output_wakeup(handle);
 | |
| 			WRITE_ONCE(rb->aux_nest, 0);
 | |
| 			goto err_put;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return handle->rb->aux_priv;
 | |
| 
 | |
| err_put:
 | |
| 	/* can't be last */
 | |
| 	rb_free_aux(rb);
 | |
| 
 | |
| err:
 | |
| 	ring_buffer_put(rb);
 | |
| 	handle->event = NULL;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_aux_output_begin);
 | |
| 
 | |
| static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
 | |
| {
 | |
| 	if (rb->aux_overwrite)
 | |
| 		return false;
 | |
| 
 | |
| 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
 | |
| 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commit the data written by hardware into the ring buffer by adjusting
 | |
|  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
 | |
|  * pmu driver's responsibility to observe ordering rules of the hardware,
 | |
|  * so that all the data is externally visible before this is called.
 | |
|  *
 | |
|  * Note: this has to be called from pmu::stop() callback, as the assumption
 | |
|  * of the AUX buffer management code is that after pmu::stop(), the AUX
 | |
|  * transaction must be stopped and therefore drop the AUX reference count.
 | |
|  */
 | |
| void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
 | |
| {
 | |
| 	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
 | |
| 	struct perf_buffer *rb = handle->rb;
 | |
| 	unsigned long aux_head;
 | |
| 
 | |
| 	/* in overwrite mode, driver provides aux_head via handle */
 | |
| 	if (rb->aux_overwrite) {
 | |
| 		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
 | |
| 
 | |
| 		aux_head = handle->head;
 | |
| 		rb->aux_head = aux_head;
 | |
| 	} else {
 | |
| 		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
 | |
| 
 | |
| 		aux_head = rb->aux_head;
 | |
| 		rb->aux_head += size;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only send RECORD_AUX if we have something useful to communicate
 | |
| 	 *
 | |
| 	 * Note: the OVERWRITE records by themselves are not considered
 | |
| 	 * useful, as they don't communicate any *new* information,
 | |
| 	 * aside from the short-lived offset, that becomes history at
 | |
| 	 * the next event sched-in and therefore isn't useful.
 | |
| 	 * The userspace that needs to copy out AUX data in overwrite
 | |
| 	 * mode should know to use user_page::aux_head for the actual
 | |
| 	 * offset. So, from now on we don't output AUX records that
 | |
| 	 * have *only* OVERWRITE flag set.
 | |
| 	 */
 | |
| 	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
 | |
| 		perf_event_aux_event(handle->event, aux_head, size,
 | |
| 				     handle->aux_flags);
 | |
| 
 | |
| 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
 | |
| 	if (rb_need_aux_wakeup(rb))
 | |
| 		wakeup = true;
 | |
| 
 | |
| 	if (wakeup) {
 | |
| 		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
 | |
| 			handle->event->pending_disable = smp_processor_id();
 | |
| 		perf_output_wakeup(handle);
 | |
| 	}
 | |
| 
 | |
| 	handle->event = NULL;
 | |
| 
 | |
| 	WRITE_ONCE(rb->aux_nest, 0);
 | |
| 	/* can't be last */
 | |
| 	rb_free_aux(rb);
 | |
| 	ring_buffer_put(rb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_aux_output_end);
 | |
| 
 | |
| /*
 | |
|  * Skip over a given number of bytes in the AUX buffer, due to, for example,
 | |
|  * hardware's alignment constraints.
 | |
|  */
 | |
| int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
 | |
| {
 | |
| 	struct perf_buffer *rb = handle->rb;
 | |
| 
 | |
| 	if (size > handle->size)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	rb->aux_head += size;
 | |
| 
 | |
| 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
 | |
| 	if (rb_need_aux_wakeup(rb)) {
 | |
| 		perf_output_wakeup(handle);
 | |
| 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
 | |
| 	}
 | |
| 
 | |
| 	handle->head = rb->aux_head;
 | |
| 	handle->size -= size;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_aux_output_skip);
 | |
| 
 | |
| void *perf_get_aux(struct perf_output_handle *handle)
 | |
| {
 | |
| 	/* this is only valid between perf_aux_output_begin and *_end */
 | |
| 	if (!handle->event)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return handle->rb->aux_priv;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_get_aux);
 | |
| 
 | |
| /*
 | |
|  * Copy out AUX data from an AUX handle.
 | |
|  */
 | |
| long perf_output_copy_aux(struct perf_output_handle *aux_handle,
 | |
| 			  struct perf_output_handle *handle,
 | |
| 			  unsigned long from, unsigned long to)
 | |
| {
 | |
| 	struct perf_buffer *rb = aux_handle->rb;
 | |
| 	unsigned long tocopy, remainder, len = 0;
 | |
| 	void *addr;
 | |
| 
 | |
| 	from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
 | |
| 	to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
 | |
| 
 | |
| 	do {
 | |
| 		tocopy = PAGE_SIZE - offset_in_page(from);
 | |
| 		if (to > from)
 | |
| 			tocopy = min(tocopy, to - from);
 | |
| 		if (!tocopy)
 | |
| 			break;
 | |
| 
 | |
| 		addr = rb->aux_pages[from >> PAGE_SHIFT];
 | |
| 		addr += offset_in_page(from);
 | |
| 
 | |
| 		remainder = perf_output_copy(handle, addr, tocopy);
 | |
| 		if (remainder)
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		len += tocopy;
 | |
| 		from += tocopy;
 | |
| 		from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
 | |
| 	} while (to != from);
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
 | |
| 
 | |
| static struct page *rb_alloc_aux_page(int node, int order)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (order > MAX_PAGE_ORDER)
 | |
| 		order = MAX_PAGE_ORDER;
 | |
| 
 | |
| 	do {
 | |
| 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
 | |
| 	} while (!page && order--);
 | |
| 
 | |
| 	if (page && order) {
 | |
| 		/*
 | |
| 		 * Communicate the allocation size to the driver:
 | |
| 		 * if we managed to secure a high-order allocation,
 | |
| 		 * set its first page's private to this order;
 | |
| 		 * !PagePrivate(page) means it's just a normal page.
 | |
| 		 */
 | |
| 		split_page(page, order);
 | |
| 		SetPagePrivate(page);
 | |
| 		set_page_private(page, order);
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void rb_free_aux_page(struct perf_buffer *rb, int idx)
 | |
| {
 | |
| 	struct page *page = virt_to_page(rb->aux_pages[idx]);
 | |
| 
 | |
| 	ClearPagePrivate(page);
 | |
| 	__free_page(page);
 | |
| }
 | |
| 
 | |
| static void __rb_free_aux(struct perf_buffer *rb)
 | |
| {
 | |
| 	int pg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Should never happen, the last reference should be dropped from
 | |
| 	 * perf_mmap_close() path, which first stops aux transactions (which
 | |
| 	 * in turn are the atomic holders of aux_refcount) and then does the
 | |
| 	 * last rb_free_aux().
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(in_atomic());
 | |
| 
 | |
| 	if (rb->aux_priv) {
 | |
| 		rb->free_aux(rb->aux_priv);
 | |
| 		rb->free_aux = NULL;
 | |
| 		rb->aux_priv = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (rb->aux_nr_pages) {
 | |
| 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
 | |
| 			rb_free_aux_page(rb, pg);
 | |
| 
 | |
| 		kfree(rb->aux_pages);
 | |
| 		rb->aux_nr_pages = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
 | |
| 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
 | |
| {
 | |
| 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
 | |
| 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
 | |
| 	bool use_contiguous_pages = event->pmu->capabilities & (
 | |
| 		PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_PREFER_LARGE);
 | |
| 	/*
 | |
| 	 * Initialize max_order to 0 for page allocation. This allocates single
 | |
| 	 * pages to minimize memory fragmentation. This is overridden if the
 | |
| 	 * PMU needs or prefers contiguous pages (use_contiguous_pages = true).
 | |
| 	 */
 | |
| 	int max_order = 0;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	if (!has_aux(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (nr_pages <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!overwrite) {
 | |
| 		/*
 | |
| 		 * Watermark defaults to half the buffer, to aid PMU drivers
 | |
| 		 * in double buffering.
 | |
| 		 */
 | |
| 		if (!watermark)
 | |
| 			watermark = min_t(unsigned long,
 | |
| 					  U32_MAX,
 | |
| 					  (unsigned long)nr_pages << (PAGE_SHIFT - 1));
 | |
| 
 | |
| 		/*
 | |
| 		 * If using contiguous pages, use aux_watermark as the basis
 | |
| 		 * for chunking to help PMU drivers honor the watermark.
 | |
| 		 */
 | |
| 		if (use_contiguous_pages)
 | |
| 			max_order = get_order(watermark);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If using contiguous pages, we need to start with the
 | |
| 		 * max_order that fits in nr_pages, not the other way around,
 | |
| 		 * hence ilog2() and not get_order.
 | |
| 		 */
 | |
| 		if (use_contiguous_pages)
 | |
| 			max_order = ilog2(nr_pages);
 | |
| 		watermark = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * kcalloc_node() is unable to allocate buffer if the size is larger
 | |
| 	 * than: PAGE_SIZE << MAX_PAGE_ORDER; directly bail out in this case.
 | |
| 	 */
 | |
| 	if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_PAGE_ORDER)
 | |
| 		return -ENOMEM;
 | |
| 	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
 | |
| 				     node);
 | |
| 	if (!rb->aux_pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rb->free_aux = event->pmu->free_aux;
 | |
| 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
 | |
| 		struct page *page;
 | |
| 		int last, order;
 | |
| 
 | |
| 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
 | |
| 		page = rb_alloc_aux_page(node, order);
 | |
| 		if (!page)
 | |
| 			goto out;
 | |
| 
 | |
| 		for (last = rb->aux_nr_pages + (1 << page_private(page));
 | |
| 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
 | |
| 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In overwrite mode, PMUs that don't support SG may not handle more
 | |
| 	 * than one contiguous allocation, since they rely on PMI to do double
 | |
| 	 * buffering. In this case, the entire buffer has to be one contiguous
 | |
| 	 * chunk.
 | |
| 	 */
 | |
| 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
 | |
| 	    overwrite) {
 | |
| 		struct page *page = virt_to_page(rb->aux_pages[0]);
 | |
| 
 | |
| 		if (page_private(page) != max_order)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
 | |
| 					     overwrite);
 | |
| 	if (!rb->aux_priv)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * aux_pages (and pmu driver's private data, aux_priv) will be
 | |
| 	 * referenced in both producer's and consumer's contexts, thus
 | |
| 	 * we keep a refcount here to make sure either of the two can
 | |
| 	 * reference them safely.
 | |
| 	 */
 | |
| 	refcount_set(&rb->aux_refcount, 1);
 | |
| 
 | |
| 	rb->aux_overwrite = overwrite;
 | |
| 	rb->aux_watermark = watermark;
 | |
| 
 | |
| out:
 | |
| 	if (!ret)
 | |
| 		rb->aux_pgoff = pgoff;
 | |
| 	else
 | |
| 		__rb_free_aux(rb);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void rb_free_aux(struct perf_buffer *rb)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&rb->aux_refcount))
 | |
| 		__rb_free_aux(rb);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_PERF_USE_VMALLOC
 | |
| 
 | |
| /*
 | |
|  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 | |
|  */
 | |
| 
 | |
| static struct page *
 | |
| __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
 | |
| {
 | |
| 	if (pgoff > rb->nr_pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (pgoff == 0)
 | |
| 		return virt_to_page(rb->user_page);
 | |
| 
 | |
| 	return virt_to_page(rb->data_pages[pgoff - 1]);
 | |
| }
 | |
| 
 | |
| static void *perf_mmap_alloc_page(int cpu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int node;
 | |
| 
 | |
| 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
 | |
| 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return page_address(page);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_free_page(void *addr)
 | |
| {
 | |
| 	struct page *page = virt_to_page(addr);
 | |
| 
 | |
| 	__free_page(page);
 | |
| }
 | |
| 
 | |
| struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
 | |
| {
 | |
| 	struct perf_buffer *rb;
 | |
| 	unsigned long size;
 | |
| 	int i, node;
 | |
| 
 | |
| 	size = sizeof(struct perf_buffer);
 | |
| 	size += nr_pages * sizeof(void *);
 | |
| 
 | |
| 	if (order_base_2(size) > PAGE_SHIFT+MAX_PAGE_ORDER)
 | |
| 		goto fail;
 | |
| 
 | |
| 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
 | |
| 	rb = kzalloc_node(size, GFP_KERNEL, node);
 | |
| 	if (!rb)
 | |
| 		goto fail;
 | |
| 
 | |
| 	rb->user_page = perf_mmap_alloc_page(cpu);
 | |
| 	if (!rb->user_page)
 | |
| 		goto fail_user_page;
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
 | |
| 		if (!rb->data_pages[i])
 | |
| 			goto fail_data_pages;
 | |
| 	}
 | |
| 
 | |
| 	rb->nr_pages = nr_pages;
 | |
| 
 | |
| 	ring_buffer_init(rb, watermark, flags);
 | |
| 
 | |
| 	return rb;
 | |
| 
 | |
| fail_data_pages:
 | |
| 	for (i--; i >= 0; i--)
 | |
| 		perf_mmap_free_page(rb->data_pages[i]);
 | |
| 
 | |
| 	perf_mmap_free_page(rb->user_page);
 | |
| 
 | |
| fail_user_page:
 | |
| 	kfree(rb);
 | |
| 
 | |
| fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void rb_free(struct perf_buffer *rb)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	perf_mmap_free_page(rb->user_page);
 | |
| 	for (i = 0; i < rb->nr_pages; i++)
 | |
| 		perf_mmap_free_page(rb->data_pages[i]);
 | |
| 	kfree(rb);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static struct page *
 | |
| __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
 | |
| {
 | |
| 	/* The '>' counts in the user page. */
 | |
| 	if (pgoff > data_page_nr(rb))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static void rb_free_work(struct work_struct *work)
 | |
| {
 | |
| 	struct perf_buffer *rb;
 | |
| 
 | |
| 	rb = container_of(work, struct perf_buffer, work);
 | |
| 
 | |
| 	vfree(rb->user_page);
 | |
| 	kfree(rb);
 | |
| }
 | |
| 
 | |
| void rb_free(struct perf_buffer *rb)
 | |
| {
 | |
| 	schedule_work(&rb->work);
 | |
| }
 | |
| 
 | |
| struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
 | |
| {
 | |
| 	struct perf_buffer *rb;
 | |
| 	unsigned long size;
 | |
| 	void *all_buf;
 | |
| 	int node;
 | |
| 
 | |
| 	size = sizeof(struct perf_buffer);
 | |
| 	size += sizeof(void *);
 | |
| 
 | |
| 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
 | |
| 	rb = kzalloc_node(size, GFP_KERNEL, node);
 | |
| 	if (!rb)
 | |
| 		goto fail;
 | |
| 
 | |
| 	INIT_WORK(&rb->work, rb_free_work);
 | |
| 
 | |
| 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
 | |
| 	if (!all_buf)
 | |
| 		goto fail_all_buf;
 | |
| 
 | |
| 	rb->user_page = all_buf;
 | |
| 	rb->data_pages[0] = all_buf + PAGE_SIZE;
 | |
| 	if (nr_pages) {
 | |
| 		rb->nr_pages = 1;
 | |
| 		rb->page_order = ilog2(nr_pages);
 | |
| 	}
 | |
| 
 | |
| 	ring_buffer_init(rb, watermark, flags);
 | |
| 
 | |
| 	return rb;
 | |
| 
 | |
| fail_all_buf:
 | |
| 	kfree(rb);
 | |
| 
 | |
| fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| struct page *
 | |
| perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
 | |
| {
 | |
| 	if (rb->aux_nr_pages) {
 | |
| 		/* above AUX space */
 | |
| 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
 | |
| 			return NULL;
 | |
| 
 | |
| 		/* AUX space */
 | |
| 		if (pgoff >= rb->aux_pgoff) {
 | |
| 			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
 | |
| 			return virt_to_page(rb->aux_pages[aux_pgoff]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return __perf_mmap_to_page(rb, pgoff);
 | |
| }
 |